
Compiling control

The Journal of Logic Programming

6, 135-162

DOI: 10.1016/0743-1066(89)90033-2

Citation Report

Citation Report

2

Article IF Citations

1 Partial evaluation of logic programs. , 1988, , . 0

2 On the transformation of logic programs with instantiation based computation rules. Journal of
Symbolic Computation, 1989, 7, 125-154. 0.8 8

3 Compiling bottom-up and mixed derivations into top-down executable logic programs. Journal of
Automated Reasoning, 1991, 7, 337-358. 1.4 4

4 Improving the efficiency of constraint logic programming languages by deriving specialized versions. ,
1991, , 309-317. 2

5 Efficient implementation of narrowing and rewriting. , 1991, , 344-365. 14

6 On using Eureka properties for transforming generate and test logic programs. , 0, , . 0

7 A general criterion for avoiding infinite unfolding during partial deduction. New Generation
Computing, 1992, 11, 47-79. 3.3 58

8 The loop absorption and the generalization strategies for the development of logic programs and
partial deduction. The Journal of Logic Programming, 1993, 16, 123-161. 1.7 29

9 Deriving fold/unfold transformations of logic programs using extended OLDT-based abstract
interpretation. Journal of Symbolic Computation, 1993, 15, 495-521. 0.8 13

10 Tutorial on specialisation of logic programs. , 1993, , . 113

11 Transformation of logic programs: Foundations and techniques. The Journal of Logic Programming,
1994, 19-20, 261-320. 1.7 143

12 Logic program synthesis. The Journal of Logic Programming, 1994, 19-20, 321-350. 1.7 49

13 Unfolding-definition-folding, in this order, for avoiding unnecessary variables in logic programs.
Theoretical Computer Science, 1995, 142, 89-124. 0.9 47

14 Developing correct and efficient logic programs by transformation. Knowledge Engineering Review,
1996, 11, 347-360. 2.6 2

15 Automatic finite unfolding using well-founded measures. The Journal of Logic Programming, 1996, 28,
89-146. 1.7 32

16 Rules and strategies for transforming functional and logic programs. ACM Computing Surveys, 1996,
28, 360-414. 23.0 108

17 Speeding up inferences using relevance reasoning: a formalism and algorithms. Artificial Intelligence,
1997, 97, 83-136. 5.8 26

18 Convergence of program transformers in the metric space of trees. Lecture Notes in Computer
Science, 1998, , 315-337. 1.3 8

3

Citation Report

Article IF Citations

19 Synthesis and transformation of logic programs using unfold/fold proofs. The Journal of Logic
Programming, 1999, 41, 197-230. 1.7 36

20 Convergence of program transformers in the metric space of trees. Science of Computer
Programming, 2000, 37, 163-205. 1.9 12

22 Logic program specialisation through partial deduction: Control issues. Theory and Practice of Logic
Programming, 2002, 2, 461-515. 1.5 64

23 The List Introduction Strategy for the Derivation of Logic Programs. Formal Aspects of Computing,
2002, 13, 233-251. 1.8 4

24 Schema mediation for large-scale semantic data sharing. VLDB Journal, 2005, 14, 68-83. 4.1 54

25 Inferring non-suspension conditions for logic programs with dynamic scheduling. ACM Transactions
on Computational Logic, 2008, 9, 1-43. 0.9 5

26 Efficient generation of test data structures using constraint logic programming and program
transformation. Journal of Logic and Computation, 2015, 25, 1263-1283. 0.8 6

27 Abstract conjunctive partial deduction for the analysis and compilation of coroutines. Formal
Aspects of Computing, 2017, 29, 125-153. 1.8 2

28 Some thoughts on the role of examples in program transformation and its relevance for
explanation-based learning. Lecture Notes in Computer Science, 1989, , 60-77. 1.3 3

29 Implementing finite-domain constraint logic programming on top of a PROLOG-system with
delay-mechanism. Lecture Notes in Computer Science, 1990, , 106-117. 1.3 5

30 Improving control of logic programs by using functional logic languages. , 1992, , 1-23. 5

31 Rules and strategies for program transformation. Lecture Notes in Computer Science, 1993, , 263-304. 1.3 7

32 A comparative revisitation of some program transformation techniques. Lecture Notes in Computer
Science, 1996, , 355-385. 1.3 15

33 Deriving Transformations of Logic Programs Using Abstract Interpretation. Workshops in Computing,
1993, , 99-117. 0.4 2

34 The Transformational Approach to Program Development. Lecture Notes in Computer Science, 2010, ,
112-135. 1.3 3

35 Executing Specifications Using Synthesis and Constraint Solving. Lecture Notes in Computer Science,
2013, , 1-20. 1.3 7

37 The Divide-and-Conquer Subgoal-Ordering Algorithm for Speeding up Logic Inference. Journal of
Artificial Intelligence Research, 0, 9, 37-97. 7.0 1

38 Sharing of Computations. DAIMI Report Series, 1993, 22, . 0.1 10

4

Citation Report

Article IF Citations

39 Program Derivation = Rules + Strategies. Lecture Notes in Computer Science, 2002, , 273-309. 1.3 7

40 An application of abstract interpretation in source level program transformation. Lecture Notes in
Computer Science, 1989, , 35-57. 1.3 1

41 Logic for representing and implementing knowledge about system behaviour. Lecture Notes in
Computer Science, 1992, , 42-49. 1.3 1

42 Negation and control in automatically generated logic programs. Lecture Notes in Computer Science,
1992, , 250-264. 1.3 0

43 Synthesis of Narrowing Programs. Workshops in Computing, 1993, , 30-45. 0.4 0

44 Best-first Strategies for Incremental Transformations of Logic Programs. Workshops in Computing,
1993, , 82-98. 0.4 2

45 Using call/exit analysis for logic program transformation. Lecture Notes in Computer Science, 1994, ,
36-50. 1.3 0

47 Program Derivation via List Introduction. IFIP Advances in Information and Communication
Technology, 1997, , 296-323. 0.7 5

49 Transforming Coroutining Logic Programs into Equivalent CHR Programs. Electronic Proceedings in
Theoretical Computer Science, EPTCS, 0, 253, 9-35. 0.8 0

50 Compiling Control as Offline Partial Deduction. Lecture Notes in Computer Science, 2019, , 115-131. 1.3 1

52 From Logic to Functional Logic Programs. Theory and Practice of Logic Programming, 2022, 22, 538-554. 1.5 1

53 Transforming Big-Step toÂ Small-Step Semantics Using Interpreter Specialisation. Lecture Notes in
Computer Science, 2023, , 28-38. 1.3 1

