The prize collecting traveling salesman problem

Networks 19, 621-636 DOI: 10.1002/net.3230190602

Citation Report

#	Article	IF	CITATIONS
1	An exact parallel algorithm for the resource constrained traveling salesman problem with application to scheduling with an aggregate deadline. , 1990, , .		14
2	An Insert/Delete Heuristic for the Travelling Salesman Subset-Tour Problem with One Additional Constraint. Journal of the Operational Research Society, 1992, 43, 277.	2.1	0
3	An Insert/Delete Heuristic for the Travelling Salesman Subset-Tour Problem with One Additional Constraint. Journal of the Operational Research Society, 1992, 43, 277-283.	2.1	27
4	On symmetric subtour problems. Japan Journal of Industrial and Applied Mathematics, 1992, 9, 383-396.	0.5	4
5	Topological design of a two-level network with ring-star configuration. Computers and Operations Research, 1993, 20, 625-637.	2.4	40
6	A note on the prize collecting traveling salesman problem. Mathematical Programming, 1993, 59, 413-420.	1.6	216
7	The Recovery Problem in Product Design. Journal of Engineering Design, 1994, 5, 65-86.	1.1	88
8	A heuristic for the multiple tour maximum collection problem. Computers and Operations Research, 1994, 21, 101-111.	2.4	166
9	The median tour and maximal covering tour problems: Formulations and heuristics. European Journal of Operational Research, 1994, 73, 114-126.	3.5	121
11	The prize collecting traveling salesman problem: II. Polyhedral results. Networks, 1995, 25, 199-216.	1.6	42
12	The symmetric generalized traveling salesman polytope. Networks, 1995, 26, 113-123.	1.6	95
13	On the generalized minimum spanning tree problem. Networks, 1995, 26, 231-241.	1.6	115
14	Efficient heuristics for the design of ring networks. Telecommunication Systems, 1995, 4, 177-188.	1.6	23
15	Routing problems: A bibliography. Annals of Operations Research, 1995, 61, 227-262.	2.6	238
16	A constrained matching problem. Annals of Operations Research, 1995, 57, 135-145.	2.6	8
17	Improved approximation guarantees for minimum-weight k-trees and prize-collecting salesmen. , 1995, , .		27
18	On Prize-collecting Tours and the Asymmetric Travelling Salesman Problem. International Transactions in Operational Research, 1995, 2, 297-308.	1.8	81
19	A General Approximation Technique for Constrained Forest Problems. SIAM Journal on Computing, 1995, 24, 296-317.	0.8	611

#	Article	IF	CITATIONS
21	Primary production scheduling at steelmaking industries. IBM Journal of Research and Development, 1996, 40, 231-252.	3.2	101
22	The Vehicle Routing-Allocation Problem: A unifying framework. Top, 1996, 4, 65-86.	1.1	38
23	On the nucleolus of the basic vehicle routing game. Mathematical Programming, 1996, 72, 83-100.	1.6	78
24	A fast and effective heuristic for the orienteering problem. European Journal of Operational Research, 1996, 88, 475-489.	3.5	275
25	A constant-factor approximation algorithm for the k MST problem (extended abstract). , 1996, , .		25
26	Online algorithms for selective multicast and maximal dense trees. , 1997, , .		8
27	A Branch-and-Cut Algorithm for the Symmetric Generalized Traveling Salesman Problem. Operations Research, 1997, 45, 378-394.	1.2	385
28	The Covering Tour Problem. Operations Research, 1997, 45, 568-576.	1.2	188
29	Heuristics for ring network design when several types of switches are available. , 0, , .		4
30	Buy-at-bulk network design. , 0, , .		96
31	The Two-Period Travelling Salesman Problem Applied to Milk Collection in Ireland. Computational Optimization and Applications, 1997, 7, 291-306.	0.9	24
32	A Lagrangian heuristic for the Prize CollectingTravelling Salesman Problem. Annals of Operations Research, 1998, 81, 289-306.	2.6	36
33	Minimum directed 1-subtree relaxation for score orienteering problem. European Journal of Operational Research, 1998, 104, 139-153.	3.5	7
34	A branch-and-cut algorithm for the undirected selective traveling salesman problem. Networks, 1998, 32, 263-273.	1.6	132
35	A model for warehouse order picking. European Journal of Operational Research, 1998, 105, 1-17.	3.5	107
36	An efficient composite heuristic for the symmetric generalized traveling salesman problem. European Journal of Operational Research, 1998, 108, 571-584.	3.5	79
37	The hot strip mill production scheduling problem: A tabu search approach. European Journal of Operational Research, 1998, 106, 317-335.	3.5	152
38	New Approximation Guarantees for Minimum-Weight k-Trees and Prize-Collecting Salesmen. SIAM Journal on Computing, 1998, 28, 254-262.	0.8	102

#	Article	IF	CITATIONS
39	A Constant-Factor Approximation Algorithm for the Geometrick-MST Problem in the Plane. SIAM Journal on Computing, 1998, 28, 771-781.	0.8	15
40	Resource-constrained geometric network optimization. , 1998, , .		44
41	Solving the Orienteering Problem through Branch-and-Cut. INFORMS Journal on Computing, 1998, 10, 133-148.	1.0	236
42	The m-Cost ATSP. Lecture Notes in Computer Science, 1999, , 242-258.	1.0	2
43	Solving the Traveling Circus Problem by Branch & Cut. Electronic Notes in Discrete Mathematics, 1999, 3, 72-76.	0.4	1
44	An optimal solution procedure for the multiple tour maximum collection problem using column generation. Computers and Operations Research, 1999, 26, 427-441.	2.4	102
45	New classes of efficiently solvable generalized Traveling Salesman Problems. Annals of Operations Research, 1999, 86, 529-558.	2.6	47
46	A Constant-Factor Approximation Algorithm for thek-MST Problem. Journal of Computer and System Sciences, 1999, 58, 101-108.	0.9	35
47	On the cycle polytope of a directed graph. Networks, 2000, 36, 34-46.	1.6	17
48	Topological expansion of multiple-ring metropolitan area networks. Networks, 2000, 36, 210-224.	1.6	16
49	Design of local networks using USHRs. Telecommunication Systems, 2000, 14, 197-217.	1.6	7
50	Geometric Shortest Paths and Network Optimization. , 2000, , 633-701.		211
51	Topological Design of Two-Level Telecommunication Networks with Modular Switches. Operations Research, 2000, 48, 745-760.	1.2	33
52	Computing Tools for Modeling, Optimization and Simulation. Operations Research/ Computer Science Interfaces Series, 2000, , .	0.3	5
53	Facets of the p-cycle polytope. Discrete Applied Mathematics, 2001, 112, 147-178.	0.5	13
54	Models for a Steiner ring network design problem with revenues. European Journal of Operational Research, 2001, 133, 21-31.	3.5	5
55	Random Tours in the Traveling Salesman Problem: Analysis and Application. Computational Optimization and Applications, 2001, 20, 211-217.	0.9	8
56	Modelling Practical Lot-Sizing Problems as Mixed-Integer Programs. Management Science, 2001, 47, 993-1007.	2.4	128

ARTICLE IF CITATIONS # Linear Time Dynamic-Programming Algorithms for New Classes of Restricted TSPs: A Computational 57 1.0 90 Study. INFORMS Journal on Computing, 2001, 13, 56-75. An Online Algorithm for the Dynamic Maximal Dense Tree Problem. Algorithmica, 2002, 32, 540-553. 1.0 A branch and cut approach to the cardinality constrained circuit problem. Mathematical 59 1.6 21 Programming, 2002, 91, 307-348. The primal-dual method for approximation algorithms. Mathematical Programming, 2002, 91, 447-478. 39 Approximation algorithms for time-dependent orienteering. Information Processing Letters, 2002, 83, 61 0.4 68 57-62. Title is missing!. Photonic Network Communications, 2003, 5, 247-257. 1.4 63 The merchant subtour problem. Mathematical Programming, 2003, 94, 295-322. 1.6 4 Multi-attribute label matching algorithms for vehicle routing problems with time windows and 2.1 backhauls. IIE Transactions, 2003, 35, 191-205. 65 Approximation algorithms for orienteering and discounted-reward TSP., 0, , . 98 Algorithms for parallel machine scheduling: a case study of the tracking and data relay satellite 2.1 system. Journal of the Operational Research Society, 2003, 54, 806-821 An analysis of different colocated router network topologies within a POP in IP networks. , 0, , . 67 4 Upper bounds for revenue maximization in a satellite scheduling problem. 4or, 2004, 2, 235-249. 68 Strong lower bounds for the prize collecting Steiner problem in graphs. Discrete Applied 69 0.5 48 Mathematics, 2004, 141, 277-294. Algorithms for the On-Line Quota Traveling Salesman Problem. Information Processing Letters, 2004, 0.4 92, 89-94. Hierarchical Planning for Large Numbers of Unmanned Vehicles., 2004,,. 71 3 Efficient heuristics for Median Cycle Problems. Journal of the Operational Research Society, 2004, 55, 179-186. Locating median cycles in networks. European Journal of Operational Research, 2005, 160, 457-470. 73 3.5 73 Inventory and Facility Location Models with Market Selection. Lecture Notes in Computer Science, 74 2005, , 111-124.

#	Article	IF	CITATIONS
75	EXPLORING PROTEIN'S OPTIMAL HP CONFIGURATIONS BY SELF-ORGANIZING MAPPING. Journal of Bioinformatics and Computational Biology, 2005, 03, 385-400.	0.3	14
76	The Profitable Arc Tour Problem: Solution with a Branch-and-Price Algorithm. Transportation Science, 2005, 39, 539-552.	2.6	54
78	A Recursive Greedy Algorithm for Walks in Directed Graphs. , 0, , .		136
79	Hybrid algorithms with detection of promising areas for the prize collecting travelling salesman problem. , 2005, , .		5
80	Traveling Salesman Problems with Profits. Transportation Science, 2005, 39, 188-205.	2.6	474
81	Scatter Search Methods for the Covering Tour Problem. , 2005, , 59-91.		14
82	A precedence-constrained asymmetric traveling salesman model for disassembly optimization. IIE Transactions, 2006, 38, 223-237.	2.1	23
83	IFORS' Operational Research Hall of Fame. International Transactions in Operational Research, 2006, 13, 169-174.	1.8	0
84	A hybrid Lagrangian genetic algorithm for the prize collecting Steiner tree problem. Computers and Operations Research, 2006, 33, 1274-1288.	2.4	36
85	The traveling salesman problem with few inner points. Operations Research Letters, 2006, 34, 106-110.	0.5	23
86	Polyhedral combinatorics of the cardinality constrained quadratic knapsack problem and the quadratic selective travelling salesman problem. Journal of Combinatorial Optimization, 2006, 11, 421-434.	0.8	5
87	Iterated local search algorithm based on very large-scale neighborhood for prize-collecting vehicle routing problem. International Journal of Advanced Manufacturing Technology, 2006, 29, 1246-1258.	1.5	65
88	A stabilized column generation scheme for the traveling salesman subtour problem. Discrete Applied Mathematics, 2006, 154, 2212-2238.	0.5	12
89	Combining an evolutionary algorithm with data mining to solve a single-vehicle routing problem. Neurocomputing, 2006, 70, 70-77.	3.5	37
90	A branch-and-price algorithm for parallel machine scheduling with time windows and job priorities. Naval Research Logistics, 2006, 53, 24-44.	1.4	31
92	Variable Neighborhood Search for the Orienteering Problem. Lecture Notes in Computer Science, 2006, , 134-143.	1.0	34
93	A Clone-Pair Approach for the Determination of the Itinerary of Imprecise Mobile Agents with Firm Deadlines. , 2006, , .		4
94	Extracting Knowledge to Predict TSP Asymptotic Time Complexity. , 2007, , .		0

#	ARTICLE	IF	CITATIONS
95	A Computational Approach to TSP Performance Prediction Using Data Mining. , 2007, , .		6
96	Hybrid Heuristics Scheduling Algorithm for Hot Strip Mill. , 2007, , .		1
97	A Hybrid Transgenetic Algorithm for the Prize Collecting Steiner Tree Problem. , 2007, , .		1
98	Multi-robot routing with rewards and disjoint time windows. , 2007, , .		25
99	Interactive Meshing for the Design and Optimization of Bus Transportation Networks. Journal of Transportation Engineering, 2007, 133, 529-538.	0.9	15
100	A tabu search algorithm for the single vehicle routing allocation problem. Journal of the Operational Research Society, 2007, 58, 467-480.	2.1	22
101	Modelling the operations of a component placement machine with rotational turret and stationary component magazine. Journal of the Operational Research Society, 2007, 58, 317-325.	2.1	3
102	Pricing in Dynamic Vehicle Routing Problems. Transportation Science, 2007, 41, 302-318.	2.6	61
103	Approximation Algorithms for Orienteering and Discounted-Reward TSP. SIAM Journal on Computing, 2007, 37, 653-670.	0.8	132
105	TSP Performance Prediction Using Data Mining. , 2007, , .		1
106	MetaheurÃsticas hÃbridas para resolução do problema do caixeiro viajante com coleta de prêmios. Production, 2007, 17, 263-272.	1.3	5
107	Locating a cycle in a transportation or a telecommunications network. Networks, 2007, 50, 92-108.	1.6	33
108	Approximation algorithms for group prize-collecting and location-routing problems. Discrete Applied Mathematics, 2008, 156, 3238-3247.	0.5	13
109	Multi-objective vehicle routing problems. European Journal of Operational Research, 2008, 189, 293-309.	3.5	382
110	The prize collecting Steiner tree problem: models and Lagrangian dual optimization approaches. Computational Optimization and Applications, 2008, 40, 13-39.	0.9	17
111	Multi-objective Meta-heuristics for the Traveling Salesman Problem with Profits. Mathematical Modelling and Algorithms, 2008, 7, 177-195.	0.5	53
112	The online Prize-Collecting Traveling Salesman Problem. Information Processing Letters, 2008, 107, 199-204.	0.4	35
114	Modelling, Computation and Optimization in Information Systems and Management Sciences.	0.4	3

	Сітатіої	n Report	
#	Article	IF	CITATIONS
115	Soft Computing Applications in Industry. Studies in Fuzziness and Soft Computing, 2008, , .	0.6	2
116	Path Planning of Autonomous Underwater Vehicles for Adaptive Sampling Using Mixed Integer Linear Programming. IEEE Journal of Oceanic Engineering, 2008, 33, 522-537.	2.1	174
117	An Optimal Model to Solve the Transport Problem for Mammography Screening. , 2008, , .		0
118	Determination of the itinerary of imprecise mobile agents using an adaptive approach. , 2008, , .		4
119	Tabu algorithms with two moves for solving the problem of hot rolling scheduling. , 2008, , .		0
120	Modeling the Mobile Oil Recovery Problem as a Multiobjective Vehicle Routing Problem. Communications in Computer and Information Science, 2008, , 283-292.	0.4	2
121	Itinerary determination of imprecise mobile agents with firm deadline. Web Intelligence and Agent Systems, 2008, 6, 421-439.	0.4	4
122	An efficient algorithm for designing reliable ip networks with an access/edge/core hierarchical structure. , 2008, , .		1
123	Two Hybrid Metaheuristic Algorithms for Hot Rolling Scheduling. ISIJ International, 2009, 49, 529-538.	0.6	13
124	Tabu search metaheuristic embedded in adaptative memory procedure for the Profitable Arc Tour Problem. , 2009, , .		1
125	A hybrid genetic algorithm/mathematical programming approach to the multi-family flowshop scheduling problem with lot streamingâ°†. Omega, 2009, 37, 126-137.	3.6	55
126	A branchâ€andâ€ɛut algorithm for the undirected prize collecting traveling salesman problem. Networks, 2009, 54, 56-67.	1.6	23
127	A method of solving a large-scale rolling batch scheduling problem in steel production using a variant of column generation. Computers and Industrial Engineering, 2009, 56, 165-178.	3.4	22
128	An exact -constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits. European Journal of Operational Research, 2009, 194, 39-50.	3.5	307
129	A tabu search heuristic for the vehicle routing problem with private fleet and common carrier. European Journal of Operational Research, 2009, 198, 464-469.	3.5	72
130	A relax-and-cut algorithm for the prize-collecting Steiner problem in graphs. Discrete Applied Mathematics, 2009, 157, 1198-1217.	0.5	32
131	Improved Approximation Algorithms for PRIZE-COLLECTING STEINER TREE and TSP. , 2009, , .		19
132	A variable neighborhood search algorithm for scheduling the hot rolling operations at a steel mill. , 2009, , .		1

#	Article	IF	CITATIONS
133	Tabu Search metaheuristic embedded in Adaptive Memory Procedure for the Profitable Arc Tour Problem. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 990-995.	0.4	3
134	Designing Reliable IP Networks with an Access/Edge/Core Hierarchical Structure. Infor, 2009, 47, 117-131.	0.5	0
135	Approximating the asymmetric profitable tour. Electronic Notes in Discrete Mathematics, 2010, 36, 907-914.	0.4	9
136	A hybrid metaheuristic for the prize-collecting single machine scheduling problem with sequence-dependent setup times. Computers and Operations Research, 2010, 37, 1624-1640.	2.4	15
137	Algorithmic expedients for the Prize Collecting Steiner Tree Problem. Discrete Optimization, 2010, 7, 32-47.	0.6	11
138	Discrete Particle Swarm Optimization for the Orienteering Problem. , 2010, , .		18
139	Combinatorial Optimization and Applications. Lecture Notes in Computer Science, 2010, , .	1.0	5
140	A Decision Support System with Ct_ACO Algorithm for the Hot Rolling Scheduling. , 2010, , .		4
141	Optimizing Helicopter Transport of Oil Rig Crews at Petrobras. Interfaces, 2010, 40, 408-416.	1.6	28
142	Some applications of the generalized vehicle routing problem. Journal of the Operational Research Society, 2010, 61, 1072-1077.	2.1	67
143	A differential evolution algorithm for the median cycle problem. , 2011, , .		1
144	Improved Approximation Algorithms for Prize-Collecting Steiner Tree and TSP. SIAM Journal on Computing, 2011, 40, 309-332.	0.8	68
145	An adaptive approach for the determination of the itinerary of imprecise mobile agents with timing constraints. Web Intelligence and Agent Systems, 2011, 9, 257-268.	0.4	0
146	ANWB Automates and Improves Service Personnel Dispatching. Interfaces, 2011, 41, 123-134.	1.6	0
148	Capacitated lot-sizing and scheduling with sequence-dependent, period-overlapping and non-triangular setups. Journal of Scheduling, 2011, 14, 209-219.	1.3	42
149	Approximation algorithms for supply chain planning and logistics problems with market choice. Mathematical Programming, 2011, 130, 85-106.	1.6	34
150	The Transit Route Arc-Node Service Maximization problem. European Journal of Operational Research, 2011, 208, 46-56.	3.5	35
151	Hybrid metaheuristics for the profitable arc tour problem. Journal of the Operational Research Society, 2011, 62, 2013-2022.	2.1	12

# 152	ARTICLE Autonomous data collection from underwater sensor networks using acoustic communication. , 2011, , .	IF	CITATIONS
153	Integrated order selection and production scheduling under MTO strategy. International Journal of Production Research, 2011, 49, 4085-4101.	4.9	16
154	Improving christofides' algorithm for the s-t path TSP. , 2012, , .		20
155	Modeling techniques in tree and ring structure based locational network design. , 2012, , .		0
156	Prize-collecting steiner network problems. ACM Transactions on Algorithms, 2012, 9, 1-13.	0.9	3
157	A risk-constrained multi-stage decision making approach to the architectural analysis of planetary missions. , 2012, , .		5
158	Lagrangian Relaxation for Large-Scale Multi-agent Planning. , 2012, , .		6
159	Tourist Activity Simulation Model for Assessing Real-Time Tour Information Systems. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2012, 16, 118-131.	2.6	8
160	A Gravitational Facility Location Problem based on Prize-Collecting Traveling Salesman Problem. , 2012, , .		0
161	Column generation based heuristics for a generalized location routing problem with profits arising in space exploration. European Journal of Operational Research, 2012, 223, 47-59.	3.5	38
162	Generalized Profitable Tour Problems for Online Activity Routing System. Transportation Research Record, 2012, 2284, 1-9.	1.0	22
163	Underwater Data Collection Using Robotic Sensor Networks. IEEE Journal on Selected Areas in Communications, 2012, 30, 899-911.	9.7	158
164	Improved algorithms for orienteering and related problems. ACM Transactions on Algorithms, 2012, 8, 1-27.	0.9	128
165	Local Search Algorithms for the Red-Blue Median Problem. Algorithmica, 2012, 63, 795-814.	1.0	20
166	Euclidean Prize-Collecting Steiner Forest. Algorithmica, 2012, 62, 906-929.	1.0	6
167	Development of hybrid evolutionary algorithms for production scheduling of hot strip mill. Computers and Operations Research, 2012, 39, 339-349.	2.4	32
168	A primal-dual approximation algorithm for the Asymmetric Prize-Collecting TSP. Journal of Combinatorial Optimization, 2013, 25, 265-278.	0.8	2
169	The prize-collecting vehicle routing problem with single and multiple depots and non-linear cost. EURO Journal on Transportation and Logistics, 2013, 2, 57-87.	1.3	24

#	Article	IF	CITATIONS
170	Exact approaches for solving robust prize-collecting Steiner tree problems. European Journal of Operational Research, 2013, 229, 599-612.	3.5	11
171	Algorithmic Decision Theory. Lecture Notes in Computer Science, 2013, , .	1.0	1
172	Compact formulations of the Steiner Traveling Salesman Problem and related problems. European Journal of Operational Research, 2013, 228, 83-92.	3.5	71
173	Pricing, relaxing and fixing under lot sizing and scheduling. European Journal of Operational Research, 2013, 230, 399-411.	3.5	27
175	Monte Carlo Tree Search with macro-actions and heuristic route planning for the Multiobjective Physical Travelling Salesman Problem. , 2013, , .		10
176	Multiple agents maximum collection problem with time dependent rewards. Computers and Industrial Engineering, 2013, 64, 1009-1018.	3.4	18
177	Physical search problems with probabilistic knowledge. Artificial Intelligence, 2013, 196, 26-52.	3.9	11
178	The traveling purchaser problem, with multiple stacks and deliveries: A branch-and-cut approach. Computers and Operations Research, 2013, 40, 2103-2115.	2.4	13
179	Disassembly planning and sequencing for end-of-life products with RFID enriched information. Robotics and Computer-Integrated Manufacturing, 2013, 29, 112-118.	6.1	53
180	The lifetime maximization problem in wireless sensor networks with a mobile sink: mixed-integer programming formulations and algorithms. IIE Transactions, 2013, 45, 1094-1113.	2.1	10
181	A Tabu Search Approach for the Prize Collecting Traveling Salesman Problem. Electronic Notes in Discrete Mathematics, 2013, 41, 261-268.	0.4	26
182	An adaptive compromise programming method for multi-objective path optimization. Journal of Geographical Systems, 2013, 15, 211-228.	1.9	8
183	Technical Note—On Traveling Salesman Games with Asymmetric Costs. Operations Research, 2013, 61, 1429-1434.	1.2	8
184	A Decision Support System with EDA_PR Algorithm for the Hot Rolling Scheduling. Advanced Materials Research, 2013, 756-759, 4466-4470.	0.3	1
185	AEERP., 2013,,.		35
186	Exploratory Coverage in Limited Mobility Sensor Networks. , 2013, , .		0
187	Utilizing costly coordination in multi-agent joint exploration1. Multiagent and Grid Systems, 2014, 10, 23-49.	0.5	4
188	An Integer-Programming-Based Approach to the Close-Enough Traveling Salesman Problem. INFORMS Journal on Computing, 2014, 26, 415-432.	1.0	39

#	Article	IF	Citations
189	A memetic algorithm for the prize-collecting Traveling Car Renter Problem. , 2014, , .		3
190	Chapter 10: Vehicle Routing Problems with Profits. , 2014, , 273-297.		76
191	Online traveling salesman problems with rejection options. Networks, 2014, 64, 84-95.	1.6	16
192	Survey of Green Vehicle Routing Problem: Past and future trends. Expert Systems With Applications, 2014, 41, 1118-1138.	4.4	680
193	TARS: traffic-aware route search. GeoInformatica, 2014, 18, 461-500.	2.0	17
194	Collecting data in ad-hoc networks with reduced uncertainty. Ad Hoc Networks, 2014, 17, 71-81.	3.4	17
195	A survey on algorithmic approaches for solving tourist trip design problems. Journal of Heuristics, 2014, 20, 291-328.	1.1	230
196	The generalized covering traveling salesman problem. Applied Soft Computing Journal, 2014, 24, 867-878.	4.1	19
197	Defining Asymptotic Parallel Time Complexity of Data-dependent Algorithms. New Generation Computing, 2014, 32, 123-144.	2.5	0
198	Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, 2014, , .	0.5	6
199	The time constrained maximal covering salesman problem. Applied Mathematical Modelling, 2014, 38, 3945-3957.	2.2	13
200	Modeling lotsizing and scheduling problems with sequence dependent setups. European Journal of Operational Research, 2014, 239, 644-662.	3.5	54
201	Unifying multi-goal path planning for autonomous data collection. , 2014, , .		24
204	Exact and Approximation Algorithms for Data Mule Scheduling in a Sensor Network. Lecture Notes in Computer Science, 2015, , 57-70.	1.0	4
205	Networks, uncertainty, applications and a crusade for optimality. 4or, 2015, 13, 225-226.	1.0	0
206	Selective vehicle routing for a mobile blood donation system. European Journal of Operational Research, 2015, 245, 22-34.	3.5	65
208	From Cost Sharing Mechanisms to Online Selection Problems. Mathematics of Operations Research, 2015, 40, 542-557.	0.8	9
209	Improving Christofides' Algorithm for the s-t Path TSP. Journal of the ACM, 2015, 62, <u>1-28</u> .	1.8	39

	Сітат	ION REPORT	
#	Article	IF	Citations
210	Approximating Minimum-Cost Connected T-Joins. Algorithmica, 2015, 72, 126-147.	1.0	10
211	Multiobjective GRASP with Path Relinking. European Journal of Operational Research, 2015, 240, 54-71.	3.5	54
212	Self-organizing map-based solution for the Orienteering problem with neighborhoods. , 2016, , .		22
213	Self-Organizing Map for data collection planning in persistent monitoring with spatial correlations. , 2016, , .		2
214	Geometric hitting set, set cover and generalized class cover problems with half-strips in opposite directions. Discrete Applied Mathematics, 2016, 211, 143-162.	0.5	3
215	Hybrid Artificial Intelligent Systems. Lecture Notes in Computer Science, 2016, , .	1.0	5
216	An Analysis of the Hardness of Novel TSP Iberian Instances. Lecture Notes in Computer Science, 2016, , 353-364.	1.0	3
217	A milk collection problem with blending. Transportation Research, Part E: Logistics and Transportation Review, 2016, 94, 26-43.	3.7	33
219	Fast algorithms for UAV tasking and routing. , 2016, , .		5
220	The Canadian Tour Operator Problem on paths: tight bounds and resource augmentation. Journal of Combinatorial Optimization, 2016, 32, 842-854.	0.8	2
221	Adaptive large neighborhood search for the pickup and delivery problem with time windows, profits, and reserved requests. European Journal of Operational Research, 2016, 252, 27-38.	3.5	115
222	TORD Problem and Its Solution Based on Big Trajectories Data. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 1666-1677.	4.7	8
223	Integer programming formulations for the elementary shortest path problem. European Journal of Operational Research, 2016, 252, 122-130.	3.5	64
224	Notes on the single route lateral transhipment problem. Journal of Global Optimization, 2016, 65, 57-82.	1.1	6
225	Network repair crew scheduling and routing for emergency relief distribution problem. European Journal of Operational Research, 2016, 248, 272-285.	3.5	95
226	Robust optimization for routing problems on trees. Top, 2016, 24, 338-359.	1.1	2
227	Multi-vehicle prize collecting arc routing for connectivity problem. Computers and Operations Research, 2017, 82, 52-68.	2.4	43
228	Vehicle routing with private fleet, multiple common carriers offering volume discounts, and rental options. Transportation Research, Part E: Logistics and Transportation Review, 2017, 97, 192-216.	3.7	22

#	Article	IF	CITATIONS
229	Fullâ€load route planning for balancing bike sharing systems by logicâ€based benders decomposition. Networks, 2017, 69, 270-289.	1.6	25
230	Interactive Assistive Framework for Maximum Profit Routing in Public Transportation in Smart Cities. , 2017, , .		1
231	The Packing While Traveling Problem. European Journal of Operational Research, 2017, 258, 424-439.	3.5	13
232	A unified matheuristic for solving multi-constrained traveling salesman problems with profits. EURO Journal on Computational Optimization, 2017, 5, 393-422.	1.5	14
233	Exact and Heuristic Algorithms for Riskâ€Aware Stochastic Physical Search. Computational Intelligence, 2017, 33, 524-553.	2.1	0
234	The Probabilistic Profitable Tour Problem. International Journal of Enterprise Information Systems, 2017, 13, 51-64.	0.6	6
235	Collaborative transportation planning distinguishing old and new shippers for small-medium enterprise. Journal of Industrial and Production Engineering, 2018, 35, 170-180.	2.1	2
236	A hybrid variable neighborhood search algorithm for the hot rolling batch scheduling problem in compact strip production. Computers and Industrial Engineering, 2018, 116, 22-36.	3.4	28
237	Traveling salesman problems with profits and stochastic customers. International Transactions in Operational Research, 2018, 25, 1297-1313.	1.8	11
238	Autonomous Data Collection Using a Self-Organizing Map. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 1703-1715.	7.2	56
239	The time-dependent capacitated profitable tour problem with time windows and precedence constraints. European Journal of Operational Research, 2018, 264, 1058-1073.	3.5	34
240	An efficient evolutionary algorithm for the orienteering problem. Computers and Operations Research, 2018, 90, 42-59.	2.4	41
241	Gotta (efficiently) catch them all: Pokémon GO meets Orienteering Problems. European Journal of Operational Research, 2018, 265, 779-794.	3.5	2
242	Prize-collecting set multicovering with submodular pricing. International Transactions in Operational Research, 2018, 25, 1221-1239.	1.8	0
243	MODELING AND SOLVING THE TRAVELING SALESMAN PROBLEM WITH PRIORITY PRIZES. Pesquisa Operacional, 2018, 38, 499-522.	0.1	13
244	A general variable neighborhood search algorithm for the k-traveling salesman problem. Procedia Computer Science, 2018, 143, 189-196.	1.2	7
245	An approximation algorithm for vehicle routing with compatibility constraints. Operations Research Letters, 2018, 46, 579-584.	0.5	4
246	Nucleolar Relocalization of RBM14 by Influenza A Virus NS1 Protein. MSphere, 2018, 3, .	1.3	8

#	Article	IF	CITATIONS
247	DetReduce. , 2018, , .		25
248	A binary decision diagram based algorithm for solving a class of binary two-stage stochastic programs. Mathematical Programming, 2022, 191, 381-404.	1.6	14
249	Selecting the best route in a theme park through multi-objective programming. Tourism Geographies, 2018, 20, 791-809.	2.2	6
250	A Multicast Technique for Fixed and Mobile Optical Wireless Backhaul in 5G Networks. IEEE Access, 2018, 6, 27491-27506.	2.6	15
251	GSOA: Growing Self-Organizing Array - Unsupervised learning for the Close-Enough Traveling Salesman Problem and other routing problems. Neurocomputing, 2018, 312, 120-134.	3.5	26
252	Optimization approaches to support the planning and analysis of travel itineraries. Expert Systems With Applications, 2018, 112, 321-330.	4.4	21
253	The Dynamic Dispatch Waves Problem for same-day delivery. European Journal of Operational Research, 2018, 271, 519-534.	3.5	94
254	Post-disaster assessment routing problem. Transportation Research Part B: Methodological, 2018, 116, 76-102.	2.8	62
255	Combined Optimal Control and Combinatorial Optimization for Searching and Tracking Using an Unmanned Aerial Vehicle. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 95, 691-706.	2.0	7
256	Flexible parcel delivery to automated parcel lockers: models, solution methods and analysis. EURO Journal on Transportation and Logistics, 2019, 8, 683-711.	1.3	59
257	The multicommodity traveling salesman problem with priority prizes: a mathematical model and metaheuristics. Computational and Applied Mathematics, 2019, 38, 1.	1.0	2
258	Selective discrete particle swarm optimization for the team orienteering problem with time windows and partial scores. Computers and Industrial Engineering, 2019, 138, 106084.	3.4	8
259	Capacitated ring arborescence problems with profits. OR Spectrum, 2019, 41, 357-389.	2.1	1
260	Interdiction Games and Monotonicity, with Application to Knapsack Problems. INFORMS Journal on Computing, 2019, 31, 390-410.	1.0	50
261	An artificial bee colony algorithm with variable degree of perturbation for the generalized covering traveling salesman problem. Applied Soft Computing Journal, 2019, 78, 481-495.	4.1	45
262	A 4-approximation algorithm for k-prize collecting Steiner tree problems. Optimization Letters, 2019, 13, 341-348.	0.9	7
263	Scalable Robust Kidney Exchange. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 1077-1084.	3.6	5
264	Quota Traveling Salesman with Passengers and Collection Time. , 2019, , .		1

# 265	ARTICLE Local Search Heuristic for the Optimisation of Flight Connections. , 2019, , .	IF	CITATIONS 2
266	Data collection path planning with spatially correlated measurements using growing self-organizing array. Applied Soft Computing Journal, 2019, 75, 130-147.	4.1	10
267	An adaptive large neighbourhood search algorithm for the orienteering problem. Expert Systems With Applications, 2019, 123, 154-167.	4.4	25
268	Fair cost allocation for ridesharing services – modeling, mathematical programming and an algorithm to find the nucleolus. Transportation Research Part B: Methodological, 2019, 121, 41-55.	2.8	30
269	A decision support flexible scheduling system for continuous galvanization lines using genetic algorithm. Production Engineering, 2019, 13, 43-52.	1.1	4
270	An Improved Augmented <inline-formula> <tex-math notation="LaTeX">\$varepsilon\$ </tex-math> </inline-formula> -Constraint and Branch-and-Cut Method to Solve the TSP With Profits. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 195-204.	4.7	14
271	Vehicle routing problem with vector profits with max-min criterion. Engineering Optimization, 2019, 51, 352-367.	1.5	9
272	Distribution with Quality of Service Considerations: The Capacitated Routing Problem with Profits and Service Level Requirements. Omega, 2020, 93, 102034.	3.6	9
273	The selective traveling salesman problem with draft limits. Journal of Heuristics, 2020, 26, 339-352.	1.1	9
274	Data collection from underwater acoustic sensor networks based on optimization algorithms. Computing (Vienna/New York), 2020, 102, 83-104.	3.2	8
275	A study of the lock-free tour problem and path-based reformulations. IISE Transactions, 2020, 52, 603-616.	1.6	0
276	Optimizing inspection routes in pipeline networks. Reliability Engineering and System Safety, 2020, 195, 106700.	5.1	8
277	Mixed integer formulations for a routing problem with information collection in wireless networks. European Journal of Operational Research, 2020, 280, 621-638.	3.5	10
278	Exact solution of the soft-clustered vehicle-routing problem. European Journal of Operational Research, 2020, 280, 164-178.	3.5	20
279	Formulation and a two-phase matheuristic for the roaming salesman problem: Application to election logistics. European Journal of Operational Research, 2020, 280, 656-670.	3.5	8
280	Probabilistic physical search on general graphs: approximations and heuristics. Autonomous Agents and Multi-Agent Systems, 2020, 34, 1.	1.3	1
281	Interday routing and scheduling of multi-skilled teams with consistency consideration and intraday rescheduling. EURO Journal on Transportation and Logistics, 2020, 9, 100012.	1.3	6
283	Capacitated Lot-Sizing Problem with Sequence-Dependent Setup, Setup Carryover and Setup Crossover. Processes, 2020, 8, 785.	1.3	1

#	Article	IF	CITATIONS
284	Deep Reinforcement Learning for Traveling Salesman Problem with Time Windows and Rejections. , 2020, , .		18
285	Request acceptance in same-day delivery. Transportation Research, Part E: Logistics and Transportation Review, 2020, 143, 102083.	3.7	25
286	A multi-objective open set orienteering problem. Neural Computing and Applications, 2020, 32, 13953-13969.	3.2	6
287	Two multi-start heuristics for the k-traveling salesman problem. Opsearch, 2020, 57, 1164-1204.	1.1	7
288	A review of planning and scheduling methods for hot rolling mills in steel production. Computers and Industrial Engineering, 2021, 151, 106606.	3.4	30
289	A Multi-Start Granular Skewed Variable Neighborhood Tabu Search for the Roaming Salesman Problem. Applied Soft Computing Journal, 2021, 102, 107024.	4.1	2
290	Serving Rides of Equal Importance forÂTime-Limited Dial-a-Ride. Lecture Notes in Computer Science, 2021, , 35-50.	1.0	1
291	LP-Based Algorithms for Multistage Minimization Problems. Lecture Notes in Computer Science, 2021, , 1-15.	1.0	4
292	A Branch-and-Cut and MIP-based heuristics for the Prize-Collecting Travelling Salesman Problem. RAIRO - Operations Research, 2021, 55, S719-S726.	1.0	3
293	Multi-period travelling politician problem: A hybrid metaheuristic solution method. Journal of the Operational Research Society, 2022, 73, 1325-1346.	2.1	1
294	Soft OR and Practice: The Contribution of the Founders of Operations Research. Operations Research, 2021, 69, 727-738.	1.2	9
295	Throughput-fairness tradeoffs in mobility platforms. , 2021, , .		2
296	Multi-start heuristics for the profitable tour problem. Swarm and Evolutionary Computation, 2021, 64, 100897.	4.5	9
297	Formulations and a Lagrangian relaxation approach for the prize collecting traveling salesman problem. International Transactions in Operational Research, 2022, 29, 729-759.	1.8	5
298	Vehicle routing problem with zone-based pricing. Transportation Research, Part E: Logistics and Transportation Review, 2021, 152, 102383.	3.7	11
299	Integer programming formulations in sequencing with total earliness and tardiness penalties, arbitrary due dates, and no idle time: A concise review and extension. Omega, 2021, 103, 102446.	3.6	14
300	Reinforcement Learning With Multiple Relational Attention for Solving Vehicle Routing Problems. IEEE Transactions on Cybernetics, 2022, 52, 11107-11120.	6.2	29
301	Solving Steiner trees: Recent advances, challenges, and perspectives. Networks, 2021, 77, 177-204.	1.6	29

		Citation Report		
#	Article		IF	CITATIONS
305	Constrained Shortest Path Computation. Lecture Notes in Computer Science, 2005, ,	181-199.	1.0	23
307	Solving General Ring Network Design Problems by Meta-Heuristics. Operations Resear Science Interfaces Series, 2000, , 91-113.	ch/ Computer	0.3	16
308	A Location-Routing Based Solution Approach for Reorganizing Postal Collection Opera Areas. Lecture Notes in Computer Science, 2020, , 625-636.	itions in Rural	1.0	2
309	Packing While Traveling: Mixed Integer Programming for a Class of Nonlinear Knapsac Lecture Notes in Computer Science, 2015, , 332-346.	k Problems.	1.0	7
310	The Traveling Salesman Problem with Few Inner Points. Lecture Notes in Computer Sci 268-277.	ience, 2004, ,	1.0	4
311	Algorithms for the On-Line Quota Traveling Salesman Problem. Lecture Notes in Comp 2004, , 290-299.	outer Science,	1.0	3
312	Hybrid Metaheuristic for the Prize Collecting Travelling Salesman Problem. Lecture Nor Computer Science, 2008, , 123-134.	tes in	1.0	8
314	Prize-Collecting Steiner Networks via Iterative Rounding. Lecture Notes in Computer S 515-526.	cience, 2010, ,	1.0	6
315	Prize-Collecting Steiner Network Problems. Lecture Notes in Computer Science, 2010,	, 71-84.	1.0	6
316	Efficient Algorithms for the Prize Collecting Steiner Tree Problems with Interval Data. L in Computer Science, 2010, , 13-24.	lecture Notes	1.0	2
317	Adaptive Message Ferry Route (aMFR) for Partitioned MANETs. Lecture Notes of the In Computer Sciences, Social-Informatics and Telecommunications Engineering, 2010, , S	istitute for 99-111.	0.2	2
319	Half Reification and Flattening. Lecture Notes in Computer Science, 2011, , 286-301.		1.0	15
320	Approximating Minimum-Cost Connected T-Joins. Lecture Notes in Computer Science,	2012,,110-121.	1.0	2
321	Optimization Approaches for Solving Chance Constrained Stochastic Orienteering Pro Notes in Computer Science, 2013, , 387-398.	blems. Lecture	1.0	22
323	The hot-rolling batch scheduling method based on the prize collecting vehicle routing Journal of Industrial and Management Optimization, 2009, 5, 749-765.	problem.	0.8	27
325	A Genetic Algorithm Based Approach to the Profitable Tour Problem with Pick-up and I Industrial Engineering and Management Systems, 2010, 9, 80-87.	Delivery.	0.3	5
326	The restricted Chinese postman problems with penalties. Operations Research Letters	, 2021, 49, 851-854.	0.5	1
327	Approximation Algorithms for Time-Dependent Orienteering. Lecture Notes in Comput 508-515.	ter Science, 2001, ,	1.0	2

ARTICLE IF CITATIONS On The Chinese Postman Game., 2003, , 297-303. 328 0 Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications., 0, , . Approximation Algorithms for Prize-Collecting Network Design Problems with General Connectivity 331 1.0 3 Requirements. Lecture Notes in Computer Science, 2009, , 174-187. Predicting Parallel TSP Performance: a Computational Approach., 0,,. 333 Egon Balas. Profiles in Operations Research, 2011, , 447-461. 334 0.3 1 Evaluative Text Summarization Model with Sentence Extraction and Ordering. Transactions of the 0.1 Japanese Society for Artificial Intelligence, 2013, 28, 88-99. Self-Organizing Map for the Prize-Collecting Traveling Salesman Problem. Advances in Intelligent 337 0.5 5 Systems and Computing, 2014, , 281-291. Multistage Production and Distribution Planning Problems., 2014, , 109-150. 338 339 The Generalized Assignment Problem., 2014, , 53-70. 0 Primal-dual approximation algorithms for submodular cost set cover problems with 340 1.0 linear/submodular penalties. Numerical Algebra, Control and Optimization, 2015, 5, 91-100. Problema do caixeiro viajante com coleta de prêmios e janelas de tempo., 0,,. 341 0 Orientazio problema eta algoritmo genetikoak. Ekaia (journal), 2015, , 183-209. 0.0 A Bi-Modal Routing Problem with Cyclical and One-Way Trips: Formulation and Heuristic Solution. 343 0.1 0 Information Technology and Management Science, 2017, 20, . Prize Collecting Traveling Salesman and Related Problems., 2018, , 611-628. 344 Solving a Modified TSP Problem by a Greedy Heuristic for Cost Minimization. International Journal of 345 0.4 0 Modeling and Optimization, 2018, 8, 138-144. Approximating Routing and Connectivity Problems with Multiple Distances. Lecture Notes in 347 Computer Science, 2020, , 63-75. MATHEMATICAL MODEL FOR ROUTE GUIDANCEâ€"DEVELOPING A GUIDE SIGN LOCATION AND ROUTING 348 0.1 0 PROBLEMâ€". Transactions of the Operations Research Society of Japan, 2020, 63, 18-37. Multi-Dimensional User Preference Path Scheme Based on the Prize Collecting Traveling Salesman 349 Problem. Indian Journal of Computer Science and Engineering, 2020, 11, 168-179.

#	Article	IF	CITATIONS
350	A Unified PTAS for Prize Collecting TSP and Steiner Tree Problem in Doubling Metrics. ACM Transactions on Algorithms, 2020, 16, 1-23.	0.9	1
353	Primal-dual based distributed approximation algorithm for Prize-collecting Steiner tree. Discrete Mathematics, Algorithms and Applications, 2021, 13, 2150008.	0.4	1
354	Optimal invasive species surveillance in the real world: practical advances from research. Emerging Topics in Life Sciences, 2020, 4, 513-520.	1.1	9
355	Improved Bounds for Revenue Maximization in Time-Limited Online Dial-a-Ride. SN Operations Research Forum, 2021, 2, 1.	0.6	1
356	A simple rounding scheme for multistage optimization. Theoretical Computer Science, 2022, 907, 1-1.	0.5	0
357	Bumblebee visitation problem. Discrete Applied Mathematics, 2022, , .	0.5	0
358	Revenue Management with Product Retirement and Customer Selection. SSRN Electronic Journal, 0, , .	0.4	0
359	Exact algorithms for budgeted prize-collecting covering subgraph problems. Computers and Operations Research, 2022, 144, 105798.	2.4	1
360	Multi-period profitable tour problem with electric vehicles and mandatory stops. International Journal of Sustainable Transportation, 2023, 17, 473-489.	2.1	0
361	A Hybrid Transgenetic Algorithm for the Prize Collecting Steiner Tree Problem. , 2007, , .		2
363	Fast Optimal Clearing of Capped-Chain Barter Exchanges. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30, .	3.6	7
364	Multiperiod integrated spare parts and tour planning for on-site maintenance activities with stochastic repair requests. Computers and Operations Research, 2022, 148, 105967.	2.4	2
365	A Parallel DNA Algorithm for Solving the Quota Traveling Salesman Problem Based on Biocomputing Model. Computational Intelligence and Neuroscience, 2022, 2022, 1-16.	1.1	1
367	Multi-Decoder Attention Model with Embedding Glimpse for Solving Vehicle Routing Problems. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 12042-12049.	3.6	27
368	A location-or-routing problem with partial and decaying coverage. Computers and Operations Research, 2023, 149, 106041.	2.4	4
369	Planning Problems for Social Robots. , 0, 21, 339-342.		5
370	Online Order Dispatching and Vacant Vehicles Rebalancing for the First-Mile Ride-Sharing Problem. SSRN Electronic Journal, 0, , .	0.4	0
371	The hazardous orienteering problem. Networks, 2023, 81, 235-252.	1.6	2

#	Article	IF	CITATIONS
372	A Review of Heuristics and Hybrid Methods for Green Vehicle Routing Problems considering Emissions. Journal of Advanced Transportation, 2022, 2022, 1-38.	0.9	3
373	Assessing the Sustainability of the Prepandemic Impact on Fuzzy Traveling Sellers Problem with a New Fermatean Fuzzy Scoring Function. Sustainability, 2022, 14, 16560.	1.6	3
374	Prize-Collecting Asymmetric Traveling Salesman Problem Admits Polynomial Time Approximation Within aÂConstant Ratio. Lecture Notes in Computer Science, 2022, , 81-90.	1.0	0
375	A bi-criteria moving-target travelling salesman problem under uncertainty. European Journal of Operational Research, 2023, 309, 271-285.	3.5	0
376	Constant-Factor Approximation Algorithms for a Series of Combinatorial Routing Problems Based on the Reduction to the Asymmetric Traveling Salesman Problem. Proceedings of the Steklov Institute of Mathematics, 2022, 319, S140-S155.	0.1	2
377	A Flow-Based Formulation of the Travelling Salesman Problem with Penalties on Nodes. Sustainability, 2023, 15, 4330.	1.6	0
378	A review on learning to solve combinatorial optimisation problems in manufacturing. IET Collaborative Intelligent Manufacturing, 2023, 5, .	1.9	4
379	Approximation algorithms for the restricted k-Chinese postman problems with penalties. Optimization Letters, 2024, 18, 307-318.	0.9	0
380	The Profitable Single Truck and Trailer Routing Problem with Time Windows: Formulation, valid inequalities and branch-and-cut algorithms. Computers and Industrial Engineering, 2023, 180, 109238.	3.4	2
381	An Improved Approximation Guarantee for Prize-Collecting TSP. , 2023, , .		0
384	Formulations forÂtheÂSplit Delivery Capacitated Profitable Tour Problem. Lecture Notes in Computer Science, 2023, , 82-98.	1.0	0
390	Optimizing profitable tour problems with priority prizes (PTPPP) using the mixed integer programming model with the PuLP library. AIP Conference Proceedings, 2023, , .	0.3	0
399	Prize-Collecting Traveling Salesman Problem: A Reinforcement Learning Approach. , 2023, , .		0