Evaluation of the developmental toxicity of five compoteratogenesis assay:Xenopus (FETAX) and a metabolic a

Journal of Applied Toxicology 9, 377-388 DOI: 10.1002/jat.2550090603

Citation Report

#	Article	IF	CITATIONS
1	Analysis of the mechanism of isoniazid-induced developmental toxicity with frog embryo teratogenesis assay: Xenopus (FETAX). Teratogenesis, Carcinogenesis, and Mutagenesis, 1990, 10, 463-476.	0.8	25
2	Initial evaluation of developmental malformation as an end point in mixture toxicity hazard assessment for aquatic vertebrates. Ecotoxicology and Environmental Safety, 1991, 21, 215-226.	6.0	23
3	Developmental toxicology of potato alkaloids in the frog embryo teratogenesis assay—Xenopus (FETAX). Food and Chemical Toxicology, 1991, 29, 537-547.	3.6	103
4	Assessing the Efficacy of an Aroclor 1254–Induced Exogenous Metabolic Activation System for Fetax. Drug and Chemical Toxicology, 1991, 14, 143-160.	2.3	33
5	Synergism and antagonism induced by three carrier solvents with t-retinoic acid and 6-aminonicotinamide using FETAX. Bulletin of Environmental Contamination and Toxicology, 1991, 46, 625-632.	2.7	21
6	Altered developmental toxicity caused by three carrier solvents. Journal of Applied Toxicology, 1991, 11, 253-260.	2.8	19
7	Assessment of the Developmental Toxicity of Ascorbic Acid, Sodium Selenate, Coumarin, Serotonin, and 13–CIS RetInolc Acid Using Fetax. Drug and Chemical Toxicology, 1991, 14, 127-141.	2.3	24
8	Evaluation of Acetaminophen-Induced Developmental Toxicity Using Fetax. Drug and Chemical Toxicology, 1992, 15, 329-350.	2.3	37
9	Teratogenic assessment of four solvents using the frog embryo teratogenesis assay—xenopus (FETAX). Journal of Applied Toxicology, 1992, 12, 49-56.	2.8	42
10	Evaluation of the developmental toxicity of trichloroethylene and detoxification metabolites usingXenopus. Teratogenesis, Carcinogenesis, and Mutagenesis, 1993, 13, 35-45.	0.8	32
11	Lethality, teratogenicity and growth inhibition of heptanol in Xenopus assayed by a modified frog embryo teratogenesis assay-Xenopus (FETAX) procedure. Science of the Total Environment, 1994, 151, 1-8.	8.0	35
12	Protective effects of glucose-6-phosphate and NADP against α-chaconine-induced developmental toxicity in xenopus embryos. Food and Chemical Toxicology, 1995, 33, 1021-1025.	3.6	28
13	Heavy metals and pesticides in anuran spawn and tadpoles, water, and sediment. Toxicological and Environmental Chemistry, 1995, 50, 131-155.	1.2	21
14	Developmental toxicity of carboxylic acids toXenopus embryos: A quantitative structure-activity relationship and computer-automated structure evaluation. Teratogenesis, Carcinogenesis, and Mutagenesis, 1996, 16, 109-124.	0.8	37
15	Adverse reproductive and developmental effects inXenopus from insufficient boron. Biological Trace Element Research, 1998, 66, 237-259.	3.5	73
16	Evaluation of the Developmental Toxicity of Caffeine and Caffeine Metabolites using the Frog Embryo Teratogenesis Assay—Xenopus (FETAX). Food and Chemical Toxicology, 1998, 36, 591-600.	3.6	18
17	Phase III Interlaboratory Study of Fetax, Part 2: Interlaboratory Validation of an Exogenous Metabolic Activation System for Frog Embryo Teratogenesis <i>Assay-Xenopus</i> (Fetax). Drug and Chemical Toxicology, 1998, 21, 1-14.	2.3	46
18	PROGRESS TOWARD IDENTIFYING CAUSES OF MALDEVELOPMENT INDUCED IN <i>XENOPUS</i> BY POND WATER AND SEDIMENT EXTRACTS FROM MINNESOTA, USA. Environmental Toxicology and Chemistry, 1999, 18, 2316-2324.	4.3	17

#	Article	IF	CITATIONS
19	Effects of pond water, sediment, and sediment extracts from minnesota and vermont, USA, on early development and metamorphosis of xenopus. Environmental Toxicology and Chemistry, 1999, 18, 2305-2315.	4.3	39
20	Effect of sulfometuron methyl and nicosulfuron on development and metamorphosis in <i>Xenopus laevis</i> : Impact of purity. Environmental Toxicology and Chemistry, 1999, 18, 2934-2940.	4.3	7
21	Phase III interlaboratory study of FETAX part 3. FETAX validation using 12 compounds with and without an exogenous metabolic activation system. Journal of Applied Toxicology, 1999, 19, 447-472.	2.8	55
22	Adverse effects from low dietary and environmental boron exposure on reproduction, development, and maturation inXenopus laevis. Journal of Trace Elements in Experimental Medicine, 1999, 12, 175-185.	0.8	28
23	Effect of boron deprivation on reproductive parameters inXenopus laevis. Journal of Trace Elements in Experimental Medicine, 1999, 12, 187-204.	0.8	20
24	Chronic Feeding of a Low Boron Diet Adversely Affects Reproduction and Development in Xenopus laevis. Journal of Nutrition, 1999, 129, 2055-2060.	2.9	69
25	Evaluation of the developmental toxicity of thalidomide using frog embryo teratogenesis assay?Xenopus (FETAX): biotransformation and detoxification. Teratogenesis, Carcinogenesis, and Mutagenesis, 2000, 20, 35-47.	0.8	25
26	Assessing the predictive validity of frog embryo teratogenesis assay?Xenopus (FETAX). Teratogenesis, Carcinogenesis, and Mutagenesis, 2000, 20, 87-98.	0.8	37
27	preliminary validation of a short-term morphological assay to evaluate adverse effects on amphibian metamorphosis and thyroid function usingxenopus laevis. Journal of Applied Toxicology, 2000, 20, 419-425.	2.8	43
28	Adverse Developmental and Reproductive Effects of Copper Deficiency in Xenopus laevis. Biological Trace Element Research, 2000, 77, 159-172.	3.5	11
29	Chronic Boron or Copper Deficiency Induces Limb Teratogenesis in Xenopus. Biological Trace Element Research, 2000, 77, 173-188.	3.5	22
30	Ecotoxicological soil evaluation by FETAX. Chemosphere, 2000, 41, 1621-1628.	8.2	27
31	OPTIMIZATION OF AN EXOGENOUS METABOLIC ACTIVATION SYSTEM FOR FETAX. II. PRELIMINARY EVALUATION. Drug and Chemical Toxicology, 2001, 24, 117-127.	2.3	8
32	Evaluation of a reproductive toxicity assay usingXenopus laevis: boric acid, cadmium and ethylene glycol monomethyl ether. Journal of Applied Toxicology, 2001, 21, 41-52.	2.8	33
33	OPTIMIZATION OF AN EXOGENOUS METABOLIC ACTIVATION SYSTEM FOR FETAX. I. POST-ISOLATION RAT LIVER MICROSOME MIXTURES. Drug and Chemical Toxicology, 2001, 24, 103-115.	2.3	8
34	Enhancing the predictive validity of Frog Embryo Teratogenesis Assay?Xenopus (FETAX). Journal of Applied Toxicology, 2002, 22, 185-191.	2.8	35
35	Evaluation of the Developmental Toxicities of Ethanol, Acetaldehyde, and Thioacetamide Using FETAX. Drug and Chemical Toxicology, 2003, 26, 23-34.	2.3	10
36	Evaluation ofXenopus tropicalisas an Alternative Test Organism for Frog Embryo Teratogenesis Assay—Xenopus(FETAX). Drug and Chemical Toxicology, 2003, 26, 177-189.	2.3	22

CITATION REPORT

#	ARTICLE	IF	CITATIONS
37	Comparative sensitivity ofXenopus tropicalis andXenopus laevis as test species for the FETAX model. Journal of Applied Toxicology, 2004, 24, 443-457.	2.8	42
38	APPLICATION OF FROG EMBRYO TERATOGENESIS ASSAY-XENOPUS TO ECOLOGICAL RISK ASSESSMENT. Environmental Toxicology and Chemistry, 2005, 24, 2677.	4.3	66
39	Aryl Hydrocarbon Receptors in the Frog Xenopus laevis: Two AhR1 Paralogs Exhibit Low Affinity for 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD). Toxicological Sciences, 2005, 88, 60-72.	3.1	58
40	A toxicity and hazard assessment of fourteen pharmaceuticals to Xenopus laevis larvae. Ecotoxicology, 2006, 15, 647-656.	2.4	104
41	In vitro embryotoxicity testing. , 2011, , 147-157.		4
42	Gene expression of heat shock protein 70, interleukin-1β and tumor necrosis factor α as tools to identify immunotoxic effects on Xenopus laevis: A dose–response study with benzo[a]pyrene and its degradation products. Environmental Pollution, 2012, 160, 28-33.	7.5	13
43	Mixtures of Chemical Pollutants at European Legislation Safety Concentrations: How Safe Are They?. Toxicological Sciences, 2014, 141, 218-233.	3.1	108
44	Use of the enhanced frog embryo teratogenesis assay- Xenopus (FETAX) to determine chemically-induced phenotypic effects. Science of the Total Environment, 2015, 508, 258-265.	8.0	22
45	Pluripotent Stem Cells in Developmental Toxicity Testing: A Review of Methodological Advances. Toxicological Sciences, 2018, 165, 31-39.	3.1	56
46	Xenbase: Facilitating the Use of Xenopus to Model Human Disease. Frontiers in Physiology, 2019, 10, 154.	2.8	61
47	An aryl hydrocarbon receptor from the caecilian Gymnopis multiplicata suggests low dioxin affinity in the ancestor of all three amphibian orders. General and Comparative Endocrinology, 2020, 299, 113592.	1.8	3
48	Intrauterine and postâ€ovipositional embryonic development of <scp><i>Amerotyphlops brongersmianus</i></scp> (Vanzolini, 1976) (Serpentes: Typhlopidae) from northeastern Argentina. Journal of Morphology, 2020, 281, 523-535.	1.2	5
49	Waste management: impact on metal accumulation and speciation in Aba River channel, Nigeria. Geosystem Engineering, 2021, 24, 46-60.	1.4	1
50	Chemical Mixture Toxicity Assessment Using an Alternative-Species Model: Applications, Opportunities, and Perspectives. , 1994, , 539-563.		5
51	Enhanced frog embryo teratogenesis assay. , 2005, , .		1
53	Assessment of Food Safety. , 1991, , 113-133.		0
59	Evaluation of E330-induced developmental toxicity using FETAX. Turkish Journal of Biology, 0, , .	0.8	4
60	2-Acetylaminofluorene. , 2024, , 83-87.		0

#	Article	IF	CITATIONS
61	Embryos assist morphogenesis of others through calcium and ATP signaling mechanisms in collective teratogen resistance. Nature Communications, 2024, 15, .	12.8	0