Activation of plant foliar oxidases by insect feeding red for noctuid herbivores

Journal of Chemical Ecology 15, 2667-2694 DOI: 10.1007/bf01014725

Citation Report

#	Article	IF	CITATIONS
1	Inactivation of protease inhibitor activity by plant-derived quinones: Complications for host-plant resistance against noctuid herbivores. Journal of Insect Physiology, 1989, 35, 981-990.	0.9	52
2	Interactive effect of protein and rutin on larval <i>Heliothis zea</i> and the endoparasitoid <i>Hyposoter exiguae</i> . Entomologia Experimentalis Et Applicata, 1990, 54, 149-161.	0.7	16
3	Gut redox conditions in herbivorous lepidopteran larvae. Journal of Chemical Ecology, 1990, 16, 3277-3290.	0.9	102
4	Inactivation of baculovirus by quinones formed in insect-damaged plant tissues. Journal of Chemical Ecology, 1990, 16, 1221-1236.	0.9	93
5	Salivary amino acids in Lygus species (Heteroptera:Miridae). Insect Biochemistry, 1991, 21, 759-765.	1.8	7
6	Enzymatic Antinutritive Defenses of the Tomato Plant Against Insects. ACS Symposium Series, 1991, , 166-197.	0.5	61
7	Protective action of midgut catalase in lepidopteran larvae against oxidative plant defenses. Journal of Chemical Ecology, 1991, 17, 1715-1732.	0.9	92
8	Reassessment of the role of gut alkalinity and detergency in insect herbivory. Journal of Chemical Ecology, 1991, 17, 1821-1836.	0.9	96
9	Plant defenses: Chlorogenic acid and polyphenol oxidase enhance toxicity ofBacillus thuringiensis subsp.kurstaki toHeliothis zea. Journal of Chemical Ecology, 1991, 17, 217-237.	0.9	69
10	Allelochemical–Nutrient Interactions in Herbivore Nutritional Ecology. , 1992, , 135-174.		59
11	Impact of oxidized plant phenolics on the nutritional quality of dietar protein to a noctuid herbivore, Spodoptera exigua. Journal of Insect Physiology, 1992, 38, 277-285.	0.9	267
12	Avoidance of antinutritive plant defense: Role of midgut pH in Colorado potato beetle. Journal of Chemical Ecology, 1992, 18, 571-583.	0.9	77
13	Reassessment of interaction between gut detergents and tannins in lepidoptera and significance for gypsy moth larvae. Journal of Chemical Ecology, 1992, 18, 1437-1453.	0.9	45
14	Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects. Biochemical Systematics and Ecology, 1992, 20, 269-296.	0.6	192
15	Bibliography of plant resistance to arthropods in vegetables, 1977–1991. Phytoparasitica, 1992, 20, 125-138.	0.6	14
16	Ascorbate oxidation reduction inHelicoverpa zea as a scavenging system against dietary oxidants. Archives of Insect Biochemistry and Physiology, 1992, 19, 27-37.	0.6	47
17	Organisation of the tomato polyphenol oxidase gene family. Plant Molecular Biology, 1993, 21, 1035-1051.	2.0	155
18	cDNA cloning and expression of potato polyphenol oxidase. Plant Molecular Biology, 1993, 21, 59-68.	2.0	132

#	ARTICLE	IF	CITATIONS
19	Developmental inhibition ofSpodoptera litura (Fab.) larvae by a novel caffeoylquinic acid from the wild groundnut,Arachis paraguariensis (Chod et Hassl.). Journal of Chemical Ecology, 1993, 19, 2917-2933.	0.9	88
20	Phenolics in ecological interactions: The importance of oxidation. Journal of Chemical Ecology, 1993, 19, 1521-1552.	0.9	606
21	Potential role of ascorbate oxidase as a plant defense protein against insect herbivory. Journal of Chemical Ecology, 1993, 19, 1553-1568.	0.9	77
22	Role of Polyphenolic Molecular Size in Reduction of Assimilation Efficiency in Xiphister Mucosus. Ecology, 1993, 74, 891-903.	1.5	111
23	The identification and characterization of resistance in wild species of Arachis to Spodoptera litura (Lepidoptera: Noctuidae). Bulletin of Entomological Research, 1993, 83, 421-429.	0.5	34
24	Differential induction of tomato foliar proteins by arthropod herbivores. Journal of Chemical Ecology, 1994, 20, 2575-2594.	0.9	125
25	Oxidative responses in soybean foliage to herbivory by bean leaf beetle and three-cornered alfalfa hopper. Journal of Chemical Ecology, 1994, 20, 639-650.	0.9	121
26	Potential role of lipoxygenases in defense against insect herbivory. Journal of Chemical Ecology, 1994, 20, 651-666.	0.9	97
27	Tannin sensitivity in larvae ofMalacosoma disstria (Lepidoptera): Roles of the peritrophic envelope and midgut oxidation. Journal of Chemical Ecology, 1994, 20, 1985-2001.	0.9	91
28	Enhanced maize (Zea mays L.) pericarp browning: Associations with insect resistance and involvement of oxidizing enzymes. Journal of Chemical Ecology, 1994, 20, 2777-2803.	0.9	43
29	Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera:) Tj ETQq0 0 0 rgBT Insect Biochemistry and Molecular Biology, 1994, 24, 943-953.	/Overlock 1.2	10 Tf 50 34 189
30	Browning-associated mechanisms of resistance to insects in corn callus tissue. Journal of Chemical Ecology, 1995, 21, 583-600.	0.9	27
31	Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. Journal of Chemical Ecology, 1995, 21, 1511-1530.	0.9	306
32	Chemical and experiential basis for rejection ofTropaeolum majus byPieris rapae larvae. Journal of Chemical Ecology, 1995, 21, 1601-1617.	0.9	32
33	Developmental regulation of aldoxime formation in seedlings and mature plants of Chinese cabbage (Brassica campestris ssp. pekinensis) and oilseed rape (Brassica napus): Glucosinolate and IAA biosynthetic enzymes. Planta, 1995, 196, 239.	1.6	29
34	HPLC isolation and identification of flavonoids from white birch Betula pubescens leaves. Biochemical Systematics and Ecology, 1995, 23, 213-222.	0.6	58
35	The influence of host plant on gut conditions of gypsy moth (Lymantria dispar) caterpillars. Journal of Insect Physiology, 1995, 41, 241-246.	0.9	62
36	Growth inhibition of the cotton bollworm (Helicoverpa armigera) larvae by caffeoylquinic acids from the wild groundnut, Arachis paraguariensis. International Journal of Tropical Insect Science, 1995, 16, 363-368.	0.4	3

#	Article	IF	CITATIONS
37	Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 407-411.	3.3	329
38	Antinutritive plant defence mechanisms. , 1996, , 373-416.		28
39	Allelochemicals in Tomato Leaves Affect a Specialist Insect Herbivore Manduca sexta Negatively but with No Ill Effects on a Generalist Insect Predator, Podisus maculiventris. Oikos, 1996, 77, 481.	1.2	12
40	Physiological and dietary influences on midgut redox conditions in generalist lepidopteran larvae. Journal of Insect Physiology, 1996, 42, 191-198.	0.9	44
41	Variation of total phenolic content and individual low-molecular-weight phenolics in foliage of mountain birch trees (Betula pubescens ssp.tortuosa). Journal of Chemical Ecology, 1996, 22, 2023-2040.	0.9	125
42	Biological performance of Colorado potato beetle larvae on potato genotypes with differing levels of polyphenol oxidase. Journal of Chemical Ecology, 1996, 22, 91-101.	0.9	30
43	Temporal and ontogenetic aspects of protein induction in foliage of the tomato, Lycopersicon esculentum. Biochemical Systematics and Ecology, 1996, 24, 611-625.	0.6	43
44	Nutritive quality of plant protein: Sources of variation and insect herbivore responses. Archives of Insect Biochemistry and Physiology, 1996, 32, 107-130.	0.6	102
45	Antinutritive and toxic components of plant defense against insects. Archives of Insect Biochemistry and Physiology, 1996, 32, 3-37.	0.6	338
46	Potential influence of midgut pH and redox potential on protein utilization in insect herbivores. Archives of Insect Biochemistry and Physiology, 1996, 32, 85-105.	0.6	51
47	Identity, spatial distribution, and variability of induced chemical responses in tomato plants. Entomologia Experimentalis Et Applicata, 1996, 79, 255-271.	0.7	68
48	Effects of temperature, multiple allelochemicals and larval age on the performance of a specialist caterpillar. Entomologia Experimentalis Et Applicata, 1996, 79, 335-344.	0.7	11
49	Response of Insect Herbivores to Multiple Allelochemicals Under Different Thermal Regimes. Ecology, 1996, 77, 1088-1102.	1.5	77
50	Disentangling Effects of Induced Plant Defenses and Food Quantity on Herbivores by Fitting Nonlinear Models. American Naturalist, 1997, 150, 299-327.	1.0	25
51	RESPONSE OF AN INSECT PREDATOR TO PREY FED MULTIPLE ALLELOCHEMICALS UNDER REPRESENTATIVE THERMAL REGIMES. Ecology, 1997, 78, 203-214.	1.5	39
52	Identification of Maize Chromosome Regions Associated with Antibiosis to Corn Earworm (Lepidoptera: Noctuidae) Larvae. Journal of Economic Entomology, 1997, 90, 1039-1045.	0.8	32
53	Do Plant Phenolics Confer Resistance to Specialist and Generalist Insect Herbivores?. Journal of Agricultural and Food Chemistry, 1997, 45, 4500-4504.	2.4	62
54	Impact of dietary allelochemicals on gypsy moth (Lymantria dispar) caterpillars: importance of midgut alkalinity. Journal of Insect Physiology, 1997, 43, 1169-1175.	0.9	29

#	Article	IF	CITATIONS
55	Glycine in Digestive Juice: a Strategy of Herbivorous Insects Against Chemical Defense of Host Plants. Journal of Insect Physiology, 1997, 43, 217-224.	0.9	36
56	Antinutritive and Oxidative Components as Mechanisms of Induced Resistance in Cotton to Helicoverpa zea. Journal of Chemical Ecology, 1997, 23, 97-117.	0.9	116
57	Examination of Different Tobacco (Nicotiana spp.) Types Under- and Overproducing Tobacco Anionic Peroxidase for Their Leaf Resistance to Helicoverpa zea. Journal of Chemical Ecology, 1997, 23, 2357-2370.	0.9	28
58	Wind-induced mechanical stimulation increases pest resistance in common bean. Oecologia, 1997, 111, 84-90.	0.9	99
59	Gypsy moth (Lymantria dispar) larval development and survival to pupation on diet plus extractables from green ash foliage. Entomologia Experimentalis Et Applicata, 1997, 84, 247-254.	0.7	9
60	Expression of the tobacco anionic peroxidase gene is tissue-specific and developmentally regulated. Plant Molecular Biology, 1998, 36, 509-520.	2.0	43
61	Inhibition of Baculoviral Disease by Plant-Mediated Peroxidase Activity and Free Radical Generation. Journal of Chemical Ecology, 1998, 24, 1949-2001.	0.9	52
62	Title is missing!. Journal of Chemical Ecology, 1998, 24, 1447-1463.	0.9	15
63	Title is missing!. Journal of Chemical Ecology, 1998, 24, 735-751.	0.9	27
64	Title is missing!. Journal of Chemical Ecology, 1998, 24, 253-271.	0.9	44
65	Title is missing!. Journal of Chemical Ecology, 1998, 24, 221-252.	0.9	34
66	Comparative toxicity of allelochemicals and their enzymatic oxidation products to maize fungal pathogens, emphasizing <i>Fusarium graminearum</i> . Natural Toxins, 1997, 5, 180-185.	1.0	22
67	Relative Resistance of Transgenic Tomato Tissues Expressing High Levels of Tobacco Anionic Peroxidase to Different Insect Species. Natural Toxins, 1998, 6, 241-249.	1.0	21
68	Formation of insoluble and colloidally dispersed tannic acid complexes in the midgut fluid ofManduca sexta (Lepidoptera: Sphingidae): An explanation for the failure of tannic acid to cross the peritrophic envelopes of lepidopteran larvae. Archives of Insect Biochemistry and Physiology, 1998, 39, 109-117.	0.6	23
69	A survey of wound- and methyl jasmonate-induced leaf polyphenol oxidase in crop plants. Phytochemistry, 1998, 47, 507-511.	1.4	200
70	Unfolding and refolding of active apple polyphenol oxidase. Phytochemistry, 1998, 49, 1213-1217.	1.4	11
71	MINIREVIEW-PREDICTING THE EFFECTS OF BROWN ALGAL PHLOROTANNINS ON MARINE HERBIVORES IN TROPICAL AND TEMPERATE OCEANS. Journal of Phycology, 1998, 34, 195-205.	1.0	242
72	Indiscrimination of Manduca sexta larvae to overexpressed and underexpressed levels of phenylalanine ammonia-lyase in tobacco leaves. Entomologia Experimentalis Et Applicata, 1998, 87, 73-78.	0.7	12

#	Article	IF	CITATIONS
73	Combined effects of allelochemicals, prey availability, and supplemental plant material on growth of a generalist insect predator. Entomologia Experimentalis Et Applicata, 1998, 87, 181-189.	0.7	40
74	Effects of juglone (5-hydroxy-1,4-naphthoquinone) on midgut morphology and glutathione status in Saturniid moth larvae. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1998, 120, 481-487.	0.5	26
75	The induction of soluble peroxidase activity in bean leaves by windâ€induced mechanical perturbation. American Journal of Botany, 1998, 85, 1586-1591.	0.8	60
76	Effects of Prey Scarcity and Plant Material as a Dietary Supplement on an Insect Predator. Oikos, 1998, 81, 549.	1.2	21
77	Quantitative trait loci and metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 1996-2000.	3.3	115
78	Accumulation of Caffeoyl-D-quinic Acids and Catechins in Plums Affected by the Fungus Taphrina pruni. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1998, 53, 799-805.	0.6	7
79	K ⁺ -neutral amino acid symport of <i>Bombyx mori</i> larval midgut: a system operative in extreme conditions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R1361-R1371.	0.9	26
80	Induced Resistance in Agricultural Crops: Effects of Jasmonic Acid on Herbivory and Yield in Tomato Plants. Environmental Entomology, 1999, 28, 30-37.	0.7	154
81	Enzymatic activation of oleuropein: A protein crosslinker used as a chemical defense in the privet tree. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9159-9164.	3.3	199
82	Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature, 1999, 399, 686-688.	13.7	494
83	Title is missing!. Journal of Chemical Ecology, 1999, 25, 271-281.	0.9	82
84	Title is missing!. Journal of Chemical Ecology, 1999, 25, 1945-1960.	0.9	50
85	Do Foliar Phenolics Provide Protection to Heliothis virescens from a Baculovirus?. Journal of Chemical Ecology, 1999, 25, 2193-2204.	0.9	15
86	Probing the Role of Polyphenol Oxidation in Mediating Insectâ^'Pathogen Interactions. Galloyl-Derived Electrophilic Traps for theLymantriadisparNuclear Polyhedrosis Virus Matrix Protein Polyhedrin. Journal of Organic Chemistry, 1999, 64, 5794-5803.	1.7	20
87	Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato,Lycopersicon esculentum. Physiological and Molecular Plant Pathology, 1999, 54, 115-130.	1.3	224
88	Comparison of Silk Maysin, Antibiosis to Corn Earworm Larvae (Lepidoptera: Noctuidae), and Silk Browning in Crosses of Dent × Sweet Corn. Journal of Economic Entomology, 1999, 92, 746-753.	0.8	22
89	Digestive proteinase activity in corn earworm (Helicoverpa zea) after molting and in response to lowered redox potential. Archives of Insect Biochemistry and Physiology, 2000, 44, 151-161.	0.6	14
90	Characterization of polyphenol oxidase in coffee. Phytochemistry, 2000, 55, 285-296.	1.4	113

	Сітаті	CITATION REPORT	
#	Article	IF	CITATIONS
91	Oxygen levels in the gut lumens of herbivorous insects. Journal of Insect Physiology, 2000, 46, 897-903.	0.9	74
92	Midgut-based resistance of Heliothis virescens to baculovirus infection mediated by phytochemicals in cotton. Journal of Insect Physiology, 2000, 46, 999-1007.	0.9	99
93	Larvicidal Effect of a Cell-Wall Fraction Isolated from Alder Decaying Leaves. Journal of Chemical Ecology, 2000, 26, 901-913.	0.9	27
94	Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia, 2000, 125, 66-71.	0.9	376
95	Polyphenol Oxidase from Hybrid Poplar. Cloning and Expression in Response to Wounding and Herbivory. Plant Physiology, 2000, 124, 285-296.	2.3	243
96	Induced Plant Defense Responses against Chewing Insects. Ethylene Signaling Reduces Resistance of Arabidopsis against Egyptian Cotton Worm But Not Diamondback Moth. Plant Physiology, 2000, 124, 1007-1018.	2.3	245
97	Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecological Entomology, 2001, 26, 312-324.	1.1	252
98	Hysteresis and Positive Cooperativity of Iceberg Lettuce Polyphenol Oxidase. Biochemical and Biophysical Research Communications, 2001, 289, 769-775.	1.0	33
99	Evolutionary biology of plant defenses against herbivory and their predictive implications for endocrine disruptor susceptibility in vertebrates Environmental Health Perspectives, 2001, 109, 443-448.	2.8	66
100	Jasmonic acid treatment and mammalian herbivory differentially affect chemical defenses and growth of wild mustard (Brassica kaber). Chemoecology, 2001, 11, 137-143.	0.6	43
101	Molecular cloning and characterisation of banana fruit polyphenol oxidase. Planta, 2001, 213, 748-757.	1.6	88
102	Polyphenol oxidase and herbivore defense in trembling aspen (Populus tremuloides): cDNA cloning, expression, and potential substrates. Physiologia Plantarum, 2001, 112, 552-558.	2.6	73
103	Roles of peritrophic membranes in protecting herbivorous insects from ingested plant allelochemicals. Archives of Insect Biochemistry and Physiology, 2001, 47, 86-99.	0.6	90
104	Differences in host use efficiency of larvae of a generalist moth, Operophtera brumata on three chemically divergent Salix species. Journal of Chemical Ecology, 2001, 27, 1595-1615.	0.9	85
105	Plant phenolics as dietary antioxidants for herbivorous insects: a test with genetically modified tobacco. Journal of Chemical Ecology, 2001, 27, 2579-2597.	0.9	71
106	Antioxidant defenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen. Journal of Insect Physiology, 2001, 47, 349-357.	0.9	94
107	Oxidative Responses of Resistant and Susceptible Cereal Leaves to Symptomatic and Nonsymptomatic Cereal Aphid (Hemiptera: Aphididae) Feeding. Journal of Economic Entomology, 2001, 94, 743-751.	0.8	106
108	Restriction Fragment Length Polymorphism Markers Associated with Silk Maysin, Antibiosis to Corn Earworm (Lepidoptera: Noctuidae) Larvae, in a Dent and Sweet Corn Cross. Journal of Economic Entomology, 2001, 94, 564-571.	0.8	27

#	Article	IF	CITATIONS
109	Effect of Transgenic Plants Expressing High Levels of a Tobacco Anionic Peroxidase on the Toxicity of <i>Anagrapha falcifera</i> Nucleopolyhedrovirus to <i>Helicoverpa zea</i> (Lepidoptera: Noctuidae). Journal of Economic Entomology, 2002, 95, 81-88.	0.8	8
110	The chemistry and toxicology of bioactive compounds in bracken fern (Pteridium SSP), with special reference to chemical ecology and carcinogenesis. Studies in Natural Products Chemistry, 2002, , 685-739.	0.8	8
111	Reduced herbivory of the European corn borer (Ostrinia nubilalis) on corn transformed with germin, a wheat oxalate oxidase gene. Plant Science, 2002, 162, 431-440.	1.7	80
112	Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 2002, 215, 239-247.	1.6	452
113	Effect of jasmonate-induced plant responses on the natural enemies of herbivores. Journal of Animal Ecology, 2002, 71, 141-150.	1.3	70
114	Jasmonate-deficient plants have reduced direct and indirect defences against herbivores. Ecology Letters, 2002, 5, 764-774.	3.0	193
115	A breath of fresh air: beyond laboratory studies of plant volatile-natural enemy interactions. Agricultural and Forest Entomology, 2002, 4, 81-86.	0.7	55
116	Antagonism between jasmonate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. Journal of Chemical Ecology, 2002, 28, 1131-1159.	0.9	162
117	Gut-based antioxidant enzymes in a polyphagous and a graminivorous grasshopper. Journal of Chemical Ecology, 2002, 28, 1329-1347.	0.9	77
118	In vitro degradation of willow salicylates. Journal of Chemical Ecology, 2003, 29, 1083-1097.	0.9	48
119	Antioxidants in the midgut fluids of a tannin-tolerant and a tannin-sensitive caterpillar: effects of seasonal changes in tree leaves. Journal of Chemical Ecology, 2003, 29, 1099-1116.	0.9	28
120	Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants. Oikos, 2003, 100, 325-332.	1.2	132
121	PHYSICOCHEMICAL PROPERTIES AND FUNCTION OF PLANT POLYPHENOL OXIDASE: A REVIEW. Journal of Food Biochemistry, 2003, 27, 361-422.	1.2	452
122	Semiquinone and ascorbyl radicals in the gut fluids of caterpillars measured with EPR spectrometry. Insect Biochemistry and Molecular Biology, 2003, 33, 125-130.	1.2	58
123	Fungus-Induced Biochemical Changes in Peanut Plants and Their Effect on Development of Beet Armyworm, <i>Spodoptera Exigua</i> Hübner (Lepidoptera: Noctuidae) Larvae. Environmental Entomology, 2003, 32, 220-228.	0.7	61
124	The genetic basis of C-glycosyl flavone B-ring modification in maize (Zea mays L.) silks. Genome, 2003, 46, 182-194.	0.9	33
125	Strategies to Improve Milk Yield of Lactating Dairy Cows Fed Red Clover Silage11Supported by federal Hatch funds and the College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI 53706 The Professional Animal Scientist, 2003, 19, 178-187.	0.7	6
126	Characterization of Oxidative Enzyme Changes in Buffalograsses Challenged by <1>Blissus occiduus 1 . Journal of Economic Entomology, 2004, 97, 1086-1095.	0.8	49

#	Article	IF	CITATIONS
127	Characterization of Oxidative Enzyme Changes in Buffalograsses Challenged by Blissus occiduus. Journal of Economic Entomology, 2004, 97, 1086-1095.	0.8	76
128	Three polyphenol oxidases from hybrid poplar are differentially expressed during development and after wounding and elicitor treatment. Physiologia Plantarum, 2004, 122, 344-353.	2.6	23
129	Temporal effects on jasmonate induction of anti-herbivore defense in Physalis angulata: seasonal and ontogenetic gradients. Biochemical Systematics and Ecology, 2004, 32, 117-126.	0.6	22
130	Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta, 2004, 220, 87-96.	1.6	159
131	Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta, 2004, 220, 105-117.	1.6	209
132	Involvement of jasmonic acid and derivatives in plant responses to pathogens and insects and in fruit ripening. Journal of Plant Growth Regulation, 2004, 23, 246-260.	2.8	10
133	Involvement of Jasmonic Acid and Derivatives in Plant Response to Pathogen and Insects and in Fruit Ripening. Journal of Plant Growth Regulation, 2004, 23, 246-260.	2.8	33
134	Enzymatic Degradation of Echinacoside and Cynarine inEchinacea angustifoliaRoot Preparations. Pharmaceutical Biology, 2004, 42, 443-448.	1.3	8
135	INTERACTIONS BETWEEN ABSCISIC-ACID-MEDIATED RESPONSES AND PLANT RESISTANCE TO PATHOGENS AND INSECTS. Ecology, 2004, 85, 48-58.	1.5	241
136	Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Science, 2004, 167, 693-703.	1.7	135
137	The jasmonate pathway alters herbivore feeding behaviour: consequences for plant defences. Entomologia Experimentalis Et Applicata, 2005, 115, 125-134.	0.7	35
138	Biochemical transformation of birch leaf phenolics in larvae of six species of sawflies. Chemoecology, 2005, 15, 153-159.	0.6	12
139	Construction and analysis of a substracted cDNA library ofBetula platyphylla female inflorescence. Journal of Forestry Research, 2005, 16, 97-100.	1.7	5
140	Phenolic Compounds in Red Oak and Sugar Maple Leaves Have Prooxidant Activities in the Midgut Fluids of Malacosoma disstria and Orgyia leucostigma Caterpillars. Journal of Chemical Ecology, 2005, 31, 969-988.	0.9	96
142	Indigestion is a plant's best defense. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18771-18772.	3.3	87
143	Plant Phenolics Behave as Radical Scavengers in the Context of Insect (Manduca sexta) Hemolymph and Midgut Fluid. Journal of Agricultural and Food Chemistry, 2005, 53, 10120-10126.	2.4	24
144	Molecular Biology and Biochemistry of Induced Insect Defense in Populus. Recent Advances in Phytochemistry, 2005, 39, 119-143.	0.5	9
146	The Role of Phenols in Plant Defense. , 2008, , 211-234.		17

#	Article	IF	CITATIONS
147	INCREASING RESISTANCE OF TOMATO TO LEPIDOPTERAN INSECTS BY OVEREXPRESSION OF POLYPHENOL OXIDASE. Acta Horticulturae, 2006, , 29-38.	0.1	8
148	Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid, Myzus persicae. Entomologia Experimentalis Et Applicata, 2006, 120, 175-188.	0.7	133
149	Examination of the Biological Effects of High Anionic Peroxidase Production in Tobacco Plants Grown under Field Conditions. I. Insect Pest Damage. Transgenic Research, 2006, 15, 197-204.	1.3	17
150	Phenol Contents, Oxidase Activities, and the Resistance of Coffee to the Leaf Miner Leucoptera coffeella. Journal of Chemical Ecology, 2006, 32, 1977-1988.	0.9	111
151	When quinones meet amino acids: chemical, physical and biological consequences. Amino Acids, 2006, 30, 205-224.	1.2	298
152	Insect feeding-induced differential expression of Beta vulgaris root genes and their regulation by defense-associated signals. Plant Cell Reports, 2006, 26, 71-84.	2.8	44
153	Effects of increased content of leaf surface flavonoids on the performance of mountain birch feeding sawflies vary for early and late season species. Chemoecology, 2006, 16, 159-167.	0.6	13
154	Polyphenoloxidase activity in coffee leaves and its role in resistance against the coffee leaf miner and coffee leaf rust. Phytochemistry, 2006, 67, 277-285.	1.4	67
155	Antioxidant enzymes in Spodoptera littoralis (Boisduval): Are they enhanced to protect gut tissues during oxidative stress?. Journal of Insect Physiology, 2006, 52, 11-20.	0.9	172
156	Mimicking Biological Phenol Reaction Cascades to Confer Mechanical Function. Advanced Functional Materials, 2006, 16, 1967-1974.	7.8	57
157	Wound-induced Oxidative Responses in Mountain Birch Leaves. Annals of Botany, 2006, 97, 29-37.	1.4	42
158	Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid Defenses. Plant Physiology, 2007, 143, 866-875.	2.3	635
159	Polyphenoloxidase is induced by methyljasmonate and Meloidogyne javanica in soybean roots but is not involved in resistance. Nematology, 2007, 9, 625-634.	0.2	5
160	Resistance to Spodoptera frugiperda (Lepidoptera: Noctuidae) and Euxesta stigmatias (Diptera:) Tj ETQq1 1 0. Economic Entomology, 2007, 100, 1887-1895.	784314 rgB 0.8	T /Overlock 1 55
161	Friend or Foe?: A Plant's Induced Response to an Omnivore. Environmental Entomology, 2007, 36, 623-630.	0.7	15
162	Functional Analysis of Polyphenol Oxidases by Antisense/Sense Technology. Molecules, 2007, 12, 1569-1595.	1.7	118
163	Friend or Foe?: A Plant's Induced Response to an Omnivore. Environmental Entomology, 2007, 36, 623-630.	0.7	11
164	Resistance to <l>Spodoptera frugiperda</l> (Lepidoptera: Noctuidae) and <l>Euxesta stigmatias</l> (Diptera: Ulidiidae) in Sweet Corn Derived from Exogenous and Endogenous Genetic Systems. Journal of Economic Entomology, 2007, 100, 1887-1895.	0.8	41

#	Article	IF	CITATIONS
165	Poplar defense against insect herbivoresThis review is one of a selection of papers published in the Special Issue on Poplar Research in Canada Canadian Journal of Botany, 2007, 85, 1111-1126.	1.2	65
167	Stage-specific distribution of oxidative radicals and antioxidant enzymes in the midgut of Leptinotarsa decemlineata. Journal of Insect Physiology, 2007, 53, 67-74.	0.9	69
168	Temporal and spatial variation in mountain birch foliar enzyme activities during the larval period of Epirrita autumnata. Chemoecology, 2007, 17, 71-80.	0.6	5
169	Functional gene markers for polyphenol oxidase locus in bread wheat (Triticum aestivum L.). Molecular Breeding, 2007, 19, 315-328.	1.0	31
170	Temperature as a Modifier of Plant–Herbivore Interaction. Journal of Chemical Ecology, 2007, 33, 463-475.	0.9	11
171	Immunological Memory of Mountain Birches: Effects of Phenolics on Performance of the Autumnal Moth Depend on Herbivory History of Trees. Journal of Chemical Ecology, 2007, 33, 1160-1176.	0.9	52
172	Larval feeding induced defensive responses in tobacco: comparison of two sibling species of Helicoverpa with different diet breadths. Planta, 2007, 226, 215-224.	1.6	24
173	Limited impact of elevated levels of polyphenol oxidase on tree-feeding caterpillars: assessing individual plant defenses with transgenic poplar. Oecologia, 2007, 154, 129-140.	0.9	39
174	Responses of Helicoverpa armigera to Tomato Plants Previously Infected by ToMV or Damaged by H. armigera. Journal of Chemical Ecology, 2008, 34, 353-361.	0.9	14
175	Induction of the activities of antioxidative enzymes and the levels of malondialdehyde in cucumber seedlings as a consequence of Bemisia tabaci (Hemiptera: Aleyrodidae) infestation. Arthropod-Plant Interactions, 2008, 2, 209-213.	0.5	69
176	Foliar oxidases as mediators of the rapidly induced resistance of mountain birch against Epirrita autumnata. Oecologia, 2008, 154, 725-730.	0.9	31
177	A wounding-induced PPO from cowpea (Vigna unguiculata) seedlings. Phytochemistry, 2008, 69, 2297-2302.	1.4	25
178	Defensive Roles of Polyphenol Oxidase in Plants. , 2008, , 253-270.		117
179	Transcriptional profiling reveals elevated CO ₂ and elevated O ₃ alter resistance of soybean (<i>Glycine max</i>) to Japanese beetles (<i>Popillia japonica</i>). Plant, Cell and Environment, 2008, 31, 419-434.	2.8	78
180	Gut pH, redox conditions and oxygen levels in an aquatic caterpillar: Potential effects on the fate of ingested tannins. Journal of Insect Physiology, 2008, 54, 462-471.	0.9	33
181	Active role of fatty acid amino acid conjugates in nitrogen metabolism in <i>Spodoptera litura</i> larvae. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18058-18063.	3.3	62
182	Induced Plant Resistance to Herbivory. , 2008, , .		93
183	Overexpression of tomato polyphenol oxidase increases resistance to common cutworm. Plant Science, 2008, 174, 456-466.	1.7	117

#	Article	IF	CITATIONS
184	Enhancement of Phenylalanine Ammonia Lyase, Polyphenoloxidase, and Peroxidase in Cucumber Seedlings by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Infestation. Agricultural Sciences in China, 2008, 7, 82-87.	0.6	23
185	A highâ€throughput protocol for extracting highâ€purity genomic DNA from plants and animals. Molecular Ecology Resources, 2008, 8, 736-741.	2.2	43
187	Arthropod-Inducible Proteins: Broad Spectrum Defenses against Multiple Herbivores. Plant Physiology, 2008, 146, 852-858.	2.3	147
188	Effect of coffee alkaloids and phenolics on egg-laying by the coffee leaf miner Leucoptera coffeella. Bulletin of Entomological Research, 2008, 98, 483-489.	0.5	24
189	Interactions among insect-resistant soybean genotypes extracts with populations of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) susceptible and resistant to its nucleopolyhedrovirus. Anais Da Academia Brasileira De Ciencias, 2009, 81, 861-871.	0.3	7
190	Leucine Aminopeptidase Regulates Defense and Wound Signaling in Tomato Downstream of Jasmonic Acid. Plant Cell, 2009, 21, 1239-1251.	3.1	124
191	Polyphenoloxidase Silencing Affects Latex Coagulation in <i>Taraxacum</i> Species. Plant Physiology, 2009, 151, 334-346.	2.3	87
192	Identification of Chlorogenic Acid as a Resistance Factor for Thrips in Chrysanthemum. Plant Physiology, 2009, 150, 1567-1575.	2.3	253
193	A gene expression analysis of syncytia laser microdissected from the roots of the Glycine max (soybean) genotype PI 548402 (Peking) undergoing a resistant reaction after infection by Heterodera glycines (soybean cyst nematode). Plant Molecular Biology, 2009, 71, 525-567.	2.0	99
194	Defensive Role of Tomato Polyphenol Oxidases against Cotton Bollworm (Helicoverpa armigera) and Beet Armyworm (Spodoptera exigua). Journal of Chemical Ecology, 2009, 35, 28-38.	0.9	195
195	Constitutive and Induced Activities of Defense-Related Enzymes in Aphid-Resistant and Aphid-Susceptible Cultivars of Wheat. Journal of Chemical Ecology, 2009, 35, 176-182.	0.9	77
196	Oxidative Responses of St. Augustinegrasses to Feeding of Southern Chinch Bug, Blissus insularis Barber. Journal of Chemical Ecology, 2009, 35, 796-805.	0.9	13
197	Plant behavioural ecology: dynamic plasticity in secondary metabolites. Plant, Cell and Environment, 2009, 32, 641-653.	2.8	151
198	Effects of redâ€leaved transgenic tobacco expressing a MYB transcription factor on two herbivorous insects, <i>Spodoptera litura</i> and <i>Helicoverpa armigera</i> . Entomologia Experimentalis Et Applicata, 2009, 133, 117-127.	0.7	36
199	Changes in Phenolics, Polyphenol Oxidase and its Isoenzyme Patterns in Relation to Resistance in Taro against <i>Phytophthora colocasiae</i> . Journal of Phytopathology, 2009, 157, 145-153.	0.5	9
200	Role of Phenylalanine Ammonia Lyase and Polyphenol Oxidase in Host Resistance to Bacterial Wilt of Tomato. Journal of Phytopathology, 2009, 157, 552-557.	0.5	88
201	Peroxidase and Polyphenoloxidase Activities and Phenol Content in Fruit of Eggplant and Their Relationship to Infestation by Shoot and Fruit Borer. International Journal of Vegetable Science, 2009, 15, 316-324.	0.6	5
202	Biochemical markers of oxidative stress within tissues of cereal aphids. Acta Biologica Hungarica, 2009, 60, 263-272.	0.7	8

#	Article	IF	CITATIONS
203	Glycine addition improves feeding performance of non-specialist herbivores on the privet, Ligustrum obtusifolium: In vivo evidence for the physiological impacts of anti-nutritive plant defense with iridoid and insect adaptation with glycine. Applied Entomology and Zoology, 2009, 44, 595-601.	0.6	17
204	Plant–eriophyoid mite interactions: cellular biochemistry and metabolic responses induced in mite-injured plants. Part I. Experimental and Applied Acarology, 2010, 51, 61-80.	0.7	47
205	Effects of elevated ultraviolet-B radiation on a plant–herbivore interaction. Oecologia, 2010, 164, 163-175.	0.9	28
206	Survey of a Salivary Effector in Caterpillars: Glucose Oxidase Variation and Correlation with Host Range. Journal of Chemical Ecology, 2010, 36, 885-897.	0.9	95
207	GABA, β-Alanine and Glycine in the Digestive Juice of Privet-Specialist Insects: Convergent Adaptive Traits Against Plant Iridoids. Journal of Chemical Ecology, 2010, 36, 983-991.	0.9	17
208	Comparative kinetics of fatty acid–amino acid conjugate elicitor biosynthesis by midgut tissue microsomes of Lepidopterous caterpillar larvae. Archives of Insect Biochemistry and Physiology, 2010, 75, 264-274.	0.6	0
209	Direct tradeâ€off between cyanogenesis and resistance to a fungal pathogen in lima bean (<i>Phaseolus) Tj ETQo</i>	0.0.0 rgB ⁻ 1.9	T /Overlock 1
210	Maize Silk Antibiotic Polyphenol Compounds and Molecular Genetic Improvement of Resistance to Corn Earworm (Helicoverpa zea Boddie) in sh2 Sweet Corn. International Journal of Plant Biology, 2010, 1, e3.	1.1	4
211	Microarray Detection Call Methodology as a Means to Identify and Compare Transcripts Expressed within Syncytial Cells from Soybean (<i>Glycine max</i>) Roots Undergoing Resistant and Susceptible Reactions to the Soybean Cyst Nematode (<i>Heterodera glycines</i>). Journal of Biomedicine and Biotechnology, 2010, 2010, 1-30.	3.0	37
212	Review article: Role of oxidative enzymes in plant defenses against insect herbivory. Acta Phytopathologica Et Entomologica Hungarica, 2010, 45, 277-290.	0.1	38
213	Phospholipid biosynthesis in the gut of Spodoptera litura larvae and effects of tannic acid ingestion. Insect Biochemistry and Molecular Biology, 2010, 40, 325-330.	1.2	12

214	Boron in forest trees and forest ecosystems. Forest Ecology and Management, 2010, 260, 2053-2069.	1.4	102
215	Antioxidant genes of the emerald ash borer (Agrilus planipennis): Gene characterization and expression profiles. Journal of Insect Physiology, 2011, 57, 819-824.	0.9	21
216	Specificity of Induced Resistance in Tomato Against Specialist Lepidopteran and Coleopteran Species. Journal of Chemical Ecology, 2011, 37, 378-386.	0.9	68
217	Boron Fertilization Enhances the Induced Defense of Silver Birch. Journal of Chemical Ecology, 2011, 37, 460-471.	0.9	17
218	Distinguishing Defensive Characteristics in the Phloem of Ash Species Resistant and Susceptible to Emerald Ash Borer. Journal of Chemical Ecology, 2011, 37, 450-459.	0.9	62
219	Bioactivity of pyrogallol against melon fruit fly, Bactrocera cucurbitae. Phytoparasitica, 2011, 39, 361-367.	0.6	4
220	Highâ€performance liquid chromatographyâ€diode array detectionâ€electrospray ionization multiâ€stage mass spectrometric screening of an insect/plant system: the case of <i>Spodoptera littoralis</i> / <i>Lycopersicon esculentum</i> phenolics and alkaloids. Rapid Communications in Mass Spectrometry, 2011, 25, 1972-1980.	0.7	21

	CITATION	Report	
#	Article	IF	Citations
221	Plant Glandular Trichomes as Targets for Breeding or Engineering of Resistance to Herbivores. International Journal of Molecular Sciences, 2012, 13, 17077-17103.	1.8	408
222	Alleviation of oxidative stress induced by spider mite invasion through application of elicitors in bean plants. Egyptian Journal of Biology, 2012, 14, .	0.1	10
223	Fluctuations in peroxidase and catalase activities of resistant and susceptible black gram (<i>Vigna) Tj ETQq0 and Behavior, 2012, 7, 1321-1329.</i>	0 0 rgBT /Ov 1.2	verlock 10 Tf 5 41
224	Plant Leucine Aminopeptidases Moonlight as Molecular Chaperones to Alleviate Stress-induced Damage. Journal of Biological Chemistry, 2012, 287, 18408-18417.	1.6	56
225	Silencing and Heterologous Expression of <i>ppo-2</i> Indicate a Specific Function of a Single Polyphenol Oxidase Isoform in Resistance of Dandelion (<i>Taraxacum officinale</i>) Against <i>Pseudomonas syringae</i> pv. <i>tomato</i> . Molecular Plant-Microbe Interactions, 2012, 25, 200-210.	1.4	45
226	The effects of simulated acid rain and heavy metal pollution on the mountain birch–autumnal moth interaction. Chemoecology, 2012, 22, 251-262.	0.6	3
227	Genetic and Environmental Factors Behind Foliar Chemistry of the Mature Mountain Birch. Journal of Chemical Ecology, 2012, 38, 902-913.	0.9	8
228	Identification of Plasmalogen in the gut of silkworm (Bombyx mori). Insect Biochemistry and Molecular Biology, 2012, 42, 596-601.	1.2	6
229	LIMITED EFFECT OF REACTIVE OXYGEN SPECIES ON THE COMPOSITION OF SUSCEPTIBLE ESSENTIAL AMINO ACIDS IN THE MIDGUTS OF <scp>L</scp> ymantria Dispar CATERPILLARS. Archives of Insect Biochemistry and Physiology, 2012, 81, 160-177.	0.6	7
230	Dietary mixing within the crown of a deciduous conifer enhances the fitness of a specialist sawfly. Animal Behaviour, 2012, 84, 1393-1400.	0.8	5
231	Salivary Glucose Oxidase from Caterpillars Mediates the Induction of Rapid and Delayed-Induced Defenses in the Tomato Plant. PLoS ONE, 2012, 7, e36168.	1.1	107
232	Effect of phenolic acids from black currant, sour cherry and walnut on grain aphid (Sitobion avenae) Tj ETQq1	1 0.784314 1.0	rgBT /Overloc
233	Differential utilization of ash phloem by emerald ash borer larvae: ash species and larval stage effects. Agricultural and Forest Entomology, 2012, 14, 324-330.	0.7	8
234	Oxidation of <i>orthoâ€</i> diphenols in red clover with and without polyphenol oxidase (PPO) activity and their role in PPO activation and inactivation. Grass and Forage Science, 2013, 68, 83-92.	1.2	25
235	Regurgitant Derived From the Tea Geometrid Ectropis obliqua Suppresses Wound-Induced Polyphenol Oxidases Activity in Tea Plants. Journal of Chemical Ecology, 2013, 39, 744-751.	0.9	35
236	Bioactivities of caffeic acid methyl ester (methyl-(E)-3-(3,4-dihydroxyphenyl)prop-2-enoate): a hydroxycinnamic acid derivative from Solanum melongena L. fruits. Journal of Pest Science, 2013, 86, 579-589.	1.9	10
237	Defensive strategies in Geranium sylvaticum, Part 2: Roles of water-soluble tannins, flavonoids and phenolic acids against natural enemies. Phytochemistry, 2013, 95, 408-420.	1.4	35
238	Dietary plant phenolic improves survival of bacterial infection in <i><scp>M</scp>anduca sexta</i> caterpillars. Entomologia Experimentalis Et Applicata, 2013, 146, 321-331.	0.7	21

#	Article	IF	CITATIONS
239	Defense against <i><scp>P</scp>ieris rapae</i> in cabbage plants induced by <i><scp>B</scp>emisia tabaci</i> biotype B. Entomologia Experimentalis Et Applicata, 2013, 147, 293-300.	0.7	15
240	Communication between plants: induced resistance in poplar seedlings following herbivore infestation, mechanical wounding, and volatile treatment of the neighbors. Entomologia Experimentalis Et Applicata, 2013, 149, 110-117.	0.7	12
241	Impact of Cell Wall Composition on Maize Resistance to Pests and Diseases. International Journal of Molecular Sciences, 2013, 14, 6960-6980.	1.8	110
242	Maize Developmental Stage Affects Indirect and Direct Defense Expression. Environmental Entomology, 2013, 42, 1309-1321.	0.7	7
243	Genome-Wide Analysis of Polyphenol Oxidase Genes and Their Transcriptional Patterns during Grain Development in Sorghum. International Journal of Plant Sciences, 2013, 174, 710-721.	0.6	5
244	Ellagitannins: defences of <i>Betula nana</i> against <i>Epirrita autumnata</i> folivory?. Agricultural and Forest Entomology, 2013, 15, 187-196.	0.7	6
245	Herbivore exploits orally secreted bacteria to suppress plant defenses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15728-15733.	3.3	386
246	Microarray Analysis of Tomato's Early and Late Wound Response Reveals New Regulatory Targets for Leucine Aminopeptidase A. PLoS ONE, 2013, 8, e77889.	1.1	35
247	Synergistic Defensive Function of Raphides and Protease through the Needle Effect. PLoS ONE, 2014, 9, e91341.	1.1	36
248	Benefits and costs of tomato seed treatment with plant defense elicitors for insect resistance. Arthropod-Plant Interactions, 2014, 8, 539-545.	0.5	26
249	Enhancing Plant Resistance at the Seed Stage: Low Concentrations of Methyl Jasmonate Reduce the Performance of the Leaf Miner Tuta absoluta but do not Alter the Behavior of its Predator Chrysoperla externa. Journal of Chemical Ecology, 2014, 40, 1090-1098.	0.9	37
250	Microarray Analysis of Tomato Plants Exposed to the Nonviruliferous or Viruliferous Whitefly Vector Harboring Pepper golden mosaic virus. Journal of Insect Science, 2014, 14, .	0.6	7
251	Forage polyphenol oxidase and ruminant livestock nutrition. Frontiers in Plant Science, 2014, 5, 694.	1.7	65
252	Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta. BMC Plant Biology, 2014, 14, 257.	1.6	50
253	Differential responses of Brachypodium distachyon genotypes to insect and fungal pathogens. Physiological and Molecular Plant Pathology, 2014, 85, 53-64.	1.3	34
254	Rapid estimation of the oxidative activities of individual phenolics in crude plant extracts. Phytochemistry, 2014, 103, 76-84.	1.4	21
255	Araucaria angustifolia(Bert.) O. Kuntze induces oxidative and genotoxic damage in larvae ofAnticarsia gemmatalisHübner (Lepidoptera: Erebidae). International Journal of Pest Management, 2014, 60, 114-120.	0.9	7
256	Secretions from the ventral eversible gland of Spodoptera exigua caterpillars activate defense-related genes and induce emission of volatile organic compounds in tomato, Solanum lycopersicum. BMC Plant Biology, 2014, 14, 140.	1.6	34

#	Article	IF	CITATIONS
257	Fungal Tyrosinases: Why Mushrooms Turn Brown. , 2015, , .		7
258	Response dynamics of three defense related enzymes in cotton leaves to the interactive stress of Helicoverpa armigera (Hübner) herbivory and omethoate application. Journal of Integrative Agriculture, 2015, 14, 355-364.	1.7	5
259	Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk. New Phytologist, 2015, 205, 828-840.	3.5	169
260	Polyphenol oxidase-mediated protection against oxidative stress is not associated with enhanced photosynthetic efficiency. Annals of Botany, 2015, 116, 529-540.	1.4	43
261	Polyphenol oxidase in leaves: is there any significance to the chloroplastic localization?. Journal of Experimental Botany, 2015, 66, 3571-3579.	2.4	137
262	Phenolic Compounds and Their Fates In Tropical Lepidopteran Larvae: Modifications In Alkaline Conditions. Journal of Chemical Ecology, 2015, 41, 822-836.	0.9	11
263	Metabolic Responses of Poplar to Apripona germari (Hope) as Revealed by Metabolite Profiling. International Journal of Molecular Sciences, 2016, 17, 923.	1.8	13
264	Oxidative enzymes in coconut cultivars in response to Raoiella indica feeding. African Journal of Biotechnology, 2016, 15, 1755-1762.	0.3	1
265	Prooxidant Activity of Polyphenols, Flavonoids, Anthocyanins and Carotenoids: Updated Review of Mechanisms and Catalyzing Metals. Phytotherapy Research, 2016, 30, 1379-1391.	2.8	360
266	Tolerance of KS-4202 Soybean to the Attack of <i>Bemisia tabaci</i> Biotype B (Hemiptera: Aleyrodidae). Florida Entomologist, 2016, 99, 600-607.	0.2	15
267	Variation in plantâ€mediated intra―and interspecific interactions among insect herbivores: effects of host genotype. Ecosphere, 2016, 7, e01520.	1.0	10
268	Progress and gaps in understanding mechanisms of ash tree resistance to emerald ash borer, a model for woodâ€boring insects that kill angiosperms. New Phytologist, 2016, 209, 63-79.	3.5	74
269	The involvement of peroxidases in soybean seedlings' defense against infestation of cowpea aphid. Arthropod-Plant Interactions, 2016, 10, 283-292.	0.5	22
270	Intestinal microecology associated with fluoride resistance capability of the silkworm (Bombyx mori) Tj ETQq1 1	0.784314 1.7	rgBT /Overlo
271	Nutritional and non-nutritional food components modulate phenotypic variation but not physiological trade-offs in an insect. Scientific Reports, 2016, 6, 29413.	1.6	29
272	Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants. Journal of Chemical Ecology, 2016, 42, 463-474.	0.9	44
273	Enzymatic browning in avocado (<i>Persea americana</i>) revisited: History, advances, and future perspectives. Critical Reviews in Food Science and Nutrition, 2017, 57, 3860-3872.	5.4	11
274	Allelopathic effect of Calotropis procera (Ait.) R. Br. on growth and antioxidant activity of Brassica oleracea var. botrytis. Journal of the Saudi Society of Agricultural Sciences, 2017, 16, 375-382.	1.0	12

#	Article	IF	CITATIONS
275	Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Scientific Reports, 2017, 7, 39690.	1.6	76
276	<i>Helicoverpa zea</i> gutâ€associated bacteria indirectly induce defenses in tomato by triggering a salivary elicitor(s). New Phytologist, 2017, 214, 1294-1306.	3.5	72
277	Herbivore-responsive cotton phenolics and their impact on insect performance and biochemistry. Journal of Asia-Pacific Entomology, 2017, 20, 341-351.	0.4	42
278	The arbuscular mycorrhizal fungus Rhizophagus irregularis affects arthropod colonization on sweet pepper in both the field and greenhouse. Journal of Pest Science, 2017, 90, 935-946.	1.9	17
279	Distribution, Localization, and Structure of Plant Polyphenol Oxidases (PPOs)., 2017, , 11-32.		4
280	Function(s)/Role(s) of Polyphenol Oxidases. , 2017, , 73-92.		2
281	Polyphenol Oxidases (PPOs) in Plants. , 2017, , .		21
282	Physicochemical Properties of Polyphenol Oxidases. , 2017, , 33-56.		6
283	Polyphenol Oxidase(s): Importance in Food Industry. , 2017, , 93-106.		1
284	Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono- versus diphenolase activity in plant polyphenol oxidases. Scientific Reports, 2017, 7, 8860.	1.6	51
285	What happens in the pith stays in the pith: tissueâ€localized defense responses facilitate chemical niche differentiation between two spatially separated herbivores. Plant Journal, 2017, 92, 414-425.	2.8	32
286	Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Natural Product Reports, 2017, 34, 1391-1421.	5.2	257
287	Multiple plant traits influence community composition of insect herbivores: a comparison of two understorey shrubs. Arthropod-Plant Interactions, 2017, 11, 889-899.	0.5	8
288	Genetic regulation of defence responses in cotton to insect herbivores. AoB PLANTS, 2017, 9, .	1.2	7
289	Comparative transcriptome analysis of soybean response to bean pyralid larvae. BMC Genomics, 2017, 18, 871.	1.2	20
290	Detection of Potential Chloroplastic Substrates for Polyphenol Oxidase Suggests a Role in Undamaged Leaves. Frontiers in Plant Science, 2017, 8, 237.	1.7	21
291	Proteomic analysis of labial saliva of the generalist cabbage looper (Trichoplusia ni) and its role in		
	interactions with host plants. Journal of Insect Physiology, 2018, 107, 97-103.	0.9	23

#	Article	IF	CITATIONS
293	Acylated Quinic Acids Are the Main Salicortin Metabolites in the Lepidopteran Specialist Herbivore Cerura vinula. Journal of Chemical Ecology, 2018, 44, 497-509.	0.9	9
294	Symbiotic polydnavirus of a parasite manipulates caterpillar and plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5199-5204.	3.3	64
295	Qualitative and Quantitative Evaluation of Gall Induced by Pseudophacopteron alstonium Yang et Li 1983 (Hemiptera: Psyllidae: Phacopteronidae) as Plant Parasite, in Alstonia scholaris Leaves. Proceedings of the Zoological Society, 2018, 71, 217-223.	0.4	0
296	Metabolite profiling and isolation of biologically active compounds from <i>Scadoxus puniceus</i> , a highly traded South African medicinal plant. Phytotherapy Research, 2018, 32, 625-630.	2.8	14
298	Pesticides on the Inside: Exploiting the Natural Chemical Defenses of Maize against Insect and Microbial Pests. ACS Symposium Series, 2018, , 47-68.	0.5	1
299	Distinct Signatures of Host Defense Suppression by Plant-Feeding Mites. International Journal of Molecular Sciences, 2018, 19, 3265.	1.8	22
300	Activity of defense related enzymes and gene expression in pigeon pea (<i>Cajanus cajan</i>) due to feeding of <i>Helicoverpa armigera</i> larvae. Journal of Plant Interactions, 2018, 13, 231-238.	1.0	13
301	Spodoptera litura-mediated chemical defense is differentially modulated in older and younger systemic leaves of Solanum lycopersicum. Planta, 2018, 248, 981-997.	1.6	42
302	Herbivore-Induced Defenses in Tomato Plants Enhance the Lethality of the Entomopathogenic Bacterium, Bacillus thuringiensis var. kurstaki. Journal of Chemical Ecology, 2018, 44, 947-956.	0.9	8
303	Two New Polyphenol Oxidase Genes of Tea Plant (Camellia sinensis) Respond Differentially to the Regurgitant of Tea Geometrid, Ectropis obliqua. International Journal of Molecular Sciences, 2018, 19, 2414.	1.8	15
304	Reassociation of an invasive plant with its specialist herbivore provides a test of the shifting defence hypothesis. Journal of Ecology, 2019, 107, 361-371.	1.9	24
305	Pre-adaptations and shifted chemical defences provide Buddleja davidii populations with high resistance against antagonists in the invasive range. Biological Invasions, 2019, 21, 333-347.	1.2	2
306	Induced Plant Defenses Against Herbivory in Cultivated and Wild Tomato. Journal of Chemical Ecology, 2019, 45, 693-707.	0.9	47
307	Parasitic Wasp Mediates Plant Perception of Insect Herbivores. Journal of Chemical Ecology, 2019, 45, 972-981.	0.9	16
308	Structural and Functional Characterization of Hermetia illucens Larval Midgut. Frontiers in Physiology, 2019, 10, 204.	1.3	76
309	Global metabolite profiles of rice brown planthopper-resistant traits reveal potential secondary metabolites for both constitutive and inducible defenses. Metabolomics, 2019, 15, 151.	1.4	13
310	Enterobacter ludwigii, isolated from the gut microbiota of Helicoverpa zea, promotes tomato plant growth and yield without compromising anti-herbivore defenses. Arthropod-Plant Interactions, 2019, 13, 271-278.	0.5	13
311	Chlorogenic acidâ€mediated chemical defence of plants against insect herbivores. Plant Biology, 2019, 21, 185-189.	1.8	90

#	Article	IF	CITATIONS
312	Arbuscular mycorrhizal fungi (Glomus intraradices) and diazotrophic bacterium (Rhizobium BMBS) primed defense in blackgram against herbivorous insect (Spodoptera litura) infestation. Microbiological Research, 2020, 231, 126355.	2.5	36
313	Geographically isolated Colorado potato beetle mediating distinct defense responses in potato is associated with the alteration of gut microbiota. Journal of Pest Science, 2020, 93, 379-390.	1.9	11
314	Herbivoreâ€ s pecific plant volatiles prime neighboring plants for nonspecific defense responses. Plant, Cell and Environment, 2020, 43, 787-800.	2.8	29
315	Physiological responses of plants and mites to salicylic acid improve the efficacy of spirodiclofen for controlling Tetranychus urticae (Acari: Tetranychidae) on greenhouse tomatoes. Experimental and Applied Acarology, 2020, 82, 319-333.	0.7	10
316	Secondary Metabolite Profiling Via LC-HRMS Q-TOF of Foleyola Billotii, an Endemic Brassicaceae Plant of North-Western Sahara. Pharmaceutical Chemistry Journal, 2020, 54, 734-744.	0.3	0
317	Host plant defense produces species specific alterations to flight muscle protein structure and flight-related fitness traits of two armyworms. Journal of Experimental Biology, 2020, 223, .	0.8	6
318	Plant Defense Chemicals against Insect Pests. Agronomy, 2020, 10, 1156.	1.3	47
319	Asymmetric Responses to Climate Change: Temperature Differentially Alters Herbivore Salivary Elicitor and Host Plant Responses to Herbivory. Journal of Chemical Ecology, 2020, 46, 891-905.	0.9	10
320	Assessment of genotoxic and biochemical effects of purified compounds of Alpinia galanga on a polyphagous lepidopteran pest Spodoptera litura (Fabricius). Phytoparasitica, 2020, 48, 501-511.	0.6	7
321	Local Aphid Species Infestation on Invasive Weeds Affects Virus Infection of Nearest Crops Under Different Management Systems – A Preliminary Study. Frontiers in Plant Science, 2020, 11, 684.	1.7	8
322	Induction of defensive proteins in Solanaceae by salivary glucose oxidase of Helicoverpa zea caterpillars and consequences for larval performance. Arthropod-Plant Interactions, 2020, 14, 317-325.	0.5	11
323	Topâ€down effects from parasitoids may mediate plant defence and plant fitness. Functional Ecology, 2020, 34, 1767-1778.	1.7	9
324	The Jasmonic Acid Pathway Positively Regulates the Polyphenol Oxidase-Based Defense against Tea Geometrid Caterpillars in the Tea Plant (Camellia sinensis). Journal of Chemical Ecology, 2020, 46, 308-316.	0.9	28
325	Shortâ€term resistance that persists: Rapidly induced silicon antiâ€herbivore defence affects carbonâ€based plant defences. Functional Ecology, 2021, 35, 82-92.	1.7	22
326	Recent advances in polyphenol oxidase-mediated plant stress responses. Phytochemistry, 2021, 181, 112588.	1.4	74
327	Changes in tolerance and resistance of a plant to insect herbivores under variable water availability. Environmental and Experimental Botany, 2021, 183, 104334.	2.0	22
328	Changes in arthropod community but not plant quality benefit a specialist herbivore on plants under reduced water availability. Oecologia, 2021, 195, 383-396.	0.9	9
329	Comparative Effectiveness of Potential Elicitors of Soybean Plant Resistance Against Spodoptera Littoralis and Their Effects on Secondary Metabolites and Antioxidant Defense System. Gesunde Pflanzen, 2021, 73, 273-285.	1.7	7

#	Article	IF	CITATIONS
330	GC–MS analyses reveal chemical differences in the leaves of Manihot esculenta Crantz genotypes with different anti-herbivore effects. Arthropod-Plant Interactions, 2021, 15, 387-398.	0.5	1
331	Nitrogen Supply Alters Rice Defense Against the Striped Stem Borer Chilo suppressalis. Frontiers in Plant Science, 2021, 12, 691292.	1.7	16
332	Activity of biochemical biomarkers in grasshoppers Abracris flavolineata (De Geer, 1773) (Orthoptera:) Tj ETQq	0 0 0 rgBT /	Overlock 10 T

333	An overview of plant defense-related enzymes responses to biotic stresses. Plant Gene, 2021, 27, 100302.	1.4	28
334	Parasitoid Causes Cascading Effects on Plant-Induced Defenses Mediated Through the Gut Bacteria of Host Caterpillars. Frontiers in Microbiology, 2021, 12, 708990.	1.5	6
335	Enzymatic oxidation products of allelochemicals as a basis for resistance against insects: Effects on the corn leafhopper <i>dalbulus maidis</i> . Natural Toxins, 1996, 4, 85-91.	1.0	48
336	Polyphenol Oxidase. , 1994, , 275-312.		70
337	Activity of Phenolics in Insects: The Role of Oxidation. , 1992, , 609-620.		11
338	Polyphenol Oxidase as a Component of the Inducible Defense Response in Tomato against Herbivores. , 1996, , 231-252.		18
339	Plant–eriophyoid mite interactions: cellular biochemistry and metabolic responses induced in mite-injured plants. Part I. , 2010, , 61-80.		4
340	Influence of carmine spider mite Tetranychus cinnabarinus Boisd. (Acarida: Tetranychidae) feeding on ethylene production and the activity of oxidative enzymes in damaged tomato plants. , 2002, , 389-392.		11
341	10.1007/BF00186285., 2011,,.		13
342	10.1007/BF00186292.,2011,,.		3
343	Juglone induced oxidative and genotoxic stress in the model insect Galleria mellonella L. (Pyralidae:) Tj ETQq1 1	0.784314	rgBT_/Overlo

344	Genetic Mechanisms Underlying Apimaysin and Maysin Synthesis and Corn Earworm Antibiosis in Maize (Zea mays L.). Genetics, 1998, 149, 1997-2006.	1.2	72
345	Broad Bean Leaf Polyphenol Oxidase Is a 60-Kilodalton Protein Susceptible to Proteolytic Cleavage. Plant Physiology, 1992, 99, 317-323.	2.3	102
346	A high-throughput protocol for extracting high-purity genomic DNA from plants and animals. Molecular Ecology Resources, 2008, .	2.2	2
347	Insights into the Saliva of the Brown Marmorated Stink Bug Halyomorpha halys (Hemiptera:) Tj ETQq1 1 0.7843	14 ₁₉ BT /C	Overlock 10

	CHAIO	N KEPORT	
#	Article	IF	Citations
348	Polyphenol oxidase from wheat bran is a serpin Acta Biochimica Polonica, 2008, 55, 325-328.	0.3	14
349	Changes in Polyphenol Levels in Satsuma (Citrus unshiu) Leaves in Response to Asian Citrus Psyllid Infestation and Water Stress. Open Agriculture Journal, 2015, 9, 1-5.	0.3	7
350	Low and high input agricultural fields have different effects on pest aphid abundance via different invasive alien weed species. NeoBiota, 0, 43, 27-45.	1.0	3
351	The host range of <i> Aphis gossypii</i> is dependent on aphid genetic background and feeding experience. PeerJ, 2019, 7, e7774.	0.9	14
352	Induction of a Sweetpotato Anion Peroxidase swpa2 Gene Expression by Stress-related Chemicals and Pectobacterium chrysanthemi. Journal of Plant Biotechnology, 2004, 31, 83-88.	0.1	2
353	10.1007/BF00343524.,2011,,.		1
354	Chapitre 43. Action sur la physiologie des insectes. , 2013, , 709-719.		0
357	Anti-Herbivore Resistance Changes in Tomato with Elevation. Journal of Chemical Ecology, 2022, 48, 196.	0.9	0
358	Colorado potato beetle exploits frassâ€associated bacteria to suppress defense responses in potato plants. Pest Management Science, 2022, , .	1.7	2
359	Induction of Biochemical Changes in Santa Teriza Lime Leaves by Chitosan Application Influence Citrus Leaf Miner Damage. American Journal of Plant Sciences, 2022, 13, 403-415.	0.3	1
360	Integrated view of plant metabolic defense with particular focus on chewing herbivores. Journal of Integrative Plant Biology, 2022, 64, 449-475.	4.1	18
365	Prospective of mycorrhiza and Beauvaria bassiana silica nanoparticles on Gossypium hirsutum L. plants as biocontrol agent against cotton leafworm, Spodoptera littoralis. BMC Plant Biology, 2022, 22, .	1.6	7
366	Mycorrhizal benefits on plant growth and protection against <i>Spodoptera exigua</i> depend on N availability. Journal of Plant Interactions, 2022, 17, 940-955.	1.0	4
367	Foliar Gall and Antioxidant Enzyme Responses in Alstonia scholaris, R. Br. after Psylloid Herbivory– An Experimental and Statistical AnalysisÂ. Global Journal of Botanical Science, 2014, 2, 12-20.	0.4	7
368	Associational susceptibility of crop plants caused by the invasive weed Canadian goldenrod, Solidago canadensis, via local aphid species. Frontiers in Ecology and Evolution, 0, 10, .	1.1	0
369	Analysis of CAT Gene Family and Functional Identification of OsCAT3 in Rice. Genes, 2023, 14, 138.	1.0	7
370	Defense responses in cowpea elicited by entomopathogenic fungi against <i>Aphis craccivora</i> Koch. Indian Journal of Entomology, 0, , .	0.1	0
371	Recent Advances of Polyphenol Oxidases in Plants. Molecules, 2023, 28, 2158.	1.7	24