Mechanism and modeling of nitrogen chemistry in com

Progress in Energy and Combustion Science 15, 287-338

DOI: 10.1016/0360-1285(89)90017-8

Citation Report

#	Article	IF	CITATIONS
1	A Study of the Reaction between CH ₃ and NO at High Temperatures. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1990, 94, 1407-1411.	0.9	7
2	Thermal deNOx: no HNO at room temperature. Chemical Physics Letters, 1990, 173, 337-342.	1.2	15
3	Use of multivariate analysis to determine the influence of some liquid-fuel properties on fuel-bound nitrogen-to-NOx conversion. Fuel, 1990, 69, 1483-1489.	3.4	5
4	OH and CH profiles in a 10 Torr methane / oxygen flame: experiment and flame modeling. Chemical Physics Letters, 1990, 175, 395-400.	1.2	9
5	Determination of N-atom concentrations in low-pressure premixed H2/O2/N2 flames doped with NH3, HCN and (CN)2. Chemical Physics Letters, 1990, 175, 429-433.	1.2	7
6	Removal of nitric oxide from exhaust gas with cyanuric acid. Combustion and Flame, 1990, 79, 31-46.	2.8	45
7	Pulse combustion: The mechanisms of NOx production. Combustion and Flame, 1990, 80, 219-237.	2.8	71
8	Application of Soot Formation Model: Effects of Chlorine. Combustion Science and Technology, 1990, 74, 175-197.	1.2	57
9	Propyne Oxidation: A Kinetic Modeling Study. Combustion Science and Technology, 1990, 71, 111-128.	1.2	27
10	Evaluation of a hybrid kinetics/mixing-controlled combustion model for turbulent premixed and diffusion combustion using KIVA-II., 1990,,.		O
11	Kinetic Modeling of Fuel-Nitrogen Conversion in One-Dimensional, Pulverized-Coal Flames. Combustion Science and Technology, 1991, 76, 81-109.	1.2	34
12	Detection of nitrogen atoms in flames using two-photon laser-induced fluorescence and investigations of photochemical effects. Applied Optics, 1991, 30, 2990.	2.1	19
13	Calculations of NOx Formation Pathways in Propagating Laminar, High Pressure Premixed CH4/Air Flames. Combustion Science and Technology, 1991, 75, 261-285.	1.2	87
14	Chemistry Implications from Optical Diagnostics in Engine Research. , 1991, , .		О
15	Shock tube measurements of the rate coefficient for N+CH3â†'H2CN+H using N-atom aras and excimer photolysis of NO. Proceedings of the Combustion Institute, 1991, 23, 267-273.	0.3	2
16	Discussion on the formation and removal of NOx in ammonia flames. Chemical Physics Letters, 1991, 184, 294-300.	1.2	25
17	Collisional quenching of A 2Σ+ NO and A 2Δ CH in low pressure flames. Chemical Physics Letters, 1991, 178, 533-537.	1.2	31
18	Rotational-level-dependent quenching of OH A $2\hat{l}$ £($v\hat{a}$ € 2 = 1) by collisions with H2O in a low-pressure flame. Chemical Physics Letters, 1991, 182, 623-631.	1.2	27

#	Article	IF	CITATIONS
19	Combustion mechanism of carbon monoxideî—,nitrous oxide flames. Combustion and Flame, 1991, 87, 13-20.	2.8	27
20	Oxides of nitrogen emissions from turbulent jet flames: Part lâ€"Fuel effects and flame radiation. Combustion and Flame, 1991, 87, 319-335.	2.8	168
21	Laser-induced fluorescence diagnostics and chemical kinetic modeling of a CH4/NO2/O2 flame at 55 torr. Combustion and Flame, 1991, 85, 27-50.	2.8	30
22	Homogeneous N2O chemistry at fluidized bed combustion conditions: A kinetic modeling study. Combustion and Flame, 1991, 85, 94-104.	2.8	165
23	A shock tube study of the reactions of NH with NO, O2, and O. International Journal of Chemical Kinetics, 1991, 23, 173-196.	1.0	79
24	Kinetic modeling of the reduction of nitric oxide in combustion products by isocyanic acid. International Journal of Chemical Kinetics, 1991, 23, 289-313.	1.0	161
25	A shock tube study of H + HNCO â†' NH2+ CO. International Journal of Chemical Kinetics, 1991, 23, 655-668.	1.0	32
26	Shock tube measurements of the reactions of CN with O and O2. International Journal of Chemical Kinetics, 1991, 23, 1035-1050.	1.0	42
27	The thermal reaction of HNCO at moderate temperatures. International Journal of Chemical Kinetics, 1991, 23, 1129-1149.	1.0	22
28	Direct measurement of rate constants for the reactions of CH and CD with HCN and DCN. Chemical Physics, 1991, 150, 109-115.	0.9	18
29	Configuration interation calculations of structures, vibrational frequencies, and heats of formation for HHNO species. Chemical Physics Letters, 1991, 187, 335-344.	1.2	28
30	The structure and reaction mechanism of rich, non-sooting C2H2/O2/Ar flames. Proceedings of the Combustion Institute, 1991, 23, 187-194.	0.3	14
31	High temperature shock tube study of reactions of CH and C-atoms with N2. Proceedings of the Combustion Institute, 1991, 23, 259-265.	0.3	48
32	Nox in parametrically varied methane flames. Proceedings of the Combustion Institute, 1991, 23, 289-295.	0.3	9
33	Structure and kinetics of CH4/N2O flames. Proceedings of the Combustion Institute, 1991, 23, 371-378.	0.3	11
34	Experimental study of the formation of nitrous and nitric oxides in H2â^'O2â^'Ar flames seeded with NO and/or NH3. Proceedings of the Combustion Institute, 1991, 23, 379-386.	0.3	50
35	Nitrogen atom detection in low-pressure flames by two-photon laser-excited fluorescence. Applied Physics B, Photophysics and Laser Chemistry, 1991, 52, 108-116.	1.5	7
36	NH (X 3â~â~, v=1–3) formation and vibrational relaxation in electronâ€irradiated Ar/N2/H2 mixtures. Journal of Chemical Physics, 1991, 94, 4301-4310.	1.2	73

#	Article	IF	CITATIONS
37	Simulations of highâ€rate diamond synthesis: Methyl as growth species. Applied Physics Letters, 1991, 59, 277-279.	1.5	141
38	On the mechanism of the reaction CH(X 2Î)+N2(X 1Σ+g)→HCN(X 1Σ+) +N(4S ). I. A theoretical electronic structure aspects of the intersystem crossing. Journal of Chemical Physics, 1991, 95, 1808-1816.	al treatme 1.2	ent of the 73
39	A coupled channel study of HN2 unimolecular decay based on a global ab initio potential surface. Journal of Chemical Physics, 1991, 95, 4130-4135.	1.2	78
40	Detailed Mechanism for Oxidation of Benzene. Combustion Science and Technology, 1991, 79, 49-72.	1.2	71
41	Laser-Induced Fluorescence of CH \hat{A} · in a Laminar CH4/Air Diffusion Flame: Implications for Diagnostic Measurements and Analysis of Chemical Rates. Combustion Science and Technology, 1991, 76, 1-20.	1.2	37
42	Jet-Stirred Combustor Behavior Near Blowout: Observations and Implications. Combustion Science and Technology, 1992, 84, 187-197.	1.2	16
43	Chemical Effects of Fuel Chlorine on the Envelope Flame Ignition of Droplet Streams. Combustion Science and Technology, 1992, 85, 405-417.	1.2	6
44	Collisional electronic quenching of NO A 2Σ+ by N2 from 300 to 4500 K. Journal of Chemical Physics, 1992, 97, 8156-8163.	1.2	61
45	Experimental Study of Methane-Oxygen Flames Doped with Nitrogen Oxide or Ammonia. Comparison with Modeling. Combustion Science and Technology, 1992, 86, 87-103.	1.2	19
46	Ab initio variational transitionâ€stateâ€theory reactionâ€rate calculations for the gasâ€phase reaction H+HNO→H2+NO. Journal of Chemical Physics, 1992, 97, 7287-7296.	1.2	69
47	Determination of the internal state distribution of NO(X 2Î) produced in the O(3P)+NH(X 3Σâ^') reaction Journal of Chemical Physics, 1992, 97, 180-188.	' 1.2	15
48	A model of diamond growth in low pressure premixed flames. Journal of Applied Physics, 1992, 72, 5461-5466.	1.1	32
49	Thermochemistry and Kinetics of C2H3+ O2Reactions. Combustion Science and Technology, 1992, 82, 151-168.	1.2	64
50	A simplified reaction mechanism for prediction of NO(x) emissions in the combustion of hydrocarbons. , 1992, , .		О
51	Comparing Laserâ€Induced Fluorescence Measurements and Computer Models of Low Pressure Flame Chemistry. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1992, 96, 1410-1416.	0.9	16
52	A Comparison of CH4/NO/02and CH4/N20 Flames by LIF Diagnostics and Chemical Kinetic Modeling. Combustion Science and Technology, 1992, 83, 115-134.	1.2	29
53	Comparison of the Experimental Structure of an Ammonia Seeded Rich-Hydrogen-Oxygen-Argon Flame with the Calculated Ones Along Several Reaction Mechanisms. Combustion Science and Technology, 1992, 84, 335-344.	1.2	24
54	Mechanism of selective catalytic reduction of nitrogen monoxide by organic compounds. Journal of the Chemical Society Chemical Communications, 1992, , 247.	2.0	34

#	ARTICLE	IF	Citations
55	Chlorocarbon-Induced Incomplete Combustion In A Jet-Stirred Reactor. Combustion Science and Technology, 1992, 85, 87-100.	1.2	21
56	Self-oscillating behaviour in the selective catalytic reduction of NO by propene. Journal of the Chemical Society Chemical Communications, 1992, , 1150.	2.0	16
57	Rate coefficient for the reaction H+O2â†'OH+O: Results at high temperatures, 2000 to 5300 K. Journal of Chemical Physics, 1992, 96, 1077-1092.	1.2	113
58	Modelling of nonpremixed hydrogen jet flames using a conditional moment closure method. Proceedings of the Combustion Institute, 1992, 24, 263-269.	0.3	39
59	A shock tube study of methane decomposition using laser absorption by CH3. Proceedings of the Combustion Institute, 1992, 24, 589-596.	0.3	18
60	Direct investigations of the kinetics of the reactions of CN radicals with N atoms and 3CH2 radicals with NO. Proceedings of the Combustion Institute, 1992, 24, 691-699.	0.3	23
61	The reactions of imidogen with nitric oxide and molecular oxygen. Proceedings of the Combustion Institute, 1992, 24, 719-726.	0.3	33
62	Asymptotic and numerical predictions of carbon monoxide—Nitrous oxide flame structure. Proceedings of the Combustion Institute, 1992, 24, 803-811.	0.3	3
63	Flame structure of C2H2â^'O2â€"Argon and C2H2â^'NO2â€"argon laminar premixed flames. Proceedings of the Combustion Institute, 1992, 24, 823-831.	0.3	4
64	Control of combustion-generated nitrogen oxide emissions: Technology driven by regulation. Proceedings of the Combustion Institute, 1992, 24, 859-878.	0.3	268
65	The effect of low-concentration fuels on the conversion of nitric oxide to nitrogen dioxide. Proceedings of the Combustion Institute, 1992, 24, 909-916.	0.3	41
66	Thermal dissociation of nitrous oxide at medium temperatures. Proceedings of the Combustion Institute, 1992, 24, 917-923.	0.3	30
67	Destruction and formation of no in low pressure stoichiometric CH4/O2 flames. Proceedings of the Combustion Institute, 1992, 24, 925-932.	0.3	19
68	Joint planar CH and OH lif imaging in piloted turbulent jet diffusion flames near extinction. Proceedings of the Combustion Institute, 1992, 24, 341-349.	0.3	22
69	Scaling of nitric oxide emissions from buoyancy-dominated hydrocarbon turbulent-jet diffusion flames. Proceedings of the Combustion Institute, 1992, 24, 385-393.	0.3	26
70	A shock tube study of reactions of NCO with O and NO using NCO laser absorption. Proceedings of the Combustion Institute, 1992, 24, 701-710.	0.3	8
71	Chemical mechanisms of NO formation for gas turbine conditions. Proceedings of the Combustion Institute, 1992, 24, 879-887.	0.3	29
72	A reduced mechanism for nitrogen chemistry in methane combustion. Proceedings of the Combustion Institute, 1992, 24, 889-898.	0.3	46

#	Article	IF	CITATIONS
73	Promotion of high-temperature self-ignition. Progress in Energy and Combustion Science, 1992, 18, 297-325.	15.8	22
74	Measurement of thermal rate constants by flash or laser photolysis in shock tubes: Oxidations of H2 and D2. Progress in Energy and Combustion Science, 1992, 18, 327-347.	15.8	102
75	Emissions of nitrous oxide from combustion sources. Progress in Energy and Combustion Science, 1992, 18, 529-552.	15.8	124
76	Kinetics of the gasâ€phase reaction between nitric oxide, ammonia and oxygen. Canadian Journal of Chemical Engineering, 1992, 70, 1014-1020.	0.9	91
77	Spin-forbidden chemistry within the Breit-Pauli approximation. International Reviews in Physical Chemistry, 1992, 11, 195-242.	0.9	86
78	Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method—combustion of methane. Progress in Energy and Combustion Science, 1992, 18, 47-73.	15.8	369
79	Der Einfluß von QuarzglasoberflÃ ¤ hen auf die Reduktion von NO mit NH3bei hohen Temperaturen. Chemie-Ingenieur-Technik, 1992, 64, 580-581.	0.4	5
81	Cationic and neutral nitrosamide: viable molecules in the dilute gas phase. Chemical Physics Letters, 1992, 199, 643-647.	1.2	13
82	Electronic quenching rates for NO(A $2\hat{1}_{\pm}+$) measured in a shock tube. Chemical Physics Letters, 1992, 190, 266-270.	1.2	34
83	Temperature dependence of the CH+N2 reaction at low total pressure. Chemical Physics Letters, 1992, 195, 322-328.	1.2	28
84	The mechanism of the reaction CH(X 2Î) + N2 (X 1Σ+g) â†' HCN (X 1Σ+) + N (4S) Chemical Physics Letters, 1991 188, 352-358.	92 _{1.2}	47
85	The formation of NOx in surface burners. Combustion and Flame, 1992, 89, 157-166.	2.8	40
86	PDF modeling and analysis of thermal NO formation in turbulent nonpremixed hydrogen-air jet flames. Combustion and Flame, 1992, 88, 397-412.	2.8	71
87	LIF measurements in methane/air flames of radicals important in prompt-NO formation. Combustion and Flame, 1992, 88, 137-148.	2.8	80
88	NOx removal on a coal-fired utility boiler by selective non-catalytic reduction. Environmental Progress, 1992, 11, 296-301.	0.8	32
89	A shock tube study of reactions of atomic oxygen with isocyanic acid. International Journal of Chemical Kinetics, 1992, 24, 279-295.	1.0	26
90	A theoretical analysis of the reaction between hydrogen atoms and isocyanic acid. International Journal of Chemical Kinetics, 1992, 24, 421-432.	1.0	21
91	Kinetic modeling of propane oxidation and pyrolysis. International Journal of Chemical Kinetics, 1992, 24, 813-837.	1.0	63

#	ARTICLE	IF	CITATIONS
92	Implications of the HCN? HNC process to high-temperature nitrogen-containing fuel chemistry. International Journal of Chemical Kinetics, 1992, 24, 1103-1107.	1.0	41
93	Rank dependence of N2O emission in fluidized-bed combustion of coal. Fuel, 1993, 72, 373-379.	3.4	89
94	Factors in the conversion of fuel nitrogen to nitric and nitrous oxides during fluidized bed combustion. Fuel, 1993, 72, 381-388.	3.4	60
95	The reduction of NOx formation in natural gas burner flames. Fuel, 1993, 72, 497-503.	3.4	52
96	Experimental characterization of the influence of CO on the high-temperature reduction of NO by NH3. Fuel, 1993, 72, 175-179.	3.4	25
97	NOx reduction by ammonia The effects of pressure and mineral surfaces. Fuel, 1993, 72, 187-192.	3.4	13
98	The interaction of SO2 and NO in rich combustion zones. Fuel, 1993, 72, 1451-1453.	3.4	7
99	The mechanism of the reaction CH+N2â†'HCN+N. Chemical Physics Letters, 1993, 209, 143-150.	1.2	40
100	Characterization of the minimum energy path for CH(X 2Î) + N2 (X 1Σ+g) â†' HCN (X 1⩞+) + N (4S). Chemical Physics Letters, 1993, 208, 214-218.	1.2	41
101	Temperature dependence of the reactions of CH radicals with NO, NH3 and N2O in the range 200–1300 K. Chemical Physics Letters, 1993, 210, 135-140.	1.2	32
102	Importance of solid fuel properties to nitrogen oxide formation through HCN and NH3 in small particle combustion. Combustion and Flame, 1993, 95, 22-30.	2.8	88
103	Oxides of nitrogen emissions from turbulent jet flames: Part IIâ€"Fuel dilution and partial premixing effects. Combustion and Flame, 1993, 93, 255-269.	2.8	86
104	Detailed structure study of a low pressure, stoichiometric H2/N2O/Ar flame. Combustion and Flame, 1993, 94, 407-425.	2.8	44
105	Parallel simulations of partially stirred methane combustion. Combustion and Flame, 1993, 94, 469-486.	2.8	44
106	The necessity of using detailed kinetics in models for premixed combustion within porous media. Combustion and Flame, 1993, 93, 457-466.	2.8	77
107	Numerical simulation of stoichiometric premixed flames burning CH3Cl / CH4 / air mixtures at atmospheric pressure with a full and short reaction mechanism and comparison of the flame speeds with experimental results. Combustion and Flame, 1993, 92, 419-439.	2.8	31
108	A reduced kinetic mechanism for premixed CH3Cl/air flames. Combustion and Flame, 1993, 92, 440-455.	2.8	16
109	Species conservation and emission indices for flames described by similarity solutions. Combustion and Flame, 1993, 92, 465-468.	2.8	81

#	Article	IF	CITATIONS
110	Laser-based flame species profile measurements: A comparison with flame model predictions. Combustion and Flame, 1993, 92, 85-105.	2.8	52
111	Homogeneous nitrous oxide formation and destruction under combustion conditions. AICHE Journal, 1993, 39, 1342-1354.	1.8	87
112	Calculation of turbulent combustion of propane in furnaces. International Journal for Numerical Methods in Fluids, 1993, 17, 221-239.	0.9	14
113	A study of ethane decomposition in a shock tube using laser absorption of CH3. International Journal of Chemical Kinetics, 1993, 25, 969-982.	1.0	18
114	Kinetics of CN reactions with allene, butadiene, propylene and acrylonitrile. Chemical Physics, 1993, 169, 129-134.	0.9	31
115	Combustion of coal as a source of N2O emission. Fuel Processing Technology, 1993, 34, 1-71.	3.7	166
116	A cw laser absorption diagnostic for methyl radicals. Journal of Quantitative Spectroscopy and Radiative Transfer, 1993, 49, 559-571.	1.1	61
117	Development of a CW laser absorption diagnostic for measurement of CN in shock tube experiments. Journal of Quantitative Spectroscopy and Radiative Transfer, 1993, 50, 19-34.	1.1	14
118	Kinetic parameters of overall gas-phase reactions for propellants based on ammonium perchlorate and polybutadiene binder. Combustion, Explosion and Shock Waves, 1993, 29, 508-515.	0.3	6
119	Structure of diffusion and premixed laminar counterflow flames including molecular radiative transfer. Combustion, Explosion and Shock Waves, 1993, 29, 306-311.	0.3	3
120	Fluid boundary layer effects in atmospheric-pressure plasma diamond film deposition. Plasma Chemistry and Plasma Processing, 1993, 13, 169-187.	1.1	61
121	NOx formation in stretched premixed flames established far from extinction. Fuel, 1993, 72, 489-495.	3.4	2
122	A Review of NOxFormation Under Gas-Turbine Combustion Conditions. Combustion Science and Technology, 1993, 87, 329-362.	1.2	423
123	Time-Resolved Pulsed FT-IR Emission Studies of Photochemical Reactions. Applied Spectroscopy, 1993, 47, 1438-1445.	1.2	17
124	Numerical study of shock-induced combustion in methane-air mixtures. , 1993, , .		2
125	An experimental study of the structure of a compressible, reacting mixing layer. , 1993, , .		7
126	Prediction of Kinetic Parameters for Hydrogen Abstraction Reactions. Combustion Science and Technology, 1993, 95, 1-50.	1.2	72
127	C1/C2Chemistry in Fuel-Rich Post-Flame Gases I. Experimental Results and Pool Modelling. Combustion Science and Technology, 1993, 87, 199-215.	1.2	6

#	Article	IF	Citations
128	Experimental and Numerical Study of Premixed Combustion Within Nonhomogeneous Porous Ceramics. Combustion Science and Technology, 1993, 90, 149-172.	1.2	168
129	Synthesis of diamond from methane and nitrogen mixture. Applied Physics Letters, 1993, 62, 3432-3434.	1.5	104
130	Supersonic DC-arcjet synthesis of diamond. Diamond and Related Materials, 1993, 2, 454-461.	1.8	37
131	Diamond deposition by atmospheric pressure induction plasma: effects of impinging jet fluid mechanics on film formation. Diamond and Related Materials, 1993, 2, 1090-1095.	1.8	14
132	A Flow Tube Kinetics Study of Methyl Chloride Oxidation. Combustion Science and Technology, 1993, 87, 91-107.	1.2	13
133	Analysis of diamond growth in subatmospheric dc plasmaâ€gun reactors. Journal of Applied Physics, 1993, 74, 5803-5820.	1.1	145
134	Diamond growth by methane injection into hydrogen-oxygen flames. Diamond and Related Materials, 1993, 2, 169-173.	1.8	3
135	Large-area diamond film growth in a low-pressure flame. Materials Letters, 1993, 18, 119-122.	1.3	27
136	Use of Numerical Modeling in the Design of a Low-NOxBurner for Utility Boilers. Combustion Science and Technology, 1993, 93, 53-72.	1,2	22
137	On the Derivation of Global Ignition Kinetics from a Detailed Mechanism for Simple Hydrocarbon Oxidation. Combustion Science and Technology, 1993, 87, 139-156.	1.2	15
138	Comparison of Experimental and Computed Species Concentration and Temperature Profiles in Laminar, Two-Dimensional Methane/Air Diffusion Flames. Combustion Science and Technology, 1993, 90, 1-34.	1,2	82
139	A simplified reaction mechanism for calculation of emissions in hydrocarbon (Jet-A) combustion. , 1993, , .		5
140	Kinetics and product branching ratios of the CN+NO2reaction. Journal of Chemical Physics, 1993, 99, 3488-3493.	1.2	30
141	The protonation of N2O reexamined: A case study on the reliability of various electron correlation methods for minima and transition states. Journal of Chemical Physics, 1993, 98, 7951-7957.	1.2	27
142	The thermal decomposition of CH3Cl using the Clâ€atom absorption method and the bimolecular rate constant for O+CH3(1609–2002 K) with a pyrolysis photolysisâ€shock tube technique. Journal of Chemical Physics, 1993, 98, 3919-3928.	1,2	49
143	Pyrolysis and Oxidation of 1,1,1-Trichloroethane in Methane/Oxygen/Argon. Hazardous Waste and Hazardous Materials, 1993, 10, 381-395.	0.4	4
144	Plume and wake dynamics, mixing, and chemistry behind a high speed civil transport aircraft. Journal of Aircraft, 1993, 30, 467-479.	1.7	98
145	Radical addition to HNO. Ab initio reaction path and variational transition state theory calculations for H+HNOâ†'H2NO and H+HNOâ†'HNOH. Journal of Chemical Physics, 1993, 99, 7709-7717.	1.2	17

#	ARTICLE	IF	CITATIONS
146	Characterization of theXÌf 1A' state of isocyanic acid. Journal of Chemical Physics, 1993, 98, 1299-1328.	1.2	125
147	Comparison of Measurements and Predictions of Flame Structure and Thermal NOx, in a Swirling, Natural Gas Diffusion Flame. Combustion Science and Technology, 1993, 93, 193-210.	1.2	23
148	Potential role of atomic carbon in diamond deposition. Journal of Applied Physics, 1993, 74, 6941-6947.	1.1	17
149	Compounds of Nitrogen with Hydrogen. , 1993, , 14-278.		O
150	NOx Emission of Lean Premixed-Prevaporized Combustion for Liquid Fuels 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1993, 59, 2317-2324.	0.2	1
151	Formation Characteristics of Fuel NOx in the Combustion of Coal Gaseous-Fueled Gas Turbine 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1993, 59, 2568-2575.	0.2	2
152	Simplified jet fuel reaction mechanism for lean burn combustion application., 1993,,.		4
153	NOx Emission Characteristics of Rich Methane-Air Flames. , 1993, , 141-162.		1
154	Studies on the Reactions of CH (v= 0 and 1) with NO and O2. Bulletin of the Chemical Society of Japan, 1993, 66, 1004-1011.	2.0	39
155	Rate Coefficients of the Reactions of CN and NCO with O ₂ and NO ₂ at 296 K. Journal of the Chinese Chemical Society, 1993, 40, 337-343.	0.8	16
156	A Computational and Experimental Study of Combustion Chamber Deposit Effects on NOx Emissions. , 1993, , .		20
157	Cylinder-Averaged Histories of Nitrogen Oxide in a D.I. Diesel with Simulated Turbocharging. , 0, , .		22
158	Chemical kinetics of NOx production in a well stirred reactor., 1994,,.		6
159	Chemical Kinetic Modeling of Fuel-Rich Flames of CH2Cl2/CH2/O2/Ar. Combustion Science and Technology, 1994, 101, 103-134.	1.2	18
160	Low and Intermediate Temperature Ethane Combustion Modeling. Combustion Science and Technology, 1994, 98, 95-122.	1.2	14
161	Computation of shock-induced combustion using a detailed methane-air mechanism. Journal of Propulsion and Power, 1994, 10, 609-617.	1.3	29
162	Numerical Modeling Capabilities for the Simulation of Toxic By-Products Formation in Combustion Processes. Combustion Science and Technology, 1994, 101, 383-396.	1.2	3
163	Combustion Metrology: A Manifesto. Combustion Science and Technology, 1994, 98, 341-347.	1.2	2

#	Article	IF	Citations
164	A Turbulent Reacting Flow Model that Incorporates Detailed Chemical Kinetics. Combustion Science and Technology, 1994, 101, 361-382.	1.2	7
165	Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide Formation in High-Pressure Flames. Combustion Science and Technology, 1994, 98, 137-160.	1.2	41
166	The Effectiveness of Calcium (Magnesium) Acetate and Calcium Benzoate as NOxReduction Agents in Coal Combustion. Combustion Science and Technology, 1994, 102, 193-211.	1.2	19
167	Nearâ€resonant electronic energy transfer in the electronic quenching of NOA 2Σ+by hydrocarbons and ammonia. Journal of Chemical Physics, 1994, 101, 10452-10457.	1.2	21
168	Atomic carbon vapor as a diamond growth precursor in thermal plasmas. Journal of Applied Physics, 1994, 75, 3914-3923.	1.1	89
169	Temperature and Mass Flow Effects in 10 Torr Methane/Oxygen Flames. Combustion Science and Technology, 1994, 98, 1-9.	1.2	6
170	The Effects of Load Height on the Emissions from a Natural Gas-Fired Domestic Cooktop Burner. Combustion Science and Technology, 1994, 103, 283-298.	1.2	40
171	Twoâ€dimensional potential energy surfaces for CH(X 2Î)+N2(X 1Σ+g) →HCN(X 1Σ+)+N(4S). Joi Physics, 1994, 101, 3656-3661.	urnal of Ch	iemiçal 28
172	Ab initio molecular orbital study of potential energy surface for the NH+NO2 reaction. Journal of Chemical Physics, 1994, 101, 3916-3922.	1.2	34
173	Biomass fueled fluidized bed combustion: Atmospheric emissions, emission control devices and environmental regulations. Biomass and Bioenergy, 1994, 6, 243-260.	2.9	42
174	A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows. Experiments in Fluids, 1994, 17, 330-336.	1.1	60
175	Growth rate studies of CVD diamond in an RF plasma torch. Plasma Chemistry and Plasma Processing, 1994, 14, 383-406.	1.1	15
176	Effects of NH3 on N2O formation and destruction in fluidized bed coal combustion. Journal of Thermal Science, 1994, 3, 278-282.	0.9	5
177	A thermochemical phase space for combustion in engines. Proceedings of the Combustion Institute, 1994, 25, 157-165.	0.3	9
178	On the effects of fuel leakage on CO production from household burners as revealed by lif and cars. Proceedings of the Combustion Institute, 1994, 25, 243-250.	0.3	2
179	Reduced mechanism of soot formation—Applicationto natural gas-fueled diesel combustion. Proceedings of the Combustion Institute, 1994, 25, 941-948.	0.3	30
180	Analysis of the reactions H+N2O and NH+NO: Pathways and rate constants over a wide range of temperature and pressure. Proceedings of the Combustion Institute, 1994, 25, 965-974.	0.3	35
181	NO formation in lean premixed noncatalytic andcatalytically stabilized combustion of propane. Proceedings of the Combustion Institute, 1994, 25, 1019-1026.	0.3	13

#	ARTICLE	IF	CITATIONS
182	Study of NO emission characteristics in pressurized staged combustor concepts. Proceedings of the Combustion Institute, 1994, 25, 1043-1049.	0.3	7
183	Fluoromethane chemistry and its role in flame suppression. Proceedings of the Combustion Institute, 1994, 25, 1505-1511.	0.3	18
184	On the kinetic mechanism of the reaction of NH2 with O2 in O-, H-, and N-containing flames. 1. Kinetic parameters of the NH2+O2=NHO+OH reaction. Combustion, Explosion and Shock Waves, 1994, 30, 59-64.	0.3	0
185	Kinetic mechanism of the reaction of NH2 with O2 in O-, H-, and N-containing flames. II. Estimation of kinetic parameters of the stages involving NH2O2, HNOOH, and NH2O. Combustion, Explosion and Shock Waves, 1994, 30, 298-305.	0.3	1
186	A shock tube study of the OH + OH ? $H2O + O$ reaction. International Journal of Chemical Kinetics, 1994, 26, 389-401.	1.0	68
187	Modeling the thermal DENOx process in flow reactors. Surface effects and Nitrous Oxide formation. International Journal of Chemical Kinetics, 1994, 26, 421-436.	1.0	156
188	Empirical modeling of the selective non-catalytic reduction of no: comparison with large-scale experiments and detailed kinetic modeling. Chemical Engineering Science, 1994, 49, 1897-1904.	1.9	27
189	Kinetics of NCO + hydrocarbon reactions. Chemical Physics Letters, 1994, 218, 537-543.	1.2	25
190	Steric effects on nascent vibrational distributions of the HCN product produced in CN radical reactions with ethane, propane and chloroform. Chemical Physics Letters, 1994, 220, 448-454.	1.2	23
191	Protonated nitrosamide. An intermediate in a possible ionic DeNox process. Chemical Physics Letters, 1994, 227, 33-38.	1.2	8
192	Chemiluminescent reaction of oxygen atoms with some nitrile compounds. Chemical Physics Letters, 1994, 227, 511-518.	1.2	4
193	Infrared laser-induced decomposition of GAP. Combustion and Flame, 1994, 96, 212-220.	2.8	29
194	NOx and CO emissions from a pulse combustor operating in a lean premixed mode. Combustion and Flame, 1994, 99, 460-466.	2.8	47
195	Mechanism and modeling of hydrogen cyanide oxidation in a flow reactor. Combustion and Flame, 1994, 99, 475-483.	2.8	87
196	Kinetic investigation of the reactions of NCO radicals with alkanes in the temperature range 294 to 1113 K. Combustion and Flame, 1994, 99, 491-498.	2.8	15
197	Kinetics of homogeneous nitrous oxide decomposition. Combustion and Flame, 1994, 99, 523-532.	2.8	89
198	Shock tube study of ignition delays and detonation of gaseous monomethylhydrazine/oxygen mixtures. Combustion and Flame, 1994, 99, 573-580.	2.8	13
199	An experimental and modeling study of the selective noncatalytic reduction of NO by ammonia in the presence of hydrocarbons. Combustion and Flame, 1994, 99, 660-668.	2.8	38

#	Article	IF	CITATIONS
200	The structure of nonpremixed methyl chloride and methyl chloride/methane air flames near extinction. Combustion and Flame, 1994, 96, 381-392.	2.8	8
201	A new comprehensive reaction mechanism for combustion of hydrocarbon fuels. Combustion and Flame, 1994, 99, 201-211.	2.8	93
202	Laser-induced fluorescence diagnostics of a propane/air flame with a manganese fuel additive. Combustion and Flame, 1994, 99, 261-268.	2.8	16
203	Flame structure study of a lean H2/N2O/Ar Flame employing molecular beam mass spectrometry and modeling. Combustion and Flame, 1994, 99, 323-330.	2.8	9
204	Application of a robust \hat{l}^2 -pdf treatment to analysis of thermal NO formation in nonpremixed hydrogen-air flame. Combustion and Flame, 1994, 98, 375-390.	2.8	29
205	Interaction of fuel nitrogen with nitric oxide during reburning with coal. Combustion and Flame, 1994, 98, 391-401.	2.8	32
206	Comparison of experimental and calculated structures of an ammoniaî—, nitric oxide flame. Importance of the NH2 + NO reaction. Combustion and Flame, 1994, 98, 402-410.	2.8	70
207	Comparative species concentrations in CH4/O2/Ar flames doped with N2O, NO, and NO2. Combustion and Flame, 1994, 98, 93-106.	2.8	67
208	The structure of inhibited counterflowing nonpremixed flames. Combustion and Flame, 1994, 98, 107-122.	2.8	10
209	NO emission characteristics of methane-air double flame. Combustion and Flame, 1994, 98, 127-138.	2.8	160
210	An experimental and numerical study of the high-temperature oxidation of $1,1,1$ -C2H3Cl3. Combustion and Flame, 1994, 98, 155-169.	2.8	21
211	Reduction of N2O in a circulating fluidized-bed combustor. Fuel, 1994, 73, 1389-1397.	3.4	30
212	Formation and reduction of nitrogen oxides in fluidized-bed combustion. Fuel, 1994, 73, 1398-1415.	3.4	324
213	Oxidized oil shale for removal of nitrogen oxides in combustion gas streams. Fuel, 1994, 73, 1466-1471.	3.4	0
214	Modelling of coal combustion in low-NOx p.f. flamesâ~†. Fuel, 1994, 73, 1006-1019.	3.4	48
215	Models for high-intensity turbulent combustion. Computing Systems in Engineering: an International Journal, 1994, 5, 135-145.	0.5	6
216	Minimizing NOx emissions from stationary combustion; reaction engineering methodology. Chemical Engineering Science, 1994, 49, 4067-4083.	1.9	21
217	Analysis of detailed kinetic schemes for combustion processes: Application to a methane-ethane mixture. Chemical Engineering Science, 1994, 49, 4211-4221.	1.9	20

#	Article	IF	CITATIONS
218	Development and assessment of correlations for predicting stability limits of swirling flames. Chemical Engineering and Processing: Process Intensification, 1994, 33, 393-400.	1.8	38
219	Nitrous oxide behavior in the atmosphere, and in combustion and industrial systems. Progress in Energy and Combustion Science, 1994, 20, 149-202.	15.8	159
220	Laser techniques for the quantitative detection of reactive intermediates in combustion systems. Progress in Energy and Combustion Science, 1994, 20, 203-279.	15.8	341
221	Kinetic studies of NHx radical reactions. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 80, 85-93.	2.0	31
222	Assessment of The Stretched Laminar Flamelet Approach For Nonpremixed Turbulent Combustion. Combustion Science and Technology, 1994, 100, 95-122.	1.2	37
223	State of the art and future needs in S.I. engine combustion. Proceedings of the Combustion Institute, 1994, 25, 111-124.	0.3	48
224	A shock tube study of the CO+OHâ†'CO2+H reaction. Proceedings of the Combustion Institute, 1994, 25, 741-748.	0.3	30
225	Kinetic studies of the reactions NH(X3룉 $^{\circ}$)+NO and NH(X3룉 $^{\circ}$)+O2 at elevated temperatures. Proceedings of the Combustion Institute, 1994, 25, 993-1001.	0.3	9
226	Hydrocarbon-NO interactions at low temperatures—1.Conversion of NO to NO2 promoted by propane and the formation of HNCO. Proceedings of the Combustion Institute, 1994, 25, 1003-1010.	0.3	41
227	Aspects of nitrogen flame chemistry revealed by burning velocity modelling. Proceedings of the Combustion Institute, 1994, 25, 1011-1018.	0.3	20
228	Rich methane/air flames: Burning velocities, extinction limits, and flammability limit. Proceedings of the Combustion Institute, 1994, 25, 1309-1315.	0.3	8
229	A Wide Range Modeling Study of Methane Oxidation. Combustion Science and Technology, 1994, 96, 279-325.	1.2	73
230	Simplified NOx formation mechanism for CFD use. , 1994, , .		0
231	Analysis of CN and NH chemiluminescent temperatures in flames from 0.06 to 35 atm. , 1994, , .		0
232	Nitramine deflagration - A reduced chemical mechanism for the primary flame. , 1994, , .		4
233	Visualization of CN by the use of planar laser-induced fluorescence in a cross section of an unseeded turbulent CH_4–air flame. Applied Optics, 1994, 33, 7777.	2.1	13
234	The reaction of NH2(X 2B1) with O (X 3P): A theoretical study employing Gaussian 2 theory. Journal of Chemical Physics, 1994, 101, 1361-1368.	1.2	15
235	Ignition delay characteristics of methane fuels. Progress in Energy and Combustion Science, 1994, 20, 431-460.	15.8	243

#	Article	IF	Citations
236	Detailed Kinetic Modelling of Chemistry and Temperature Effects on Ammonia Oxidation. Combustion Science and Technology, 1994, 99, 253-276.	1.2	156
237	Resonances in the CH+N2→HCN+N(4S) reaction: The dynamics of a spinâ€forbidden process. Journal of Chemical Physics, 1994, 101, 3662-3670.	1.2	27
238	Combustion and environmental challenges for gas turbines in the 1990s. Journal of Propulsion and Power, 1994, 10, 137-147.	1.3	23
239	Investigation of the CH ₃ + NO reaction in shock waves. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 749-753.	0.9	16
240	Staged Combustion Effects of Coal-Water Slury in High-Intensity Combustion 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1994, 60, 1815-1821.	0.2	0
241	Visualization of Low-Concentration Species in a Turbulent Premixed CH4/Air Flame 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1994, 60, 3153-3159.	0.2	0
242	Active chlorine and nitric oxide formation from chemical rocket plume afterburning. , 1994, , .		5
243	A Two Zone Turbulent Flow Reactor Facility for Studies of Staged Combustion of Simulated Hazardous Wastes. Combustion Science and Technology, 1994, 102, 145-164.	1.2	7
244	Assessment of Kinetic and Mixing-Controlled Models for the Prediction of Fuel-NO Emissions in P.F. Burners. Combustion Science and Technology, 1994, 102, 57-80.	1.2	10
245	Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions. Journal of the Chinese Chemical Society, 1995, 42, 221-231.	0.8	0
246	Study of Ammonia Removal from Coal-Gasified Fuel 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1995, 61, 4483-4491.	0.2	0
247	A Model of the Gas-Phase Chemistry of Boron Nitride CVD From BCl ₃ and NH ₃ *. Materials Research Society Symposia Proceedings, 1995, 410, 459.	0.1	8
248	Nitric Oxide Interactions with C2 Hydrocarbon Species. Materials Research Society Symposia Proceedings, 1995, 418, 221.	0.1	0
249	On the Simplified Modeling of NO Formation in Technical Combustion Processes. Journal of Energy Resources Technology, Transactions of the ASME, 1995, 117, 161-164.	1.4	0
250	Kinetic modeling of the CH3 + C2H2 reaction data with sensitivity analyses. International Journal of Chemical Kinetics, 1995, 27, 855-866.	1.0	8
251	The decomposition of nitrous oxide at 1.5 ? P? 10.5 atm and 1103 ?T? 1173 K. International Journal of Chemical Kinetics, 1995 , 27 , $883-909$.	1.0	53
252	Ethylene oxidation in a well-stirred reactor. International Journal of Chemical Kinetics, 1995, 27, 957-986.	1.0	75
253	Simultaneous laser absorption measurements of CN and OH in a shock tube study of HCN + OH? products. International Journal of Chemical Kinetics, 1995, 27, 1075-1087.	1.0	29

#	Article	IF	CITATIONS
254	O + NNH: A possible new route for NOX formation in flames. International Journal of Chemical Kinetics, $1995, 27, 1097-1109$.	1.0	222
255	Kinetics of the reactions of NCO with NO and NO2. International Journal of Chemical Kinetics, 1995, 27, 1111-1120.	1.0	30
256	Kinetics and modeling of the H2?O2?NOx system. International Journal of Chemical Kinetics, 1995, 27, 1165-1178.	1.0	47
257	The reaction of ammonia with nitrogen dioxide in a flow reactor: Implications for the NH2 + NO2 reaction. International Journal of Chemical Kinetics, 1995, 27, 1207-1220.	1.0	110
259	Detection of reactive intermediate nitrogen and sulfur species in the combustion of carbons that are models for coal chars. Carbon, 1995, 33, 833-843.	5.4	63
260	Carbon-13 materials as models for NOx and N2O release during coal char combustion. Carbon, 1995, 33, 1129-1139.	5.4	22
261	The thermal DeNOx process: Influence of partial pressures and temperature. Chemical Engineering Science, 1995, 50, 1455-1466.	1.9	131
262	Accurate energetics for the unimolecular decomposition of HN2. Chemical Physics Letters, 1995, 233, 331-334.	1.2	19
263	A theoretical investigation of the two lowest potential energy surfaces for the reaction C(3P)+NO (2Î). Chemical Physics Letters, 1995, 234, 382-389.	1.2	26
264	Temperature and pressure dependence of the NCO + C2H2 reaction. Chemical Physics Letters, 1995, 235, 230-234.	1.2	22
265	Kinetics of the cross reaction between amidogen and methyl radicals. Chemical Physics Letters, 1995, 240, 63-71.	1.2	18
266	The multichannel reaction NH2 + NH2 at ambient temperature and low pressures. Chemical Physics Letters, 1995, 240, 474-480.	1.2	28
267	RRKM studies of product branching in the NH+NO reaction. Chemical Physics Letters, 1995, 244, 19-26.	1.2	16
268	Ab initio study of protonated nitrosamide: a possible intermediate in the deNO x process. Chemical Physics Letters, 1995, 245, 143-149.	1.2	13
269	NOx and N2O in lean-premixed jet-stirred flames. Combustion and Flame, 1995, 100, 440-449.	2.8	68
270	Comparison of species profiles between O2 and NO2 oxidizers in premixed methane flames. Combustion and Flame, 1995, 100, 571-590.	2.8	37
271	Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O2/N2 flames. Combustion and Flame, 1995, 101, 141-152.	2.8	24
272	Analytical approximations for structures of wet CO flames with one-step reduced chemistry. Combustion and Flame, 1995, 101, 287-301.	2.8	17

#	Article	IF	CITATIONS
273	Numerical studies on the structure of two-dimensional H2/air premixed jet flame. Combustion and Flame, 1995, 102, 21-40.	2.8	52
274	Kinetic interactions of CO, NOx, and HCl emissions in postcombustion gases,. Combustion and Flame, 1995, 100, 495-504.	2.8	78
275	Modeling of nitric oxide formation in spark ignition engines with a multizone burned gas. Combustion and Flame, 1995, 102, 241-255.	2.8	102
276	The effects of pressure, oxygen partial pressure, and temperature on the formation of N2O, NO, and NO2 from pulverized coal. Combustion and Flame, 1995, 102, 387-400.	2.8	40
277	Flamelet structure of radiating CH4-air flames. Combustion and Flame, 1995, 102, 438-446.	2.8	26
278	Stretched laminar flamelet modeling of turbulent chloromethane-air nonpremixed jet flames. Combustion and Flame, 1995, 103, 328-338.	2.8	9
279	Elementary reaction models and correlations for burning velocities of multicomponent organic fuel mixtures. Combustion and Flame, 1995, 101, 411-427.	2.8	15
280	Rates of the reactions CN + H2CO and NCO + H2CO in the temperature range 294–769 K. Chemical Physics, 1995, 200, 431-437.	0.9	11
281	Two-dimensional model for thermal plasma chemical vapor deposition. Plasma Chemistry and Plasma Processing, 1995, 16, S57-S69.	1.1	14
282	Model for chemical reaction kinetics in perchloric acid-ammonia flames. Combustion, Explosion and Shock Waves, 1995, 31, 555-565.	0.3	25
283	Understanding NOx formation in nonpremixed flames: Experiments and modeling. Progress in Energy and Combustion Science, 1995, 21, 361-385.	15.8	132
284	Thermochemical and chemical kinetic data for fluorinated hydrocarbons. Progress in Energy and Combustion Science, 1995, 21, 453-529.	15.8	211
285	The role of temperature on carbon monoxide production in compartment fires. Fire Safety Journal, 1995, 24, 315-331.	1.4	49
286	Measurements of argon collision broadening in the CN B2Σ+ ↕ \times 2Σ+(0,0) spectrum. Journal of Quantitative Spectroscopy and Radiative Transfer, 1995, 53, 481-492.	1.1	11
287	Collisional broadening of spectral lines in the A-X (0-0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence. Journal of Quantitative Spectroscopy and Radiative Transfer, 1995, 53, 277-287.	1.1	38
288	Thermal decomposition of two coal model compounds $\hat{a}\in$ " pyridine and 2-picoline. Kinetics and product distributions. Journal of Analytical and Applied Pyrolysis, 1995, 34, 47-63.	2.6	45
289	Theoretical characterization of structures and vibrational frequencies for intermediates and transition states in the reaction of NH2 with NO. Computational and Theoretical Chemistry, 1995, 333, 233-242.	1.5	21
290	Theoretical study of the mechanism and rate constant of the dimerization of isocyanic acid. Computational and Theoretical Chemistry, 1995, 342, 147-151.	1.5	11

#	Article	IF	CITATIONS
291	The selective non atalytic reduction of nitric oxide using ammonia at up to 15% oxygen. Canadian Journal of Chemical Engineering, 1995, 73, 345-350.	0.9	38
293	Influences of sprays on strained partially premixed flames. , 1995, , .		0
294	Exit plane measurements in scramjet flows - High temperature infrared emission spectra of H2O(nu2). , 1995, , .		0
295	Reactions of NHx Species., 1995,, 69-115.		1
296	The Collins Scotch Yoke Engine as a Compact Alternative - A Theoretical Comparison of Features of Scotch Yoke and Conventional Engines. , 0, , .		4
297	Rate coefficients for the N+O2reaction computed on anabinitiopotential energy surface. Journal of Chemical Physics, 1995, 102, 2825-2832.	1.2	34
298	Rate constant and reaction channels for the reaction of atomic nitrogen with the ethyl radical. Journal of Chemical Physics, 1995, 102, 5309-5316.	1.2	28
299	An ab initio molecular orbital study of potential energy surface of the NH2+NO2 reaction. Journal of Chemical Physics, 1995, 103, 5640-5649.	1.2	37
300	The initial vibrational state distribution of HCN XÌf 1Σ+(v1,0,v3) from the reaction CN(2Σ+)+C2H6â†'HCN+C Journal of Chemical Physics, 1995, 102, 7966-7982.	C2H5.	31
301	Ab initio variational transition state theory calculations for the O+NH2 hydrogen abstraction reaction on the 4A' and 4A  potential energy surfaces. Journal of Chemical Physics, 1995, 102, 6121-6127.	1.2	13
302	Characterization of the minimum energy path for the reaction of singlet methylene with N2: The role of singlet methylene in prompt NO. Journal of Chemical Physics, 1995, 103, 4930-4936.	1,2	14
303	A theoretical study of the NH+NO reaction. Journal of Chemical Physics, 1995, 102, 6696-6705.	1.2	35
304	Investigation of the effect of reagent CN rotational excitation on the dynamics of the CN+O2reaction. Journal of Chemical Physics, 1995, 103, 6479-6489.	1.2	20
305	Investigation of the Reaction of ³ CH ₂ with NO at high Temperatures. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1995, 99, 97-104.	0.9	25
306	Interactions of CO, NOxand H2O Under Post-Flame Conditions. Combustion Science and Technology, 1995, 110-111, 461-485.	1.2	70
307	NOxFormation in Large-Scale Oxy-Fuel Flames. Combustion Science and Technology, 1995, 108, 311-322.	1.2	24
308	Laser-Induced Fluorescence Measurements of Nitric Oxide Formation in High-Pressure Premixed Methane Flames. Combustion Science and Technology, 1995, 110-111, 229-247.	1,2	13
309	Asymptotic and Numerical Analysis of a Premixed Laminar Nitrogen Dioxide-Hydrogen Flame. Combustion Science and Technology, 1995, 105, 165-182.	1.2	3

#	Article	IF	CITATIONS
310	Large eddy simulation of reacting flows applied to bluff body stabilized flames. AIAA Journal, 1995, 33, 2339-2347.	1.5	107
311	Structure of H2-NO2-Argon and H2-O2-Argon Laminar Prernixed Flames. Combustion Science and Technology, 1995, 105, 195-209.	1.2	2
312	Structure and chemical kinetics of flames supported by solid propellant combustion. Journal of Propulsion and Power, 1995, 11, 704-716.	1.3	16
313	Assessment of a three-variable reduced kinetic scheme in prescribed turbulence. Journal of Propulsion and Power, 1995, 11, 448-455.	1.3	2
314	The Importance of the Nitrous Oxide Pathway to NOx in Lean-Premixed Combustion. Journal of Engineering for Gas Turbines and Power, 1995, 117, 100-111.	0.5	46
315	Variables Affecting NOx Formation in Lean-Premixed Combustion. , 1995, , .		11
316	A Two mixture fraction approach for modeling turbulent combustion of coal volatiles and char oxidation products. Coal Science and Technology, 1995, , 1767-1770.	0.0	0
317	Development of gas-phase reaction mechanisms for nitramine combustion. Journal of Propulsion and Power, 1995, 11, 683-697.	1.3	156
318	EMISSIONS OF CO AND NO FROM A TWO STAGE POROUS MEDIA BURNER. Combustion Science and Technology, 1995, 107, 81-91.	1.2	22
319	Detection of CN by degenerate four-wave mixing. Optics Letters, 1995, 20, 1725.	1.7	8
320	Bifurcation Behavior of Premixed Hydrogen/Air Mixtures in a Continuous Stirred Tank Reactor. Combustion Science and Technology, 1995, 109, 347-371.	1.2	27
321	Mathematical Modeling of a 2. 25 MWtSwirling Natural Gas Flame. Part 1: Eddy Break-up Concept for Turbulent Combustion; Probability Density Function Approach for Nitric Oxide Formation. Combustion Science and Technology, 1995, 110-111, 67-101.	1.2	58
322	Collisional electronic quenching of OH A 2Σ (v'=0) measured at high temperature in a shock tube. Journal of Chemical Physics, 1995, 102, 8378-8384.	1.2	60
323	NO(x), prediction in 3D turbulent diffusion flames by using implicit multigrid methods., 1995,,.		1
324	A Detailed Kinetic Study of Ammonia Oxidation. Combustion Science and Technology, 1995, 108, 231-254.	1.2	69
325	Mechanisms Governing the Formation and Destruction of NOxand Other Nitrogenous Species in Low NOxCoal Combustion Systems 1. Combustion Science and Technology, 1995, 108, 323-344.	1.2	41
326	A Numerical and Experimental Study of the No-Emission of Ceramic Foam Surface Burners. Combustion Science and Technology, 1995, 108, 193-203.	1.2	16
327	CO and NOxEmissions from a Controlled-Air Burner: Experimental Measurements and Exhaust Correlations. Combustion Science and Technology, 1995, 104, 207-234.	1.2	22

#	Article	IF	CITATIONS
328	Numerical Simulation and Scaling of NOxEmissions from Turbulent Hydrogen Jet Flames with Various Amounts of Helium Dilution. Combustion Science and Technology, 1995, 110-111, 505-529.	1.2	46
329	Mechanisms of N2O Formation from Char Combustion. Energy & Energy & 1996, 10, 203-208.	2.5	36
330	Reactive Cross Sections Involving Atomic Nitrogen and Ground and Vibrationally Excited Molecular Oxygen and Nitric Oxide., 1996,, 53-84.		1
331	Experimental Study and Kinetic Analysis of the Oxidation of Light Hydrocarbon Mixtures. Industrial & Engineering Chemistry Research, 1996, 35, 2127-2136.	1.8	8
332	Formation of HNCO from the Rapid Pyrolysis of Coals. Energy & Energy & 1996, 10, 264-265.	2.5	66
333	Conversion of Fuel-Nitrogen in the Primary Zones of Pulverized Coal Flames. Energy & Company Fuels, 1996, 10, 463-473.	2.5	41
334	Global Rate Expression for Nitric Oxide Reburning. Part 2. Energy & Samp; Fuels, 1996, 10, 1046-1052.	2.5	48
335	Exhaust andin SituMeasurements of Nitric Oxide in Laminar Partially Premixed C2H6â°'Air Flames:Â Effect of Premixing Level at Constant Burner Tube Flow Rate. Energy & Energy & 1996, 10, 1060-1066.	2.5	7
336	Modeling N2O Reduction and Decomposition in a Circulating Fluidized Bed Boiler. Energy & Samp; Fuels, 1996, 10, 970-979.	2.5	29
337	A Computational Method for Determining Global Fuel-NO Rate Expressions. Part 1. Energy & Ener	2.5	31
338	Kinetic and Thermodynamic Sensitivity Analysis of the NO-Sensitised Oxidation of Methane. Combustion Science and Technology, 1996, 115, 259-296.	1.2	135
339	Determination of total organic halogens (TOX); bias from a non-halogenated organic compound. Environment International, 1996, 22, 325-329.	4.8	7
340	Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence. Applied Physics B: Lasers and Optics, 1996, 63, 91-98.	1.1	82
341	Temperature Dependence of Rate Coefficients and Branching Ratios for the NH2 + NO Reaction via Microcanonical Variational Transition State Theory. The Journal of Physical Chemistry, 1996, 100, 12349-12354.	2.9	27
342	Kinetic Isotope Effect in the $CH[2\hat{l}] + O2Reaction$. The Journal of Physical Chemistry, 1996, 100, 17840-17845.	2.9	21
343	Rate constants for removal of CH(D)($\hat{l}^{1}/2$ = 0 and 1) by collisions with N2, CO, O2, NO and NO2at 298 K and with CO2at 296 $\hat{a}@\frac{1}{2}T/K \hat{a}@\frac{1}{2}$ 873. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2335-2341.	.1.7	34
344	Pressure and temperature dependence of the rate constants for the association reactions of CH radicals with CO and N2 between 202 and 584 K. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1087.	1.7	25
345	Raman Spectroscopic Measurement of Oxidation in Supercritical Water. 1. Conversion of Methanol to Formaldehyde. Industrial & Samp; Engineering Chemistry Research, 1996, 35, 2161-2171.	1.8	85

#	Article	IF	CITATIONS
346	The Structure of Laminar Diffusion Flames Inhibited with CF3Br. Combustion Science and Technology, 1996, 113, 17-34.	1.2	9
347	The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 2: Effects of Carbon Dioxide. , 0, , .		72
348	Kinetics of NOx reduction by urea solution in a pilot scale reactor Journal of Chemical Engineering of Japan, 1996, 29, 620-626.	0.3	22
349	Reduction of NOx Emissions of D. I. Diesel Engines by Application of the Miller-System: An Experimental and Numerical Investigation. , 1996, , .		16
350	Numerical Analysis of Diffusion Combustion of Coal Gasified Fuel. Effect of Pressure on NOx Formation 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1996, 62, 3689-3695.	0.2	1
351	Combustor Design Trends for Aircraft Gas Turbine Engines. , 1996, , .		2
352	On the role of free radicals NO2 and O2 in the selective catalytic reduction (SCR) of NOx with CH4 over CoZSM-5 and HZSM-5 zeolites. Studies in Surface Science and Catalysis, 1996, 101, 651-660.	1.5	14
353	NOx Emission in A Stretched Methane Air Counterflow Diffusion Flame 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1996, 62, 2854-2860.	0.2	O
354	Production and Destruction of Nitrogen Oxides in the Dilution Process of Fuel-Rich Burnt Gases 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1996, 62, 3982-3987.	0.2	1
355	Combustion of Liquid Fuels in the Well Stirred Reactor. , 1996, , .		5
356	A Lean Burn Low Emissions Gas Engine for Co-Generation. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1996, 210, 203-211.	0.8	2
357	Performance and emissions of CRGT power generation systems with reformed methanol., 0,,.		3
358	An Experimental Investigation of the Conversion of NO to NO2 at High Pressure. Journal of Engineering for Gas Turbines and Power, 1996, 118, 756-764.	0.5	8
359	Homogeneous-heterogeneous oxidation reactions over platinum and inert surfaces. Chemical Engineering Science, 1996, 51, 2429-2438.	1.9	46
360	Reduction of detailed kinetic mechanisms for ignition and extinction of premixed hydrogen/air flames. Chemical Engineering Science, 1996, 51, 3979-3993.	1.9	61
361	Collisional electronic quenching rates for NO A2Σ+ (ν = 0). Chemical Physics Letters, 1996, 259, 508-514.	1.2	57
362	Control of NOx emissions through combustion modifications for reheating furnaces in steel plants. Fuel, 1996, 75, 149-156.	3.4	14
363	Interactions of quartz, zircon sand and stainless steel with ammonia: implications for the measurement of ammonia at high temperatures. Fuel, 1996, 75, 525-526.	3.4	23

#	Article	IF	CITATIONS
364	Experimental study and kinetic modeling of the thermal decomposition of gaseous monomethylhydrazine. Application to detonation sensitivity. Shock Waves, 1996, 6, 139-146.	1.0	21
365	Effect of heterogeneous mechanisms during reburning of nitrogen oxide. AICHE Journal, 1996, 42, 1968-1976.	1.8	57
366	Theoretical study of reactions of N2O with NO and OH radicals. International Journal of Chemical Kinetics, 1996, 28, 693-703.	1.0	24
367	Pressure and temperature dependence of the reactions of CH with N2. Chemical Physics Letters, 1996, 253, 313-321.	1.2	34
368	Modeling NOx release from a single coal particle I. Formation of NO from volatile nitrogen. Combustion and Flame, 1996, 105, 92-103.	2.8	39
369	Influences of flame-vortex interactions on formation of oxides of nitrogen in curved methane-air diffusion flamelets. Combustion and Flame, 1996, 105, 373-380.	2.8	4
370	The amounts of NOx and N2O formed in a fluidized bed combustor during the burning of coal volatiles and also of char. Combustion and Flame, 1996, 105, 341-357.	2.8	99
371	Minimization of NO during staged combustion of CH3NH2. Combustion and Flame, 1996, 105, 557-568.	2.8	14
372	The effect of solid CaO on the production of NOx and N2O in fluidized bed combustors: Studies using pyridine as a prototypical nitrogenous fuel. Combustion and Flame, 1996, 105, 511-527.	2.8	52
373	Study of radiative effects on laminar counterflow H2/O2N2 diffusion flames. Combustion and Flame, 1996, 106, 271-287.	2.8	69
374	Modeling of chemical reactions in afterburning for the reduction of N2O. Combustion and Flame, 1996, 106, 345-358.	2.8	20
375	Fuelâ€"Gas injection to reduce N2O emissions from the combustion of coal in a fluidized bed. Combustion and Flame, 1996, 107, 103-113.	2.8	6
376	Raman-LIF measurements of temperature, major species, OH, and NO in a methane-air bunsen flame. Combustion and Flame, 1996, 105, 499-510.	2.8	112
377	Effect of premixing of fuel gas and air on NOx formation. Fuel, 1996, 75, 1509-1514.	3.4	8
378	Control of air toxin particulate and vapor emissions after coal combustion utilizing calcium magnesium acetate. Resources, Conservation and Recycling, 1996, 16, 15-69.	5.3	26
379	Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics. Applied Catalysis A: General, 1996, 142, 97-122.	2.2	333
380	Nitrous oxide emissions control by reburning. Combustion and Flame, 1996, 107, 453-463.	2.8	26
381	Nitrogen chemistry during burnout in fuel-staged combustion. Combustion and Flame, 1996, 107, 211-222.	2.8	123

#	Article	IF	CITATIONS
382	High temperature radiation-induced reduction of no. Radiation Physics and Chemistry, 1996, 48, 755-762.	1.4	4
384	The formation of SiO2 from hexamethyldisiloxane combustion in counterflow methane-air flames. Proceedings of the Combustion Institute, 1996, 26, 1859-1865.	0.3	22
385	Pressure effects on the thermal de-NOx process. Proceedings of the Combustion Institute, 1996, 26, 2067-2074.	0.3	18
386	Flow reactor studies and testing of comprehensive mechanisms for NOx reburning. Proceedings of the Combustion Institute, 1996, 26, 2083-2090.	0.3	16
387	Control of NOx emissions by NOx recycle approach. Proceedings of the Combustion Institute, 1996, 26, 2091-2097.	0.3	3
388	Isotopic labeling studies of the selective non-catalytic reduction of NO with NH3. Proceedings of the Combustion Institute, 1996, 26, 2099-2108.	0.3	3
389	A model for prediction of selective noncatalytic reduction of nitrogen oxides by ammonia, urea, and cyanuric acid with mixing limitations in the presence of co. Proceedings of the Combustion Institute, 1996, 26, 2117-2124.	0.3	60
390	Gas phase reactions of hydrogen peroxide and hydrogen peroxide/methanol mixtures with air pollutants. Proceedings of the Combustion Institute, 1996, 26, 2125-2132.	0.3	17
391	Evidence for a new no production mechanism in flames. Proceedings of the Combustion Institute, 1996, 26, 2133-2138.	0.3	43
392	Behavior of key reactions on no formation in methane-air flames. Proceedings of the Combustion Institute, 1996, 26, 2139-2145.	0.3	12
393	A lif and cars study of the effects of upstream heat loss on no formation from laminar premixed burner-stabilized natural-gas/air flames. Proceedings of the Combustion Institute, 1996, 26, 2147-2154.	0.3	13
394	NOx formation in turbulent lean-premixed combustion with minimum heat losses. Proceedings of the Combustion Institute, 1996, 26, 2155-2160.	0.3	13
395	Computational and experimental study of no in an axisymmetric laminar diffusion flame. Proceedings of the Combustion Institute, 1996, 26, 2161-2170.	0.3	60
396	Reduced mechanisms for NOx emissions from hydrocarbon diffusion flames. Proceedings of the Combustion Institute, 1996, 26, 2171-2179.	0.3	66
397	Flamelet and PDF modeling of CO and NOx emissions from a turbulent, methane hydrogen jet nonpremixed flame. Proceedings of the Combustion Institute, 1996, 26, 2207-2214.	0.3	14
398	Analysis of turbulence-chemistry interaction with respect to no formation in turbulent, nonpremixed hydrogen-air flames. Proceedings of the Combustion Institute, 1996, 26, 2215-2222.	0.3	16
399	Impact of temperature and fuel-nitrogen content on fuel-staged combustion with coal pyrolysis gas. Proceedings of the Combustion Institute, 1996, 26, 2231-2239.	0.3	18
400	Industrial combustion control using UV emission tomography. Proceedings of the Combustion Institute, 1996, 26, 2869-2875.	0.3	23

#	ARTICLE	IF	CITATIONS
401	Fluidized bed combustion: Achievements and problems. Proceedings of the Combustion Institute, 1996, 26, 3231-3241.	0.3	15
402	Pollutant formation during coal combustion in a CFB test furnace. Proceedings of the Combustion Institute, 1996, 26, 3309-3315.	0.3	13
403	The NO and N2O formation mechanism during devolatilization and char combustion under fluidized-bed conditions. Proceedings of the Combustion Institute, 1996, 26, 3325-3334.	0.3	96
404	Simulation of detailed chemistry in a turbulent combustor flow. Proceedings of the Combustion Institute, 1996, 26, 67-74.	0.3	35
405	Theory and modeling in combustion chemistry. Proceedings of the Combustion Institute, 1996, 26, 461-480.	0.3	103
406	Measurement of the rate coefficient of H+O2+M→HO2+M for M=Ar and N2 at high pressures. Proceedings of the Combustion Institute, 1996, 26, 481-488.	0.3	34
407	A kinetic study of the oxidation of acetonitrile: A model for NO formation from fuel-bound nitrogen. Proceedings of the Combustion Institute, 1996, 26, 597-604.	0.3	7
408	A broader definition of symmetry number and its application to a kinetic model describing polyarene growth. Proceedings of the Combustion Institute, 1996, 26, 823-830.	0.3	1
409	Quantitative CH determinations in low-pressure flames. Proceedings of the Combustion Institute, 1996, 26, 959-966.	0.3	29
410	Acetylene and ethylene mole fractions in methane/air partially premixed flames. Proceedings of the Combustion Institute, 1996, 26, 993-999.	0.3	9
411	Molecular beam mass spectrometric and modeling studies of neat and NH3-doped low-pressure H2/N2O/Ar flames: Formation and consumption of NO. Proceedings of the Combustion Institute, 1996, 26, 1043-1052.	0.3	7
412	Effects of multi-dimensionality on a diffusion flame. Proceedings of the Combustion Institute, 1996, 26, 1071-1077.	0.3	8
413	Effect of halogenated flame inhibitors on C1â^'C2 organic flames. Proceedings of the Combustion Institute, 1996, 26, 1377-1383.	0.3	39
414	Catalytic oxidation of natural gas over supported platinum: Flow reactor experiments and detailed numberical modeling. Proceedings of the Combustion Institute, 1996, 26, 1771-1778.	0.3	31
415	EXPERIMENTAL AND MODELING STUDIES OF STAGED COMBUSTION USING A REACTOR ENGINEERING APPROACH. Chemical Engineering Communications, 1996, 145, 1-21.	1.5	2
416	NO Production and Destruction in a Methane/Air Diffusion Flame. Combustion Science and Technology, 1996, 115, 151-176.	1.2	26
417	Low NOxBurners for Boilers, Furnaces and Gas Turbines; Drive Towards the Lower Bounds of NOxEmissions. Combustion Science and Technology, 1996, 121, 169-191.	1.2	23
418	Radiative and nonradiative decay of electronically excited NCO. Journal of Chemical Physics, 1996, 104, 8279-8291.	1.2	15

#	Article	IF	Citations
419	A Study of NOxReduction by Acoustic Excitation in a Liquid Fueled Burner. Combustion Science and Technology, 1996, 119, 397-408.	1.2	17
420	A threeâ€dimensional quantum mechanical study of the NH+NO reactions. Journal of Chemical Physics, 1996, 105, 10380-10386.	1.2	20
421	Theoreticalab InitioStudy of CN2O2Structures:Â Prediction of Nitryl Cyanide as a High-Energy Molecule. The Journal of Physical Chemistry, 1996, 100, 19840-19846.	2.9	23
422	The initial vibrational level distribution and relaxation of HCN[XÌf 1Σ+(v1,0,v3)] in the CN(X 2Σ+)+CH4â†'HCN+CH3 reaction system. Journal of Chemical Physics, 1996, 105, 4533-4549.	1.2	29
423	The reaction between N(4S) and C2H3: Rate constant and primary reaction channels. Journal of Chemical Physics, 1996, 104, 9808-9815.	1.2	26
424	A density functional study of the global potential energy surfaces of the [H,C,N,O] system in singlet and triplet states. Journal of Chemical Physics, 1996, 105, 6439-6454.	1.2	105
425	Thermal rate constants for R+N2H2â†'RH+N2H (R=H, OH, NH2) determined from multireference configuration interaction and variational transition state theory calculations. Journal of Chemical Physics, 1996, 104, 6298-6307.	1,2	42
426	Experimental and Modeling Study of the Highâ€Temperature Ignition of Methane and Methane Mixtures with Ethane and Propane. Israel Journal of Chemistry, 1996, 36, 305-312.	1.0	9
427	A New Sensor System for Industrial Combustion Monitoring and Control using UV Emission Spectroscopy and Tomography. Combustion Science and Technology, 1996, 121, 133-151.	1.2	34
428	Nitrogen Oxide/Chlorine Interactions in a Laboratory Swirl Flame Combustor. Combustion Science and Technology, 1996, 115, 69-82.	1.2	9
429	Numerical Studies of a Pulsing Burner-Stabilized Laminar Premixed Methane-Air Flame. Combustion Science and Technology, 1996, 113, 35-47.	1,2	4
430	"Clean burning―low flame temperature solid gun propellants. Journal of Energetic Materials, 1996, 14, 173-191.	1.0	3
431	Structure of Nonpremixed CH4/N02Flames. Combustion Science and Technology, 1996, 119, 281-300.	1.2	1
432	Oxidation of NO to NO2by Hydrogen Peroxide and its Mixtures with Methanol in Natural Gas and Coal Combustion Gases. Combustion Science and Technology, 1996, 120, 255-272.	1.2	21
433	Effects of Flame Lifting and Acoustic Excitation on the Reduction of NOx Emissions. Combustion Science and Technology, 1996, 113, 49-65.	1.2	41
434	Nitramine deflagration - Reduced chemical mechanism for primary flame facilitating simplified asymptotic analysis. Journal of Propulsion and Power, 1996, 12, 302-309.	1.3	23
435	NOxPrediction in 3-D Turbulent Diffusion Flames by Using Implicit Multigrid Methods. Combustion Science and Technology, 1996, 119, 219-260.	1.2	16
436	Validation of NOxand NOxPrecursor Predictions in Coal Flames. Combustion Science and Technology, 1996, 119, 51-75.	1.2	13

#	Article	IF	CITATIONS
437	Autoignition of methane mixtures - The effect of hydrogen peroxide. Journal of Propulsion and Power, 1996, 12, 699-707.	1.3	42
438	Infrared emission from high-temperature H2O(nu2) - A diagnostic for concentration and temperature. AIAA Journal, 1996, 34, 500-507.	1.5	7
439	The Interaction of Fuel-Bound Nitrogen and Fuel-Bound Chlorine During Air-Staged Incineration. Combustion Science and Technology, 1996, 116-117, 339-357.	1.2	4
440	Theoretical Rate Constants for the NH3+ NOxâ†' NH2+ HNOx(x= 1, 2) Reactions by ab Initio MO/VTST Calculations. The Journal of Physical Chemistry, 1996, 100, 7517-7525.	2.9	47
441	Absolute Rate Coefficients of the Reactions of C2H with NO and H2between 295 and 440 K. The Journal of Physical Chemistry, 1996, 100, 15124-15129.	2.9	54
442	Rate Constants for the Relaxation of CH(X2Î,Î $1/2$ =1) by CO and N2at Temperatures from 23 to 584 K. The Journal of Physical Chemistry, 1996, 100, 14928-14935.	2.9	43
443	Low-Nox Premixed Combustion of MBtu Fuels Using the ABB Double Cone Burner (EV Burner). Journal of Engineering for Gas Turbines and Power, 1996, 118, 46-53.	0.5	22
444	A NOx Prediction Scheme for Lean-Premixed Gas Turbine Combustion Based on Detailed Chemical Kinetics. Journal of Engineering for Gas Turbines and Power, 1996, 118, 765-772.	0.5	18
445	Diode Laser Study of the Product Branching Ratio of the NH2(X 2B1) + NO2 Reaction. The Journal of Physical Chemistry, 1996, 100, 9407-9411.	2.9	25
446	Local measurement of gas temperature with an infrared fibre-optic probe. Measurement Science and Technology, 1996, 7, 888-896.	1.4	23
447	Chapter 3 Kinetics databases. Comprehensive Chemical Kinetics, 1997, 35, 235-292.	2.3	5
448	Electronic structure aspects of the spin-forbidden reaction CH3(X 2A2″)+N(4S)→HCN(X 1Σ+)+H2(X Journal of Chemical Physics, 1997, 107, 4994-4999.	1Σg 1.2	+) ₂₈
449	The dissociation of HNO. I. Potential energy surfaces for the XÌf 1A′, Ãf 1A″, and ã 3A″ sta Chemical Physics, 1997, 107, 6603-6615.	ates, Journ 1.2	al of 40
450	Mathematical Modeling of a 2.4 MW Swirling Pulverized Coal Flame. Combustion Science and Technology, 1997, 122, 131-182.	1.2	50
451	The Role of Nitrous Oxide in the Mechanism of Thermal Nitric Oxide Formation within Flame Temperature Range. Combustion Science and Technology, 1997, 125, 159-180.	1.2	38
452	Emissions from an oilâ€fired furnace burning MgO containing fuel oils. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1997, 32, 1383-1392.	0.1	1
453	Variables Affecting NOx Formation in Lean-Premixed Combustion. Journal of Engineering for Gas Turbines and Power, 1997, 119, 102-107.	0.5	22
454	Low NOx Premixed Combustion of MBtu Fuels in a Research Burner. Journal of Engineering for Gas Turbines and Power, 1997, 119, 553-558.	0.5	11

#	ARTICLE	IF	CITATIONS
455	High-Temperature Reactive Flow of Combustion Gases in an Expansion Turbine. Journal of Turbomachinery, 1997, 119, 554-561.	0.9	4
456	Reduction of NOx Formation by Water Sprays in Strained Two-Stage Flames. Journal of Engineering for Gas Turbines and Power, 1997, 119, 836-843.	0.5	35
457	Prompt NO Scaling in Diffusion Flames: Effects of Strain and Pressure. Combustion Science and Technology, 1997, 124, 183-218.	1.2	2
458	Structures of CO Diffusion Flames Near Extinction. Combustion Science and Technology, 1997, 125, 181-200.	1.2	21
459	Modeling of the Reburning Process. Combustion Science and Technology, 1997, 123, 83-105.	1.2	22
460	Simulation of fuel-bound nitrogen evolution in biomass gasification. , 0, , .		2
461	Numerical Analysis of Diffusion Combustion of Coal-Gasified Fuel. (Effect of Pressure on NOx) Tj ETQq0 0 0 rgB	Г/Oyerloch	R 10 Tf 50 502
462	Time-resolved FTIR emission study of product dynamics in the NO+NCO reaction. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1279-1286.	1.7	15
463	Reactions of Nitrate Salts with Ammonia in Supercritical Water. Industrial & Engineering Chemistry Research, 1997, 36, 2547-2557.	1.8	42
464	Branching Fraction of the NH2 + NO Reaction between 1210 and 1370 K. Journal of Physical Chemistry A, 1997, 101, 3741-3745.	1.1	49
465	Stochastic Modeling of Partially Stirred Reactors. Combustion Science and Technology, 1997, 122, 63-94.	1.2	63
466	Reaction of CH radicals with methane isotopomers. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1473.	1.7	41
467	Kinetics of the N+NCO reaction at 298 K. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 2473-2475.	1.7	10
468	Computation of NO x emission of a methane - air diffusion flame in a two-dimensional laminar jet with detailed chemistry. Combustion Theory and Modelling, 1997, 1, 243-258.	1.0	34
469	A Comprehensive Study of the Reaction NH2+ NO → Products: Reaction Rate Coefficients, Product Branching Fractions, andab InitioCalculations. Journal of Physical Chemistry A, 1997, 101, 6243-6251.	1.1	29
470	Effect of Several Oxygenates on Regulated Emissions from Heavy-Duty Diesel Engines. Environmental Science & Environmental Scie	4.6	134
471	Simultaneous Particle and Molecule Modeling (SPAMM): An Approach for Combining Sectional Aerosol Equations and Elementary Gas-Phase Reactions. Aerosol Science and Technology, 1997, 27, 73-94.	1.5	84
472	Homogeneous Chemistry in Lean-Burn Exhaust Mixtures. Journal of Physical Chemistry A, 1997, 101, 9157-9162.	1.1	13

#	Article	IF	Citations
473	Deuterium Kinetic Isotope Effect and Temperature Dependence in the Reactions of CH[2Î] with Methane and Acetylene. Journal of Physical Chemistry A, 1997, 101, 1881-1886.	1.1	42
474	A Semi-Empirical Reaction Mechanism for n-Heptane Oxidation and Pyrolysis. Combustion Science and Technology, 1997, 123, 107-146.	1.2	204
475	Product Branching Ratios of the NH2(X2B1) + NO2Reaction. Journal of Physical Chemistry A, 1997, 101, 4991-4995.	1.1	16
476	Accurate calculations of cross sections and rate coefficients of some atom - diatom reactions relevant to plasma chemistry. Plasma Sources Science and Technology, 1997, 6, 270-279.	1.3	6
477	Laboratory Study of the CO/NH3/NO/O2System:Â Implications for Hybrid Reburn/SNCR Strategies. Energy & Laboratory Fuels, 1997, 11, 716-723.	2.5	63
478	A Kinetic Study on the Reaction of CHF3 with H at High Temperatures. Journal of Physical Chemistry A, 1997, 101, 9105-9110.	1.1	24
479	Dilution and Stoichiometry Effects on Gas Reburning:Â An Experimental Study. Industrial & Study: Industria	1.8	17
480	Theoretical Study of the Reaction $CH(X2\hat{I}) + NO(X2\hat{I})$. I. Determination of Some Reaction Paths in the Lowest Triplet Potential Energy Surface. Journal of Physical Chemistry A, 1997, 101, 6077-6091.	1.1	21
481	Theoretical ab Initio Study of CN2O3Structures:Â Prediction of New High-Energy Molecules. Journal of Physical Chemistry A, 1997, 101, 2709-2714.	1.1	13
482	Numerical Study of Combustion and Pollutants Formation in Inert Nonhomogeneous Porous Media. Combustion Science and Technology, 1997, 130, 335-364.	1.2	48
483	Measurements and Modeling of OH and NO in Premixed C2H6/O2/N2Flames at Atmospheric Pressure. Energy & Samp; Fuels, 1997, 11, 1092-1100.	2.5	19
484	Hierarchical Reduced Models for Catalytic Combustion: H2/Air Mixtures Near Platinum Surfaces. Combustion Science and Technology, 1997, 129, 243-275.	1.2	22
485	Properties of Laminar Premixed CO/H/Air Flames at Various Pressures. Journal of Propulsion and Power, 1997, 13, 239-245.	1.3	128
486	Ab Initio Studies on the Dynamical Properties of the Reaction NH(X3Σ-) + H â†' N(4S) + H2. Journal of Physical Chemistry A, 1997, 101, 4432-4436.	1.1	25
487	Chemistry of Acetylene Flames. Combustion Science and Technology, 1997, 125, 73-137.	1.2	126
489	Radiation in a three-dimensional gas turbine combustor. , 1997, , .		1
490	CFD modeling of a gas turbine combustor using reduced chemical kinetic mechanisms. , 1997, , .		5
491	Temperature dependence of laser-induced fluorescence of nitric oxide in laminar premixed atmospheric-pressure flames. Applied Optics, 1997, 36, 3233.	2.1	23

#	Article	IF	CITATIONS
492	Theoretical investigation of the potential energy surface for the NH2+NO reaction via density functional theory and ab initio molecular electronic structure theory. Journal of Chemical Physics, 1997, 106, 9236-9251.	1.2	30
493	Kinetics of the Reactions of NCO Radicals with NO and NH ₃ . Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 128-133.	0.9	12
494	Chemically Reactive Flow of Hot Combustion Gases in an Aircraft Turbo-Jet Engine. , 1997, , .		4
495	Combustion and NOx Emission Simulation of a Large Medium Speed Diesel Engine. , 1997, , .		8
496	Planar Measurements of NO in an S.I. Engine Based on Laser Induced Fluorescence. , 1997, , .		5
497	Numerical Evaluation of Dual Oxygenated Fuel Setup for DI Diesel Application. , 1997, , .		5
498	A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging*., 0,,.		829
499	Mechanisms, energetics and dynamics of a key reaction sequence during the decomposition of nitromethane: HNO + HNO ↠N2O + H2O. Computational and Theoretical Chemistry, 1997, 393, 59-71.	1.5	17
500	The integrated multiscale modeling of diamond chemical vapor deposition. Jom, 1997, 49, 42-47.	0.9	21
501	Simulation of nitric oxide formation in combustion of methane-air mixtures. Combustion, Explosion and Shock Waves, 1997, 33, 9-18.	0.3	0
502	Study on nitrous oxide emission in boiler furnace. Journal of Thermal Science, 1997, 6, 226-230.	0.9	0
503	Spectroscopic Investigation of Nitromethane Flames. Propellants, Explosives, Pyrotechnics, 1997, 22, 180-183.	1.0	11
504	Implementing NOx control: Research to application. Progress in Energy and Combustion Science, 1997, 23, 233-266.	15.8	154
505	Flameless oxidation to reduce thermal no-formation. Progress in Energy and Combustion Science, 1997, 23, 81-94.	15.8	935
506	Models of soot formation and oxidation. Progress in Energy and Combustion Science, 1997, 23, 95-132.	15.8	438
507	Influence of process parameters on nitrogen oxide formation in pulverized coal burners. Progress in Energy and Combustion Science, 1997, 23, 349-377.	15.8	110
508	Investigations on ions in flames. Progress in Energy and Combustion Science, 1997, 23, 399-528.	15.8	354
509	Calculation of transition frequencies and rotational line strengths in the \hat{I}^3 -bands of nitric oxide. Journal of Quantitative Spectroscopy and Radiative Transfer, 1997, 57, 581-589.	1.1	40

#	Article	IF	Citations
510	Kinetically driven instabilities and selectivities in methane oxidation. AICHE Journal, 1997, 43, 2083-2095.	1.8	17
511	Methane Conversion in the Flowing Afterglow of a Dinitrogen Microwave Plasma: Initiation of the Reaction. Contributions To Plasma Physics, 1997, 37, 521-537.	0.5	28
512	Measurement of the rate coefficient of the reaction CH+O2? products in the temperature range 2200 to 2600 K. International Journal of Chemical Kinetics, 1997, 29, 781-789.	1.0	34
513	Thermal ignition of acetonitrile. Experimental results and kinetic modeling. International Journal of Chemical Kinetics, 1997, 29, 839-849.	1.0	6
514	Rate constant for the NH3 + NO2 ? NH2 + HONO reaction: Comparison of kinetically modeled and predicted results. International Journal of Chemical Kinetics, 1997, 29, 245-251.	1.0	19
515	Prompt NO: Theoretical prediction of the high-temperature rate coefficient for CH + N2 ? HCN + N. International Journal of Chemical Kinetics, 1997, 29, 253-259.	1.0	44
516	Influence of mixing on the SNCR process. Chemical Engineering Science, 1997, 52, 2511-2525.	1.9	31
517	Reaction kinetics of O(3P) with acrylonitrile and crotononitrile. Chemical Physics Letters, 1997, 274, 383-389.	1.2	10
518	Ab initio study on the reaction 2NH(X3Σâ^') â†' NH2(X2B1) + N(4S). Chemical Physics Letters, 1997, 275, 386-39	11.2	16
519	A diode laser study of the product branching ratio of the CH+N2O reaction. Chemical Physics Letters, 1997, 280, 145-150.	1.2	9
520	Ab initio study on the mechanism of the radical reaction NNH(2A′)+N(4S)â†'N2+NH(3Σâ^'). Chemical Physics Letters, 1997, 281, 452-456.	1.2	2
521	Fluorescence quenching of NCO in CH4/O2 and CH4/air premixed low pressure flames. Chemical Physics Letters, 1997, 272, 239-244.	1.2	4
522	Calculations of the effect of nitrogen vibrational kinetics on laminar flame temperature profiles. Combustion and Flame, 1997, 108, 127-138.	2.8	5
523	Methylamine oxidation in a flow reactor: Mechanism and modeling. Combustion and Flame, 1997, 108, 235-265.	2.8	40
524	Low temperature interactions between hydrocarbons and nitric oxide: An experimental study. Combustion and Flame, 1997, 109, 25-36.	2.8	111
525	Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure. Combustion and Flame, 1997, 109, 1-24.	2.8	283
526	Shock tube study of the effect of nitrogen or hydrogen on ignition delays in mixtures of monomethylhydrazine + oxygen + argon. Combustion and Flame, 1997, 109, 37-42.	2.8	7
527	High pressure studies of moist carbon monoxide / nitrous oxide kinetics. Combustion and Flame, 1997, 109, 449-470.	2.8	92

#	Article	IF	CITATIONS
528	A numerical investigation of the flame structure of an unsteady inverse partially premixed flame. Combustion and Flame, 1997, 111, 296-311.	2.8	29
529	Strategy for the simplification of nitric oxide chemistry in a laminar methane/air diffusion flamelet. Combustion and Flame, 1997, 111, 208-221.	2.8	8
530	Radical species profiles in low-pressure methane flames containing fuel nitrogen compounds. Combustion and Flame, 1997, 110, 1-13.	2.8	38
531	A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combustion and Flame, 1997, 110, 173-221.	2.8	1,070
532	Catalytically supported combustion on a surface burner: Modelling and NOx formation analysis. Combustion and Flame, 1997, 110, 140-151.	2.8	6
533	Ignition of methane flames in oxygen near inert surfaces: Effects of composition, pressure, preheat, and residence time. Combustion and Flame, 1997, 110, 377-391.	2.8	15
534	The effect of nitric oxide on premixed flames of CH4, C2H6, C2H4, and C2H2. Combustion and Flame, 1997, 111, 87-110.	2.8	58
535	Premixed flame response to unsteady strain rate and curvature. Combustion and Flame, 1997, 110, 92-112.	2.8	81
536	The release of nitrogen oxides during char combustion. Fuel, 1997, 76, 457-473.	3.4	208
537	Evaluation of the use of different hydrocarbon fuels for gas reburning. Fuel, 1997, 76, 1401-1407.	3.4	50
538	Stochastic modeling of chemical microreactors with detailed kineticsâ€"induction times and ignitions of H2 in air. Chemical Engineering Science, 1998, 53, 157-168.	1.9	26
539	Modelling NO formation in a swirling pulverized coal flame. Chemical Engineering Science, 1998, 53, 2013-2027.	1.9	33
540	Hydrogen/nitrous oxide kineticsâ€"Implications of the NxHy species. Combustion and Flame, 1998, 112, 302-311.	2.8	52
541	Structure and extinction of methane-air flamelet with radiation and detailed chemical kinetic mechanism. Combustion and Flame, 1998, 112, 445-456. Measured Flame Structure and Kinetics in a Fuel-Rich Ethylene Flame 11This report was prepared as an	2.8	35
542	account of work sponsored by the United States Government. Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or applied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process	2.8	124
543	disclosed or rep. Combustion and Flame, 1998, 113, 333-347. Optimization of Rate Coefficients for Simplified Reaction Mechanisms with Genetic Algorithms. Combustion and Flame, 1998, 113, 119-134.	2.8	85
544	Stochastic Modeling of CO and NO in Premixed Methane Combustion. Combustion and Flame, 1998, 113, 135-146.	2.8	20
545	Nitric Oxide Emissions from Laminar Diffusion Flames: Effects of Air-Side versus Fuel-Side Diluent Addition. Combustion and Flame, 1998, 113, 66-78.	2.8	50

#	Article	IF	CITATIONS
546	CH-Radical Concentration Measurements in Fuel-Rich CH4/O2/Ar and CH4/O2/NO/Ar Mixtures Behind Shock Waves. Combustion and Flame, 1998, 113, 624-626.	2.8	15
547	Study of Ammonia Removal from Coal-Gasified Fuel. Combustion and Flame, 1998, 114, 246-258.	2.8	55
548	Evidence for a New Way of Producing NO via NNH in Fuel-Rich Flames at Atmospheric Pressure. Combustion and Flame, 1998, 114, 274-279.	2.8	71
549	A Turbulent Jet Chemical Reaction Model: NOx Production in Jet Flames. Combustion and Flame, 1998, 114, 319-335.	2.8	69
550	Kinetic Modeling of Hydrocarbon/Nitric Oxide Interactions in a Flow Reactor. Combustion and Flame, 1998, 115, 1-27.	2.8	475
551	Two-parameter continuation algorithms for sensitivity analysis, parametric dependence, reduced mechanisms, and stability criteria of ignition and extinction. Combustion and Flame, 1998, 112, 45-61.	2.8	46
552	Inhibition effectiveness of halogenated compounds. Combustion and Flame, 1998, 112, 147-160.	2.8	116
553	On NOx emissions from turbulent propane diffusion flames. Combustion and Flame, 1998, 112, 221-230.	2.8	31
554	The formation and destruction of NO in turbulent propane diffusion flames. Fuel, 1998, 77, 1705-1714.	3.4	16
555	Self-consistent kinetic model of low-pressure - flowing discharges: I. Volume processes. Plasma Sources Science and Technology, 1998, 7, 363-378.	1.3	195
556	CO2Reforming of CH4over Supported Pt Catalysts. Journal of Catalysis, 1998, 173, 157-171.	3.1	248
557	NO Reduction with H2or CO over La2O3and Sr-Promoted La2O3. Journal of Catalysis, 1998, 173, 229-237.	3.1	28
558	Reduced kinetic mechanism for NOx formation in laminar premixed CH4/air flames. Fuel, 1998, 77, 669-675.	3.4	7
559	Effects of natural gas composition on the nitrogen oxide, flame structure and burning velocity under laminar premixed flame conditions. Fuel, 1998, 77, 1539-1547.	3.4	42
560	Combustion properties of biomass. Fuel Processing Technology, 1998, 54, 17-46.	3.7	1,538
561	Operation regimes in catalytic combustion: H2/air mixtures near Pt. AICHE Journal, 1998, 44, 2035-2043.	1.8	16
562	Comparison of four combustion models for simulating the premixed combustion in inert porous media. Fire and Materials, 1998, 22, 187-197.	0.9	50
563	The CH3+NO rate coefficient at high temperatures: Theoretical analysis and comparison with experiment. International Journal of Chemical Kinetics, 1998, 30, 223-228.	1.0	23

#	Article	IF	CITATIONS
564	Thermal decomposition of acetonitrile. Kinetic modeling. International Journal of Chemical Kinetics, 1998, 30, 341-347.	1.0	28
565	Complete basis set ab initio and hybrid density functional theory exploration of the potential energy surface in the reaction between an amino radical and nitrogen oxide. International Journal of Quantum Chemistry, 1998, 66, 409-414.	1.0	25
566	Ab initio study on the reaction 2NH2?NH+NH3. International Journal of Quantum Chemistry, 1998, 70, 321-329.	1.0	12
568	Numerical simulation of the formation of nitric oxides in the combustion of coal-dust fuel. Combustion, Explosion and Shock Waves, 1998, 34, 603-612.	0.3	2
569	NO2 chemiluminescent emission from flames influenced by acoustic noise. Journal of Mechanical Science and Technology, 1998, 12, 728-733.	0.4	0
570	Kinetics of reactions in CH4N2 afterglow plasma: a simplified model. Vacuum, 1998, 50, 491-495.	1.6	26
571	Power generation and aeropropulsion gas turbines: From combustion science to combustion technology. Proceedings of the Combustion Institute, 1998, 27, 1793-1807.	0.3	145
572	A kinetic model for the prediction of no emissions from staged combustion of pulverized coal. Proceedings of the Combustion Institute, 1998, 27, 3037-3044.	0.3	41
573	Kinetics of NO reduction by char: Effects of coal rank. Proceedings of the Combustion Institute, 1998, 27, 3085-3092.	0.3	20
574	Relationship between SO2 and other pollutant emissions from fluidized-bed combustion. Proceedings of the Combustion Institute, 1998, 27, 3093-3101.	0.3	10
575	Measurements and predictions in a confined bluff-body burner modeled as an imperfectly stirred reactor. Proceedings of the Combustion Institute, 1998, 27, 3181-3188.	0.3	12
576	Rate coefficient of H+O2+M→HO2+M (M=H2O, N2, Ar, CO2). Proceedings of the Combustion Institute, 1998, 27, 185-191.	0.3	36
577	The recombination of hydrogen atoms with nitric oxide at high temperatures. Proceedings of the Combustion Institute, 1998, 27, 219-226.	0.3	41
578	Some chemical kinetics issues in reburning: The branching fraction of the HCCO+NO reaction. Proceedings of the Combustion Institute, 1998, 27, 235-243.	0.3	26
579	Absolute radical concentration measurements and modeling of low-pressure CH4/O2/NO flames. Proceedings of the Combustion Institute, 1998, 27, 469-476.	0.3	52
580	Wrinkling, pocket formation, and double premixed flame interaction processes. Proceedings of the Combustion Institute, 1998, 27, 659-666.	0.3	14
581	Experimental study on the dependence of burnout on the operation conditions and physical properties in wastewater incineration. Proceedings of the Combustion Institute, 1998, 27, 1293-1299.	0.3	2
582	Energetics to energy: Combustion and environmental considerations surrounding the reapplication of energetic materials as boiler fuels. Proceedings of the Combustion Institute, 1998, 27, 1317-1325.	0.3	0

#	Article	IF	CITATIONS
583	No emission characteristics of methane-air coflow partially premixed flame. Proceedings of the Combustion Institute, 1998, 27, 1369-1376.	0.3	8
584	Nitric oxide formation and reburn in low-pressure methane flames. Proceedings of the Combustion Institute, 1998, 27, 1377-1384.	0.3	47
585	Mechanism of nitric oxide formation in oxygen-natural gas combustion. Proceedings of the Combustion Institute, 1998, 27, 1385-1392.	0.3	18
586	NyOx formation in lean premixed combustion of methane in a high-pressure jet-stirred reactor. Proceedings of the Combustion Institute, 1998, 27, 1393-1399.	0.3	19
587	Quantitative laser-based measurements and detailed chemical kinetic modeling of nitric oxide concentrations in methane-air counterflow diffusion flames. Proceedings of the Combustion Institute, 1998, 27, 1401-1409.	0.3	43
588	Experimental and kinetic studies on the effect of sulfur-nitrogen interactions on no formation in flames. Proceedings of the Combustion Institute, 1998, 27, 1419-1426.	0.3	14
589	Finite-rate mixing effects in reburning. Proceedings of the Combustion Institute, 1998, 27, 1427-1434.	0.3	8
590	Promotion of selective non-catalytic reduction of no by sodium carbonate. Proceedings of the Combustion Institute, 1998, 27, 1443-1449.	0.3	13
591	NOx reduction by hydrazine in a pilot-scale reactor. Chemical Engineering Journal, 1998, 69, 99-104.	6.6	15
592	Modeling of coal combustion and NOx formation in a W-shaped boiler furnace. Chemical Engineering Journal, 1998, 71, 233-242.	6.6	37
593	Design of a thermophotovoltaic residential heating system. Solar Energy Materials and Solar Cells, 1998, 52, 1-9.	3.0	23
594	Experimental measurements in the BYU controlled profile reactor. Progress in Energy and Combustion Science, 1998, 24, 355-383.	15.8	13
595	NOx control through reburning 1 This mini-review paper was presented, together with a series of other review papers, at the Tenth Annual Technical Conference of the Advanced Combustion Engineering Research Center, held in Salt Lake City, Utah, in March 1997.1. Progress in Energy and Combustion Science, 1998, 24, 385-408.	15.8	263
596	Combustion of fat and vegetable oil derived fuels in diesel engines. Progress in Energy and Combustion Science, 1998, 24, 125-164.	15.8	1,548
597	Scalable high-rate production of non-agglomerated nanopowders in low pressure flames. Materials Letters, 1998, 34, 148-153.	1.3	36
598	Passive and active control of NOx in industrial burners. Experimental Thermal and Fluid Science, 1998, 16, 64-75.	1.5	24
599	Potential-energy surfaces and their dynamic implications. Faraday Discussions, 1998, 110, 71-89.	1.6	9
600	Chemistry reduction and thermokinetic criteria for ignition of hydrogen–air mixtures at high pressures. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 735-743.	1.7	12

#	Article	IF	CITATIONS
601	Theoretical study of the potential-energy surface related to H2N+NS reaction: N2 vs. H2 elimination. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3541-3547.	1.7	2
602	Reburning using Several Hydrocarbon Fuels: A Kinetic Modeling Study. Combustion Science and Technology, 1998, 132, 225-250.	1.2	52
603	Combustion Kinetics of Light Hydrocarbons in the Presence of Nitrogen Oxide. Industrial & Engineering Chemistry Research, 1998, 37, 4241-4252.	1.8	8
604	Dynamics Study of the Reaction Ar + HCN â†' Ar + H + CN. Journal of Physical Chemistry A, 1998, 102, 6266-6273.	1.1	19
605	Kinetic Studies on the Reactions of CF3 with O(3P) and H Atoms at High Temperatures. Journal of Physical Chemistry A, 1998, 102, 8339-8348.	1.1	18
606	Modeling Low-Temperature Gas Reburning. NOxReduction Potential and Effects of Mixing. Energy & Louis, 1998, 12, 329-338.	2.5	47
607	Carbon Monoxide, Nitric Oxide, and Nitrogen Dioxide Levels in Gas Ovens Related to Surface Pinking of Cooked Beef and Turkey. Journal of Agricultural and Food Chemistry, 1998, 46, 255-261.	2.4	39
608	Theoretical Study of the Reaction CH(\hat{I} S2 \hat{I}) + NO(\hat{I} S2 \hat{I}). 3. Determination of the Branching Ratios. Journal of Physical Chemistry A, 1998, 102, 3358-3367.	1.1	18
609	Observation of Magic Numbers within NO/NH3 Mixed Cluster Ions. Journal of Physical Chemistry A, 1998, 102, 7772-7778.	1.1	3
610	Coal-Nitrogen Release and NOx Evolution in Air-Staged Combustion. Energy & Coal-Nitrogen Release and NOx Evolution in Air-Staged Combustion. Energy & Coal-Nitrogen Release and NOx Evolution in Air-Staged Combustion. Energy & Coal-Nitrogen Release and NOx Evolution in Air-Staged Combustion. Energy & Coal-Nitrogen Release and NOx Evolution in Air-Staged Combustion. Energy & Coal-Nitrogen Release and NOx Evolution in Air-Staged Combustion. Energy & Coal-Nitrogen Release and NOx Evolution in Air-Staged Combustion. Energy & Coal-Nitrogen Release and NOx Evolution in Air-Staged Combustion. Energy & Coal-Nitrogen Release and NOx Evolution in Air-Staged Combustion. Energy & Coal-Nitrogen Release and NOx Evolution in Air-Staged Combustion.	2.5	68
611	Theoretical Study of the NH2+ C2H2Reaction. Journal of Physical Chemistry A, 1998, 102, 4687-4693.	1.1	16
612	A Theoretical Study of the CH2N System:  Reactions in both Lowest Lying Doublet and Quartet States. Journal of Physical Chemistry A, 1998, 102, 8013-8020.	1.1	51
613	Product Branching Ratios of the HCO + NO2Reaction. Journal of Physical Chemistry A, 1998, 102, 5898-5902.	1.1	26
614	Experimental and Detailed Kinetic Modeling of Nitric Oxide Reduction by a Natural Gas Blend in Simulated Reburning Conditions. Combustion Science and Technology, 1998, 139, 329-363.	1.2	86
615	A Diode Laser Study of the Product Branching Ratios of the CH + NO2Reaction. Journal of Physical Chemistry A, 1998, 102, 4592-4595.	1.1	31
616	Importance of Different Multipole Interactions in Fast Reactions at Low Temperature. Journal of Physical Chemistry A, 1998, 102, 8169-8173.	1.1	1
617	A Reduced Kinetic Model for NOx Reduction by Advanced Reburning. Energy & E	2.5	8
618	Ab Initio and RRKM Studies of the Reactions of C, CH, and 1CH2 with Acetylene. Journal of Physical Chemistry A, 1998, 102, 5857-5866.	1.1	69

#	Article	IF	CITATIONS
619	Evaluation of Ignition Improvers for Methane Autoignition. Combustion Science and Technology, 1998, 135, 31-47.	1.2	36
620	The role of radical wall quenching in flame stability and wall heat flux: hydrogen-air mixtures. Combustion Theory and Modelling, 1998, 2, 515-530.	1.0	89
621	Some numerical investigation results of shock-induced combustion. , 1998, , .		10
622	Asymmetric whirl combustion - A new approach for non-premixed low $NO(x)$ gas turbine combustor design. , 1998, , .		9
623	A scalar PDF combustion model for the National Combustion Code. , 1998, , .		5
624	Theoretical Study on the Reaction Path and Variational Rate Constant of the Reaction HNCO + NH â†' NCO + NH2. Journal of Physical Chemistry A, 1998, 102, 1194-1199.	1.1	15
625	Combustion-Related Emissions in SI Engines. , 1998, , 118-170.		26
626	Translated from NenshonÅ•Kagaku to Gijutsu, 3, 229–236 (1995) Study on NOxReduction in Reburningâ€. Combustion Science and Technology, 1998, 131, 381-393.	1.2	1
627	Properties of Diazocarbene [CNN] and the Diazomethyl Radical [HCNN] via Ion Chemistry and Spectroscopy. Journal of Physical Chemistry A, 1998, 102, 7100-7112.	1.1	69
628	Interactions between Nitric Oxide and Urea under Flow Reactor Conditions. Energy & E	2.5	40
629	Combustion Enhancement by Active Control. , 1998, , 467-499.		0
630	Modeling of NOxReburning in a Pilot Scale Furnace Using Detailed Reaction Kinetics. Combustion Science and Technology, 1998, 131, 131-146.	1.2	20
631	The barrier height for decomposition of HN2. Journal of Chemical Physics, 1998, 108, 8029-8030.	1.2	19
632	Experimental measurement of the transition moment for the (2,0) band of the CN A 2Îâ† X 2Σ+ red system 789.5 nm. Journal of Chemical Physics, 1998, 109, 6312-6319.	at 1.2	11
633	Modelling and Mechanism of NOxEmissions Under Fuel Staging During Combustion. Combustion Science and Technology, 1998, 133, 377-394.	1.2	2
634	Flame Structure Interactions and State Relationships in an Unsteady Partially Premixed Flame. AIAA Journal, 1998, 36, 1190-1199.	1.5	26
635	Model of Turbulent Mixing and Reaction for H-Air Combustion. Journal of Propulsion and Power, 1998, 14, 309-317.	1.3	1
636	Development of a Lean Premixed Low-Swirl Burner for Low NOxPractical Applications. Combustion Science and Technology, 1998, 139, 207-227.	1.2	59

#	Article	IF	Citations
637	Evaluation of CH4/NOx Reduced Mechanisms Used for Modeling Lean Premixed Turbulent Combustion of Natural Gas. Journal of Engineering for Gas Turbines and Power, 1998, 120, 703-712.	0.5	45
638	Diagnostics and Modeling of Nanopowder Synthesis in Low Pressure Flames. Journal of Materials Research, 1998, 13, 2572-2579.	1.2	25
639	Kinetic modelling of the ignition delays in monomethylhydrazine/hydrogen/oxygen/argon gaseous mixtures. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1998, 212, 393-406.	0.7	2
640	A review of nitrous oxide behavior in the atmosphere, and in combustion and industrial systems. Studies in Environmental Science, 1998, 72, 265-313.	0.0	6
641	Reaction of Fuel NOx Formation for Gas Turbine Conditions. Journal of Engineering for Gas Turbines and Power, 1998, 120, 474-480.	0.5	9
642	Characterization of NOx, N20, and CO for Lean-Premixed Combustion in a High-Pressure Jet-Stirred Reactor. Journal of Engineering for Gas Turbines and Power, 1998, 120, 303-310.	0.5	31
643	Assessment of Atomization Quality with Respect to Burnout for the Incineration of Organically Contaminated Waste Waters. Combustion Science and Technology, 1998, 136, 333-347.	1.2	6
644	NOx-Abatement Potential of Lean-Premixed GT Combustors. Journal of Engineering for Gas Turbines and Power, 1998, 120, 48-59.	0.5	34
645	Results of Experiments and Models for Predicting Stability Limits of Turbulent Swirling Flames. Journal of Engineering for Gas Turbines and Power, 1998, 120, 311-316.	0.5	10
646	Non-Catalytic Method of Reduction in Nitric Oxide in Diesel Exhaust 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1998, 64, 1262-1267.	0.2	0
647	Numerical Study of NOx Emission in High Temperature Air Combustion JSME International Journal Series B, 1998, 41, 331-337.	0.3	15
648	Combustion Characteristics of Preheated and Diluted Methane-Air Mixtures 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1998, 64, 568-573.	0.2	1
649	A Super-Extended Zel'dovich Mechanism for Nox Modeling and Engine Calibration. , 0, , .		74
650	PLIF Imaging of NO Formation in a DI Diesel Engine. , 0, , .		100
651	Effect of Fuel Spray Characteristics on Combustion and Emission Formation in a Large Medium Speed Diesel Engine. , 1998, , .		4
652	Simulation of Combustion, Soot and Nox-emissions in a Large Medium Speed Diesel Engine. , 0, , .		7
653	A computational study of effects of third-body efficiencies on laminar burning velocities. , $1998, , .$		1
654	Comparison of Analytically and Experimentally Obtained Residual Fractions and NOX Emissions in Spark-Ignited Engines. , 1998, , .		19

#	Article	IF	CITATIONS
655	Neat Dimethyl Ether: Is It Really Diesel Fuel of Promise?. , 1998, , .		15
656	NOX as a Function of Fuel Type: C1-to-C16 Hydrocarbons and Methanol. , 1999, , .		3
657	The Relative Importance of Radicals on the N2O and NO Formation and Destruction Paths in a Quartz CFBC. Journal of Energy Resources Technology, Transactions of the ASME, 1999, 121, 131-136.	1.4	7
658	Modeling NOx Formation in a Small Bore, Lean Natural Gas, Spark Ignition Engine. , 0, , .		0
659	Spectroscopic Investigation of the Combustion Process in an LPG Lean-burn SI Engine. , 0 , , .		5
660	NOx Emissions from Direct Injection Diesel Engines with Water/Steam Dilution. , 0, , .		35
661	High Pressure Test Results of a Catalytically Assisted Ceramic Combustor for a Gas Turbine. Journal of Engineering for Gas Turbines and Power, 1999, 121, 422-428.	0.5	9
662	Reduction of Nitric Oxide in Diesel Exhaust With the Addition of Methylamine. Journal of Engineering for Gas Turbines and Power, 1999, 121, 563-568.	0.5	3
663	Tunable, UV Solid-State Lidar for Measurement of Nitric Oxide Distribution. Japanese Journal of Applied Physics, 1999, 38, 6372-6378.	0.8	3
664	The spin-forbidden reaction CH(2Î)+N2â†'HCN+N(4S) revisited. II. Nonadiabatic transition state theory and application. Journal of Chemical Physics, 1999, 110, 9469-9482.	1.2	118
665	Kinetic Modeling of Nitrogen Oxides Decomposition at Flame Temperatures. Combustion Science and Technology, 1999, 149, 53-78.	1.2	19
666	Mathematical Models of Catalytic Combustors. Catalysis Reviews - Science and Engineering, 1999, 41, 227-254.	5.7	69
667	Fuel Effects on Lean Blowout and Emissions from a Well-Stirred Reactor. Journal of Propulsion and Power, 1999, 15, 216-223.	1.3	23
668	Optimization models for determining nitric acid equilibria in supercritical water. Computers & Chemistry, 1999, 23, 421-434.	1.2	8
669	Carbyne thermochemistry from energy-resolved collision-induced dissociation. International Journal of Mass Spectrometry, 1999, 185-187, 745-757.	0.7	12
670	Computer simulation of the kinetics of high temperature radiation induced reduction of NO. Radiation Physics and Chemistry, 1999, 54, 307-315.	1.4	6
671	Theoretical analysis of environmental and energetic performance of very high temperature turbo-jet engines. International Journal of Thermal Sciences, 1999, 38, 442-451.	2.6	6
672	NO and N2O formation during the combustion of wood, straw, malt waste and peat. Bioresource Technology, 1999, 70, 39-49.	4.8	190

#	Article	IF	CITATIONS
673	Advanced technology catalytic combustor for high temperature ground power gas turbine applications. Catalysis Today, 1999, 47, 305-313.	2,2	16
674	Sewage sludge combustion. Progress in Energy and Combustion Science, 1999, 25, 55-116.	15.8	878
675	Quantitative measurements of absolute concentrations of intermediate species in flames. Progress in Energy and Combustion Science, 1999, 25, 233-252.	15.8	52
676	Conditional moment closure for turbulent combustion. Progress in Energy and Combustion Science, 1999, 25, 595-687.	15.8	755
677	Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Progress in Energy and Combustion Science, 1999, 25, 387-436.	15.8	215
678	A mathematical model for a circulating fluidized bed (CFB) boiler. Energy, 1999, 24, 633-653.	4.5	43
679	Kinetics and mechanisms of the reactions of CH and CD with H2S and D2S. Chemical Physics, 1999, 242, 1-10.	0.9	7
680	Absolute CH concentration in flames measured by cavity ring-down spectroscopy. Chemical Physics Letters, 1999, 306, 319-324.	1.2	35
681	A NOx diagnostic system based on a spectral ultraviolet/visible imaging device. Fuel, 1999, 78, 1283-1292.	3.4	15
682	Approaches to modelling heterogeneous char NO formation/destruction during Pulverised coal combustion. Carbon, 1999, 37, 1545-1552.	5.4	49
683	Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric diffusion flame. Chemical Physics Letters, 1999, 305, 334-342.	1.2	51
684	Absorption cross-sections and absolute concentration of singlet methylene in methane/air flames. Chemical Physics Letters, 1999, 313, 121-128.	1.2	12
685	Laser-saturated fluorescence measurements of nitric oxide in an inverse diffusion flame. Combustion and Flame, 1999, 116, 282-290.	2.8	23
686	An experimental study of the inhibiting effect of chlorine in a fluidized bed combustor. Combustion and Flame, 1999, 116, 640-652.	2.8	20
687	Computed structure of low strain rate partially premixed CH4/air counterflow flames: implications for NO formation. Combustion and Flame, 1999, 116, 546-566.	2.8	44
688	Heats of formation of HNO and some related species. Combustion and Flame, 1999, 117, 394-403.	2.8	35
689	Detailed analysis of low-pressure premixed flames of CH4 + O2 + N2: a study of prompt-NO. Combustion and Flame, 1999, 117, 291-306.	2.8	39
690	On the local stability of multiple solutions and oscillatory dynamics of spatially distributed flames. Combustion and Flame, 1999, 117, 307-322.	2.8	7

#	Article	IF	Citations
691	Reactions of sodium species in the promoted SNCR process. Combustion and Flame, 1999, 117, 821-831.	2.8	82
692	The autothermal behavior of platinum catalyzed hydrogen oxidation: experiments and modeling. Combustion and Flame, 1999, 118, 164-178.	2.8	48
693	NOx formation in two-stage methane–air flames. Combustion and Flame, 1999, 118, 399-414.	2.8	171
694	Fundamental mechanisms in premixed turbulent flame propagation via vortex–flame interactions part II: numerical simulation. Combustion and Flame, 1999, 118, 557-582.	2.8	25
695	NO formation in the burnout region of a partially premixed methane–air flame with upstream heat loss. Combustion and Flame, 1999, 118, 733-740.	2.8	8
696	Direct numerical simulation of heat release and NO $\rm x$ formation in turbulent nonpremixed flames. Combustion and Flame, 1999, 119, 69-83.	2.8	39
697	Premixed combustion on ceramic foam burners. Combustion and Flame, 1999, 119, 133-143.	2.8	106
698	Modeling of NO formation in premixed, high-pressure methane flames. Combustion and Flame, 1999, 119, 307-318.	2.8	43
699	A simplified, fundamentally based method for calculating NOx emissions in lean premixed combustors. Combustion and Flame, 1999, 119, 367-373.	2.8	20
700	Propene pyrolysis and oxidation kinetics in a flow reactor and laminar flames. Combustion and Flame, 1999, 119, 375-399.	2.8	191
701	Selective Catalytic Reduction of Nitric Oxide by Methane in the Presence of Oxygen over CaO Catalyst. Journal of Catalysis, 1999, 183, 323-335.	3.1	16
702	Parametric study of nitrogen oxide formation during combustion of uniform methane—Air mixtures. Combustion, Explosion and Shock Waves, 1999, 35, 119-125.	0.3	3
703	Quantum-chemical investigation of the mechanism of transfer of a hydrogen atom in the phenol(NH2) complex. Theoretical and Experimental Chemistry, 1999, 35, 309-314.	0.2	0
704	Ab initio study on reaction path and rate constant of the hydrogen atom abstraction reaction HNCO+Nâ†'NCO+NH. Computational and Theoretical Chemistry, 1999, 459, 37-46.	1.5	12
705	The NO and N ₂ O formation mechanism under circulating fluidized bed combustor conditions: From the single particle to the pilotâ€scale. Canadian Journal of Chemical Engineering, 1999, 77, 275-283.	0.9	29
706	High-temperature reaction of C2 with NO including product channel measurements. International Journal of Chemical Kinetics, 1999, 31, 11-21.	1.0	15
707	Flow reactor studies and kinetic modeling of the H ₂ /O ₂ /NO _X and CO/H ₂ O/O ₂ /NO _X reactions. International Journal of Chemical Kinetics, 1999, 31, 705-724.	1.0	131
708	Modeling the thermal De-NOx process: Closing in on a final solution. International Journal of Chemical Kinetics, 1999, 31, 757-765.	1.0	135

#	Article	IF	Citations
709	A simplified fuel-NOx model based on regression analysis. International Journal of Energy Research, 1999, 23, 157-168.	2.2	5
710	Modelling NOx emissions during staged combustion. International Journal of Energy Research, 1999, 23, 683-693.	2.2	7
711	Simplification of the mechanism of NOx formation in a CH4/air combustion system. International Journal of Energy Research, 1999, 23, 1267-1276.	2.2	9
712	Modelling Nitromethane Combustion. Propellants, Explosives, Pyrotechnics, 1999, 24, 189-194.	1.0	51
713	CO2Reforming of CH4. Catalysis Reviews - Science and Engineering, 1999, 41, 1-42.	5.7	1,238
714	Rate Constants for the Reactions of NH2 and HNO with Atomic Oxygen at Temperatures between 242 and 473 K. Journal of Physical Chemistry A, 1999, 103, 5023-5031.	1.1	37
715	Input power dependence of growth rate and quality of diamond films deposited in a d.c. arcjet system. Diamond and Related Materials, 1999, 8, 211-214.	1.8	9
716	Numerical simulation of laminar flames at low Mach number by adaptive finite elements. Combustion Theory and Modelling, 1999, 3, 503-534.	1.0	43
717	Scramjet measurements in a shock tunnel. , 1999, , .		4
718	Theoretical Studies on the Reaction Path Dynamics and Variational Transition-State Theory Rate Constants of the Hydrogen-Abstraction Reactions of the NH(X3Σ-) Radical with Methane and Ethane. Journal of Physical Chemistry A, 1999, 103, 4910-4917.	1.1	13
719	Study of Alternative Descriptions of Methane Oxidation for CFD Modeling of Turbulent Combustors. Combustion Science and Technology, 1999, 141, 59-81.	1.2	10
720	Kinetic investigation of NCO radicals reacting with selected hydrocarbons. Physical Chemistry Chemical Physics, 1999, 1, 5305-5309.	1.3	14
722	Chapter 9. Multichannel radical–radical reactions. Annual Reports on the Progress of Chemistry Section C, 1999, 95, 277.	4.4	8
723	A product study of the reaction of CH radicals with nitric oxide at 298 K. Physical Chemistry Chemical Physics, 1999, 1, 5601-5606.	1.3	17
724	A Gaussian-2 Quantum Chemical Study of CHNO:  Isomerization and Molecular Dissociation Reactions. Journal of Physical Chemistry A, 1999, 103, 6624-6631.	1.1	55
725	A Generalized Approach for Predicting Coverage-Dependent Reaction Parameters of Complex Surface Reactions:  Application to H2 Oxidation over Platinum. Journal of Physical Chemistry A, 1999, 103, 8101-8107.	1.1	71
726	Numerical Study of the Ignition of Silane/Hydrogen Mixtures. Journal of Propulsion and Power, 1999, 15, 92-96.	1.3	17
727	Ab Initio Quantum Chemical and Experimental (Shock Tube) Studies of the Pyrolysis Kinetics of Acetonitrile. Journal of Physical Chemistry A, 1999, 103, 1054-1072.	1.1	31

#	Article	IF	Citations
728	Computational Model for NOxReduction by Advanced Reburning. Energy & Energy	2.5	46
729	Ab Initio Quantum Chemical Studies of the Formaldiminoxy (CH2NO) Radical:Â 1. Isomerization Reactions. Journal of Physical Chemistry A, 1999, 103, 4505-4513.	1.1	22
730	Temperature Dependence of the Product Branching Ratio of the CN + O2Reaction. Journal of Physical Chemistry A, 1999, 103, 3721-3725.	1.1	22
731	Nitrogen Oxide Evolution from Nitrogen-Containing Model Chars Combustion. Energy & E	2.5	39
732	Kinetics of the NCS Radical. Journal of Physical Chemistry A, 1999, 103, 11340-11344.	1.1	18
733	Shock-Tube Studies on the Reactions of CF2(X1A1) with O(3P) and H Atoms. Journal of Physical Chemistry A, 1999, 103, 8803-8811.	1.1	25
734	Ab Initio and Kinetic Calculations for the Reactions of NH(X3Σ-) with CHxF4-xand CDxF4-x(x= 1, 2, 3, 4). Journal of Physical Chemistry A, 1999, 103, 9049-9054.	1.1	5
735	Reaction of CH with H2O:Â Temperature Dependence and Isotope Effect. Journal of Physical Chemistry A, 1999, 103, 5699-5704.	1.1	20
736	A Complete Pressureâ^'Temperature Diagram for Air Oxidation of Hydrogen in a Continuous-Flow Stirred Tank Reactor. Journal of Physical Chemistry A, 1999, 103, 7990-7999.	1.1	14
737	A Shock Tube Study of the Product Branching Ratio for the Reaction NH2+ NO Using Frequency-Modulation Detection of NH2. Journal of Physical Chemistry A, 1999, 103, 1566-1571.	1.1	44
738	Experimental Analysis of the Combustion of Mixtures of C1â^C2Hydrocarbons. Industrial & Engineering Chemistry Research, 1999, 38, 897-905.	1.8	0
739	Measurements of Thermal Rate Constants for the Reactions of N(2D,2P) with C2H4and C2D4between 225 and 292 K. Journal of Physical Chemistry A, 1999, 103, 8650-8656.	1.1	27
740	Ab Initio Quantum Chemical and Kinetic Modeling Study of the Pyrolysis Kinetics of Pyrrole. Journal of Physical Chemistry A, 1999, 103, 3923-3934.	1.1	69
741	Nitric/Nitrous Acid Equilibria in Supercritical Water. Journal of Physical Chemistry A, 1999, 103, 1678-1688.	1.1	53
742	Flame Front Observation of Ammonia Decomposition and Oxidation Using 193 nm Two-Photon Photolysis and Photofragment Fluorescence. Applied Spectroscopy, 1999, 53, 1222-1225.	1.2	3
743	Reduced reaction models for ethylene ignition and oxidation. , 1999, , .		2
744	Combustion of bulk magnesium in carbon dioxide under reduced-gravity conditions. , 1999, , .		3
745	Application of Flamelet Profiles to Flame Structure in Practical Burners. Journal of Energy Resources Technology, Transactions of the ASME, 1999, 121, 66-72.	1.4	7

#	ARTICLE	IF	CITATIONS
747	Absolute Concentration Measurements of Chemicallyâ€Important Flame Radicals. Israel Journal of Chemistry, 1999, 39, 41-48.	1.0	5
748	Laser Studies of Small Radicals in Rich Methane Flames: OH, HCO, and ¹ CH ₂ . Israel Journal of Chemistry, 1999, 39, 55-62.	1.0	19
749	Laser Diagnostics of Combustion Processes: From Chemical Dynamics to Technical Devices. Israel Journal of Chemistry, 1999, 39, 1-24.	1.0	19
750	Reaction network reduction for distributed systems by model training in lumped reactors: Application to bifurcations in combustion. Chaos, 1999, 9, 95-107.	1.0	3
751	Effect of Equivalence Ratio on NO Distribution Inside a Spark Ignition Engine by Using Laser-Induced-Fluorescence Method JSME International Journal Series B, 1999, 42, 262-267.	0.3	0
752	NOx Formation Characteristic in Lean-Rich Combustion. Numerical Steady-State Analysis of Laminar Lean-Rich Colnbustion Flames 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2000, 66, 904-910.	0.2	0
753	A new procedure for predicting NOx emissions from furnaces. Computer Aided Chemical Engineering, 2000, 8, 859-864.	0.3	5
754	Flamelet Model of NOx in a Diffusion Flame Combustor. , 2000, , .		0
755	Ab Initio Study on the Dynamics of the Oxidation Reaction of Acetylene JSME International Journal Series B, 2000, 43, 258-263.	0.3	3
7 56	The Role of Carbon Monoxide in NO2 Plume Formation. Journal of Engineering for Gas Turbines and Power, 2000, 122, 287-292.	0.5	8
757	The Effects of an Impingement Surface and Quenching on the Structure of Laminar Premixed Flames. Combustion Science and Technology, 2000, 158, 115-134.	1.2	11
758	A kinetic mechanism for calculation of pollutant species in Jet-A combustion. , 2000, , .		7
759	Kinetic modeling of the CO/H2O/O2/NO/SO2 system: Implications for high-pressure fall-off in the SO2 + $O(+M) = SO3(+M)$ reaction. International Journal of Chemical Kinetics, 2000, 32, 317-339.	1.0	105
760	Rate constant for the reaction of O with H2 at high temperature by resonance absorption measurements of O atoms. International Journal of Chemical Kinetics, 2000, 32, 686-695.	1.0	17
761	Analysis of the thermal DeNOx process at high partial pressure of reactants. Chemical Engineering Science, 2000, 55, 1041-1051.	1.9	32
762	Intracavity laser absorption spectroscopy study of HNO in hydrocarbon flames doped with N2O. Chemical Physics Letters, 2000, 332, 508-514.	1.2	9
763	Modeling finite-rate mixing effects in reburning using a simple mixing model. Combustion and Flame, 2000, 122, 151-164.	2.8	15
764	Development of selective noncatalytic reduction by ammonia in the presence of phenol. Combustion and Flame, 2000, 122, 439-450.	2.8	3

#	Article	IF	CITATIONS
765	Large scale simulations of two-dimensional nonpremixed methane jet flames. Combustion and Flame, 2000, 123, 465-487.	2.8	79
766	Modeling of nitric oxide formation in high-pressure premixed laminar ethane flames. Combustion and Flame, 2000, 120, 233-241.	2.8	11
767	Boron suboxides measured during ignition and combustion of boron in shocked Ar/F/O2 and Ar/N2/O2 mixtures. Combustion and Flame, 2000, 120, 200-210.	2.8	75
768	The kinetics of the combustion of trichloroethylene for low Cl/H ratios. Combustion and Flame, 2000, 120, 125-142.	2.8	23
769	Characteristics of nitric oxide formation rates in turbulent nonpremixed jet flames. Combustion and Flame, 2000, 120, 383-391.	2.8	10
770	Decomposition of nitrous oxide at medium temperatures. Combustion and Flame, 2000, 120, 427-438.	2.8	53
771	Kinetics of the NCO radical reacting with atoms and selected molecules. Combustion and Flame, 2000, 120, 570-577.	2.8	27
772	Thermochemistry of aluminum species for combustion modeling from Ab Initio molecular orbital calculations. Combustion and Flame, 2000, 121, 210-222.	2.8	84
773	The new route forming NO via NNH. Combustion and Flame, 2000, 121, 548-550.	2.8	43
774	Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidised combustion. Part 1. Homogeneous reactions. Fuel, 2000, 79, 1239-1246.	3.4	64
775	Selective non-catalytic reduction of NOx under diesel engine conditions. Proceedings of the Combustion Institute, 2000, 28, 1203-1209.	2.4	13
776	The inevitability of engine-out NOx emissions from spark-ignited and diesel engines. Proceedings of the Combustion Institute, 2000, 28, 1211-1218.	2.4	29
777	A kinetic study of the oxidation of pyridine. Proceedings of the Combustion Institute, 2000, 28, 1709-1716.	2.4	36
778	An experimental and kinetic modeling study of the reduction of no by coal volatiles in a flow reactor. Proceedings of the Combustion Institute, 2000, 28, 2345-2351.	2.4	7
779	The spin-conserved reaction CH+N2â†'H+NCN: A major pathway to prompt no studied by quantum/statistical theory calculations and kinetic modeling of rate constant. Proceedings of the Combustion Institute, 2000, 28, 2393-2401.	2.4	145
780	Detailed chemical kinetics studies of an NH3/N2O/Ar flame by laser-induced fluorescence, mass spectrometry, and modeling. Proceedings of the Combustion Institute, 2000, 28, 2411-2418.	2.4	10
781	Numerical and experimental study of no emission in laminar partially premixed flames. Proceedings of the Combustion Institute, 2000, 28, 2419-2425.	2.4	5
782	Development and implementation of reduced chemistry for computional fluid dynamics modeling of selective non-catalytic reduction. Proceedings of the Combustion Institute, 2000, 28, 2427-2434.	2.4	27

#	Article	IF	CITATIONS
783	A LIF and cars investigation of upstream heat loss and flue-gas recirculation as NOx control strategies for laminar, premixed natural-gas/air flames. Proceedings of the Combustion Institute, 2000, 28, 2467-2474.	2.4	20
784	Char nitrogen conversion: implications to emissions from coal-fired utility boilers. Progress in Energy and Combustion Science, 2000, 26, 507-531.	15.8	136
785	Modeling of nitrogen oxides formation and destruction in combustion systems. Progress in Energy and Combustion Science, 2000, 26, 417-458.	15.8	546
786	Progress in knowledge of flamelet structure and extinction. Progress in Energy and Combustion Science, 2000, 26, 657-682.	15.8	177
787	Combustion of agricultural residues. Progress in Energy and Combustion Science, 2000, 26, 1-27.	15.8	897
788	Prediction of NO emissions from a number of coal-fired power station boilers. Fuel Processing Technology, 2000, 64, 25-46.	3.7	42
789	Nonlinear dynamics of surface stabilized premixed and diffusion flames: current trends and future directions. Chemical Engineering Science, 2000, 55, 311-319.	1.9	6
790	Experimental and theoretical study of the gas phase reaction of ethynyl radical with methane (HCr̃†C+CH4). Chemical Physics Letters, 2000, 329, 412-420.	1.2	28
791	Short-flame/quick-quench: A unique ultralow emissions combustion concept for gas turbine combustors. Proceedings of the Combustion Institute, 2000, 28, 1273-1280.	2.4	8
792	Shock tube determination of the overall rate of NH2+NOâ†'products at high temperatures. Proceedings of the Combustion Institute, 2000, 28, 2403-2409.	2.4	15
793	NOx emissions in combustion of lean premixed mixtures injected into hot burned gas. Proceedings of the Combustion Institute, 2000, 28, 2443-2449.	2.4	20
794	Combustion process optimization by genetic algorithms: Reduction of NO2 emission via optimal postflame process. Proceedings of the Combustion Institute, 2000, 28, 2483-2489.	2.4	6
795	Experimental and theoretical study of the reaction of the ethynyl radical with acetylene (HCr̃†C+HCr̃†CH). Chemical Physics, 2000, 262, 243-252.	0.9	42
796	Experimental and numerical investigation on the influence of temporal fuel/air unmixedness on NOx emissions of lean premixed catalytically stabilized and non-catalytic combustion. Catalysis Today, 2000, 59, 131-140.	2.2	7
797	Ab initio molecular orbital study of potential energy surface for the H2NO(2B1)â†'NO(2Î)+H2 reaction. Computational and Theoretical Chemistry, 2000, 507, 119-126.	1.5	7
798	CO2/CH4 Reforming over Ni–La2O3/5A: An Investigation on Carbon Deposition and Reaction Steps. Journal of Catalysis, 2000, 194, 198-210.	3.1	168
799	Minimum Engine Flame Temperature Impacts on Diesel and Spark-Ignition Engine NOx Production. , 2000, , .		28
800	Conversion of Nitric Oxide to Nitrogen Dioxide Using Hydrogen Peroxide. , 0, , .		6

#	Article	IF	CITATIONS
801	The Influence of Physical Input Parameter Uncertainties on Multidimensional Model Predictions of Diesel Engine Performance and Emissions. , 2000, , .		19
802	Modelling Medium Speed Diesel Engine Combustion, Soot and NOx-emission Formations. , 2000, , .		2
803	Effects of Mass Flow Rate and Initial Temperature on Predictions of NO and OH from Detailed Chemical Kinetics Models. Combustion Science and Technology, 2000, 160, 47-63.	1.2	1
804	Exhaust Oxidation of Unburned Hydrocarbons from Lean-Burn Natural Gas Engines. Combustion Science and Technology, 2000, 157, 262-292.	1.2	13
805	Complex dynamics of combustion flows by direct numerical simulations. Physics of Fluids, 2000, 12, 252-255.	1.6	5
806	The Oxidation of HCN and Reactions with Nitric Oxide: Experimental and Detailed Kinetic Modeling. Combustion Science and Technology, 2000, 155, 105-127.	1.2	21
807	Quantitative imaging of OH concentrations in a swirling methane jet flame via single-pulse laser-induced predissociative fluorescence. Optical Engineering, 2000, 39, 1441.	0.5	3
808	The role of unsteadiness in direct initiation of gaseous detonations. Journal of Fluid Mechanics, 2000, 421, 147-183.	1.4	118
809	Combustion Chemistry of Nitrogen. , 2000, , 125-341.		136
810	Survey of Rate Coefficients in the C-H-Cl-O System. , 2000, , 389-487.		6
811	Effect of plasma torch feedstock on ignition characteristics in supersonic flow. , 2000, , .		2
812	NOXEmission Prediction from 3-D Complete Modelling to Reactor Network Analysis. Combustion Science and Technology, 2000, 153, 279-294.	1.2	35
813	Ignition Characteristics of Plasma Torch for Hydrogen Jet in an Airstream. Journal of Propulsion and Power, 2000, 16, 227-233.	1.3	51
814	New Simplified Rate Equation for Gas-Phase CO Oxidation at Combustion. Energy & Delta, 2000, 14, 1156-1160.	2.5	7
815	Low temperature oxidation of methane: the influence of nitrogen oxides. Combustion Science and Technology, 2000, 151, 31-71.	1.2	102
816	Study of Low-Temperature Combustion in a Low-NOxBurner. Combustion Science and Technology, 2000, 160, 1-21.	1.2	4
817	Remote Sensing of NO and NO2Emissions from Heavy-Duty Diesel Trucks Using Tunable Diode Lasers. Environmental Science & Diode Lasers. 2380-2387.	4.6	80
818	Theoretical study of the reaction of CH3C(X Î f 2Aâ \in ³, ã4A2) with N2. Physical Chemistry Chemical Physics, 2000, 2, 5560-5565.	1.3	1

#	Article	IF	CITATIONS
819	Mathematical Modelling of Nitric Oxide Formation in Turbulent Diffusion Flames Doped with a Nitrogen Compound. Combustion Science and Technology, 2000, 160, 345-367.	1.2	2
820	Computing of Oxy-Natural Gas Flames using Both a Global Combustion Scheme and a Chemical Equilibrium Procedure. Combustion Science and Technology, 2000, 160, 369-397.	1.2	31
821	An improved potential energy surface for the C+NO reaction. Physical Chemistry Chemical Physics, 2000, 2, 613-620.	1.3	22
822	Product Branching Ratio of the HCCO + NO Reaction. Journal of Physical Chemistry A, 2000, 104, 293-296.	1.1	42
823	Mixing Effects in the Selective Noncatalytic Reduction of NO. Industrial & Engineering Chemistry Research, 2000, 39, 3221-3232.	1.8	20
824	Application of Density Functional Theory to the Study of the Reaction of NO with Char-Bound Nitrogen during Combustion. Journal of Physical Chemistry A, 2000, 104, 8409-8417.	1.1	74
825	Two-dimensional Numerical Study of Combustion and Pollutants Formation in Porous Burners. Combustion Science and Technology, 2000, 152, 57-79.	1.2	66
826	Absolute CH Radical Concentrations in Rich Low-Pressure Methaneâ^'Oxygenâ^'Argon Flames via Cavity Ringdown Spectroscopy of the A2Î"â^'X2Î Transition. Journal of Physical Chemistry A, 2000, 104, 4953-4961.	1.1	40
827	Kinetics of the $O(3P)$ + N2O Reaction. 1. Direct Measurements at Intermediate Temperatures. Journal of Physical Chemistry A, 2000, 104, 6003-6012.	1.1	17
828	Kinetics of the $O(3P)$ + N2O Reaction. 2. Interpretation and Recommended Rate Coefficients. Journal of Physical Chemistry A, 2000, 104, 6013-6031.	1.1	45
829	Experimental and Computational Studies on the Gas-Phase Reaction of CBrF3 with Hydrogen. Environmental Science & Environmental	4.6	16
830	Kinetic Modeling of the Thermal Decomposition of Ammonia. Combustion Science and Technology, 2000, 152, 23-37.	1.2	91
831	Ignition Delay Times., 2001,, 211-VII.		7
832	RECENTPROGRESS ININFRAREDABSORPTIONTECHNIQUES FORELEMENTARYGAS-PHASEREACTIONKINETICS. Annual Review of Physical Chemistry, 2001, 52, 41-70.	4.8	37
834	3-D analysis of Jet-A combustion with a kinetic mechanism for pollutant species. , 2001, , .		2
835	Impact of Biodiesel Source Material and Chemical Structure on Emissions of Criteria Pollutants from a Heavy-Duty Engine. Environmental Science & Environmental Science & 1742-1747.	4.6	550
836	Ammonia Pyrolysis and Oxidation in the Claus Furnace. Industrial & Engineering Chemistry Research, 2001, 40, 144-151.	1.8	67
837	Nitrogen oxides from waste incineration: control by selective non-catalytic reduction. Chemosphere, 2001, 42, 491-497.	4.2	43

#	Article	IF	CITATIONS
838	Crossed beam studies of elementary reactions of N and C atoms and CN radicals of importance in combustion. Faraday Discussions, 2001, 119, 27-49.	1.6	61
839	Determination of the CH + O2 product channels. Faraday Discussions, 2001, 119, 67-77.	1.6	31
840	Laser absorption spectroscopy diagnostics of nitrogen-containing radicals in low-pressure hydrocarbon flames doped with nitrogen oxides. Faraday Discussions, 2001, 119, 321-335.	1.6	17
841	A direct transition state theory based analysis of the branching in NH2 + NO. Faraday Discussions, 2001, 119, 207-222.	1.6	27
842	A Theoretical Study of the 2NCO + 2OH Reaction. Journal of Physical Chemistry A, 2001, 105, 229-237.	1.1	15
843	Interlocking Triplet Electronic States of Isocyanic Acid: Sources of Nonadiabatic Photofragmentation Dynamicsâ€. Journal of Physical Chemistry A, 2001, 105, 2716-2730.	1.1	14
844	Theoretical Study on Triplet Potential Energy Surface of the CH($2\hat{l}$) + NO2Reaction. Journal of Physical Chemistry A, 2001, 105, 9598-9610.	1.1	7
845	Fuel Staging for NOxReduction in Biomass Combustion:  Experiments and Modeling. Energy & Description (2001, 15, 575-582.	2.5	85
846	Theoretical Study on Reaction Mechanism of the Methylidyne Radical with Nitrogen Dioxide. Journal of Physical Chemistry A, 2001, 105, 3388-3399.	1.1	16
847	Prediction of Nitric Oxide Destruction by Advanced Reburning. Energy & Ener	2.5	10
848	Theoretical Study on the Mechanism of the 1CHF + NO Reaction. Journal of Physical Chemistry A, 2001, 105, 9901-9911.	1.1	6
850	High-Pressure Spray and Combustion Modeling Using Continuous Thermodynamics for Diesel Fuels., 2001,,.		6
851	Optical Detection of Absolute NO and OH Concentration inside Diesel Combustion Chamber., 2001,,.		0
852	Modeling NO Formation in Spark Ignition Engines with a Layered Adiabatic Core and Combustion Inefficiency Routine., 2001,,.		14
853	A Computational Investigation of Water Injection Strategies for Nitric Oxide Reduction in Large-Bore DI Diesel Engines., 2001,,.		23
854	NOx Reduction Kinetics Mechanisms and Radical-Induced Autoignition Potential of EGR in I.C. Engines Using Methanol and Hydrogen., 2001,,.		7
855	A POSSIBLE NEW ROUTE FOR NO FORMATION VIAN2H3. Combustion Science and Technology, 2001, 168, 1-46.	1.2	65
856	A Study of Combustion Characteristics of Gasified Coal Fuel. Journal of Engineering for Gas Turbines and Power, 2001, 123, 22-32.	0.5	31

#	Article	IF	CITATIONS
857	Flamelet Model of NOx in a Diffusion Flame Combustor. Journal of Engineering for Gas Turbines and Power, 2001, 123, 774-778.	0.5	1
858	Numerical Analysis of NOx Formation in a Diffusion Flame Combustor Based on a Flamelet Model. , 2001, , .		0
859	Emissions of Industrial Sources Converted to Natural Gas. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 2001, 23, 115-126.	0.5	2
860	Critical reactions for the hydrazine vapor detonations. Shock Waves, 2001, 11, 97-103.	1.0	23
861	Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures. Progress in Energy and Combustion Science, 2001, 27, 99-139.	15.8	383
862	A new procedure for predicting NOx emissions from furnaces. Computers and Chemical Engineering, 2001, 25, 613-618.	2.0	63
863	High-temperature radiation-induced removal of gaseous air pollutants. Radiation Physics and Chemistry, 2001, 60, 223-235.	1.4	5
864	Development and testing of a comprehensive chemical mechanism for the oxidation of methane. International Journal of Chemical Kinetics, 2001, 33, 513-538.	1.0	236
865	Shock tube determination of the overall rate of NH2 \pm NO ? products in the thermal De-NOx temperature window. International Journal of Chemical Kinetics, 2001, 33, 715-721.	1.0	52
866	The Infrared Laser Spectrum of the 101211 Hot Band of CCN. Journal of Molecular Spectroscopy, 2001, 209, 60-65.	0.4	8
867	Kinetics of N2O formation/destruction from coal combustion at low temperatures. International Journal of Energy Research, 2001, 25, 165-186.	2.2	5
868	Study on strengthening combustion and NOx formation properties of rough-surfaced bluff-bodies. International Journal of Energy Research, 2001, 25, 825-843.	2.2	4
869	NO/NOx removal with C2 H2 as additive via dielectric barrier discharges. AICHE Journal, 2001, 47, 1226-1233.	1.8	21
870	Hybrid SNCR-SCR technologies for NOx control: Modeling and experiment. AICHE Journal, 2001, 47, 2603-2617.	1.8	34
871	Thermal N2O decomposition in regenerative heat exchanger reactors. Chemical Engineering Science, 2001, 56, 1587-1595.	1.9	65
872	Efficient calculation of resonance positions and widths using doubled Chebyshev autocorrelation functions. Chemical Physics Letters, 2001, 347, 443-450.	1.2	16
873	Soot and NO formation in methane–oxygen enriched diffusion flames. Combustion and Flame, 2001, 124, 295-310.	2.8	148
874	Kinetic modeling of the decomposition and flames of hydrazine. Combustion and Flame, 2001, 124, 106-126.	2.8	115

#	Article	IF	CITATIONS
875	Formation of NO from combustion of volatiles from municipal solid wastes. Combustion and Flame, 2001, 124, 195-212.	2.8	22
876	Lif measurements and modeling of nitric oxide concentration in atmospheric counterflow premixed flames. Combustion and Flame, 2001, 124, 350-369.	2.8	27
877	Direct measurement of entrainment in reacting/nonreacting turbulent jets. Combustion and Flame, 2001, 124, 370-386.	2.8	159
878	An investigation of important gas-phase reactions of nitrogenous species from the simulation of experimental measurements in combustion systems. Combustion and Flame, 2001, 124, 573-589.	2.8	57
879	Laser-Induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO+H2+CH4 and air at high pressures. Combustion and Flame, 2001, 125, 729-743.	2.8	38
880	The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: implications for soot and NOx formation. Combustion and Flame, 2001, 125, 778-787.	2.8	341
881	Effects of partial premixing on pollutant emissions in swirling methane jet flames. Combustion and Flame, 2001, 125, 865-878.	2.8	29
882	A numerical and experimental investigation of premixed methane-air flame transient response. Combustion and Flame, 2001, 125, 879-892.	2.8	8
883	Augmented reduced mechanisms for NO emission in methane oxidation. Combustion and Flame, 2001, 125, 906-919.	2.8	144
884	Conditional moment closure (CMC) predictions of a turbulent methane-air jet flame. Combustion and Flame, 2001, 125, 1176-1195.	2.8	104
885	Modeling the chemical reactions of ammonium dinitramide (ADN) in a flame. Combustion and Flame, 2001, 126, 1516-1523.	2.8	33
886	Prediction of N 2 O and NH 3 in fuel-rich gaseous flames. Combustion and Flame, 2001, 126, 1856-1859.	2.8	18
887	Flow reactor study of the effect of pressure on the thermal de-NO x process. Combustion and Flame, 2001, 127, 1958-1970.	2.8	41
888	The production of nitric oxide during the combustion of methane and air in a fluidized bed. Combustion and Flame, 2001, 127, 2181-2193.	2.8	33
889	NO formation rates for hydrogen combustion in stirred reactors. Fuel, 2001, 80, 49-65.	3.4	67
890	Equilibrium modeling of gasification: a free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel, 2001, 80, 195-207.	3.4	299
891	Title is missing!. Combustion, Explosion and Shock Waves, 2001, 37, 123-147.	0.3	17
892	Analysis of reaction mechanisms through stochastic simulation. Chemical Engineering Science, 2001, 56, 5157-5175.	1.9	5

#	Article	IF	CITATIONS
893	Mathematical modeling of fluidized bed combustion. 4: N2O and NOX emissions from the combustion of char. Fuel, 2001, 80, 1259-1272.	3.4	53
894	Validation of nitrogen kinetics in high pressure flames. Energy Conversion and Management, 2001, 42, 21-34.	4.4	6
895	Experimental Study and Kinetic Modelling of Nitric Oxide Reduction with Ammonia. Combustion Science and Technology, 2001, 163, 25-47.	1.2	27
896	Reduced Mechanisms for Prediction of NO2 Formation and Ignition Delay in Methane-Air Combustion. Journal of Engineering for Gas Turbines and Power, 2001, 123, 303-307.	0.5	11
897	Formation of Nitric Oxide in a Multi-Air Staged Gas Flame. Combustion Science and Technology, 2001, 166, 41-66.	1.2	10
898	Radiation and NO Pathways in Nonpremixed Turbulent Flames. Journal of Propulsion and Power, 2001, 17, 222-224.	1.3	2
899	Effect of Addition of Radicals on Burning Velocity. AIAA Journal, 2001, 39, 742-744.	1.5	28
900	Single-Pulse Shock Tube. , 2001, , 107-III.		7
901	Investigation of the Thermal Decomposition of Ketene and of the Reaction CH2 + H2 \hat{a}^{\dagger} " CH3 + H. Zeitschrift Fur Physikalische Chemie, 2001, 215, .	1.4	15
902	Pilot-Scale Evaluation of H2O2Injection to Control NOxEmissions. Journal of Environmental Engineering, ASCE, 2001, 127, 329-336.	0.7	34
903	Transition state dynamics of the OH+OHâ†'O+H2O reaction studied by dissociative photodetachment of H2O2â^'. Journal of Chemical Physics, 2001, 115, 6931-6940.	1.2	25
904	Photodissociation and photoisomerization pathways of the HNCN free radical. Journal of Chemical Physics, 2001, 114, 9000-9011.	1.2	22
905	Reduction of nitrogen oxide in N2 by NH3 using intermittent dielectric barrier discharge. Journal of Applied Physics, 2001, 90, 2672-2677.	1.1	32
906	The reaction of C2H with H2: Absolute rate coefficient measurements andab initiostudy. Journal of Chemical Physics, 2002, 116, 3700-3709.	1.2	38
907	APPLICATION OF THE EXTENDED WEIGHTED SUM OF GRAY GASES MODELTO LIGHT FUEL OIL SPRAY COMBUSTION. Combustion Science and Technology, 2002, 174, 37-70.	1.2	8
908	Influence of Radical Concentration and Fuel Decomposition on Ignition of Propane/Air Mixture. Journal of Propulsion and Power, 2002, 18, 1049-1058.	1.3	20
909	Development of Hexaaluminate Catalysts for Combustion of Gasified Biomass in Gas Turbines. Journal of Engineering for Gas Turbines and Power, 2002, 124, 235-238.	0.5	9
910	Reduced chemical kinetic mechanisms for JP-8 combustion. , 2002, , .		44

#	Article	IF	CITATIONS
911	Modelling of NO emissions from homogeneous and stratified charge spark ignition engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2002, 216, 403-412.	1.1	6
912	Prediction of NOx Emissions from High-temperature Gas Turbines: Numerical Simulation for Low-NOx Combustion JSME International Journal Series B, 2002, 45, 221-230.	0.3	5
913	Detonation chemistry - A review. , 2002, , .		2
914	NO(x) emissions in n-heptane/air partially premixed flames. , 2002, , .		1
915	Detailed Results for Nitric Oxide Emissions as Determined From a Multiple-Zone Cycle Simulation for a Spark-Ignition Engine., 2002, , 131.		11
916	Ab Initio Quantum Chemical Study of the Coordination Preferences and Catalytic Role of Cu+ Ions in the Dehydration Reactions of Hydroxyformaldoxime Conformers and the Oxidation of HCN to Hydroxyformaldoxime by Hydrogen Peroxide. Journal of Physical Chemistry A, 2002, 106, 1425-1440.	1.1	9
917	Product Studies of Inelastic and Reactive Collisions of NH2 + NO:  Effects of Vibrationally and Electronically Excited NH2â€. Journal of Physical Chemistry A, 2002, 106, 8249-8255.	1.1	6
918	A Shock Tube Study of the Product Branching Ratio of the NH2 + NO Reaction at High Temperatures. Journal of Physical Chemistry A, 2002, 106, 9233-9235.	1.1	28
919	Factors Influencing the Time-Resolved Evolution of NO, HCN, and N2O during Char Oxidation at Fluidized Bed Conditions. Energy & E	2.5	11
920	High-Temperature Catalytic Combustion and Its Inhibition of Gas-Phase Ignition. Energy & Ener	2.5	9
921	THEORETICAL AND NUMERICAL INVESTIGATION ON FLAMELESS COMBUSTION. Combustion Science and Technology, 2002, 174, 1-35.	1.2	41
922	Review on Chemical Reactions of Burning Poly(methyl methacrylate) PMMA. Journal of Fire Sciences, 2002, 20, 401-433.	0.9	102
923	Modeling of Nitrogen Oxide Formation from Isooctane-Air Combustion in a Perfectly Stirred Reactor. , 2002, , .		1
924	Kinetics of the NCN Radical. Journal of Physical Chemistry A, 2002, 106, 11093-11097.	1.1	26
925	Hydrogen Production by Methane-Rich Combustion in a Ceramic Burner Journal of Chemical Engineering of Japan, 2002, 35, 46-56.	0.3	11
927	Absolute NO and OH Concentrations During Diesel Combustion Process by Multiwavelength Absorption Spectroscopy., 0,,.		1
928	A Mathematical Modeling and Validation Study of NOx Emissions in Metal Processing Systems ISIJ International, 2002, 42, 1175-1181.	0.6	5
929	Prediction of NO Emissions from Stratified Charge Spark-Ignition Engines. , 2002, , .		0

#	Article	IF	CITATIONS
930	Kinetics of HCCl + NOx reactions. International Journal of Chemical Kinetics, 2002, 34, 12-17.	1.0	29
931	Measurement of intrinsic rates for homogeneous gasâ€phase reactions at high temperatures. Canadian Journal of Chemical Engineering, 2002, 80, 513-517.	0.9	1
932	Thermal and chemical contributions of added H2O and CO2 to major flame structures and NO emission characteristics in H2/N2 laminar diffusion flame. International Journal of Energy Research, 2002, 26, 1073-1086.	2.2	43
933	Ab initio study on the mechanism of reaction HNCO+NH2. Science in China Series B: Chemistry, 2002, 45, 365-372.	0.8	3
934	A computational problem solving environment for creating and testing reduced chemical kinetic mechanisms. Advances in Engineering Software, 2002, 33, 59-70.	1.8	18
935	Methane combustion over La2O3-based catalysts and Î ³ -Al2O3. Applied Catalysis A: General, 2002, 233, 125-140.	2.2	23
936	Complete chemical conversion of [(NO)m(CH3OH)n]+ to NO+(CH3ONO)x (x=1–12): experiment and theory. International Journal of Mass Spectrometry, 2002, 220, 145-158.	0.7	3
937	Chemical kinetic study on the reduction of nitric oxide in highly preheated air combustion. Proceedings of the Combustion Institute, 2002, 29, 1165-1171.	2.4	20
938	Resolving the mystery of prompt CO2: The HCCO+O2 reaction. Proceedings of the Combustion Institute, 2002, 29, 1209-1217.	2.4	50
939	Role of transport properties in the transient response of premixed methane/air flames. Proceedings of the Combustion Institute, 2002, 29, 1713-1720.	2.4	3
940	A laser-induced fluorescence and coherent anti-stokes Raman scattering study of NO formation in preheated, laminar, rich premixed, methane/air flames. Proceedings of the Combustion Institute, 2002, 29, 2187-2194.	2.4	13
941	Measurements of hydrogen cyanide and its chemical production rate in a laminar methane/air, non-premixed flame using cw cavity ringdown spectroscopy. Proceedings of the Combustion Institute, 2002, 29, 2203-2209.	2.4	25
942	Studies on the effect of swirl on no formation in methane/air turbulent combustion. Proceedings of the Combustion Institute, 2002, 29, 2235-2242.	2.4	24
943	Reduction of nitric oxide on the char surface at pulverized combustion conditions. Proceedings of the Combustion Institute, 2002, 29, 2275-2281.	2.4	22
944	NOx emission from high-temperature air/methane counterflow diffusion flame. International Journal of Thermal Sciences, 2002, 41, 693-698.	2.6	41
945	Thermogravimetric–mass spectrometric study on the evolution of nitrogen compounds during coal devolatilisation. Journal of Analytical and Applied Pyrolysis, 2002, 65, 57-70.	2.6	14
946	On the HNO→HON isomerization mechanism: high level ab initio and density functional theory study. Computational and Theoretical Chemistry, 2002, 585, 199-203.	1.5	7
947	Effects of hydrogen addition on methane combustion in a porous medium burner. International Journal of Hydrogen Energy, 2002, 27, 699-707.	3.8	67

#	Article	lF	Citations
948	Effects of fuel characteristics on the NO reduction during the reburning with coals. Fuel Processing Technology, 2002, 79, 93-106.	3.7	79
949	Kinetic relationship between NO/N2O reduction and O2 consumption during flue-gas recycling coal combustion in a bubbling fluidized-bed. Fuel, 2002, 81, 1179-1188.	3.4	19
950	Reaction of methylidyne radical with CH4 and H2S: overall rate constant and absolute atomic hydrogen production. Chemical Physics, 2002, 279, 87-99.	0.9	43
951	Influence of burner-port geometry in hydrocarbon oxidation and NO x formation mechanisms in methane/air flames. Fuel, 2002, 81, 771-783.	3.4	6
952	Application of the thermal DeNOx process to diesel engine DeNOx: an experimental and kinetic modelling study1. Fuel, 2002, 81, 1359-1367.	3.4	18
953	An augmented reduced mechanism for the reburning processâ [*] †. Fuel, 2002, 81, 2263-2275.	3.4	16
954	The effects of different airflows on the formation of pollutants during waste incinerationâ [*] †. Fuel, 2002, 81, 2277-2288.	3.4	50
955	Experimental and modeling analysis of the NOxOUT process. Chemical Engineering Science, 2002, 57, 27-38.	1.9	74
956	Theoretical study on the mechanism of the reaction between CN and O2. Chemical Physics Letters, 2002, 353, 304-309.	1.2	10
957	Formation of HCNO and HCN in the 193 nm photolysis of H2CCO in the presence of NO. Chemical Physics Letters, 2002, 356, 181-187.	1.2	20
958	Ignition and flame-holding by oxygen, nitrogen and argon plasma torches in supersonic airflow. Combustion and Flame, 2002, 128, 301-313.	2.8	58
959	An experimental and numerical investigation of homogeneous ignition in catalytically stabilized combustion of hydrogen/air mixtures over platinum. Combustion and Flame, 2002, 128, 340-368.	2.8	148
960	Numerical study of the effects of pressure and air-dilution on no formation in laminar counterflow diffusion flames of methane in high temperature air. Combustion and Flame, 2002, 130, 83-93.	2.8	36
961	Use of the conditional moment closure model to predict NO formation in a turbulent CH 4 /H 2 flame over a bluff-body. Combustion and Flame, 2002, 130, 94-111.	2.8	66
962	Ammonia conversion and NOx formation in laminar coflowing nonpremixed methane-air flames. Combustion and Flame, 2002, 131, 285-298.	2.8	95
963	Formation Kinetics of Sulfur-Bearing Compounds in Combustion of Hydrocarbon Fuels in Air. Combustion, Explosion and Shock Waves, 2002, 38, 609-621.	0.3	11
964	Reaction of CH radical with O2 by time-resolved FTIR spectroscopy. Science Bulletin, 2003, 48, 1225-1229.	1.7	2
965	NH2 radical formation by ammonia pyrolysis in a temperature range of 800?1000�K. Applied Physics B: Lasers and Optics, 2003, 77, 541-546.	1.1	39

#	Article	IF	CITATIONS
966	Numerical study on flame structure in H2-O2/CO2 laminar flames. International Journal of Energy Research, 2003, 27, 639-652.	2.2	5
967	Flame structure and NO emissions in gas combustion of low calorific heating value. International Journal of Energy Research, 2003, 27, 1339-1361.	2.2	14
968	The H+NO recombination reaction over a wide temperature range. International Journal of Chemical Kinetics, 2003, 35, 374-380.	1.0	22
969	Experimental and modeling study of shock-tube oxidation of acetylene. International Journal of Chemical Kinetics, 2003, 35, 391-414.	1.0	54
970	A kinetic issue in reburning: the fate of HCNO. Combustion and Flame, 2003, 135, 357-362.	2.8	51
971	Kinetic studies on reactions of NCO(X 2Îi) with alcohol molecules. Chemical Physics Letters, 2003, 381, 199-204.	1.2	14
972	A CASPT2 study of the doublet potential energy surface for the CH(X2Î)+N2(X1Σg+) reaction. Chemical Physics Letters, 2003, 368, 393-398.	1.2	11
973	Measurements of absolute concentrations of CH in a premixed atmospheric flat flame by cavity ring-down spectroscopy. Combustion and Flame, 2003, 132, 34-42.	2.8	28
974	Detailed modeling of hybrid reburn/SNCR processes for NOX reduction in coal-fired furnaces. Combustion and Flame, 2003, 132, 374-386.	2.8	55
975	Simultaneous measurements of velocity and CH distributions. Part 1: jet flames in co-flow. Combustion and Flame, 2003, 132, 565-590.	2.8	75
976	NOx emissions in n-heptane/air partially premixed flames. Combustion and Flame, 2003, 132, 723-741.	2.8	69
977	Ignition of shock-heated H2-air-steam mixtures. Combustion and Flame, 2003, 133, 93-106.	2.8	95
978	The high temperature oxidation of pyrrole and pyridine; ignition delay times measured behind reflected shock waves. Combustion and Flame, 2003, 133, 231-239.	2.8	21
979	The role of N2O and NNH in the formation of NO via HCN in hydrocarbon flames. Combustion and Flame, 2003, 133, 311-322.	2.8	72
980	First-order conditional moment closure modeling of turbulent, nonpremixed hydrogen flames. Combustion and Flame, 2003, 133, 393-405.	2.8	49
981	The fate of char-N at pulverized coal conditions. Combustion and Flame, 2003, 135, 299-313.	2.8	68
982	Optimisation of NOx reduction in advanced coal reburning systems and the effect of coal typeâ ⁻ †. Fuel, 2003, 82, 373-384.	3.4	59
983	A mathematical modelling technique for gaseous and solid fuel reburning in pulverised coal combustorsa~†. Fuel, 2003, 82, 2107-2114.	3.4	19

#	Article	IF	CITATIONS
984	Formation characteristics of nitric oxide in a three-staged air/LPG flame. International Journal of Heat and Mass Transfer, 2003, 46, 2993-3008.	2.5	13
985	Copper assisted intercoversion of NO to N2O: a quantum chemical study. Computational and Theoretical Chemistry, 2003, 623, 245-251.	1.5	4
986	Elementary reaction kinetics studies of interest in H2 supersonic combustion chemistry. Experimental Thermal and Fluid Science, 2003, 27, 371-377.	1.5	44
987	Measurement of adiabatic burning velocity in ethane–oxygen–nitrogen and in ethane–oxygen–argon mixtures. Experimental Thermal and Fluid Science, 2003, 27, 379-384.	1.5	38
988	Fuel nitrogen conversion in solid fuel fired systems. Progress in Energy and Combustion Science, 2003, 29, 89-113.	15.8	764
989	Detailed chemical kinetic models for the combustion of hydrocarbon fuels. Progress in Energy and Combustion Science, 2003, 29, 599-634.	15.8	410
990	Premixed metal fibre burners based on a Pd catalyst. Catalysis Today, 2003, 83, 19-31.	2.2	27
991	Abatement of ammonia and amines from waste gases: a summary. Journal of Loss Prevention in the Process Industries, 2003, 16, 157-163.	1.7	103
992	Collisional quenching of NCO () by some inorganic molecules. Chemical Physics, 2003, 289, 389-396.	0.9	3
993	Influence of oxygenated additives on the NOxOUT process efficiencyâ ⁻ †. Fuel, 2003, 82, 765-770.	3.4	42
994	Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NO during char combustiona~†. Fuel, 2003, 82, 949-957.	3.4	49
995	Combustion hazard of mixing ammonia with nitric oxide. Journal of Loss Prevention in the Process Industries, 2003, 16, 497-506.	1.7	3
996	Diagnostic studies of H2–Ar–N2microwave plasmas containing methane or methanol using tunable infrared diode laser absorption spectroscopy. Plasma Sources Science and Technology, 2003, 12, S98-S110.	1.3	54
997	Plasma-Assisted Process for Removing NO/NOx from Gas Streams with C2H4 as Additive. Journal of Environmental Engineering, ASCE, 2003, 129, 800-810.	0.7	11
998	Computational Studies of the Kinetics of the C + NO and O + CN Reactions. Journal of Physical Chemistry A, 2003, 107, 5439-5447.	1.1	44
999	Prediction of the Auto-ignition Hazard of Industrial Mixtures Using Detailed Kinetic Modeling. Industrial & Engineering Chemistry Research, 2003, 42, 2940-2945.	1.8	7
1000	Accurate Single-Valued Double Many-Body Expansion Potential Energy Surface for Ground-State HN2. Journal of Physical Chemistry A, 2003, 107, 7923-7930.	1,1	38
1001	Theoretical Study of Reaction Mechanisms for NCX ($X = O, S$) + C2H2. Journal of Physical Chemistry A, 2003, 107, 7004-7012.	1.1	11

#	ARTICLE	IF	CITATIONS
1002	H Atom Branching Ratios from the Reactions of CH with C2H2, C2H4, C2H6, and neo-C5H12at Room Temperature and 25 Torr. Journal of Physical Chemistry A, 2003, 107, 5710-5716.	1.1	48
1003	On the Mechanism of Bubbling Fluidized-Bed Combustion of Gas Oil. Industrial & Engineering Chemistry Research, 2003, 42, 3973-3981.	1.8	7
1004	Determination of the Rate Constant for the NCO(X2Î) + O(3P) Reaction at 292 K. Journal of Physical Chemistry A, 2003, 107, 4625-4635.	1.1	20
1005	Kinetics of CCN Radical Reactions with a Series of Normal Alkanes. Journal of Physical Chemistry A, 2003, 107, 10288-10291.	1.1	18
1006	An Ab Initio Quantum Chemical and Kinetic Study of the NNH + O Reaction Potential Energy Surface:  How Important Is This Route to NO in Combustion?. Journal of Physical Chemistry A, 2003, 107, 6792-6803.	1.1	40
1007	Reduced Kinetics Schemes for Oxides of Nitrogen Emissions from a Slow-Speed Marine Diesel Engine. Energy & Samp; Fuels, 2003, 17, 450-456.	2.5	11
1008	Reaction Mechanism of N2/H2 Conversion to NH3:  A Theoretical Study. Journal of Physical Chemistry A, 2003, 107, 2865-2874.	1.1	69
1009	NOx generation in laser-produced plasma in air as a function of dissipated energy. Optics and Laser Technology, 2003, 35, 543-546.	2.2	26
1010	Development of Comprehensive Detailed and Reduced Reaction Mechanisms for Combustion Modeling. AIAA Journal, 2003, 41, 1629-1646.	1.5	106
1011	LES Predictions of Combustor Emissions in a Practical Gas Turbine Combustor. , 2003, , .		9
1012	Experimental Study of Flow Patterns and Reaction in a Multiple Swirl Spray Combustor., 2003,,.		2
1013	The Effects of Air and Fuel Dilution on the Combustion and Emission Characteristics of Jet Diffusion Flames. , 2003, , .		0
1014	Effects of the compression ratio on nitric oxide emissions for a spark ignition engine: Results from a thermodynamic cycle simulation. International Journal of Engine Research, 2003, 4, 249-268.	1.4	8
1016	Modelling of a bluff body stabilized CH4/H2 flame based on a laminar flamelet model with emphasis on NO prediction. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2003, 217, 201-210.	0.8	16
1017	Accurate quantum mechanical calculation for the N+OH reaction. Journal of Chemical Physics, 2003, 118, 6852-6857.	1.2	27
1018	Time-resolved kinetic studies on quenching of NCO (A 2Σ+) by alkanes and substituted methane molecules. Journal of Chemical Physics, 2003, 118, 5408-5412.	1.2	10
1019	Evaluation of nitric oxide kinetics in high-pressure flames (up to 5 atm). Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2003, 217, 529-536.	0.8	1
1020	Cost estimate of electricity produced by TPV. Semiconductor Science and Technology, 2003, 18, S254-S261.	1.0	19

#	Article	IF	Citations
1021	Prediction of NOX emissions in gas turbine combustors inclusive of the N2O contribution. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2003, 217, 83-90.	0.8	9
1022	Low NOx Combustion for Liquid Fuels: Atmospheric Pressure Experiments Using a Staged Prevaporizer-Premixer. Journal of Engineering for Gas Turbines and Power, 2003, 125, 861-871.	0.5	13
1023	Modeling of NOx Emissions Using a Super-Extended Zel'dovich Mechanism. , 2003, , 121.		2
1024	Theoretical Chemical Study on NO Interaction with Cu. Journal of the Chinese Chemical Society, 2003, 50, 707-712.	0.8	0
1025	Application of a New Selective Noncatalytic NO Reduction System to Diesel Exhaust JSME International Journal Series B, 2003, 46, 131-136.	0.3	1
1026	Characteristics of Ammonia-Nitric Oxide Combustion. , 2003, , 771.		O
1027	Validation of Coal Combustion Model by Using Experimental Data of Utility Boilers 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2003, 69, 730-736.	0.2	0
1029	Effects of Burn Rate Parameters on Nitric Oxide Emissions for a Spark Ignition Engine: Results from a Three-Zone, Thermodynamic Simulation. , 0, , .		8
1030	Effect of Cooled and Hot EGR on Performance and Emission Characteristics of S-I Engine., 2004, , 141.		0
1031	On the Correlation between NOx Emissions and the Diesel Premixed Burn. , 0, , .		61
1032	Investigation of the Relationship Between DI Diesel Combustion Processes and Engine-Out Soot Using an Oxygenated Fuel. , 0, , .		26
1033	A Systematic Evaluation of NOx Formation Pathways and Subgrid Scale Models in Turbulent Nonpremixed CO/H2/N2 Jet Flame Predictions. , 2004, , 113.		0
1034	Toward subchemical accuracy in computational thermochemistry: Focal point analysis of the heat of formation of NCO and [H,N,C,O] isomers. Journal of Chemical Physics, 2004, 120, 11586-11599.	1,2	317
1035	Application of Laminar Flamelet Model to a Diffusion Flame Combustor. , 2004, , 53.		0
1036	Development of the Radially Stratified Flame Core Low NOx Burner: From Fundamentals to Industrial Applications. Journal of Engineering for Gas Turbines and Power, 2004, 126, 248-253.	0.5	2
1037	Pre-integrated Nonequilibrium Combustion-Response Mapping for Gas Turbine Emissions. Journal of Engineering for Gas Turbines and Power, 2004, 126, 300-305.	0.5	7
1038	The Employment of Hydrogenerated Fuels From Natural Gas Reforming: Gas Turbine and Combustion Analysis. Journal of Engineering for Gas Turbines and Power, 2004, 126, 489-497.	0.5	2
1039	Effects of Diesel Engine Speed and Water Content on Emission Characteristics of Three-Phase Emulsions. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2004, 39, 1345-1359.	0.9	25

#	Article	IF	Citations
1040	HYDROGEN–OXYGEN INDUCTION TIMES ABOVE CROSSOVER TEMPERATURES. Combustion Science and Technology, 2004, 176, 1599-1626.	1.2	54
1041	Finite Rate Chemistry Effects in Turbulent Reacting Flows. Flow, Turbulence and Combustion, 2004, 72, 407-426.	1.4	23
1042	Modeling of Pyrolysis of Ammonium Dinitramide Sublimation Products under Low-Pressure Conditions. Combustion, Explosion and Shock Waves, 2004, 40, 92-109.	0.3	18
1043	The influence of a vortex on a freely propagating laminar methane-air flame. Journal of Mechanical Science and Technology, 2004, 18, 857-864.	0.4	0
1044	Modelling of hydrogen cyanide formation in room fires. Fire Safety Journal, 2004, 39, 737-755.	1.4	15
1045	Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor. Combustion and Flame, 2004, 136, 91-128.	2.8	157
1046	Numerical investigation of extinction in a counterflow nonpremixed flame perturbed by a vortex. Combustion and Flame, 2004, 138, 225-241.	2.8	26
1047	Experimental investigation of three-dimensional flame-front structure in premixed turbulent combustion. Combustion and Flame, 2004, 138, 155-174.	2.8	66
1048	Cavity ring-down absorption and laser-induced fluorescence for quantitative measurements of CH radicals in low-pressure flames. Applied Physics B: Lasers and Optics, 2004, 78, 93-102.	1.1	34
1049	Reducing epistemological uncertainty in life cycle inventory. Journal of Cleaner Production, 2004, 12, 369-388.	4.6	37
1050	Multiwavelength ultraviolet absorption spectroscopy of NO and OH radical concentration applied to a high-swirl diesel-like system. Experimental Thermal and Fluid Science, 2004, 28, 355-367.	1.5	14
1051	New bound electronic states of NH+. International Journal of Quantum Chemistry, 2004, 99, 353-372.	1.0	16
1052	Comparative study of flame structures and NOx emission characteristics in fuel injection recirculation and fuel gas recirculation combustion system. International Journal of Energy Research, 2004, 28, 861-885.	2.2	7
1053	Effect of steam addition on flame structure and NO formation in H2–O2–N2 diffusion flame. International Journal of Energy Research, 2004, 28, 1075-1088.	2.2	33
1054	Numerical study on steam-added mild combustion. International Journal of Energy Research, 2004, 28, 1197-1212.	2.2	26
1055	Numerical study on flame structure and NO formation in CH4-O2-N2 counterflow diffusion flame diluted with H2O. International Journal of Energy Research, 2004, 28, 1255-1267.	2.2	32
1056	Evaluation of chemical effects of added CO2 according flame location. International Journal of Energy Research, 2004, 28, 551-565.	2.2	23
1057	Experimental study of a low pressure stoichiometric premixed methane, methane/ethane, methane/propane and synthetic natural gas flames. Fuel, 2004, 83, 933-941.	3.4	34

#	ARTICLE	IF	CITATIONS
1058	Numerical investigation on combustion characteristics of methane in a hybrid catalytic combustor. Fuel, 2004, 83, 987-996.	3.4	16
1059	Analysis of low NO emission in high temperature air combustion for pulverized coal. Fuel, 2004, 83, 1133-1141.	3.4	70
1060	Kinetic model for natural gas reburning. Fuel Processing Technology, 2004, 85, 1301-1315.	3.7	21
1061	A detailed mechanism of thermal CO2 reforming of CH4. Computational and Theoretical Chemistry, 2004, 673, 181-189.	1.5	28
1062	Ab initio study on the spin-forbidden reaction HNO($1A\hat{a}\in^2$)+H2 \hat{a} †'NH($3\hat{l}$ £)+H2O. Computational and Theoretical Chemistry, 2004, 674, 55-59.	1.5	1
1063	Theoretical study on reaction mechanism of the vinyl radical with nitrogen atom. Computational and Theoretical Chemistry, 2004, 686, 123-130.	1.5	2
1064	Thermal runaway reaction hazards and mechanisms of hydroxylamine with acid/base contaminants. Thermochimica Acta, 2004, 421, 1-9.	1.2	52
1065	Modeling and simulation of SiC CVD in the horizontal hot-wall reactor concept. Journal of Crystal Crowth, 2004, 267, 436-451. A theoretical study of diagrams (H2CN2), diagrinyl radical (HCN2) and their related cations	0.7	52
1066	<pre><mml:math <="" altimg="si11.gif" overflow="scroll" pre="" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"></mml:math></pre>	0.9	7
1067	xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.co. Chemica Predicting chemical species in spark-ignition engines. Energy, 2004, 29, 449-465.	4.5	4
1068	Nitric oxide destruction during coal and char oxidation under pulverized-coal combustion conditions. Combustion and Flame, 2004, 136, 303-312.	2.8	47
1069	Ammonia chemistry below 1400ÂK under fuel-rich conditions in a flow reactor. Combustion and Flame, 2004, 136, 501-518.	2.8	228
1070	Computational modeling of the SiH3+O2 reaction and silane combustion. Combustion and Flame, 2004, 137, 73-92.	2.8	35
1071	First-order conditional moment closure modeling of turbulent, nonpremixed methane flames. Combustion and Flame, 2004, 138, 3-19.	2.8	36
1072	Fuel effects on NOx emissions in partially premixed flames. Combustion and Flame, 2004, 139, 90-105.	2.8	122
1073	NONCATALYTIC PARTIAL OXIDATION OF METHANE INTO SYNGAS OVER A WIDE TEMPERATURE RANGE. Combustion Science and Technology, 2004, 176, 1093-1116.	1.2	33
1074	COMPUTATIONAL MODEL TO INVESTIGATE THE MECHANISMS OF NOxFORMATION DURING WASTE INCINERATION. Combustion Science and Technology, 2004, 176, 925-943.	1,2	9
1075	Axial Concentration Profiles and NO Flue Gas in a Pilot-Scale Bubbling Fluidized Bed Coal Combustor. Energy & E	2.5	18

#	ARTICLE	IF	CITATIONS
1076	Water-Assisting Proton Transfer Isomerization of the HNO/HON System in the Singlet State:  On the Number of the Effective Water Molecules. Journal of Physical Chemistry B, 2004, 108, 11732-11743.	1.2	4
1077	Molecular Origins of Selectivity in the Reduction of NOxby NH3. Journal of Physical Chemistry A, 2004, 108, 9365-9374.	1.1	25
1078	Kinetic Studies on the Reactions of Heptafluoropropanes with O(3P) and H Atoms at High Temperatures. Journal of Physical Chemistry A, 2004, 108, 1417-1424.	1.1	11
1079	MILD COMBUSTION FOR FUEL-NOxREDUCTION. Combustion Science and Technology, 2004, 176, 1035-1054.	1.2	45
1080	CO-COMBUSTION OF PULVERIZED COAL, PINE SHELLS, AND TEXTILE WASTES IN A PROPANE-FIRED FURNACE: MEASUREMENTS AND PREDICTIONS. Combustion Science and Technology, 2004, 176, 2071-2104.	1.2	20
1081	Synthesis gas production for FT synthesis. Studies in Surface Science and Catalysis, 2004, 152, 258-405.	1.5	64
1082	Fuel Effects on NOx Emissions in Partially Premixed Flames. , 2004, , .		0
1083	Effect of Structural Heat Conduction on the Power Density of Micro-Combustors. , 2004, , .		3
1084	A Shock-Tube Study of the Oxidation of C2H6/O2/AR and C2H6/SiH4/O2/AR Mixtures. , 2004, , .		2
1085	Modeling and Simulation of Combustion of Solid Propellant Ingredients Using Detailed Chemical Kinetics. , 2004, , .		9
1086	Nitric acid from volcanoes. Earth and Planetary Science Letters, 2004, 218, 17-30.	1.8	77
1087	Kinetics of the CCO + NO and CCO + NO2 Reactions. Journal of Physical Chemistry A, 2004, 108, 74-79.	1.1	20
1088	Sensitivity Analyses of NOx Formation in Micro-Pilot Ignited Natural Gas Engines. , 2004, , 299.		0
1089	Soot and NO formation in counterflow ethylene/oxygen/nitrogen diffusion flames. Combustion Theory and Modelling, 2004, 8, 475-489.	1.0	42
1090	INCREASE ON INCINERATION CAPACITY AND NOXCONTROL FOR AIR ENRICHMENT IN THE EXPERIMENTAL SIMULATION OF AQUEOUS RESIDUE INCINERATION. Combustion Science and Technology, 2004, 176, 1117-1152.	1.2	2
1091	IMPERFECTLY STIRRED REACTOR MODEL PREDICTIONS OF REACTION IN A BURNER WITH STRONG RECIRCULATION. Combustion Science and Technology, 2004, 176, 45-70.	1.2	12
1092	A Critical Evaluation of NOx Modeling in a Model Combustor. , 2004, , 403.		1
1093	NO Reburn and Formation Chemistry in Methane Diffusion Flames. Zeitschrift Fur Physikalische Chemie, 2005, 219, 679-698.	1.4	2

#	ARTICLE	IF	CITATIONS
1094	Validation of Coal Combustion Model by Using Experimental Data of Utility Boilers. JSME International Journal Series B, 2005, 48, 571-578.	0.3	12
1095	Experimental and kinetic modeling study of the effect of SO2 on the reduction of NO by ammonia. Proceedings of the Combustion Institute, 2005, 30, 1211-1218.	2.4	45
1096	Effects of mixing on ammonia oxidation in combustion environments at intermediate temperatures. Proceedings of the Combustion Institute, 2005, 30, 1193-1200.	2.4	28
1097	Nitric oxide detection in turbulent premixed methane/air flames. Proceedings of the Combustion Institute, 2005, 30, 1517-1525.	2.4	3
1098	Unravelling combustion mechanisms through a quantitative understanding of elementary reactions. Proceedings of the Combustion Institute, 2005, 30, 43-88.	2.4	417
1099	Modeling the formation of precursors of dioxins during combustion of woody fuel volatiles. Fuel, 2005, 84, 323-334.	3.4	24
1100	Comparisons of pulverized coal combustion in air and in mixtures of O/CO. Fuel, 2005, 84, 833-840.	3.4	272
1101	Pulverized coal combustion in air and in O/CO mixtures with NO recycle. Fuel, 2005, 84, 2109-2115.	3.4	103
1102	Cross-sections for electron–imidogen radical (NH) collisions. Computational and Theoretical Chemistry, 2005, 719, 57-62.	1.5	2
1103	Theoretical study on the mechanism of the N(4S)+C2H5 reaction. Computational and Theoretical Chemistry, 2005, 725, 133-138.	1.5	6
1104	A numerical study on NOx formation in laminar counterflow CH4/air triple flames. Combustion and Flame, 2005, 143, 282-298.	2.8	31
1105	Modeling study of homogeneous NO and N2O formation from oxidation of HCN in a flow reactor. Energy, 2005, 30, 337-345.	4.5	26
1106	Experimental and Gas Phase Modeling of Nanocrystalline Diamond Films Grown on Titanium Alloys for Biomedical Applications. Journal of Materials Engineering and Performance, 2005, 14, 565-568.	1.2	5
1107	Experiment and mechanism investigation on advanced reburning for NOxreduction: influence of CO and temperature. Journal of Zhejiang University Science B, 2005, 6B, 187-194.	0.4	6
1108	Numerical study on NO formation in CH4-O2-N2 diffusion flame diluted with CO2. International Journal of Energy Research, 2005, 29, 107-120.	2.2	20
1109	A Barrier-Free Nonatomic Radical-Molecule Reaction: CCN+CH4. ChemPhysChem, 2005, 6, 431-433.	1.0	9
1110	Intracavity laser absorption spectroscopy of NH2 in methane/air flames doped with N2O, NO, and NH3. Proceedings of the Combustion Institute, 2005, 30, 1575-1582.	2.4	11
1111	NOx formation from ammonia, hydrogen cyanide, pyrrole, and caprolactam under incinerator conditions. Proceedings of the Combustion Institute, 2005, 30, 1201-1209.	2.4	24

#	Article	IF	CITATIONS
1112	The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames. Proceedings of the Combustion Institute, 2005, 30, 303-311.	2.4	185
1113	The role of structural heat exchange and heat loss in the design of efficient silicon micro-combustors. Proceedings of the Combustion Institute, 2005, 30, 2437-2444.	2.4	120
1114	Numerical investigation for prediction of pollutants formation type CO and NO in premixed turbulent flame using an extended coherent flame model. Forschung Im Ingenieurwesen/Engineering Research, 2005, 69, 236-245.	1.0	2
1115	A kinetic modeling study of pollutant formation in premixed hydrocarbon flames. Science Bulletin, 2005, 50, 276-281.	1.7	0
1116	Simulation of Perfluoromethane Decomposition in an Atmospheric-Pressure Microwave Discharge. Journal of Engineering Physics and Thermophysics, 2005, 78, 394-404.	0.2	3
1117	NOx Virtual Sensor Based on Structure Identification and Global Optimization. , 2005, , .		23
1118	Measurements of the Influence of Soot Radiation on In-Cylinder Temperatures and Exhaust NOx in a Heavy-Duty DI Diesel Engine. , 2005, , .		70
1119	Virtual Sensor Design of Particulate and Nitric Oxide Emissions in a DI Diesel Engine., 2005,,.		26
1120	The Effect of Coal Usage on Human Health and the Environment. , 2005, , 77-122.		6
1121	Influence of Humid Air on Gaseous Combustion of Gasturbines. , 2005, , 699.		1
1122	A kinetic modeling study of pollutant formation in pre-mixed hydrocarbon flames. Science Bulletin, 2005, 50, 276.	1.7	0
1123	Kinetic Modeling of the Gas-Phase Oxidation of Nitric Oxide Using Hydrogen Peroxide. Journal of Environmental Engineering, ASCE, 2005, 131, 518-525.	0.7	20
1124	OH CONCENTRATION PROFILES OVER ALUMINA, QUARTZ, AND PLATINUM SURFACES USING LASER-INDUCED FLUORESCENCE SPECTROSCOPY IN LOW-PRESSURE HYDROGEN/OXYGEN FLAMES. Combustion Science and Technology, 2005, 177, 793-817.	1.2	25
1125	The energetics and structural properties of diazomethyl (HCNN) and cyanomidyl (HNCN) radicals and their related cations and anions from ab initio calculations. Journal of Chemical Physics, 2005, 122, 064316.	1.2	22
1126	Isomers of NCO2: IR-absorption spectra of ONCO in solid Ne. Journal of Chemical Physics, 2005, 123, 174301.	1.2	10
1127	CHARACTERISTICS OF HOMOGENEOUS CHARGE COMPRESSION IGNITION (HCCI) COMBUSTION AND EMISSIONS OF n-HEPTANE. Combustion Science and Technology, 2005, 177, 2113-2150.	1.2	41
1128	THE FORMATION AND REDUCTION OF NO DURING THE COMBUSTION OF POWDERED PETROLEUM COKEâ€"THE CASE OF CEMENT PLANT PRECALCINER CONDITIONS. Combustion Science and Technology, 2005, 177, 579-611.	1.2	11
1129	Adapting the Micro-Gas Turbine Operation to Variable Thermal and Electrical Requirements. Journal of Engineering for Gas Turbines and Power, 2005, 127, 514-524.	0.5	14

#	Article	IF	Citations
1130	A Critical Evaluation of NOx Modeling in a Model Combustor. Journal of Engineering for Gas Turbines and Power, 2005, 127, 483-491.	0.5	19
1131	Electronic structure and reactivity of the CNO/NCO/CON isomers. Molecular Physics, 2005, 103, 3321-3336.	0.8	20
1132	Validation of the Extended Simultaneous Kinetics and Ringdown Model by Measurements of the Reaction NH2+ NO. Journal of Physical Chemistry A, 2005, 109, 4785-4795.	1.1	15
1133	CASSCF and CAS + 1 + 2 studies on the singlet potential energy surface for the reaction CHâ€ Molecular Physics, 2005, 103, 767-774.	‰+ậ€‰N 0.8	104
1134	Reducing NOx Emissions Using Fuel Staging, Air Staging, and Selective Noncatalytic Reduction in Synergy. Industrial & Engineering Chemistry Research, 2005, 44, 4552-4561.	1.8	75
1135	Kinetics of the HCCO + NO2Reaction. Journal of Physical Chemistry A, 2005, 109, 4772-4776.	1.1	19
1136	Determination of the Rate Constants for the NCO(X2Î) + Cl(2P) and Cl(2P) + ClNCO(X1Aâ€~) Reactions at 293 and 345 K. Journal of Physical Chemistry A, 2005, 109, 5388-5397.	1.1	15
1137	Theoretical Investigation of the Mechanisms of Reaction of NCN with NO and NS. Journal of Physical Chemistry A, 2005, 109, 2564-2571.	1.1	19
1138	Nitrosyl Isocyanate (ONNCO):Â Gas-Phase Generation and a Hel Photoelectron Spectroscopy Study. Inorganic Chemistry, 2005, 44, 9283-9287.	1.9	28
1139	Nitrogen Oxides Emission Control Options for Coal-Fired Electric Utility Boilers. Journal of the Air and Waste Management Association, 2005, 55, 1367-1388.	0.9	107
1140	Product Channels of the HCCO + NO Reactionâ€. Journal of Physical Chemistry B, 2005, 109, 8363-8366.	1.2	20
1141	Dischargeâ°Flow Kinetics Measurements Using Intracavity Laser Absorption Spectroscopyâ€. Journal of Physical Chemistry B, 2005, 109, 8358-8362.	1.2	9
1142	Theoretical Study on Reaction Mechanism of the Cyanogen Radical with Nitrogen Dioxide. Journal of Physical Chemistry A, 2005, 109, 10307-10313.	1.1	10
1143	Quantum Chemical Study of the Mechanism of Reaction between NH (X 3Σ-) and H2, H2O, and CO2 under Combustion Conditions. Journal of Physical Chemistry A, 2005, 109, 11967-11974.	1.1	35
1144	Pollution by nitrogen oxides: an approach to NOx abatement by using sorbing catalytic materials. Environment International, 2005, 31, 445-467.	4.8	203
1145	Detailed Chemical Kinetic Modeling of Methylamine in Supercritical Water. Industrial & Samp; Engineering Chemistry Research, 2005, 44, 9785-9793.	1.8	34
1146	Unimolecular and Bimolecular Calculations for HN2. Journal of Physical Chemistry A, 2005, 109, 2356-2363.	1,1	50
1147	Effect of Antioxidant Addition on NOxEmissions from Biodiesel. Energy & Ene	2.5	131

#	Article	IF	CITATIONS
1148	Molecular dissociation in N2–H2 microwave discharges. Plasma Sources Science and Technology, 2005, 14, 19-31.	1.3	56
1149	Detailed modeling of hydrocarbon nanoparticle nucleation in acetylene discharges. Physical Review E, 2006, 73, 026405.	0.8	125
1150	Combustion Chemistry of Enols:  Possible Ethenol Precursors in Flames. Journal of Physical Chemistry A, 2006, 110, 3254-3260.	1.1	96
1151	CO2Reforming of CH4on Ni(111):Â A Density Functional Theory Calculation. Journal of Physical Chemistry B, 2006, 110, 9976-9983.	1.2	124
1152	THE EFFECT OF BIOMASS ON POLLUTANT EMISSION AND BURNOUT IN CO-COMBUSTION WITH COAL. Combustion Science and Technology, 2006, 178, 1511-1539.	1.2	22
1153	A combustion kinetic model for estimating diesel engine NOxemissions. Combustion Theory and Modelling, 2006, 10, 639-657.	1.0	11
1154	PROBE SAMPLING MEASUREMENTS OF NO IN CH4+O2+N2FLAMES DOPED WITH NH3. Combustion Science and Technology, 2006, 178, 1143-1164.	1.2	21
1155	Theoretical Studies on Reaction Mechanisms of HNCS with NH($X3\hat{1}$ £)1. Chemical Research in Chinese Universities, 2006, 22, 635-638.	1.3	1
1156	Master Equation Methods in Gas Phase Chemical Kinetics. Journal of Physical Chemistry A, 2006, 110, 10528-10544.	1.1	386
1157	A taxonomy of integral reaction path analysis. Combustion Theory and Modelling, 2006, 10, 559-579.	1.0	15
1158	Enhanced NOxReduction with SO2Capture under Air-Staged Conditions by Calcium Magnesium Acetate in an Oil-Fired Tunnel Furnace. Energy & Samp; Fuels, 2006, 20, 1879-1885.	2.5	11
1159	New Double Many-Body Expansion Potential Energy Surface for Ground-State HCN from a Multiproperty Fit to Accurate ab Initio Energies and Rovibrational Calculationsâ€. Journal of Physical Chemistry A, 2006, 110, 485-493.	1.1	43
1160	Determination of the Rate Constant for the Radicalâ^'Radical Reaction NCO(X2Î) + CH3(X2A2 Â ) at 293 K and an Estimate of Possible Product Channels. Journal of Physical Chemistry A, 2006, 110, 977-989.	1.1	10
1161	Combination of genetic algorithm and computational fluid dynamics in combustion process emission minimization. Combustion Theory and Modelling, 2006, 10, 1037-1047.	1.0	12
1162	Multiple Simultaneous Optical Diagnostic Imaging of Early-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine. , 0, , .		113
1163	Development and Application of S.I. Combustion Models for Emissions Prediction. , 0, , .		10
1164	Joint Efficiency and NOx Optimization Using a PSO Algorithm. , 2006, , .		11
	Joint Efficiency and NOX Optimization using a F3O Algorithm., 2000, , .		

#	Article	IF	CITATIONS
1166	Combustion process in a biomass grate fired industry furnace: a CFD study. Progress in Computational Fluid Dynamics, 2006, 6, 278.	0.1	18
1168	Potential of reducing the environmental impact of aviation by using hydrogen Part I: Background, prospects and challenges. Aeronautical Journal, 2006, 110, 533-540.	1.1	31
1169	Theoretical study of the mechanism of CH2CO + CN reaction. International Journal of Quantum Chemistry, 2006, 106, 894-905.	1.0	8
1170	A model of the chemical pathways leading to NOx formation during combustion of mixtures of cellulosic and plastic materials. International Journal of Thermal Sciences, 2006, 45, 359-366.	2.6	6
1171	Kinetic study of the catalytic carbon dioxide reforming of methane to synthesis gas over Ni-K/CeO2-Al2O3 catalyst. Applied Catalysis A: General, 2006, 308, 119-127.	2.2	103
1172	Chemical properties of solid biofuels—significance and impact. Biomass and Bioenergy, 2006, 30, 973-982.	2.9	567
1173	Understanding and modeling of thermofluidic processes in catalytic combustion. Catalysis Today, 2006, 117, 394-406.	2.2	25
1174	Unsteady extinction mechanism of nonpremixed flame interacting with a vortex. Chemical Engineering Science, 2006, 61, 3643-3652.	1.9	3
1175	Ab initio study of the HCCO+NO2 reaction. Chemical Physics, 2006, 325, 545-553.	0.9	3
1176	Formation of dark zone and its temperature plateau in solid-propellant flames: A review. Combustion and Flame, 2006, 145, 38-58.	2.8	15
1177	Kinetics of the NH reaction with H2 and reassessment of HNO formation from NH + CO2, H2O. Combustion and Flame, 2006, 145, 543-551.	2.8	45
1178	An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP. Combustion and Flame, 2006, 146, 29-51.	2.8	181
1179	Transient response of premixed methane flames. Combustion and Flame, 2006, 146, 572-588.	2.8	6
1180	Time-dependent quantum study of the kinetics of the O(3P)+CN(X2+)â†'CO(X1+)+N(2D) reaction. Chemical Physics Letters, 2006, 425, 157-162.	1.2	4
1181	Experimental measurements of the NOx and CO concentrations operating in oscillatory and non-oscillatory burning conditions. Fuel, 2006, 85, 84-93.	3.4	9
1182	Formation and reduction of nitric oxide in fixed-bed combustion of straw. Fuel, 2006, 85, 705-716.	3.4	90
1183	NO prediction in natural gas flames using GDF-Kin \hat{A} ®3.0 mechanism NCN and HCN contribution to prompt-NO formation. Fuel, 2006, 85, 896-909.	3.4	107
1184	NOx emission characteristics of counterflow syngas diffusion flames with airstream dilution. Fuel, 2006, 85, 1729-1742.	3.4	151

#	Article	IF	CITATIONS
1185	Design of mixed fuel for heterogeneous reburning. Fuel, 2006, 85, 1781-1793.	3.4	18
1186	The hydrogen-fueled internal combustion engine: a technical review. International Journal of Hydrogen Energy, 2006, 31, 1292-1305.	3.8	806
1187	Modeling the Kinetics of Bimolecular Reactions. Chemical Reviews, 2006, 106, 4518-4584.	23.0	533
1188	Analysis of kinetic mechanism performance in conditional moment closure modelling of turbulent, non-premixed methane flames. Combustion Theory and Modelling, 2006, 10, 413-438.	1.0	6
1189	Recent progress in modeling solid propellant combustion. Combustion, Explosion and Shock Waves, 2006, 42, 623-641.	0.3	31
1190	Experimental Characterization of Premixed Flame Instabilities of a Model Gas Turbine Burner. Flow, Turbulence and Combustion, 2006, 76, 177-197.	1.4	39
1191	Palladium/perovskite/zirconia catalytic premixed fiber burners for efficient and clean natural gas combustion. Catalysis Today, 2006, 117, 427-432.	2.2	29
1192	Detailed measurement and assessment of laminar hydrogen jet diffusion flames. Combustion and Flame, 2006, 146, 268-282.	2.8	42
1193	Pollutant emissions reduction and performance optimization of an industrial radiant tube burner. Experimental Thermal and Fluid Science, 2006, 30, 605-612.	1.5	27
1194	Reaction mechanism of the CCN radical with nitric oxide. Journal of Computational Chemistry, 2006, 27, 883-893.	1.5	9
1195	Theoretical study on the mechanism of the CH2F + NO2 reaction. Journal of Computational Chemistry, 2006, 27, 894-905.	1.5	5
1196	Theoretical mechanistic study on the radical–molecule reactions of cyanomethylidyne with PH3, H2S, and HCl. Journal of Computational Chemistry, 2006, 27, 1756-1764.	1.5	1
1197	Fire calorimetry relying on the use of the fire propagation apparatus. Part II: burning characteristics of selected chemical substances under fuel rich conditions. Fire and Materials, 2006, 30, 35-50.	0.9	17
1198	Cyanomethylidyne: A Reactive Carbyne Radical. ChemPhysChem, 2006, 7, 710-722.	1.0	20
1199	Lean Blowout Limit and NOx Production of a Premixed Sub-ppm NOx Burner With Periodic Recirculation of Combustion Products. Journal of Engineering for Gas Turbines and Power, 2006, 128, 247-254.	0.5	14
1200	An ignored but most favorable channel for NCO+C2H2 reaction. Journal of Chemical Physics, 2006, 125, 124317.	1.2	11
1201	Photodissociation dynamics of the HCNN radical. Journal of Chemical Physics, 2006, 124, 204303.	1.2	7
1202	NITROUS OXIDE THERMAL DECOMPOSITION IN THE FLAME TEMPERATURE RANGE AT ATMOSPHERIC PRESSURE. Combustion Science and Technology, 2006, 178, 1477-1489.	1.2	8

#	Article	IF	CITATIONS
1203	REACTIVE RESONANCE AND FORMATION MECHANISM STUDIES OF THE H + NO â†' N + OH OR O + NH REACTION Journal of Theoretical and Computational Chemistry, 2006, 05, 43-50.	^{l.} 1.8	0
1204	Effect of structural conduction and heat loss on combustion in micro-channels. Combustion Theory and Modelling, 2006, 10, 85-103.	1.0	68
1205	DEVELOPMENT OF A CATALYTIC HYDROGEN MICRO-PROPULSION SYSTEM. Combustion Science and Technology, 2006, 178, 2039-2060.	1.2	16
1206	Numerical Investigation of the Combustion Characteristics and Nitric Oxide Formation in a Municipal Waste Incinerator. Numerical Heat Transfer; Part A: Applications, 2007, 52, 713-735.	1.2	7
1207	EXHAUST GAS RECIRCULATION EFFECTS ON HYDROGEN-AIR COMBUSTION. Combustion Science and Technology, 2007, 179, 1131-1157.	1.2	3
1208	D atom loss in the photodissociation of the DNCN radical: Implications for prompt NO formation. Journal of Chemical Physics, 2007, 126, 114311.	1.2	5
1209	Control of NO _{x emissions from diesel engines by the optimisation of fuel injection strategies. International Journal of Vehicle Design, 2007, 45, 47.}	0.1	2
1210	Effect of Syngas Composition and CO2-Diluted Oxygen on Performance of a Premixed Swirl-Stabilized Combustor., 2007,, 889.		2
1211	Sensitivity Analysis of NOx Formation Kinetics in Pilot-Ignited Natural Gas Engines. Journal of Engineering for Gas Turbines and Power, 2007, 129, 261-270.	0.5	3
1212	Gas Turbine Combustion Technology Reducing Both Fuel-NOx and Thermal-NOx Emissions for Oxygen-Blown IGCC With Hot/Dry Synthetic Gas Cleanup. Journal of Engineering for Gas Turbines and Power, 2007, 129, 358-369.	0.5	16
1213	Cycle Optimization and Combustion Analysis in a Low-NOx Micro-Gas Turbine. Journal of Engineering for Gas Turbines and Power, 2007, 129, 994-1003.	0.5	14
1214	Kinetics of Reactions of CCN Radical with Alcohols. Chinese Journal of Chemical Physics, 2007, 20, 5-11.	0.6	0
1215	A COMPARISON OF SINGLE SHOT DIESEL SPRAY COMBUSTION EMISSIONS WITH TRENDS PREDICTED BY A CONCEPTUAL MODEL. Combustion Science and Technology, 2007, 179, 1159-1182.	1.2	1
1216	Shock Tube Study of the Reaction of CH with N2:Â Overall Rate and Branching Ratio. Journal of Physical Chemistry A, 2007, 111, 11818-11830.	1.1	66
1217	A numerical study on the effect of CO addition on extinction limits and NO _{<i>x</i>} formation in lean counterflow CH ₄ /air premixed flames. Combustion Theory and Modelling, 2007, 11, 741-753.	1.0	5
1218	Effect of Strain Rate and Pressure on the Flame Structure and Emission Characteristics of Syngas Flames. , 2007, , 829.		0
1219	Understanding methane flame kinetics from reduced mechanisms. International Journal of Alternative Propulsion, 2007, 1, 216.	0.9	3
1220	An expanded reaction kinetic model of the CuO surface-mediated formation of PCDD/F from pyrolysis of 2-chlorophenol. Chemosphere, 2007, 68, 1741-1750.	4.2	24

#	Article	IF	CITATIONS
1221	National Combustion Code Calculations of a NASA Low-NOx Hydrogen Injector Concept., 2007, , .		0
1222	Tribute to James A. Miller. Journal of Physical Chemistry A, 2007, 111, 3673-3675.	1.1	0
1223	REACTION MECHANISM OF THE CCN RADICAL WITH NITROGEN DIOXIDE. Journal of Theoretical and Computational Chemistry, 2007, 06, 661-674.	1.8	2
1224	Investigation on the Design and Optimization of a Low NOxâ^'CO Emission Burner Both Experimentally and through Computational Fluid Dynamics (CFD) Simulations. Energy & Samp; Fuels, 2007, 21, 42-58.	2.5	24
1225	Effect of Syngas Composition and CO ₂ -Diluted Oxygen on Performance of a Premixed Swirl-Stabilized Combustor. Combustion Science and Technology, 2007, 180, 64-88.	1.2	94
1226	Determination of the rate constant and product channels for the radicalae"radical reaction NCO(X $2\hat{l}$) + C2H5(X $2Aae^3$) at 293 K. Physical Chemistry Chemical Physics, 2007, 9, 4301.	1.3	6
1227	Wide temperature range (T = 295 K and 770 \hat{a} \in 1305 K) study of the kinetics of the reactions HCO + NO and HCO + NO2 using frequency modulation spectroscopy. Physical Chemistry Chemical Physics, 2007, 9, 4177.	1.3	18
1228	Role of Methanol in Supercritical Water Oxidation of Ammonia. Industrial & Engineering Chemistry Research, 2007, 46, 3566-3573.	1.8	41
1229	NO Emission Behavior in Oxy-fuel Combustion Recirculated with Carbon Dioxide. Energy & Camp; Fuels, 2007, 21, 121-129.	2.5	67
1230	HNNC Radical and Its Role in the CH + N ₂ Reaction. Journal of Physical Chemistry A, 2007, 111, 6894-6899.	1.1	23
1231	Influence of Reactant Mixing in a Laminar Flow Reactor:Â The Case of Gas Reburning. 2. Modelling Study. Industrial & Engineering Chemistry Research, 2007, 46, 3528-3537.	1.8	1
1232	Mild Combustion of Industrial Hydrogen-Containing Byproducts. Industrial & Engineering Chemistry Research, 2007, 46, 6806-6811.	1.8	39
1233	Influence of Reactant Mixing in a Laminar Flow Reactor:Â The Case of Gas Reburning. 1. Experimental Study. Industrial & Engineering Chemistry Research, 2007, 46, 3520-3527.	1.8	11
1234	State-Resolved Dynamics of the CN(B2Σ+) and CH(A2Δ) Excited Products Resulting from the VUV Photodissociation of CH3CNâ€. Journal of Physical Chemistry A, 2007, 111, 6637-6648.	1.1	5
1235	Recalibrated Double Many-Body Expansion Potential Energy Surface and Dynamics Calculations for HN2. Journal of Physical Chemistry A, 2007, 111, 1172-1178.	1.1	24
1236	Aging of Premixed Metal Fiber Burners for Natural Gas Combustion Catalyzed with Pd/LaMnO ₃ ·2ZrO ₂ . Industrial & Engineering Chemistry Research, 2007, 46, 6666-6673.	1.8	18
1237	Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner. Journal of Fluid Mechanics, 2007, 570, 17-46.	1.4	257
1238	Various effects of EGR on combustion and emissions on an automotive DI Diesel engine: numerical and experimental study., 2007,,.		16

#	Article	IF	CITATIONS
1239	Theoretical study on the methyl radical with chlorinated methyl radicals CH3 \hat{a} °nCln (n = 1, 2, 3) and CCl2. Journal of Computational Chemistry, 2007, 28, 865-876.	1.5	1
1240	Shock-tube studies on the reactions of dimethyl ether with oxygen and hydrogen atoms. International Journal of Chemical Kinetics, 2007, 39, 97-108.	1.0	40
1241	The interaction between soot and NO formation in a laminar axisymmetric coflow ethylene/air diffusion flame. Combustion and Flame, 2007, 149, 225-233.	2.8	26
1242	First- and second-order elliptic conditional moment closure calculations of piloted methane diffusion flames. Combustion and Flame, 2007, 150, 92-107.	2.8	12
1243	An experimental study of low-pressure premixed pyrrole/oxygen/argon flames with tunable synchrotron photoionization. Combustion and Flame, 2007, 151, 347-365.	2.8	52
1244	Theoretical study of reaction mechanism for NCO+HCNO. Chemical Physics Letters, 2007, 442, 1-6.	1.2	17
1245	A numerical investigation on NOX formation in counterflow n-heptane triple flames. International Journal of Thermal Sciences, 2007, 46, 936-943.	2.6	10
1246	Kinetics, experimental and reactor modeling studies of the carbon dioxide reforming of methane (CDRM) over a newNi/CeO2–ZrO2catalyst in a packed bed tubular reactor. Chemical Engineering Science, 2007, 62, 4012-4024.	1.9	92
1247	Theoretical study of H-abstraction reaction of C2H5OH with NCO. Chemical Physics, 2007, 337, 119-124.	0.9	6
1248	Effects of catalytic walls on hydrogen/air combustion inside a micro-tube. Applied Catalysis A: General, 2007, 332, 89-97.	2.2	83
1249	Simultaneous laser-induced fluorescence and sub-Doppler polarization spectroscopy of the CH radical. Optics Communications, 2007, 270, 347-352.	1.0	28
1250	Emission of nitrogen oxides in a vortexing fluidized bed combustor. Fuel, 2007, 86, 234-243.	3.4	33
1251	Experimental and computational study of a lifted, non-premixed turbulent free jet flame. Fuel, 2007, 86, 793-806.	3.4	20
1252	Quantification of emissions from the co-incineration of cutting oil emulsions in cement plants $\hat{a} \in \text{Part}$ I: NOx, CO and VOC. Fuel, 2007, 86, 1144-1152.	3.4	27
1253	A study of NOxNOx formation in hydrogen flames. International Journal of Hydrogen Energy, 2007, 32, 3572-3585.	3.8	72
1254	Effects of addition of electrolysis products in methane–air diffusion flames. International Journal of Hydrogen Energy, 2007, 32, 4059-4070.	3.8	15
1255	Gaseous nitryl azide N4O2: A joint theoretical and experimental study. Journal of Molecular Structure, 2007, 840, 59-65.	1.8	12
1256	Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. Journal of Environmental Management, 2007, 83, 251-289.	3.8	261

#	Article	IF	CITATIONS
1257	Active control of lean blowout in a swirl-stabilized combustor using a tunable diode laser. Proceedings of the Combustion Institute, 2007, 31, 3215-3223.	2.4	50
1258	Unsteady flame and flow field interaction of a premixed model gas turbine burner. Proceedings of the Combustion Institute, 2007, 31, 3197-3205.	2.4	26
1259	NO reburning in ultrarich filtration combustion of methane. Proceedings of the Combustion Institute, 2007, 31, 3417-3424.	2.4	6
1260	Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames. Proceedings of the Combustion Institute, 2007, 31, 727-735.	2.4	55
1261	Sustainability of mild combustion of hydrogen-containing hybrid fuels. Proceedings of the Combustion Institute, 2007, 31, 3393-3400.	2.4	67
1262	Hidden interactions—Trace species governing combustion and emissions. Proceedings of the Combustion Institute, 2007, 31, 77-98.	2.4	161
1263	Combustion at a crossroads: Status and prospects. Proceedings of the Combustion Institute, 2007, 31, 1-29.	2.4	117
1264	Spray combustion simulation including soot and NO formation. Energy Conversion and Management, 2007, 48, 2077-2089.	4.4	41
1265	Emissions of SO2, NO and N2O in a circulating fluidized bed combustor during co-firing coal and biomass. Journal of Environmental Sciences, 2007, 19, 109-116.	3.2	82
1266	Kinetic Model and Simulation of Promoted Selective Non-catalytic Reduction by Sodium Carbonate. Chinese Journal of Chemical Engineering, 2007, 15, 512-519.	1.7	19
1267	Radical–molecule reaction CH2Cl + NO2: a mechanistic study. Theoretical Chemistry Accounts, 2007, 117, 579-586.	0.5	4
1268	A CASPT2//CASSCF study of the quartet excited state $\$ilde_a^{4}A^{primeprime}$ of the HCNN radical. Theoretical Chemistry Accounts, 2007, 118, 915-922.	0.5	2
1269	On the nature of the burning rate-controlling reaction of energetic materials for the gas-phase model. Combustion, Explosion and Shock Waves, 2007, 43, 297-308.	0.3	8
1270	Modeling and coordinative optimization of NO x emission and efficiency of utility boilers with neural network. Korean Journal of Chemical Engineering, 2007, 24, 1118-1123.	1.2	15
1271	An evaluation of detailed reaction mechanisms for hydrogen combustion under gas turbine conditions. International Journal of Hydrogen Energy, 2007, 32, 125-135.	3.8	79
1272	Ethane ignition and oxidation behind reflected shock waves. Combustion and Flame, 2007, 150, 137-150.	2.8	63
1273	Diesel combustion: In-cylinder NO concentrations in relation to injection timing. Combustion and Flame, 2007, 151, 333-346.	2.8	40
1274	Conditional moment closure calculations of a swirl-stabilized, turbulent nonpremixed methane flame. Combustion and Flame, 2007, 151, 397-411.	2.8	12

#	Article	IF	CITATIONS
1275	Modeling of combustion and ignition of solid-propellant ingredients. Progress in Energy and Combustion Science, 2007, 33, 497-551.	15.8	182
1276	Photoionization mass spectrometric studies and modeling of fuel-rich allene and propyne flames. Proceedings of the Combustion Institute, 2007, 31, 1157-1164.	2.4	63
1277	The influence of mixing between NH3 and NO for a De-NOx reaction in the SNCR process. Journal of Industrial and Engineering Chemistry, 2008, 14, 457-467.	2.9	64
1278	Overall chemical kinetics model for partial oxidation of methane in inert porous media. Chemical Engineering Journal, 2008, 144, 79-87.	6.6	33
1279	Remaining uncertainties in the kinetic mechanism of hydrogen combustion. Combustion and Flame, 2008, 152, 507-528.	2.8	284
1280	Diode laser absorption measurement and analysis of HCN in atmospheric-pressure, fuel-rich premixed methane/air flames. Combustion and Flame, 2008, 155, 267-276.	2.8	24
1281	An experimental and numerical investigation on the influence of external gas recirculation on the HCCI autoignition process in an engine: Thermal, diluting, and chemical effects. Combustion and Flame, 2008, 155, 476-489.	2.8	57
1282	Numerical investigation of ethylene flame bubble instability induced by shock waves. Shock Waves, 2008, 17, 409-419.	1.0	32
1283	Detection of trace nitric oxide concentrations using 1-D laser-induced fluorescence imaging. Applied Physics B: Lasers and Optics, 2008, 91, 661-667.	1.1	4
1284	A comparative study on lowâ€energy elastic electronâ€NH _{<i>x</i>} (<i>x</i> = 1,2,3) collisions. International Journal of Quantum Chemistry, 2008, 108, 2312-2317.	1.0	6
1285	Isomerization of HNO to HON in the singlet state assisted by amino acid residues and/or water molecules. International Journal of Quantum Chemistry, 2008, 108, 1246-1256.	1.0	1
1286	Methanol oxidation in a flow reactor: Implications for the branching ratio of the CH ₃ OH+OH reaction. International Journal of Chemical Kinetics, 2008, 40, 423-441.	1.0	60
1287	Experimental measurements and kinetic modeling of CO/H ₂ /O ₂ /NO _x conversion at high pressure. International Journal of Chemical Kinetics, 2008, 40, 454-480.	1.0	164
1288	Uncertainty analysis of NO production during methane combustion. International Journal of Chemical Kinetics, 2008, 40, 754-768.	1.0	55
1289	Mechanisms of high-pressure hydrogen gas self-ignition in tubes. Journal of Loss Prevention in the Process Industries, 2008, 21, 185-198.	1.7	96
1290	Numerical modeling of NOx reduction using pyrolysis products from biomass-based materials. Biomass and Bioenergy, 2008, 32, 146-154.	2.9	30
1291	Investigation of local flame structures and statistics in partially premixed turbulent jet flames using simultaneous single-shot CH and OH planar laser-induced fluorescence imaging. Combustion and Flame, 2008, 154, 802-818.	2.8	78
1292	A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry. Combustion and Flame, 2008, 154, 761-774.	2.8	270

#	Article	IF	CITATIONS
1293	Kinetics of reactions of CN with chlorinated methanes. Chemical Physics Letters, 2008, 460, 64-67.	1.2	5
1294	Theoretical studies on the mechanism and dynamics of the H-abstraction for NCO with C3H8 reaction. Chemical Physics, 2008, 348, 195-198.	0.9	O
1295	The oxidation of hydrogen cyanide and related chemistry. Progress in Energy and Combustion Science, 2008, 34, 1-46.	15.8	305
1296	Porous burners for lean-burn applications. Progress in Energy and Combustion Science, 2008, 34, 667-684.	15.8	273
1297	Experimental evaluation and detailed characterisation of biomass reburning. Biomass and Bioenergy, 2008, 32, 959-970.	2.9	20
1298	NO reduction capacity of four major solid fuels in reburning conditions – Experiments and modeling. Fuel, 2008, 87, 274-289.	3.4	36
1299	A numerical and experimental study of counterflow syngas flames at different pressures. Fuel, 2008, 87, 319-334.	3 . 4	72
1300	The evaluation of waste tyre pulverised fuel for NOx reduction by reburning. Fuel, 2008, 87, 2893-2900.	3.4	29
1301	Enhancement of hydrogen reaction in a micro-channel by catalyst segmentation. International Journal of Hydrogen Energy, 2008, 33, 2586-2595.	3.8	61
1302	NO reduction and NO2 emission characteristics in rich-lean combustion of hydrogen. International Journal of Hydrogen Energy, 2008, 33, 4689-4693.	3.8	43
1303	Investigation of the flame structure and nitrogen oxides formation in lean porous premixed combustion of natural gas/hydrogen blends. International Journal of Hydrogen Energy, 2008, 33, 4893-4905.	3.8	45
1304	Modelling of combustion and nitrogen oxide formation in hydrogen-fuelled internal combustion engines within a 3D CFD code. International Journal of Hydrogen Energy, 2008, 33, 5083-5097.	3.8	103
1305	The effects of hydrogen addition on Fenimore NO formation in low-pressure, fuel-rich-premixed, burner-stabilized CH4/O2/N2 flames. International Journal of Hydrogen Energy, 2008, 33, 5850-5857.	3.8	16
1306	Hydrogen oxidation in H2/O2/N2 gas mixture by pulsed DBD at atmospheric pressure. International Journal of Hydrogen Energy, 2008, 33, 6792-6799.	3.8	6
1307	Comparison of Different Global Reaction Mechanisms for MILD Combustion of Natural Gas. Combustion Science and Technology, 2008, 180, 565-592.	1.2	101
1308	Detailed kinetic modeling of NOxNOx storage and reduction with hydrogen as the reducing agent and in the presence of CO2 and H2O over a Pt/Ba/Al catalyst. Journal of Catalysis, 2008, 258, 273-288.	3.1	66
1309	Kinetics of CH + N ₂ Revisited with Multireference Methods. Journal of Physical Chemistry A, 2008, 112, 522-532.	1.1	62
1310	Experiment and Computational Fluid Dynamics (CFD) Simulation of Urea-Based Selective Noncatalytic Reduction (SNCR) in a Pilot-Scale Flow Reactor. Energy & Energy & 2008, 22, 3864-3876.	2.5	19

#	Article	IF	CITATIONS
1311	Experimental and modeling study of the effect of CH4 and pulverized coal on selective non-catalytic reduction process. Chemosphere, 2008, 73, 650-656.	4.2	24
1312	Kinetic modeling analysis of nitric oxide reduction using biogas as reburning fuel. Journal of Biotechnology, 2008, 136, S414.	1.9	0
1313	Chemical Effects of a High CO ₂ Concentration in Oxy-Fuel Combustion of Methane. Energy & Samp; Fuels, 2008, 22, 291-296.	2.5	348
1314	Computational fluid dynamics and interactive multiobjective optimization in the development of low-emission industrial boilers. Engineering Optimization, 2008, 40, 869-890.	1.5	5
1315	Preferential Diffusion Effects on NO Formation in Methane/Hydrogen-Air Diffusion Flames. Energy & Ener	2.5	11
1316	Role of the Chemical Kinetics on Modeling NOx Emissions in Diesel Engines. Energy &	2.5	16
1317	Determination of the Rate Constant for the NH2(X2B1) + NH2(X2B1) Reaction at Low Pressure and 293 K. Journal of Physical Chemistry A, 2008, 112 , $13432-13443$.	1.1	10
1318	Comparison of Global Ammonia Chemistry Mechanisms in Biomass Combustion and Selective Noncatalytic Reduction Process Conditions. Energy & Energy & 2008, 22, 297-305.	2.5	22
1319	Identification of Combustion Intermediates in Low-Pressure Premixed Pyridine/Oxygen/Argon Flames. Journal of Physical Chemistry A, 2008, 112, 13549-13555.	1,1	31
1320	Characteristics of Engine Emissions Using Biodiesel Blends in Low-Temperature Combustion Regimes. Energy & Ener	2.5	34
1321	Theoretical Study on Reaction Mechanism of Fulminic Acid HCNO with CN Radical. Journal of Physical Chemistry A, 2008, 112, 5251-5257.	1,1	10
1322	Release Of Nitrogen Precursors From Coal And Biomass Residues in a Bubbling Fluidized Bed. Energy & Samp; Fuels, 2008, 22, 363-371.	2.5	56
1323	Étude de l'influence des paramà tres de combustion sur la formation de SO2, de NO et de CO lors de la dÃ@gradation thermique de produits phytosanitaires d'usage courant en Afrique de l'Ouest. Journal of Environmental Engineering and Science, 2008, 7, 213-221.	0.3	0
1324	Flame Structure and Stabilization Mechanisms in a Stagnation-Point Reverse-Flow Combustor. Journal of Engineering for Gas Turbines and Power, 2008, 130, .	0.5	32
1325	Directab initiodynamics calculations of the reaction rate for the hydrogen abstraction reaction of NCO with CH4and C2H6. Molecular Physics, 2008, 106, 2255-2261.	0.8	0
1326	AN ACCURATE QUANTUM DYNAMICS STUDY OF THE N+OH REACTION. Journal of Theoretical and Computational Chemistry, 2008, 07, 607-613.	1.8	23
1327	Innovative study of co-axial normal and inverse diffusion flames. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2008, 222, 253-270.	0.8	2
1328	Environmental Combustion Considerations. , 2008, , 409-494.		1

#	Article	IF	CITATIONS
1329	Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation. Physics of Fluids, 2008, 20, .	1.6	232
1330	Kinetic Study of Promoted SNCR Process by Different Gas Additives. , 2008, , .		3
1333	NO _{x re-burn simulation in a double-jet counter-flow flame. International Journal of Energy Technology and Policy, 2008, 6, 5.}	0.1	0
1334	Theoretical study and rate constant calculation for the $O(3P) + C2H5CN$ reaction. Molecular Physics, 2008, 106, 1379-1387.	0.8	6
1335	HCCI Engine Modeling and Experimental Investigations – Part 2: The Composition of a NO-PRF Interaction Mechanism and the Influence of NO in EGR on Auto-Ignition. Combustion Science and Technology, 2008, 180, 1245-1262.	1,2	18
1337	Comparison and Parametric Study of Flameless Oxidation in a Gas Turbine Using Two Kinetics Mechanisms. American Journal of Environmental Sciences, 2008, 4, 535-543.	0.3	1
1338	Development and Validation of a Gasoline Surrogate Fuel Kinetic Mechanism., 2009,,.		2
1339	An Experimental Investigation of the Origin of Increased NO _x Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel. SAE International Journal of Fuels and Lubricants, 0, 2, 789-816.	0.2	279
1340	Kinetics in Ammonia-Containing Premixed Flames and a Preliminary Investigation of Their Use as Fuel in Spark Ignition Engines. Combustion Science and Technology, 2009, 181, 1092-1106.	1.2	22
1341	Quasiclassical trajectory calculations of differential cross sections and product energy distributions for the N+OH→NO+H reaction. Journal of Chemical Physics, 2009, 131, 094302.	1.2	20
1342	Numerical Modeling of the Effects of Fuel Dilution and Strain Rate on Reaction Zone Structure and NOxFormation in Flameless Combustion. Combustion Science and Technology, 2009, 181, 1078-1091.	1.2	13
1343	DIABATIC ELECTRONIC MANIFOLD OF HN ₂ (² A′) AND N + NH REACTION DYNAMICS ON ITS LOWEST ADIABAT. Journal of Theoretical and Computational Chemistry, 2009, 08, 849-859.	1.8	11
1344	Product gas combustion in fluidized bed for N <inf>2</inf> O reduction., 2009,,.		1
1345	Combustion Simulation of an Exhaust Gas Recirculation Operated Micro-gas Turbine. Journal of Engineering for Gas Turbines and Power, 2009, 131, .	0.5	16
1346	Emissions Modelling for the Optimization of Greener Aircraft Operations. , 2009, , .		9
1347	Multi-Zone DI Diesel Spray Combustion Model for Thermodynamic Simulation of Engine with PCCI and High EGR Level. SAE International Journal of Engines, 0, 2, 1811-1834.	0.4	39
1348	Effects of Hybrid Reburning System with SNCR and Air Staging on NO _x Reduction and Thermal Characteristics in Oxygen-Enhanced Combustion. Combustion Science and Technology, 2009, 181, 1289-1309.	1.2	7
1349	Identification of Intermediates in Pyridine Pyrolysis with Molecular-beam Mass Spectrometry and Tunable Synchrotron VUV Photoionization. Chinese Journal of Chemical Physics, 2009, 22, 204-209.	0.6	12

#	Article	IF	CITATIONS
1350	Dissociative charge exchange dynamics of HN2+ and DN2+. Journal of Chemical Physics, 2009, 131, 134301.	1.2	3
1351	Characteristics of Synthesized Diamond Films by Using CACVD Techniques at High Temperatures. Key Engineering Materials, 2009, 421-422, 131-134.	0.4	0
1353	A study of N ₂ O decomposition rate constant at high temperature: Application to the reduction of nitrous oxide by hydrogen. International Journal of Chemical Kinetics, 2009, 41, 357-375.	1.0	48
1354	Ab initio chemical kinetics for the NH ₂ + HNO _{<i>x</i>} reactions, part II: Kinetics and mechanism for NH ₂ + HONO. International Journal of Chemical Kinetics, 2009, 41, 678-688.	1.0	12
1355	Ab initio chemical kinetics for the NH ₂ + HNO _{<i>x</i>} Reactions, Part I: Kinetics and Mechanism for NH ₂ + HNO. International Journal of Chemical Kinetics, 2009, 41, 667-677.	1.0	19
1356	Transported PDF Modelling of a High Velocity Bluff-Body Stabilised Flame (HM2) Using Detailed Chemistry. Flow, Turbulence and Combustion, 2009, 82, 493-509.	1.4	12
1357	Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry. Progress in Energy and Combustion Science, 2009, 35, 168-191.	15.8	316
1358	Hydrogen-fueled internal combustion engines. Progress in Energy and Combustion Science, 2009, 35, 490-527.	15.8	860
1359	Species identification in a laminar premixed low-pressure flame of morpholine as a model substance for oxygenated nitrogen-containing fuels. Proceedings of the Combustion Institute, 2009, 32, 1269-1276.	2.4	32
1360	Analysis of NO structure in a methane–air edge flame. Proceedings of the Combustion Institute, 2009, 32, 1117-1124.	2.4	11
1361	Influences of O2 concentration on NO reduction and N2O formation in thermal deNOx process. Combustion and Flame, 2009, 156, 1303-1315.	2.8	34
1362	Parametric study of the Incompletely Stirred Reactor modeling. Combustion and Flame, 2009, 156, 1818-1827.	2.8	10
1363	Ammonia chemistry in a flameless jet. Combustion and Flame, 2009, 156, 1950-1956.	2.8	31
1364	Ammonia chemistry in oxy-fuel combustion of methane. Combustion and Flame, 2009, 156, 1937-1949.	2.8	327
1365	Effect of oxygenated liquid additives on the urea based SNCR process. Journal of Environmental Management, 2009, 90, 3429-3435.	3.8	39
1366	Analysis of NO formation in high temperature diluted air combustion in a coaxial jet flame using an unsteady flamelet model. International Journal of Heat and Mass Transfer, 2009, 52, 1412-1420.	2.5	25
1367	Development of reactor models of a diffusion combustion chamber for comparative analysis of detailed and reduced kinetic schemes of combustion of hydrocarbon fuels. Combustion, Explosion and Shock Waves, 2009, 45, 126-133.	0.3	7
1368	Laminar hydrocarbon flame structure. Combustion, Explosion and Shock Waves, 2009, 45, 365-382.	0.3	7

#	Article	IF	Citations
1369	Validation of reduced mechanisms for nitrogen chemistry in numerical simulation of a turbulent non-premixed flame. Reaction Kinetics and Catalysis Letters, 2009, 96, 125-138.	0.6	18
1370	Kinetic modeling of non-hydrocarbon/nitric oxide interactions in a flow reactor above 1,400K. Korean Journal of Chemical Engineering, 2009, 26, 840-844.	1.2	1
1371	Biodiesel production, properties, and feedstocks. In Vitro Cellular and Developmental Biology - Plant, 2009, 45, 229-266.	0.9	558
1372	Numerical evaluation of NOx mechanisms in methane-air counterflow premixed flames. Journal of Mechanical Science and Technology, 2009, 23, 659-666.	0.7	16
1373	Theoretical study on reaction mechanism of isocyanate radical NCO with ethene. International Journal of Quantum Chemistry, 2009, 109, 801-810.	1.0	4
1374	Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science, 2009, 35, 385-397.	15.8	248
1375	Study on NO heterogeneous reduction with coal in an entrained flow reactor. Fuel, 2009, 88, 110-115.	3.4	23
1376	Conditional moment closure modelling of soot formation in turbulent, non-premixed methane and propane flames. Fuel, 2009, 88, 393-407.	3.4	37
1377	A comparative study of n-heptane, methyl decanoate, and dimethyl ether combustion characteristics under homogeneous-charge compression–ignition engine conditions. Fuel, 2009, 88, 1099-1108.	3.4	30
1378	Effect of the cooling and reheating during coal pyrolysis on the conversion from char-N to NO/N2O. Fuel Processing Technology, 2009, 90, 8-15.	3.7	12
1379	Biomass combustion in fluidized bed boilers: Potential problems and remedies. Fuel Processing Technology, 2009, 90, 21-50.	3.7	1,125
1380	Exhaust emissions and fuel properties of partially hydrogenated soybean oil methyl esters blended with ultra low sulfur diesel fuel. Fuel Processing Technology, 2009, 90, 1122-1128.	3.7	99
1381	Experimental and numerical investigation of hydrogen gas auto-ignition. International Journal of Hydrogen Energy, 2009, 34, 5946-5953.	3.8	50
1382	Radical–radical reactions NCO (X2â^)+Cl (2Pu): Mechanistic study. Computational and Theoretical Chemistry, 2009, 897, 111-117.	1.5	2
1383	A numerical study of the influence of ammonia addition on the auto-ignition limits of methane/air mixtures. Journal of Hazardous Materials, 2009, 164, 1164-1170.	6.5	8
1384	Experimental characterization of gaseous species emitted by the fast pyrolysis of biomass and polyethylene. Journal of Analytical and Applied Pyrolysis, 2009, 86, 260-268.	2.6	13
1385	Flame structure studies of premixed ammonia/hydrogen/oxygen/argon flames: Experimental and numerical investigation. Proceedings of the Combustion Institute, 2009, 32, 1277-1284.	2.4	99
1386	Formation and destruction of nitric oxide in methane flames doped with NO at atmospheric pressure. Proceedings of the Combustion Institute, 2009, 32, 327-334.	2.4	28

#	Article	IF	CITATIONS
1387	NCN quantitative measurement in a laminar low pressure flame. Proceedings of the Combustion Institute, 2009, 32, 937-944.	2.4	28
1388	Towards comprehensive computational fluid dynamics modeling of pyrolysis furnaces with next generation low-NO burners using finite-rate chemistry. Proceedings of the Combustion Institute, 2009, 32, 2649-2657.	2.4	16
1389	Kinetics of the H+NCO reaction. Proceedings of the Combustion Institute, 2009, 32, 149-155.	2.4	17
1390	Computational and experimental investigation of the interaction of soot and NO in coflow diffusion flames. Proceedings of the Combustion Institute, 2009, 32, 777-784.	2.4	30
1391	Heterogeneous fixation of N2: Investigation of a novel mechanism for formation of NO. Proceedings of the Combustion Institute, 2009, 32, 1973-1980.	2.4	12
1392	Application of urea-based SNCR to a municipal incinerator: On-site test and CFD simulation. Chemical Engineering Journal, 2009, 152, 36-43.	6.6	39
1393	Pyrolysis property of pulverized coal in an entrained flow reactor during coal reburning. Chemical Engineering and Processing: Process Intensification, 2009, 48, 333-338.	1.8	3
1394	A numerical study on the effect of hydrogen/reformate gas addition on flame temperature and NO formation in strained methane/air diffusion flames. Combustion and Flame, 2009, 156, 477-483.	2.8	25
1395	Chemiluminescence of BO2 to map the creation of thermal NO in flames. Combustion and Flame, 2009, 156, 348-361.	2.8	11
1396	Pathways for conversion of char nitrogen to nitric oxide during pulverized coal combustion. Combustion and Flame, 2009, 156, 574-587.	2.8	50
1397	Direct numerical simulation of auto-ignition of a hydrogen vortex ring reacting with hot air. Combustion and Flame, 2009, 156, 813-825.	2.8	9
1398	An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure. Combustion and Flame, 2009, 156, 1413-1426.	2.8	359
1399	Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism. Combustion and Flame, 2009, 156, 2093-2105.	2.8	471
1400	Action of oxygen and sodium carbonate in the urea-SNCR process. Combustion and Flame, 2009, 156, 1785-1790. Quasi-classical determination of integral cross-sections and rate constants for the <mml:math< td=""><td>2.8</td><td>19</td></mml:math<>	2.8	19
1401	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si25.gif" display="inline" overflow="scroll"> <mml:mrow><mml:mtext>N</mml:mtext><mml:mo>+</mml:mo><mml:mtext>OH<mml:mo>â†'</mml:mo><mml:mspace width="0.25em"></mml:mspace><mml:mtext></mml:mtext></mml:mtext><td>1.2</td><td>nspace 36</td></mml:mrow>	1.2	nspace 36
1402	reaction. Chemical Physics Letters, 2009, 471, 65-70. On the Performance and Operability of GE's Dry Low NO Combustors utilizing Exhaust Gas Recirculation for PostCombustion Carbon Capture. Energy Procedia, 2009, 1, 3809-3816.	1.8	89
1403	Effect of excess air on grate combustion of solid wastes and on gaseous products. International Journal of Thermal Sciences, 2009, 48, 165-173.	2.6	7
1404	Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines (II): The temperature distribution of the flame and its chemical structure. Acta Astronautica, 2009, 64, 602-614.	1.7	31

#	Article	IF	CITATIONS
1405	Analytical and experimental research for decreasing nitrogen oxides emissions. Applied Thermal Engineering, 2009, 29, 1614-1621.	3.0	17
1406	Determination of the Rate Constants for the Radicalâ 'Radical Reactions NH ₂ (XÌf ² B ₁) + NH(X ³ Σ ^{â '}) and NH ₂ (XÌf ² B ₁) + H(² S) at 293 K. Journal of Physical Chemistry A. 2009. 113. 2415-2423.	1.1	13
1407	Combined Crossed Molecular Beam and Theoretical Studies of the N(² D) + CH ₄ Reaction and Implications for Atmospheric Models of Titan. Journal of Physical Chemistry A, 2009, 113, 11138-11152.	1.1	90
1408	Laminar Burning Velocities for Hydrogen-, Methane-, Acetylene-, and Propane-Nitrous Oxide Flames. Combustion Science and Technology, 2009, 181, 917-936.	1.2	51
1409	Thermal Decomposition of NH ₂ OH and Subsequent Reactions: Ab Initio Transition State Theory and Reflected Shock Tube Experiments. Journal of Physical Chemistry A, 2009, 113, 10241-10259.	1.1	86
1410	Influences of Heat Loss on NO _{<i>x</i>} Formation in a Premixed CH ₄ /Air-Fueled Combustor. Energy & Subspace (1988) and Subspac	2.5	5
1411	Kinetics of the Reactions of CH3CH2, CH3CHCl, and CH3CCl2 Radicals with NO2 in the Temperature Range 221â~363 K. Journal of Physical Chemistry A, 2009, 113, 1753-1759.	1.1	10
1412	Anharmonic vibrational frequencies and vibrationally-averaged structures of key species in hydrocarbon combustion: HCO ⁺ , HCO, HNO, HOO, HOO ^{â€"} , CH ₃ +, and CH ₃ . Molecular Physics, 2009, 107, 1283-1301.	0.8	38
1413	Experimental and modeling study of the effects of multicomponent gas additives on selective non-catalytic reduction process. Chemosphere, 2009, 76, 1199-1205.	4.2	14
1414	Effect of Exhaust Gas Recirculation on NOx Formation in Premixed Combustion System., 2009,,.		13
1415	Colorless Distributed Combustion (CDC): Effect of Flowfield Configuration. , 2009, , .		1
1416	Reduced Propane-air and Vitiated-air Chemical Schemes for Gas Turbine Combustion Applications. , 2009, , .		1
1417	Effect of Confinement on Colorless Distributed Combustion for Gas Turbine Engines. , 2009, , .		7
1418	Laser-Induced Fluorescence Studies of Nitric Oxide Formed in a Hydrogen-Nitrous Oxide Premixed Flame. , 2009, , .		0
1419	Emissions and Thermodynamic Performance Simulation of an Industrial Gas Turbine., 2009,,.		0
1420	State-to-State Quantum Dynamical Study of the N + OH â†' NO + H Reaction. Journal of Physical Chemistry A, 2009, 113, 2316-2322.	1.1	27
1421	Catalytic Combustion for the Production of Energy. , 0, , 363-392.		0
1422	A Theoretical Investigation on the Kinetics and Mechanism of the Reaction of Amidogen with Hydroxyl Radical. Journal of Physical Chemistry A, 2009, 113, 12961-12971.	1.1	28

#	Article	IF	CITATIONS
1423	Fundamental Studies of NO _{<i>x</i>} Emission Characteristics in Dimethyl Ether (DME)/Air Non-premixed Flames. Energy & Studies 2009, 23, 754-761.	2.5	17
1424	Prediction and Measurement of the Product Gas Composition of the Ultra Rich Premixed Combustion of Natural Gas: Effects of Equivalence Ratio, Residence Time, Pressure, and Oxygen Concentration. Combustion Science and Technology, 2009, 181, 433-456.	1.2	11
1426	Effect of computational grid in industrialâ€scale boiler modeling. International Journal of Numerical Methods for Heat and Fluid Flow, 2009, 19, 93-117.	1.6	5
1427	EXPERIMENTAL STUDY OF USING EMULSIFIED DIESEL FUEL ON THE PERFORMANCE AND POLLUTANTS EMITTED FROM FOUR STROKE WATER COOLED DIESEL ENGINE. , 2009, , .		0
1429	Numerical study on dynamics of local flame elements in turbulent jet premixed flames. IOP Conference Series: Materials Science and Engineering, 2010, 10, 012032.	0.3	0
1430	Non-Premixed and Premixed Colorless Distributed Combustion for Gas Turbine Application. , 2010, , .		4
1431	Investigation of Distributed Combustion for Gas Turbine Application: Forward Flow Configuration. , 2010, , .		2
1436	Chemical Reactions. Mechanical Engineering, 2010, , 167-183.	0.0	0
1437	Theoretical study on the singlet and triplet potential energy surfaces of NH (X3Σâ^')Â+ÂHCNO reaction. Theoretical Chemistry Accounts, 2010, 127, 81-94.	0.5	2
1438	Intermediate species detection in a morpholine flame: contributions to fuel-bound nitrogen conversion from a model biofuel. Experiments in Fluids, 2010, 49, 761-773.	1.1	20
1439	Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion. Applied Energy, 2010, 87, 1631-1640.	5.1	186
1440	Influence of swirl number and fuel equivalence ratio on NO emission in an experimental LPG-fired chamber. Applied Thermal Engineering, 2010, 30, 928-934.	3.0	13
1441	Formation and consumption of NO in H2+O2+N2 flames doped with NO or NH3 at atmospheric pressure. Combustion and Flame, 2010, 157, 556-565.	2.8	57
1442	Experimental and numerical study of the role of NCN in prompt-NO formation in low-pressure CH4–O2–N2 and C2H2–O2–N2 flames. Combustion and Flame, 2010, 157, 1929-1941.	2.8	92
1443	Oxides of nitrogen emissions from biodiesel-fuelled diesel engines. Progress in Energy and Combustion Science, 2010, 36, 677-695.	15.8	313
1444	Effect of mixing on NO removal in the selective noncatalytic reduction reaction process. Journal of Material Cycles and Waste Management, 2010, 12, 204-211.	1.6	0
1445	Kinetic models of natural gas combustion in an internal combustion engine. Journal of Natural Gas Chemistry, 2010, 19, 6-14.	1.8	14
1446	Development and testing of a detailed kinetic mechanism of natural gas combustion in internal combustion engine. Journal of Natural Gas Chemistry, 2010, 19, 97-106.	1.8	8

#	ARTICLE	IF	CITATIONS
1447	Prediction and measurement of pollutant emissions in CNG fired internal combustion engine. Journal of Natural Gas Chemistry, 2010, 19, 539-547.	1.8	9
1448	Experimental and Modeling Study of the Effects of Gas Additives on the Thermal DeNOx Process. Chinese Journal of Chemical Engineering, 2010, 18, 143-148.	1.7	5
1449	Quasiclassical trajectory study of the reaction NH(X3Σâ^') + H â†' N(4S) + H2. Chinese Journal of Chemistry, 2010, 16, 336-345.	2.6	1
1450	Mechanism and Kinetics for the Reaction of NCS and OH Radicals. Chinese Journal of Chemistry, 2004, 22, 590-593.	2.6	О
1451	Étude expérimentale de flammes méthane oxygÃ"ne dopées avec de l'ammoniac ou du monoxyde d'azor comparaison avec les résultats des modÃ"les. Bulletin Des Sociétés Chimiques Belges, 2010, 99, 473-481.	te 0.0	4
1453	Biofuel Combustion Chemistry: From Ethanol to Biodiesel. Angewandte Chemie - International Edition, 2010, 49, 3572-3597.	7.2	587
1454	Ab initio chemical kinetics for the NH \langle sub \rangle 2 \langle sub \rangle + HNO \langle sub \rangle \langle i \rangle x \langle i \rangle \langle sub \rangle reactions, part III: Kinetics and mechanism for NH \langle sub \rangle 2 \langle sub \rangle + HONO \langle sub \rangle 2 \langle sub \rangle . International Journal of Chemical Kinetics, 2010, 42, 69-78.	1.0	3
1455	Modeling of NOx formation in diesel engines using finite-rate chemical kinetics. Applied Energy, 2010, 87, 2256-2265.	5.1	47
1456	Efficient and cost effective reburning using common wastes as fuel and additives. Fuel, 2010, 89, 2569-2582.	3.4	30
1457	Estimation of NOx emissions from coal-fired utility boilers. Fuel, 2010, 89, 2977-2984.	3.4	56
1458	Ammonia combustion at elevated pressure and temperature conditions. Fuel, 2010, 89, 3540-3545.	3.4	119
1459	Investigations of the reduction of NO to N2 by reaction with Fe. Fuel, 2010, 89, 3505-3509.	3.4	42
1460	Correlations for dependence of NOx emissions on heat loss in premixed CH4/air combustion. Fuel, 2010, 89, 3710-3717.	3.4	11
1461	Studies on properties of laminar premixed hydrogen-added ammonia/air flames for hydrogen production. International Journal of Hydrogen Energy, 2010, 35, 1054-1064.	3.8	190
1462	Effects of ammonia substitution on hydrogen/air flame propagation and emissions. International Journal of Hydrogen Energy, 2010, 35, 11332-11341.	3.8	139
1463	Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science, 2010, 36, 581-625.	15.8	940
1464	Trends in modeling of porous media combustion. Progress in Energy and Combustion Science, 2010, 36, 627-650.	15.8	135
1465	Theoretical study of the reaction of CCN radical with H2S. Computational and Theoretical Chemistry, 2010, 947, 45-51.	1.5	2

#	Article	IF	CITATIONS
1466	Theoretical studies on the low-lying electronic states of the diazomethyl (HCNN) radical and its ions. Computational and Theoretical Chemistry, 2010, 955, 145-151.	1.5	1
1467	Epitaxial and polycrystalline growth of AlN by high temperature CVD: Experimental results and simulation. Surface and Coatings Technology, 2010, 205, 1294-1301.	2.2	29
1468	Numerical simulation of the flow streams behavior in a self-regenerative crucible furnace. Applied Thermal Engineering, 2010, 30, 826-832.	3.0	15
1469	HCN oxidation in an O2/CO2 atmosphere: An experimental and kinetic modeling study. Combustion and Flame, 2010, 157, 267-276.	2.8	114
1470	Experiment and CFD simulation of hybrid SNCR–SCR using urea solution in a pilot-scale reactor. Computers and Chemical Engineering, 2010, 34, 1580-1589.	2.0	38
1471	Reaction mechanisms and kinetics for diazomethyl radical with NO: A computational study. Chemical Physics Letters, 2010, 497, 153-158.	1.2	2
1472	Numerical study of NOx formation during incineration of cellulosic and plastic materials: The combustion regime. International Journal of Thermal Sciences, 2010, 49, 443-453.	2.6	4
1473	A theoretical study of the CH ₂ N isomers: Molecular structure and energetics. International Journal of Quantum Chemistry, 2010, 110, 2483-2494.	1.0	2
1475	Investigation of NOx Predictions from Biodiesel-fueled HCCI Engine Simulations Using a Reduced Kinetic Mechanism. , 2010, , .		19
1476	Self-Ignition Delay Prediction in PCCI Direct Injection Diesel Engines Using Multi-Zone Spray Combustion Model and Detailed Chemistry. , 2010, , .		16
1477	Gas Turbine Combustion and Ammonia Removal Technology of Gasified Fuels. Energies, 2010, 3, 335-449.	1.6	22
1478	Diesel Fuel Additives to Reduce NOx Emissions from Diesel Engines Operated on Diesel and Biodiesel Fuels by SNCR. , 2010, , .		9
1479	Exhaust Emissions. , 2010, , 253-298.		1
1480	Experimental Study on the Effect of Urea and Additive Injection for Controlling Nitrogen Oxides Emissions. Environmental Engineering Science, 2010, 27, 47-53.	0.8	14
1481	A multi-objective design optimization strategy as applied to pre-mixed pre-vaporized injection systems for low emission combustors. Combustion Theory and Modelling, 2010, 14, 203-233.	1.0	7
1482	Experimental and Numerical Investigation of a FLOX Combustor Firing Low Calorific Value Gases. Combustion Science and Technology, 2010, 182, 1261-1278.	1.2	46
1483	Theoretical study for the reaction of CH3CN with O(P3). Journal of Chemical Physics, 2010, 132, 064301.	1.2	17
1484	The barrier height, unimolecular rate constant, and lifetime for the dissociation of HN2. Journal of Chemical Physics, 2010, 132, 064308.	1.2	35

#	Article	IF	Citations
1485	Simulation of NOx Reduction with Gas Fuels Based on the Elementary Kinetics. , 2010, , .		0
1486	Notice of Retraction: Numerical investigation on fuel lean reburning in a lab scale furnace. , 2010, , .		1
1487	Quantitative Laser Diagnostic and Modeling Study of C ₂ and CH Chemistry in Combustion. Journal of Physical Chemistry A, 2010, 114, 4719-4734.	1.1	17
1489	Dependence between Nonvolatile Nucleation Mode Particle and Soot Number Concentrations in an EGR Equipped Heavy-Duty Diesel Engine Exhaust. Environmental Science & Echnology, 2010, 44, 3175-3180.	4.6	57
1490	Reaction-Path Dynamics Calculations of the CI + NH3 Hydrogen Abstraction Reaction: The Role of the Intermediate Complexes. Journal of Physical Chemistry A, 2010, 114, 4418-4426.	1.1	16
1491	Formation and Decomposition of Chemically Activated and Stabilized Hydrazine. Journal of Physical Chemistry A, 2010, 114, 6235-6249.	1.1	33
1492	A Simplified Model for Volatile-N Oxidation. Energy & Samp; Fuels, 2010, 24, 2883-2890.	2.5	14
1493	Formation and Destruction of Nitric Oxide in NO Doped Premixed Flames of C ₂ H ₄ , C ₂ H ₆ , and C ₃ H ₈ at Atmospheric Pressure. Energy & Samp; Fuels, 2010, 24, 4833-4840.	2.5	10
1494	Theoretical Study on Reaction Mechanisms and Kinetics of Cyanomidyl Radical with NO. Journal of Physical Chemistry A, 2010, 114, 4655-4663.	1.1	7
1496	Kinetics of the R + NO2 Reactions (R = i-C3H7, n-C3H7, s-C4H9, and t-C4H9) in the Temperature Range $201\hat{a}^3$ 489 K. Journal of Physical Chemistry A, 2010, 114, 4811-4817.	1.1	15
1497	Reaction Mechanism of CH + C ₃ H ₆ : A Theoretical Study. Journal of Physical Chemistry A, 2010, 114, 9496-9506.	1.1	8
1498	Simplified Model for Reburning Chemistry. Energy & Simplified Model for Reburning Chemistry. Energy & Simplified Model for Reburning Chemistry.	2.5	10
1500	Thermal Decomposition of NCN3as a High-Temperature NCN Radical Source: Singletâ^'Triplet Relaxation and Absorption Cross Section of NCN(31£)â€. Journal of Physical Chemistry A, 2010, 114, 12963-12971.	1.1	25
1501	NO Emission Characteristics of Low-Rank Pulverized Bituminous Coal in the Primary Combustion Zone of a Drop-Tube Furnace. Energy & Samp; Fuels, 2010, 24, 3471-3478.	2.5	12
1502	Direct detection of pyridine formation by the reaction of CH (CD) with pyrrole: a ring expansion reaction. Physical Chemistry Chemical Physics, 2010, 12, 8750.	1.3	49
1503	Investigation of Non-Premixed and Premixed Distributed Combustion for GT Application. , 2010, , .		16
1504	A Novel Progress Variable Approach for Predicting NO in Laminar Hydrogen Flames. , 2010, , .		4
1505	Analysis of a Low-Emission Combustion Strategy for a High Performance Trans-Atmospheric Aircraft Engine. , 2010, , .		4

#	Article	IF	CITATIONS
1506	Investigation of Distributed Combustion for Gas Turbine Application: Reverse Flow Configuration. , 2010, , .		0
1507	On the abundance of non-cometary HCN on Jupiter. Faraday Discussions, 2010, 147, 103.	1.6	31
1508	Nonadiabatic quantum dynamics calculations for the N + NH \hat{a}^{\dagger} N2 + H reaction. Physical Chemistry Chemical Physics, 2010, 12, 9619.	1.3	12
1509	Effect of different downstream temperatures on the performance of a two-layer porous burner. Combustion Theory and Modelling, 2010, 14, 405-423.	1.0	13
1510	A crossed molecular beam study on the reaction of methylidyne radicals [CH(X ² Î)] with acetylene [C ₂ H ₂ (X ¹ Σ _g ⁺)]â€"competing C ₃ H+H ₂ channels. Physical Chemistry Chemical Physics, 2011, 13, 240-252.	1.3	53
1511	A kinetic study on the potential of a hybrid reaction mechanism for prediction of NO _x formation in biomass grate furnaces. Combustion Theory and Modelling, 2011, 15, 645-670.	1.0	8
1512	Study on NO Reduction and Its Heterogeneous Mechanism through Biomass Reburning in an Entrained Flow Reactor. Energy & E	2.5	23
1513	Investigation of NO _{<i>x</i>} Reduction in Fuel-Lean Reburning System with Propane. Energy & Lean, 2011, 25, 905-915.	2.5	6
1514	Analysis of the Autoignition Process under the Industrial Partial Oxidation Conditions Using Detailed Kinetic Modeling. Industrial & Engineering Chemistry Research, 2011, 50, 6009-6016.	1.8	4
1515	Homogeneous Combustion of Fuel Ultra-Lean Methane–Air Mixtures: Experimental Study and Simplified Reaction Mechanism. Energy & Simplified Reaction Mechanism. Energy & Simplified Reaction Mechanism. Energy & Simplified Reaction Mechanism.	2.5	17
1516	Reduction of Recycled NO _{<i>x</i>} by Simulated Coal Volatiles in Oxy-Fuel Combustion. Energy & Samp; Fuels, 2011, 25, 2608-2615.	2.5	5
1517	Cocombustion of Pulverized Coal with Waste Plastic and Tire Rubber Powders. Energy &	2.5	28
1518	Kinetics of the CN + CS ₂ and CN + SO ₂ Reactions. Journal of Physical Chemistry A, 2011, 115, 286-290.	1.1	4
1519	Effect of Excess Air Ratio and Temperature on NOx Emission from Grate Combustion of Biomass in the Staged Air Combustion Scenario. Energy & Staged Air Combustion Scenario. Energy & Staged Air Combustion Scenario.	2.5	68
1522	Fluidized Bed Combustion of Solid Biomass for Electricity and/or Heat Generation. Green Energy and Technology, 2011, , 123-149.	0.4	3
1523	The Effect of Coal Usage on Human Health and the Environment. , 2011, , 85-132.		14
1524	Quantum and quasiclassical state-to-state dynamics of the NH + H reaction: Competition between abstraction and exchange channels. Journal of Chemical Physics, 2011, 134, 134303.	1.2	24
1525	Emissions and Thermodynamic Performance Simulation of an Industrial Gas Turbine. Journal of Propulsion and Power, 2011, 27, 78-93.	1.3	15

#	Article	IF	CITATIONS
1526	Numerical Study Comparing the Combustion and Emission Characteristics of Biodiesel to Petrodiesel. Energy & Ene	2.5	41
1528	Theoretical Study of the Influence of Mixing on the Selective Noncatalytic Reduction Process with CH4or H2Addition. Industrial & Engineering Chemistry Research, 2011, 50, 10859-10864.	1.8	5
1529	Hydrogen Addition Effects on Methane-Air Colorless Distributed Combustion Flames. , 2011, , .		0
1530	The Coriolis effect in the N+NDâ†'N2+D reaction. Computational and Theoretical Chemistry, 2011, 977, 40-43.	1.1	0
1531	Biodiesel Production, Properties, and Feedstocks., 2011,, 285-347.		51
1532	Developments of Gas Turbine Combustors for Air-Blown and Oxygen-Blown IGCC., 2011,,.		1
1533	On the predictability of chemical kinetics for the description of the combustion of simple fuels. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2011, 33, 492-505.	0.8	11
1534	Numerical Analysis of NO _x Formation Trends in Biodiesel Combustion using Dynamic i-T Parametric Maps., 0,,.		12
1535	Effect of Biodiesel Origin on the Regulated and PAH Emissions from a Modern Passenger Car. , 2011, , .		9
1536	The Impact of Saturated and Unsaturated Fuel Molecules on Diesel Combustion and Exhaust Emissions. SAE International Journal of Fuels and Lubricants, 0, 5, 106-122.	0.2	25
1537	CFD Modeling of Processes Upstream of the Catalyst for Urea SCR NOx Reduction Systems in Heavy-Duty Diesel Applications. , 0, , .		11
1538	Numerical Simulation of the Soot and NOx Formations in a Biodiesel-Fuelled Engine. , $2011, , .$		9
1539	Emissions During Volatiles and Char Combustion Periods of Demineralized Lignite and Wood Blends. International Journal of Green Energy, 2011, 8, 857-868.	2.1	4
1540	Analysis of a Detailed Kinetic Model of Natural Gas Combustion in IC Engine. Polish Journal of Chemical Technology, 2011, 13, 6-15.	0.3	4
1541	Modelling of pollutants concentrations from the biomass combustion process. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2011, 32, 423-433.	0.7	20
1542	Estimation of reburning potential of syngas from sewage sludge gasification process. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2011, 32, .	0.7	7
1543	Accuracy of Scalar PDF Method for Turbulent Nonpremixed Combustion (Evaluation of Reynolds) Tj ETQq0 0 0 rgE Engineers Series B B-hen, 2011, 77, 2454-2467.	BT /Overlo	ock 10 Tf 50 i
1545	Microscale combustion: Technology development and fundamental research. Progress in Energy and Combustion Science, 2011, 37, 669-715.	15.8	633

#	Article	IF	CITATIONS
1546	Combustion chemistry and fuel-nitrogen conversion in a laminar premixed flame of morpholine as a model biofuel. Combustion and Flame, 2011, 158, 1647-1666.	2.8	64
1547	Effect of biodiesel origin on regulated and particle-bound PAH (polycyclic aromatic hydrocarbon) emissions from a Euro 4 passenger car. Energy, 2011, 36, 5328-5337.	4.5	63
1548	Behavior of a 300kWth regenerative multi-burner flameless oxidation furnace. Applied Energy, 2011, 88, 4952-4959.	5.1	42
1549	Parametric optimization study of a multi-burner flameless combustion furnace. Applied Thermal Engineering, 2011, 31, 3000-3008.	3.0	29
1550	Numerical investigation of burner positioning effects in a multi-burner flameless combustion furnace. Applied Thermal Engineering, 2011, 31, 3885-3896.	3.0	61
1551	Effects of ammonia substitution on extinction limits and structure of counterflow nonpremixed hydrogen/air flames. International Journal of Hydrogen Energy, 2011, 36, 10117-10128.	3.8	45
1552	An experimental investigation of NO2 emission characteristics of a heavy-duty H2-diesel dual fuel engine. International Journal of Hydrogen Energy, 2011, 36, 12015-12024.	3.8	67
1553	NOx removal in the selective non-catalytic reduction (SNCR) process and combined NOx and PCDD/Fs control. , $2011, \dots$		1
1554	Formation and Excitation of CN Molecules in He–CO–N2–O2 Discharge Plasmas. Plasma Chemistry and Plasma Processing, 2011, 31, 337-352.	1.1	8
1555	Influence of heat and mass transfer on the ignition and NO $\rm x$ formation in single droplet combustion. Heat and Mass Transfer, 2011, 47, 1065-1076.	1.2	1
1556	Combustion characteristics of a charcoal slurry in a direct injection diesel engine and the impact on the injection system performance. Energy, 2011, 36, 4353-4371.	4.5	42
1557	PDF model for NO calculations with radiation and consistent NO–NO2 chemistry in non-premixed turbulent flames. Combustion and Flame, 2011, 158, 1591-1601.	2.8	16
1558	Laser diagnostics and minor species detection in combustion using resonant four-wave mixing. Progress in Energy and Combustion Science, 2011, 37, 525-564.	15.8	121
1559	Experimental and theoretical studies on decomposition of pyrrolidine. Proceedings of the Combustion Institute, 2011, 33, 415-423.	2.4	16
1560	Large eddy simulation of bluff-body stabilized flames using a multi-environment filtered density function model. Proceedings of the Combustion Institute, 2011, 33, 1347-1353.	2.4	14
1561	Classification of chemicals into emission-based impact categories: a first approach for equiprobable and site-specific conceptual frames. International Journal of Life Cycle Assessment, 2011, 16, 148-158.	2.2	4
1562	Investigation of detailed kinetic scheme performance on modelling of turbulent non-premixed sooting flames. Journal of Thermal Science, 2011, 20, 548-555.	0.9	5
1563	Catalytic process for decolorizing yellow plume. Korean Journal of Chemical Engineering, 2011, 28, 418-423.	1.2	3

#	Article	IF	CITATIONS
1564	The DFT study on mechanisms for NCO with C ₂ H ₅ reaction. International Journal of Quantum Chemistry, 2011, 111, 2922-2930.	1.0	1
1565	Experimental study of fuel-lean reburn system for NOX reduction and CO emission in oxygen-enhanced combustion. International Journal of Energy Research, 2011, 35, 710-720.	2.2	3
1566	The role of NNH in NO formation and control. Combustion and Flame, 2011, 158, 774-789.	2.8	304
1567	Dark zones of solid propellant flames: Critically assessed datasets, quantitative model comparison, and detailed chemical analysis. Combustion and Flame, 2011, 158, 1228-1244.	2.8	13
1568	Modeling and simulation of an oxy-fuel combustion boiler system with flue gas recirculation. Computers and Chemical Engineering, 2011, 35, 25-40.	2.0	30
1569	Development of high intensity CDC combustor for gas turbine engines. Applied Energy, 2011, 88, 963-973.	5.1	72
1570	Investigation of reverse flow distributed combustion for gas turbine application. Applied Energy, 2011, 88, 1096-1104.	5.1	60
1571	Analysis of a new analytical law of heat release rate (HRR) for homogenous charge compression ignition (HCCI) combustion mode versus analytical parameters. Applied Thermal Engineering, 2011, 31, 458-466.	3.0	13
1572	Analysis of main gaseous emissions of heavy duty gas turbines burning several syngas fuels. Fuel Processing Technology, 2011, 92, 213-220.	3.7	48
1573	Hydrogen addition effects on methane–air colorless distributed combustion flames. International Journal of Hydrogen Energy, 2011, 36, 6292-6302.	3.8	44
1574	Investigation of forward flow distributed combustion for gas turbine application. Applied Energy, 2011, 88, 29-40.	5.1	67
1575	Combustion characteristics of a swirling inverse diffusion flame upon oxygen content variation. Applied Energy, 2011, 88, 2925-2933.	5.1	21
1576	NO emission characteristics and aerodynamic structure of a self-recirculation type burner for small boilers. Proceedings of the Combustion Institute, 2011, 33, 2735-2742.	2.4	15
1577	Numerical simulation of nitrogen oxide formation in lean premixed turbulent H2/O2/N2 flames. Proceedings of the Combustion Institute, 2011, 33, 1591-1599.	2.4	33
1578	DNS of turbulent swirling premixed flame in a micro gas turbine combustor. Proceedings of the Combustion Institute, 2011, 33, 3293-3300.	2.4	40
1579	Predicted thermochemistry and unimolecular kinetics of nitrous sulfide. Journal of Chemical Physics, 2011, 135, 094301.	1.2	3
1580	Quantum Mechanics Rate Constant for the N+ND Reaction. Chinese Journal of Chemical Physics, 2011, 24, 547-550.	0.6	0
1581	Numerical Simulation on Catalytic Combustion of Hydrogen inside Micro Tube. Advanced Materials Research, 0, 354-355, 57-61.	0.3	0

#	Article	IF	CITATIONS
1582	Study on Catalytic Combustion of Hydrogen inside Micro Tube. Advanced Materials Research, 2011, 339, 265-270.	0.3	0
1583	Study on Catalytic Combustion Characteristics of Hydrogen inside Micro Scaled Tube. Advanced Materials Research, 0, 354-355, 114-118.	0.3	O
1584	New <i>ab initio</i> potential energy surface and quantum dynamics of the reaction H(2S) + NH(X3Σâ^') â†' N(4S) + H2. Journal of Chemical Physics, 2011, 135, 104314.	1.2	23
1585	CH ₃ and H ₂ Quantum Chemical Study of Reaction Mechanisms. Applied Mechanics and Materials, 0, 142, 225-228.	0.2	O
1586	Notice of Retraction Analysis of kinetics mechanism on NOx removal by hydrazine at moderate to high temperatures. , $2011, \ldots$		0
1587	Experimental probes of transient neutral species using dissociative charge exchange. International Reviews in Physical Chemistry, 2011, 30, 79-113.	0.9	4
1588	studies of viorational states and reaction dynamics. Journal of Chemical Physics, 2011, 134, 194309.	1.2	25
1589	Global <i>ab initio </i> potential energy surfaces for both the ground (\$ilde X{^1}A^{prime} \$X\int f1A\hata\inf2) and excited (\$ilde A^1 A^{prime prime} \$A\int f1A\hata\inf2\hata\inf2) electronic states of HNO and vibrational states of the Renner-Teller \$ilde A^1 A^{prime prime} \$A\int f1A\hata\inf2\hata\inf2\hata\inf2\hata\inf2\hata\inf3\hat	1.2	7
1590	State-to-state quantum dynamics of the N(4 <i>S</i>) + OH(<i>X</i> 2Î) → H(2 <i>S</i>) + NO(<i>X</i> 2 reaction. Journal of Chemical Physics, 2011, 135, 164312.	2ĵ) ₂	12
1591	Catalysis Reduction of NO and HCN/NH ₃ during Reburning: a Short Review. Advanced Materials Research, 2011, 354-355, 365-368.	0.3	4
1592	Theoretical investigation of the performance of alternative aviation fuels in an aero-engine combustion chamber. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2011, 225, 874-885.	0.7	6
1593	Combustion Performance in a Semiclosed Cycle Gas Turbine for IGCC Fired With CO-Rich Syngas and Oxy-Recirculated Exhaust Streams. Journal of Engineering for Gas Turbines and Power, 2012, 134, .	0.5	5
1594	PARAMETER ANALYSIS OF NO EMISSIONS FROM SPARK IGNITION ENGINES. Transport, 2012, 27, 34-39.	0.6	5
1595	Chemical Kinetic Study of Nitrogen Oxides Formation Trends in Biodiesel Combustion. International Journal of Chemical Engineering, 2012, 2012, 1-22.	1.4	17
1596	The Rate Constant Calculations for the Reaction H(2 <i>S</i>)+NH(<i>X</i> ³ \hat{I} E) Tj ETQq0 0 0 rgBT Chinese Physics Letters, 2012, 29, 063401.	/Overlock 1.3	2 10 Tf 50 18
1597	The lowest-lying electronic singlet and triplet potential energy surfaces for the HNO–NOH system: Energetics, unimolecular rate constants, tunneling and kinetic isotope effects for the isomerization and dissociation reactions. Journal of Chemical Physics, 2012, 136, 164303.	1.2	28
1598	STEREODYNAMICS AND ISOTOPE EFFECTS FOR THE REACTION N + NH \hat{a}^{\dagger} N2 + H. Journal of Theoretical and Computational Chemistry, 2012, 11, 87-97.	1.8	8
1599	Flame and eddy structures in hydrogen–air turbulent jet premixed flame. Journal of Turbulence, 2012, 13, N42.	0.5	10

#	Article	IF	CITATIONS
1600	Experimental Study of NO Reduction by Iron in CO Atmosphere. Advanced Materials Research, 2012, 518-523, 2138-2142.	0.3	3
1601	Effect of CO ₂ /O ₂ on Catalytic Reduction of NO by Iron. Advanced Materials Research, 0, 616-618, 1849-1852.	0.3	3
1602	Effect of Rotational Excitation on Stereodynamics for the Reactive Collision Between N(2 D) and H $2.$ Chinese Physics Letters, 2012, 29, 043101.	1.3	4
1603	Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System. Sustainability, 2012, 4, 462-490.	1.6	30
1604	A Method to Evaluate the Emissions of Gas Turbine for Power Generation. , 2012, , .		0
1605	- Phenomenology of Premixed Turbulent Combustion. , 2012, , 130-165.		0
1606	- Modeling of Premixed Burning in Turbulent Flows. , 2012, , 324-445.		0
1607	Modelling NOxemissions of single droplet combustion. Combustion Theory and Modelling, 2012, 16, 107-141.	1.0	1
1608	The Dual-Fuel Strategy: An Energy Transition Plan. Proceedings of the IEEE, 2012, 100, 3001-3052.	16.4	45
1609	Product rotational angular momentum polarization in the N+NH ($v=0,j=0,3,6,9$)â†'N2+H reaction. Chemical Physics, 2012, 408, 57-61.	0.9	1
1610	QCT and QM calculations of the Cl(2P) + NH3 reaction: influence of the reactant well on the dynamics. Physical Chemistry Chemical Physics, 2012, 14, 4824.	1.3	17
1611	Exhaust characteristics of Nitrous oxide from marine engine. , 2012, , .		1
1612	Experimental and Kinetic Study of the Effect of Additives on the Ammonia Based SNCR Process in Low Temperature Conditions. Energy & Energy	2.5	41
1613	Quasi-classical trajectory study of the role of vibrational and translational energy in the Cl(2P) + NH3 reaction. Physical Chemistry Chemical Physics, 2012, 14, 7497.	1.3	11
1614	Determination of the Rate Constant for the NH ₂ (X ² B ₁) + NH ₂ (X ² B ₁) Recombination Reaction with Collision Partners He, Ne, Ar, and N ₂ at Low Pressures and 296 K. Part 1. Journal of Physical Chemistry A, 2012, 116, 1353-1367.	1.1	18
1615	Kinetics of the NCN + NO Reaction over a Broad Temperature and Pressure Range. Journal of Physical Chemistry A, 2012, 116, 7293-7301.	1.1	9
1616	Detailed Modeling of NO _{<i>x</i>} and SO _{<i>x</i>} Formation in Co-combustion of Coal and Biomass with Reduced Kinetics. Energy & Samp; Fuels, 2012, 26, 3117-3124.	2.5	31
1617	Determination of the Rate Constants for the NH ₂ (X ^{2B₁) + NH₂(X²B₁) + H Recombination Reactions with Collision Partners CH₄, C₂H₆, CO₂, CF₄, and SF₆ at Low Pressures and 296 K. Part 2 Journal of}	1.1	15

#	Article	IF	CITATIONS
1618	Fate of Fuel Nitrogen in the Furnace of an Industrial Bubbling Fluidized Bed Boiler during Combustion of Biomass Fuel Mixtures. Energy & Energy & 2012, 26, 94-101.	2.5	22
1619	Numerical Study of NO _{<i>x</i>} Emissions from <i>n</i> Heptane and 1-Heptene Counterflow Flames. Energy & E	2.5	15
1620	Effect of Chemical Reaction Mechanisms and NO _{<i>x</i>} Modeling on Air-Fired and Oxy-Fuel Combustion of Lignite in a 100-kW Furnace. Energy & Ener	2.5	72
1621	Separability of Tight and Roaming Pathways to Molecular Decomposition. Journal of Physical Chemistry A, 2012, 116, 6967-6982.	1.1	48
1622	Kinetics of resonance stabilized CH3CCCH2 radical reactions with NO and NO2. Chemical Physics Letters, 2012, 543, 28-33.	1.2	1
1623	A canonical form of the complex reaction mechanism. Energy, 2012, 43, 64-72.	4.5	5
1624	Impact of biodiesel application at various blending ratios on passenger cars of different fueling technologies. Fuel, 2012, 98, 88-94.	3.4	62
1625	The enigma of reactive nitrogen in volcanic emissions. Geochimica Et Cosmochimica Acta, 2012, 95, 93-105.	1.6	22
1626	Fuels: Analysis of Plant Performance and Environmental Impact. Springer Series in Reliability Engineering, 2012, , 61-90.	0.3	1
1627	Concerted HO ₂ Elimination from α-Aminoalkylperoxyl Free Radicals: Experimental and Theoretical Evidence from the Gas-Phase NH ₂ [•] CHCO ₂ [–] + O ₂ Reaction. Journal of Physical Chemistry Letters, 2012, 3, 805-811.	2.1	29
1628	Pollutant Formation., 2012, , 193-223.		2
1629	NOx reduction using amine reclaimer wastes (ARW) generated in post combustion CO2 capture. International Journal of Greenhouse Gas Control, 2012, 10, 33-45.	2.3	18
1630	Reductive and oxidative combustion of polyethylene bags: Characterization of carbonaceous and nitrogenous species. Journal of Analytical and Applied Pyrolysis, 2012, 98, 72-78.	2.6	6
1631	Modeling of ammonia combustion at low pressure. Combustion and Flame, 2012, 159, 2799-2805.	2.8	129
1632	The critical tube diameter and critical energy for direct initiation of detonation in C2H2/N2O/Ar mixtures. Combustion and Flame, 2012, 159, 2944-2953.	2.8	48
1633	Self-Ignition of Hydrogenous Mixtures. Shock Wave and High Pressure Phenomena, 2012, , 121-163.	0.1	1
1634	Internal Combustion Engines internal combustion engine , Developments internal combustion engine developments in. , 2012, , 5499-5547.		1
1635	HCCI-Combustion in the Z Engine. , 2012, , .		4

#	Article	IF	CITATIONS
1636	Fuel-N Conversion to NO, N2O and N2 During Coal Combustion. , 2012, , .		4
1637	The Influence of Modified Atmosphere on Natural Gas Combustion. , 0, , .		1
1638	Pollutant Formation in Combustion Processes. , 0, , .		11
1639	NOx and PAH Emissions from n-Heptane and 1-Heptene Partially Premixed Flames. , 2012, , .		1
1640	HCCI-Combustion in the Z Engine - Part II. , 0, , .		2
1641	Analytical potential energy surface for the reaction with intermediate complexes NH ₃ + Cl â†' NH ₂ + HCl: Application to the kinetics study. International Journal of Quantum Chemistry, 2012, 112, 1887-1903.	1.0	19
1642	The investigation of nonadiabatic effects for the N + ND \hat{a} †' N $<$ sub $>$ 2 $<$ /sub $>$ + D reaction. International Journal of Quantum Chemistry, 2012, 112, 2710-2714.	1.0	3
1643	A reburning process using sewage sludge-derived syngas. Chemical Papers, 2012, 66, .	1.0	17
1644	Quantum dynamics of complex-forming bimolecular reactions. International Reviews in Physical Chemistry, 2012, 31, 1-68.	0.9	216
1645	Computational studies of l f-type weak interactions between NCO/NCS radicals and XY(X = H, Cl; Y = F, Cl,) Tj ETO	Qq1 1 0.78	84314 rgBT
1646	A thermochemically derived global reaction mechanism for detonation application. Shock Waves, 2012, 22, 363-379.	1.0	8
1647	Removal of nitric oxide by activated ammonia generated by vacuum ultraviolet radiation. Fuel, 2012, 94, 274-279.	3.4	5
1648	Estimation of fuel-nitrogen oxide emissions from the element composition of the solid or waste fuel. Fuel, 2012, 94, 75-80.	3.4	45
1649	Review of the effects of biodiesel on NOx emissions. Fuel Processing Technology, 2012, 96, 237-249.	3.7	564
1650	Effects of ammonia substitution on combustion stability limits and NOx emissions of premixed hydrogen–air flames. International Journal of Hydrogen Energy, 2012, 37, 6933-6941.	3.8	58
1651	Investigation of fuel lean reburning process in a 1.5MW boiler. Applied Energy, 2012, 89, 183-192.	5.1	21
1652	Feasibility study of the potential use of chemistry based emission predictions for real-time control of modern diesel engines. Applied Energy, 2012, 91, 475-482.	5.1	7
1653	A kinetic study of NO formation during oxy-fuel combustion of pyridine. Applied Energy, 2012, 92, 361-368.	5.1	36

#	Article	IF	CITATIONS
1654	Chemical kinetics interpretation of hypergolicity of dicyanamide ionic liquid-based systems. Combustion and Flame, 2012, 159, 1759-1768.	2.8	21
1655	Fuel-nitrogen conversion in the combustion of small amines using dimethylamine and ethylamine as biomass-related model fuels. Combustion and Flame, 2012, 159, 2254-2279.	2.8	74
1656	TG–MS study of the thermo-oxidative behavior of plastic automobile shredder residues. Journal of Hazardous Materials, 2012, 209-210, 443-448.	6.5	27
1657	Gas Phase Kinetics and Equilibrium of Allyl Radical Reactions with NO and NO ₂ . Journal of Physical Chemistry A, 2013, 117, 793-805.	1.1	7
1658	Theoretical study on the gas phase reaction mechanism of acetylene with nitrous oxide. Structural Chemistry, 2013, 24, 1513-1526.	1.0	5
1659	Experimental simulation of the relative contribution of volatile-N and char-N to NO X formation from a low-capacity bituminous coal-fired industrial boiler. Science China Chemistry, 2013, 56, 541-550.	4.2	2
1660	A Hierarchical and Comparative Kinetic Modeling Study of C ₁ â^' C ₂ Hydrocarbon and Oxygenated Fuels. International Journal of Chemical Kinetics, 2013, 45, 638-675.	1.0	924
1661	Characterization of confined hydrogen-air jet flame in a crossflow configuration using design of experiments. International Journal of Hydrogen Energy, 2013, 38, 5165-5175.	3.8	4
1662	Modeling fuel NOx formation from combustion of biomass-derived producer gas in a large-scale burner. Combustion and Flame, 2013, 160, 2159-2168.	2.8	30
1663	Combustion characteristics of a small-scale combustor with a percolated platinum emitter tube for thermophotovoltaics. Energy, 2013, 61, 150-157.	4.5	38
1664	A new <i>ab</i> ê^ <i>initio</i> potential energy surface for the collisional excitation of HCN by para- and ortho-H2. Journal of Chemical Physics, 2013, 139, 224301.	1,2	22
1665	Influence of using emulsified diesel fuel on the performance and pollutants emitted from diesel engine. Energy Conversion and Management, 2013, 73, 361-369.	4.4	103
1666	On mechanisms of formation of environmentally harmful compounds in homogeneous combustors. Combustion, Explosion and Shock Waves, 2013, 49, 520-535.	0.3	10
1667	Diagnostics and Modeling of Stagnation Flames for the Validation of Thermochemical Combustion Models for NO _{<i>x</i>} Predictions. Energy & Energy	2.5	28
1668	Experimental investigation of diesel engine using EGR and fuelled with Karanja oil methyl ester. International Journal of Sustainable Engineering, 2013, 6, 307-315.	1.9	11
1669	Studies of laminar opposed-flow diffusion flames of acetylene at low-pressures with photoionization mass spectrometry. Proceedings of the Combustion Institute, 2013, 34, 1067-1075.	2.4	13
1670	Pyrolysis of biomass in a semi-industrial scale reactor: Study of the fuel-nitrogen oxidation during combustion of volatiles. Biomass and Bioenergy, 2013, 59, 187-194.	2.9	26
1671	Isotope effects on the dynamics properties and reaction mechanism in the $Cl(2P)\hat{A}+\hat{A}NH3$ reaction: a QCT and QM study. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	6

#	Article	IF	CITATIONS
1672	Working fluid composition effects on methane oxycombustion in an SI-engine: EGR vs. CO2. Proceedings of the Combustion Institute, 2013, 34, 2951-2958.	2.4	6
1673	Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry. Journal of Environmental Management, 2013, 114, 125-138.	3.8	57
1674	Energy-dependent stereodynamics for the $H(2S)+NH(X3)$ at $H(X3)$ at $H(X3)$ reaction on the improved ZH potential energy surface. Canadian Journal of Chemistry, 2013, 91, 387-391.	0.6	6
1675	On-line modeling of NOx formation in a coal boiler. Computer Aided Chemical Engineering, 2013, 32, 319-324.	0.3	0
1676	Experimental and modeling investigation of the effect of air preheat on the formation of NOx in an RQL combustor. Heat and Mass Transfer, 2013, 49, 219-231.	1,2	27
1677	An experimental and theoretical study of pyrrolidine pyrolysis at low pressure. Proceedings of the Combustion Institute, 2013, 34, 641-648.	2.4	9
1678	Combustion stability limits and NOx emissions of nonpremixed ammonia-substituted hydrogen–air flames. International Journal of Hydrogen Energy, 2013, 38, 14854-14865.	3.8	40
1679	Theoretical study on the mechanism and kinetics for the reaction of HNCO with CN radical: HNCO+CNâ†'HCN+NCO or HNCO+CNâ†'HNCN+CO?. Computational and Theoretical Chemistry, 2013, 1014, 43-48.	1.1	1
1680	Compliance of Royal Naval ships with nitrogen oxide emissions legislation. Marine Pollution Bulletin, 2013, 74, 10-18.	2.3	15
1681	Oxy-fuel combustion of millimeter-sized coal char: Particle temperatures and NO formation. Fuel, 2013, 106, 72-78.	3.4	19
1682	Functionalization of Multiwalled Carbon Nanotubes by Solution Plasma Processing in Ammonia Aqueous Solution and Preparation of Composite Material with Polyamide 6. Japanese Journal of Applied Physics, 2013, 52, 125101.	0.8	35
1683	Configuration effects of natural gas fired multi-pair regenerative burners in a flameless oxidation furnace on efficiency and emissions. Applied Energy, 2013, 107, 25-32.	5.1	32
1684	Pine chips combustion in a 50kW domestic biomass boiler. Fuel, 2013, 111, 564-573.	3.4	50
1685	SO2 and NOx emissions from sludge combustion in a CO2/O2 atmosphere. Fuel, 2013, 109, 178-183.	3.4	69
1686	Development of laser absorption techniques for real-time, in-situ dual-species monitoring (NO/NH3,) Tj ETQq0 0 C) rgBT /Ov	erlock 10 Tf 5
1687	Theoretical study on the unimolecular decomposition of proline. Computational and Theoretical Chemistry, 2013, 1018, 45-49.	1.1	9
1688	Experimental and modeling study of chemical-kinetics mechanisms for H2–NH3–air mixtures in laminar premixed jet flames. Fuel, 2013, 108, 166-176.	3.4	188
1689	Simulation of nitrogen emissions in a premixed hydrogen flame stabilized on a low swirl burner. Proceedings of the Combustion Institute, 2013, 34, 1173-1182.	2.4	31

#	Article	IF	CITATIONS
1690	A combined experimental and theoretical study of micronized coal reburning. Frontiers in Energy, 2013, 7, 119-126.	1.2	3
1691	Effect of ethanol–gasoline blend on NOx emission in SI engine. Renewable and Sustainable Energy Reviews, 2013, 24, 209-222.	8.2	313
1692	Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renewable and Sustainable Energy Reviews, 2013, 23, 473-490.	8.2	308
1693	New Directions in Advanced Modeling and in Situ Measurements Near Reacting Surfaces. Flow, Turbulence and Combustion, 2013, 90, 681-707.	1.4	5
1694	Kinetics of Several Oxygenated Carbon-Centered Free Radical Reactions with NO ₂ . Journal of Physical Chemistry A, 2013, 117, 3902-3908.	1.1	8
1695	NOx control in coal combustion by combining biomass co-firing, oxygen enrichment and SNCR. Fuel, 2013, 105, 283-292.	3.4	97
1696	Strategies for emission control in diesel engine to meet Euro VI. Fuel, 2013, 104, 183-193.	3.4	64
1697	Combined primary methods for NOx reduction to the pulverized coal–sawdust co-combustion. Fuel Processing Technology, 2013, 106, 429-438.	3.7	8
1698	Effects of blending hydrothermally treated municipal solid waste with coal on co-combustion characteristics in a lab-scale fluidized bed reactor. Applied Energy, 2013, 102, 563-570.	5.1	57
1699	A fast and accurate physics-based model for the NOx emissions of Diesel engines. Applied Energy, 2013, 103, 221-233.	5.1	71
1700	Measurements of NO concentration in NH3-doped CH4+air flames using saturated laser-induced fluorescence and probe sampling. Combustion and Flame, 2013, 160, 40-46.	2.8	50
1701	Product Branching Fractions of the CH + Propene Reaction from Synchrotron Photoionization Mass Spectrometry. Journal of Physical Chemistry A, 2013, 117, 6450-6457.	1.1	22
1702	Premixed Burn Fraction: Its Relation to the Variation in NO _{<i>x</i>>/i>x>/sub> Emissions between Petro- and Biodiesel. Energy & Samp; Fuels, 2013, 27, 3838-3852.}	2.5	20
1703	Combustion characteristics in a small-scale reactor with catalyst segmentation and cavities. Proceedings of the Combustion Institute, 2013, 34, 2253-2259.	2.4	29
1704	Prompt NO formation in flames: The influence of NCN thermochemistry. Proceedings of the Combustion Institute, 2013, 34, 657-666.	2.4	31
1705	Theoretical Study on the Water-Assisted Reaction of NCO with HCHO. Journal of Physical Chemistry A, 2013, 117, 6883-6892.	1.1	41
1706	Numerical Simulation of CO and NO Emissions During Converter Off-Gas Combustion in the Cooling Stack. Combustion Science and Technology, 2013, 185, 212-225.	1.2	3
1707	Effect of Unsaturated Bond on NO _{<i>x</i>} and PAH Formation in <i>n</i> Heptane and 1-Heptene Triple Flames. Energy & Energy	2.5	21

#	Article	IF	CITATIONS
1708	Zero-point Energy is Needed in Molecular Dynamics Calculations to Access the Saddle Point for H+HCNâ†'H ₂ CN* and <i>cis/trans</i> -HCNH* on a New Potential Energy Surface. Journal of Chemical Theory and Computation, 2013, 9, 901-908.	2.3	24
1709	Rate Constant and Branching Fraction for the NH ₂ + NO ₂ Reaction. Journal of Physical Chemistry A, 2013, 117, 9011-9022.	1.1	37
1710	Pollutant emissions and their control in fluidised bed combustion and gasification., 2013, , 435-480.		4
1711	A simplified kinetic model study of thermal DeNOx. , 2013, , .		0
1712	A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems. Journal of Pressure Vessel Technology, Transactions of the ASME, 2013, 135, .	0.4	1
1713	Experimental and Reactor Network Study of Nitrogen Dilution Effects on NOX Formation for Natural Gas and Syngas at Elevated Pressures. , 2013, , .		2
1714	The Role of Exhaust Gas Recirculation in Flameless Combustion. Applied Mechanics and Materials, 0, 388, 262-267.	0.2	5
1715	High temperature reaction kinetics of CN(ν = 0) with C2H4 and C2H6 and ν vibrational relaxation of CN(ν = 1) with Ar and He. Journal of Chemical Physics, 2013, 138, 124308.	1.2	17
1716	Research on Health Effects and Governance of Coal Dust. Advanced Materials Research, 0, 807-809, 620-623.	0.3	2
1717	Environmental Protection and Fuel Consumption Reduction by Flameless Combustion Technology: A Review. Applied Mechanics and Materials, 0, 388, 292-297.	0.2	8
1718	State-to-state quantum dynamics of the O(3 <i>P</i>) + NH(<i>X</i>) $\hat{\mathbb{L}}\mathbb$	1.2	8
1719	Theoretical study on reaction mechanism and kinetics of HNCS with CN. Journal of Chemical Physics, 2013, 139, 154307.	1.2	5
1720	Emissions from ultra-supercritical power plants and pollution control measures. , 2013, , 184-212.		1
1721	Biogas Flameless Combustion: A Review. Applied Mechanics and Materials, 0, 388, 273-279.	0.2	45
1722	A Theoretical Study of the O (³ P) + HCONH ₂ Reaction. Applied Mechanics and Materials, 0, 316-317, 933-936.	0.2	0
1723	Analysis of Criterion Number of Heat Transfer in Micro Catalytic Combustion Process. Applied Mechanics and Materials, 0, 316-317, 53-59.	0.2	0
1724	QUASI-CLASSICAL TRAJECTORY STUDY OF THE REACTION $<$ font>N + $<$ font>NH (v = 0 â \in "3, j=0) â†' $<$ font>N ₂ + $<$ font>H. Journal of Theoretical and Computational Chemistry, 2013, 12, 1350015.	1.8	1
1725	Direct Numerical Simulation of Exhaust Gas Recirculation effect on autoignition of an HCCI stratified turbulent flow field for DME/Air mixture at high pressure: NO effect., 2013,,.		0

#	Article	IF	CITATIONS
1726	State-to-state quantum dynamics of the N(4 <i>S</i>) + CH(<i>X</i> 2Î) → CN(<i>X</i> 2Σ+, <i>A</i> 2Î) H(2 <i>S</i>) reactions. Journal of Chemical Physics, 2013, 139, 124313.	İ .2	7
1727	Numerical Evaluation of the Effect of Global Equivalence Ratio on Confined Turbulent Non-Premixed Flames. Journal of Environment and Engineering, 2013, 8, 11-26.	0.2	2
1728	A Quasi-Dimensional NO $<$ sub $>$ x $<$ /sub $>$ Emission Model for Spark Ignition Direct Injection (SIDI) Gasoline Engines. , 0, , .		9
1729	NOx and CO Formation and Control. , 0, , 175-208.		7
1730	Estimation of the Engine-Out NO2/NOx Ratio in a EURO VI Diesel Engine. , 2013, , .		12
1731	Development of Semiclosed Cycle Gas Turbine for Oxy-Fuel IGCC Power Generation with CO2 Capture. , 2013, , .		3
1732	Performance and Emission Characteristics of a MPI Engine Fueled with Iso-Butanol/Gasoline Blends. , 0, , .		0
1734	The Impact of Fuel Properties on Diesel Engine Emissions and a Feasible Solution for Common Calibration. , 0, , .		0
1735	Modelling the NO emissions from wildfires at the source level. Natural Hazards and Earth System Sciences, 2014, 14, 1169-1183.	1.5	1
1736	Study of Extinction Limits of Diluted Hydrogen-Air Counter-Flow Diffusion Flames with the Redim Method. Combustion Science and Technology, 2014, 186, 1502-1516.	1.2	14
1737	Theoretical study of stereodynamics for the N + H $_2$ /D $_2$ /T $_2$ reactions. Chinese Physics B, 2014, 23, 123401.	0.7	0
1738	Stereodynamics study of the Hâ \in 2(2 S) + NH(X 3 Σ â $^\circ$) → N(4 S) + H 2 reaction. Chinese Physics B, 2014, 23, 023401.	0.7	3
1739	Air spark-like plasma source for antimicrobial NO _{<i>x</i>} generation. Journal Physics D: Applied Physics, 2014, 47, 505202.	1.3	71
1740	A Molecular Modeling Study of N ₂ Desorption from NO Heterogeneous Reduction on Char. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2014, 36, 158-166.	1.2	18
1741	Simulation of turbulent piloted methane non-premixed flame based on combination of finite-rate/eddy-dissipation model. Mechanika, 2014, 19, .	0.3	3
1742	Catalytic Combustion of Hydrogen, Challenges, and Opportunities. Advances in Chemical Engineering, 2014, , 97-157.	0.5	10
1743	A Reactor Model for the NOx Formation in a Reacting Jet in Hot Cross Flow Under Atmospheric and High Pressure Conditions. , 2014, , .		4
1744	IR-spectroscopic study of the allyl + NO reaction in helium nanodroplets. Journal of Chemical Physics, 2014, 141, 044312.	1.2	9

#	Article	IF	CITATIONS
1745	CFD analysis of municipal solid waste combustion using detailed chemical kinetic modelling. Waste Management and Research, 2014, 32, 745-754.	2.2	12
1746	Study On Catalytic Combustion Of Hydrogen–Air Inside Microtube. Nanoscale and Microscale Thermophysical Engineering, 2014, 18, 80-96.	1.4	2
1747	Line strengths of rovibrational and rotational transitions within the ${m X}^3Sigma m {^-}$X3Σa^' ground state of NH. Journal of Chemical Physics, 2014, 141, 054310.$	1.2	31
1748	On the Plasma Chemistry of an RF Discharge Containing Aluminium Triâ€Isopropoxide Studied by FTIR Spectroscopy. Contributions To Plasma Physics, 2014, 54, 170-186.	0.5	1
1749	Pulverized coal combustion with opposing/cross-flow methane/air mixtures. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2014, 228, 688-707.	0.8	4
1750	Effect of Water Vapor on NO Reduction by Iron in N ₂ Atmosphere. Advanced Materials Research, 0, 955-959, 3479-3483.	0.3	0
1751	The Discharge Status and Technical Analysis of NO _X of Thermal Power Plant Boiler. Applied Mechanics and Materials, 0, 535, 131-134.	0.2	5
1752	The Effect of Oxygen Staging on Nitrogen Conversion in Oxy-Fuel CFB Environment. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2014, 35, 489-496.	0.7	13
1753	Insight into detailed mechanism of the atmospheric reaction of imidogen with hydroxyl: a computational study. Structural Chemistry, 2014, 25, 169-175.	1.0	5
1754	CFD modeling of the high-temperature HVPE growth of aluminum nitride layers on c-plane sapphire: from theoretical chemistry to process evaluation. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	13
1755	Ab Initio Chemical Kinetics of Key Processes in the Hypergolic Ignition of Hydrazine and Nitrogen Tetroxide. Advances in Quantum Chemistry, 2014, 69, 253-301.	0.4	10
1756	A review of hydrogen and natural gas addition in diesel HCCI engines. Renewable and Sustainable Energy Reviews, 2014, 32, 739-761.	8.2	120
1757	A real time zero-dimensional diagnostic model for the calculation of in-cylinder temperatures, HRR and nitrogen oxides in diesel engines. Energy Conversion and Management, 2014, 79, 498-510.	4.4	66
1758	Nitrogen evolution during the co-combustion of hydrothermally treated municipal solid waste and coal in a bubbling fluidized bed. Waste Management, 2014, 34, 79-85.	3.7	19
1759	Study on using hydrogen and ammonia as fuels: Combustion characteristics and NO <i></i> formation. International Journal of Energy Research, 2014, 38, 1214-1223.	2.2	273
1760	Uncertainty-quantification analysis of the effects of residual impurities on hydrogen–oxygen ignition in shock tubes. Combustion and Flame, 2014, 161, 1-15.	2.8	64
1761	Chemical Kinetics of Methane Pyrolysis in Microwave Plasma at Atmospheric Pressure. Plasma Chemistry and Plasma Processing, 2014, 34, 313-326.	1.1	46
1762	Laser absorption of nitric oxide for thermometry in high-enthalpy air. Measurement Science and Technology, 2014, 25, 125103.	1.4	18

#	Article	IF	CITATIONS
1763	Nitrogen-based alternative fuel: an environmentally friendly combustion approach. RSC Advances, 2014, 4, 10051-10059.	1.7	25
1764	Kinetics of NO Reduction by Coal, Biomass, and Graphitic Chars: Effects of Burnout Level and Conditions. Energy & Energy	2.5	9
1765	Theoretical Study on the Kinetics of the Reaction CH $<$ sub $>$ 2 $<$ /sub $>$ Br + NO $<$ sub $>$ 2 $<$ /sub $>$. Journal of Physical Chemistry A, 2014, 118, 3313-3318.	1.1	4
1766	Computational fluid dynamics investigation of alternative nitric oxide emission mechanisms inÂaÂhydrogen-fueled spark-ignition engine. International Journal of Hydrogen Energy, 2014, 39, 11774-11791.	3.8	10
1767	Alcohol combustion chemistry. Progress in Energy and Combustion Science, 2014, 44, 40-102.	15.8	687
1768	Theoretical Study on the Reaction of the Methylidyne Radical, CH(X ² Î), with Formaldehyde, CH ₂ O. Journal of Physical Chemistry A, 2014, 118, 8861-8871.	1.1	9
1769	Combustion of Pakistani Lignite (Thar Coal) in a Pilot-Scale Pulverized Fuel Down-Fired Combustion Test Facility. Energy & Energy & 2014, 28, 1541-1547.	2.5	22
1770	Experimental Study of the Path of Nitrogen in Chemical Looping Combustion Using a Nickel-Based Oxygen Carrier. Energy & Damp; Fuels, 2014, 28, 6604-6609.	2.5	4
1771	Evolution and application of a pseudo-multi-zone model for the prediction of NOx emissions from large-scale diesel engines at various operating conditions. Energy Conversion and Management, 2014, 85, 373-388.	4.4	29
1772	Application of CHEMKIN and COMSOL Programs in the Calculations of Chemical Composition of Natural Gas Combustion Products. Combustion Science and Technology, 2014, 186, 153-172.	1.2	15
1773	Chamber Studies on Nonvented Decorative Fireplaces Using Liquid or Gelled Ethanol Fuel. Environmental Science & Environmental	4.6	26
1774	Investigation of the Influence of Metallic Fuel Improvers on Coal Combustion/Pyrolysis. Energy & Energy & Fuels, 2014, 28, 1515-1523.	2.5	14
1775	Direct numerical simulations of NOx effect on multistage autoignition of DME/air mixture in the negative temperature coefficient regime for stratified HCCI engine conditions. Combustion and Flame, 2014, 161, 256-269.	2.8	43
1776	Impact of nitrogen oxides (NO, NO2, N2O) on the formation of soot. Combustion and Flame, 2014, 161, 280-287.	2.8	34
1777	Effect of particle size on thermal decomposition of alkali metal picrates. Thermochimica Acta, 2014, 583, 78-85.	1.2	16
1778	Adiabatic wavepacket dynamics study of the N + NH → N2+ H reaction on the ground-state potential energy surface. Chemical Physics Letters, 2014, 592, 120-123.	1.2	1
1779	Influence of mixing, oxygen and residence time on the SNCR process. Fuel, 2014, 120, 38-45.	3 . 4	39
1780	An experimental and modeling study of the influence of flue gases recirculated on ethylene conversion. Combustion and Flame, 2014, 161, 2288-2296.	2.8	8

#	Article	IF	CITATIONS
1781	A review on hydrogen industrial aerospace applications. International Journal of Hydrogen Energy, 2014, 39, 10731-10747.	3.8	195
1782	A control-oriented real-time semi-empirical model for the prediction of NOx emissions in diesel engines. Applied Energy, 2014, 130, 265-279.	5.1	59
1783	Fuel additive technology – NOx reduction, combustion efficiency and fly ash improvement for coal fired power stations. Fuel, 2014, 134, 293-306.	3.4	48
1784	Effects of gas compositions on NOx reduction by selective non-catalytic reduction with ammonia in a simulated cement precalciner atmosphere. Chemosphere, 2014, 113, 182-187.	4.2	63
1785	CFD simulation of MSW combustion and SNCR in a commercial incinerator. Waste Management, 2014, 34, 1609-1618.	3.7	42
1787	A Multidisciplinary Approach for the Comprehensive Assessment of Integrated Rotorcraft–Powerplant Systems at Mission Level. , 2014, , .		0
1788	Application of reactor net models for the simulation of gas-turbine combustor emissions. International Journal of Sustainable Aviation, 2014, 1, 43.	0.1	5
1789	Simulation of a MILD combustion burner using ILDM chemistry. Progress in Computational Fluid Dynamics, 2014, 14, 233.	0.1	2
1790	An integrated methodology to assess the operational and environmental performance of a conceptual regenerative helicopter. Aeronautical Journal, 2015, 119, 67-90.	1.1	8
1791	Mechanisms and kinetics of reaction CHClBr•+NO2. Chemical Research in Chinese Universities, 2015, 31, 1018-1022.	1.3	0
1793	NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures. Mechanical Engineering Journal, 2015, 2, 14-00402-14-00402.	0.2	101
1794	Characterization of a Sludge Derived Fuel. Applied Mechanics and Materials, 2015, 768, 116-123.	0.2	0
1795	Accurate transport properties for H–CO and H–CO2. Journal of Chemical Physics, 2015, 143, 054303.	1.2	7
1796	The Optimization And Diagnostics Of Combustion Process With Numerical Modelling Application. Archives of Metallurgy and Materials, 2015, 60, 687-695.	0.6	0
1797	Progress in Synthesis of Highly Active and Stable Nickelâ€Based Catalysts for Carbon Dioxide Reforming of Methane. ChemSusChem, 2015, 8, 3556-3575.	3.6	355
1799	Note: Improved line strengths of rovibrational and rotational transitions within the X3Σâ^² ground state of NH. Journal of Chemical Physics, 2015, 143, 026101.	1.2	22
1800	Formation of NO from N ₂ /O ₂ Mixtures in a Flow Reactor: Toward an Accurate Prediction of Thermal NO. International Journal of Chemical Kinetics, 2015, 47, 518-532.	1.0	66
1801	New Downsized Diesel Engine Concept with HCCI Combustion at High Load Conditions. , 2015, , .		1

#	Article	IF	CITATIONS
1802	Theoretical Study on the Dynamics of the Reaction of HNO(¹ A′) with HO ₂ (² A″). Journal of Physical Chemistry A, 2015, 119, 5553-5565.	1.1	6
1803	Kinetics of Several Oxygen-Containing Carbon-Centered Free Radical Reactions with Nitric Oxide. Journal of Physical Chemistry A, 2015, 119, 7734-7741.	1.1	5
1804	Proposal and verification of a kinetic mechanism model for NO <i>_x</i> removal with hydrazine hydrate. AICHE Journal, 2015, 61, 904-912.	1.8	7
1805	Numerical study on effect of oxygen content in combustion air on ammonia combustion. Energy, 2015, 93, 2053-2068.	4.5	109
1806	Numerical studies of nitric oxide formation in nanosecond-pulsed discharge-stabilized flames of premixed methane/air. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140331.	1.6	2
1807	Emission and heat transfer characteristics ofÂmethane–hydrogen hybrid fuel laminar diffusion flame. International Journal of Hydrogen Energy, 2015, 40, 9579-9589.	3.8	32
1808	Shock Tube Study of Dimethylamine Oxidation. International Journal of Chemical Kinetics, 2015, 47, 19-26.	1.0	16
1809	The effects of Na/K additives and flyash on NO reduction in a SNCR process. Chemosphere, 2015, 122, 213-218.	4.2	34
1810	Fundamental investigation on the Fuel-NO emission of the oxy-fuel combustion with a tubular flame burner. Proceedings of the Combustion Institute, 2015, 35, 3573-3580.	2.4	26
1811	Nanoscale Effect on Thermal Decomposition of 2,2′,4,4′,6,6′-Hexanitrostilbene by Dynamic Pressure Measuring Thermal Analysis. Journal of Energetic Materials, 2015, 33, 34-50.	1.0	5
1812	Development and application of CN PLIF for single-shot imaging in turbulent flames. Combustion and Flame, 2015, 162, 368-374.	2.8	11
1813	New 0-D methodology for predicting NO formation under continuously varying temperature and mixture composition conditions. Energy Conversion and Management, 2015, 91, 367-376.	4.4	2
1814	Local and Regional Components of Aerosol in a Heavily Trafficked Street Canyon in Central London Derived from PMF and Cluster Analysis of Single-Particle ATOFMS Spectra. Environmental Science & Environmental & Environmenta	4.6	41
1815	The experimental study on nitrogen oxides and SO2 emission for oxy-fuel circulation fluidized bed combustion with high oxygen concentration. Fuel, 2015, 146, 81-87.	3.4	28
1816	Pyrolysis of superfine pulverized coal. Part 3. Mechanisms of nitrogen-containing species formation. Energy Conversion and Management, 2015, 94, 130-138.	4.4	29
1817	Carbon dioxide diluted methane/oxygen combustion in a rapidly mixed tubular flame burner. Combustion and Flame, 2015, 162, 420-430.	2.8	57
1818	Combustion and NO Emission of Shenmu Char in a 2 MW Circulating Fluidized Bed. Energy & Samp; Fuels, 2015, 29, 1219-1226.	2.5	40
1819	Automatic Mechanism and Kinetic Model Generation for Gas―and Solutionâ€Phase Processes: A Perspective on Best Practices, Recent Advances, and Future Challenges. International Journal of Chemical Kinetics, 2015, 47, 199-231.	1.0	94

#	ARTICLE	IF	Citations
1820	Hybrid selective noncatalytic reduction (SNCR)/selective catalytic reduction (SCR) for NO _x removal using low-temperature SCR with Mn-V ₂ O ₅ /TiO ₂ catalyst. Journal of the Air and Waste Management Association, 2015, 65, 485-491.	0.9	11
1821	Effect of Biodiesel on Thermal NO Formation. Journal of the Institution of Engineers (India): Series C, 2015, 96, 135-143.	0.7	5
1822	The effect of functional forms of nitrogen on fuel-NO x emissions. Environmental Monitoring and Assessment, 2015, 187, 4195.	1.3	5
1823	Simultaneous suppression of PCDD/F and NOx during municipal solid waste incineration. Chemosphere, 2015, 126, 60-66.	4.2	53
1824	Threshold photoelectron spectroscopy of the imidogen radical. Journal of Electron Spectroscopy and Related Phenomena, 2015, 203, 25-30.	0.8	22
1825	Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures. Energy, 2015, 85, 503-510.	4.5	45
1826	Numerical simulation of SNCR (selective non-catalytic reduction) process in coal fired grate boiler. Energy, 2015, 92, 67-76.	4.5	30
1827	Fuel Nitrogen Conversion in Chemical Looping with Oxygen Uncoupling of Coal with a CuO-Based Oxygen Carrier. Energy & Coal Study (2015, 29, 3820-3832.	2.5	23
1828	Design Criteria for Future Fuels and Related Power Systems Addressing the Impacts of Non-CO ₂ Pollutants on Human Health and Climate Change. Annual Review of Chemical and Biomolecular Engineering, 2015, 6, 101-120.	3.3	11
1829	The validities of centrifugal sudden approximations in chemical reaction dynamics. International Journal of Quantum Chemistry, 2015, 115, 803-816.	1.0	5
1830	The characteristics and mechanism of the NO formation during oxy-steam combustion. Fuel, 2015, 158, 874-883.	3.4	30
1831	Stateâ€toâ€state reaction dynamics for the reactions of atom N with radicals. International Journal of Quantum Chemistry, 2015, 115, 596-606.	1.0	1
1832	A Multidisciplinary Approach for the Comprehensive Assessment of Integrated Rotorcraftâe "Powerplant Systems at Mission Level. Journal of Engineering for Gas Turbines and Power, 2015, 137, .	0.5	13
1833	Combustion simulations with accurate transport properties for reactive intermediates. Combustion and Flame, 2015, 162, 2480-2486.	2.8	17
1834	Fuel nitrogen conversion and release of nitrogen oxides during coal gangue calcination. Environmental Science and Pollution Research, 2015, 22, 7139-7146.	2.7	23
1835	Experiments and simulations of NOx formation in the combustion of hydroxylated fuels. Combustion and Flame, 2015, 162, 2322-2336.	2.8	15
1836	A Tabulated, Flamelet Based No Model for Large Eddy Simulations of Non Premixed Turbulent Jets with Enthalpy Loss. Flow, Turbulence and Combustion, 2015, 94, 691-729.	1.4	10
1837	Determination of the Rate Constants for the NH ₂ (X ² B ₁) + NH ₂ (X ² B ₁) + H Recombination Reactions in N ₂ as a Function of Temperature and Pressure. Journal of Physical Chemistry A. 2015. 119. 7593-7610.	1.1	22

#	Article	IF	CITATIONS
1838	A Quantum Monte Carlo Study of the Reactions of CH with Acrolein. Journal of Physical Chemistry A, 2015, 119, 4214-4223.	1.1	28
1839	Exergy Analysis of a Biomass Co-Firing Based Pulverized Coal Power Generation System. International Journal of Green Energy, 2015, 12, 461-478.	2.1	11
1840	Exploring NH (X3Σâ^')+D (2S)â†'N (4S)+HD (X1Σg+) reaction with time-dependent wave packet method. Chemical Physics Letters, 2015, 635, 273-277.	1.2	4
1841	Direct combustion of recyclable metal fuels for zero-carbon heat and power. Applied Energy, 2015, 160, 368-382.	5.1	211
1842	Effect of Pressure Oscillations on Flashback Characteristics in a Turbulent Channel Flow. Energy & Ene	2.5	35
1843	Experimental study on NO x reduction from staging combustion of high volatile pulverized coals. Part 2. Fuel staging. Fuel Processing Technology, 2015, 138, 445-454.	3.7	37
1844	Nitrogen Isotope Composition of Thermally Produced NO _{<i>x</i>} from Various Fossil-Fuel Combustion Sources. Environmental Science & Environm	4.6	105
1845	Voltage amplification of thermopower waves via current crowding at high resistances in self-propagating combustion waves. Nanotechnology, 2015, 26, 305402.	1.3	5
1846	Environmental combustion considerations., 2015,, 393-475.		3
1847	Single-fuel steam gasification of switchgrass and coal in a bubbling fluidized bed: A comprehensive parametric reference for co-gasification study. Energy, 2015, 80, 133-147.	4.5	43
1848	Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry. Combustion and Flame, 2015, 162, 554-570.	2.8	399
1849	Towards a more sustainable transport sector by numerically simulating fuel spray and pollutant formation in diesel engines. Journal of Cleaner Production, 2015, 88, 272-279.	4.6	57
1850	Combustion kinetic model uncertainty quantification, propagation and minimization. Progress in Energy and Combustion Science, 2015, 47, 1-31.	15.8	238
1851	Short- and long-term dynamic modes of turbulent swirling premixed flame in a cuboid combustor. Proceedings of the Combustion Institute, 2015, 35, 3209-3217.	2.4	9
1852	A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renewable and Sustainable Energy Reviews, 2015, 42, 1393-1417.	8.2	343
1853	Parametric study of reburning of nitrogen oxide for superfine pulverized coal. Energy Conversion and Management, 2015, 89, 825-832.	4.4	20
1854	Density functional theoretical study on the reaction mechanism of HNCS with SiHF radical. Computational and Theoretical Chemistry, 2015, 1051, 57-61.	1.1	1
1855	An experimental study of NO reduction by biomass reburning and the characterization of its pyrolysis gases. Fuel, 2015, 139, 321-327.	3.4	28

#	Article	IF	CITATIONS
1856	The AOTF-based NO ₂ camera. Atmospheric Measurement Techniques, 2016, 9, 6025-6034.	1.2	14
1857	Research on Combustion and Emission Characteristics of Ammonia under Preheating Conditions. Journal of Chemical Engineering of Japan, 2016, 49, 641-648.	0.3	11
1858	A New Global Algebraic Model for NOx Emissions Formation in Post-Flame Gases - Application to Lean Premixed Combustion Systems. , 0, , .		6
1859	Numerical Study of Pollutant Emissions in a Jet Stirred Reactor under Elevated Pressure Lean Premixed Conditions. Mathematical Problems in Engineering, 2016, 2016, 1-10.	0.6	1
1860	Blending Influence on the Conversion Efficiency of the Cogasification Process of Corn Stover and Coal. Journal of Chemistry, 2016, 2016, 1-8.	0.9	3
1861	Investigating Limitations of a Two-Zone NOx Model Applied to DI Diesel Combustion Using 3-D Modeling. , 0, , .		2
1862	Detailed Kinetics as a Tool for Investigating HCCI Conditions on Engine Performance and Emissions. Journal of Energy Engineering - ASCE, 2016, 142, .	1.0	2
1863	Computational Study of NO _{<i>x</i>} Formation at Conditions Relevant to Gas Turbine Operation: Part 1. Energy & Description (2016), 30, 6745-6755.	2.5	32
1864	Pyridine and pyrrole oxidation under oxy-fuel conditions. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 975-981.	1.2	13
1865	Addition agents effects on hydrocarbon fuels burning. Journal of Physics: Conference Series, 2016, 669, 012046.	0.3	0
1866	Effects of active species induced by injected NO on the reduction of diesel NO _x emission. Mechanical Engineering Letters, 2016, 2, 15-00484-15-00484.	0.2	0
1867	Influence of Stoichiometry and Mixing on NO _{<i>x</i>} Reduction in Waste-to-Energy Plants. Energy & Stoichiometry and Mixing on NO _{<i>x</i>}	2.5	8
1868	Comparative stereodynamics in molecule-atom and molecule-molecule rotational energy transfer: $NO(A2\hat{1}E+) + He$ and D2. Journal of Chemical Physics, 2016, 145, 084312.	1.2	14
1869	Experimental and Kinetic Modeling Study of CH ₃ OCH ₃ Ignition Sensitized by NO ₂ . Energy & Documents and En	2.5	20
1870	Hydrazine-enhanced NO conversion in a pulsed corona discharge plasma (PCDP) reactor: Behaviors and mechanism. AIP Advances, 2016, 6, 095108.	0.6	3
1871	TG–MS analysis of nitrogen transformation during combustion of biomass with municipal sewage sludge. Journal of Thermal Analysis and Calorimetry, 2016, 123, 2061-2068.	2.0	18
1872	Rate of reaction of the hydrogen atom with nitrous oxide in ambient water. Radiation Physics and Chemistry, 2016, 125, 156-159.	1.4	2
1873	Algal biomass and diesel emulsions: An alternative approach for utilizing the energy content of microalgal biomass in diesel engines. Applied Energy, 2016, 172, 80-95.	5.1	29

#	Article	IF	CITATIONS
1874	Effects of products from heterogeneous reactions on homogeneous combustion for H2/O2 mixture in the micro combustor. Applied Thermal Engineering, 2016, 102, 897-903.	3.0	49
1875	Effect of hydrazides as fuel additives for biodiesel and biodiesel blends on NOx formation. Fuel, 2016, 180, 278-283.	3.4	25
1876	Strategies for Quantitative Planar Laser-Induced Fluorescence of NH Radicals in Flames. Combustion Science and Technology, 2016, 188, 529-541.	1.2	18
1877	Effects of initial rotational quantum state excitations and thermal rate coefficient at room temperature for the $\$$ hbox $\{H\}(^{2}]$ hbox $\{S\}$) + hbox $\{N\}($ hbox $\{X\}^{3}\}$ Sigma $^{-1}$) ightarrow hbox $\{N\}(^{4}]$ hbox $\{S\}$) + hbox $\{H\}_{2}($ hbox $\{X\}^{1}\}$ Sigma $\{g\}^{4}$ + $\{g\}$ 0 + NH (X 3 Σ -) â†' N (4 S) + H 2 (X 1 Σ g +) reaction. Theoretical Chemistry Accounts. 2016. 135. 1.	0.5	1
1878	Numerical optimization of laboratory combustor geometry for NO suppression. Applied Thermal Engineering, 2016, 102, 1328-1336.	3.0	15
1879	Release of nitrogen oxides during combustion of model coals. Fuel, 2016, 175, 217-224.	3.4	28
1880	Quantum and quasi-classical dynamics of reaction H + DN (ν = 0,1; j = 0) → HD + N and its isotopic variants. European Physical Journal D, 2016, 70, 1.	0.6	5
1881	Electronic structure, stability and spectroscopy of low-lying states of NOâ^', HNOâ^' and HONâ^' molecular anions. Computational and Theoretical Chemistry, 2016, 1094, 69-81.	1.1	2
1882	SNCR De-NO \times within a moderate temperature range using urea-spiked hydrazine hydrate as reductant. Chemosphere, 2016, 161, 208-218.	4.2	23
1883	Hetero-/homogeneous combustion of premixed hydrogen–oxygen mixture in a micro-reactor with catalyst segmentation. International Journal of Hydrogen Energy, 2016, 41, 12387-12396.	3.8	41
1884	Quantum Scattering Calculations of Transport Properties for the H–N ₂ and H–CH ₄ Collision Pairs. Journal of Physical Chemistry A, 2016, 120, 7793-7799.	1.1	8
1885	Oxygen enriched combustion and co-combustion of lignites and biomass in a 30ÂkWth circulating fluidized bed. Energy, 2016, 116, 317-328.	4.5	42
1886	Algorithmic determination of the mechanism through which H2O-dilution affects autoignition dynamics and NO formation in CH4/air mixtures. Fuel, 2016, 183, 90-98.	3.4	35
1887	Experimental Investigation of Nitrogen Species Distribution in Wood Combustion and Their Influence on NO _{<i>x</i>} Reduction by Combining Air Staging and Ammonia Injection. Energy & Energy & Fuels, 2016, 30, 5816-5824.	2.5	19
1888	Numerical study of characteristics on NO formation in methane MILD combustion with simultaneously hot and diluted oxidant and fuel (HDO/HDF). Energy, 2016, 112, 1024-1035.	4.5	19
1889	Experimental and numerical studies on NOx emission characteristics in laminar non-premixed jet flames of ammonia-containing methane fuel with oxygen/nitrogen oxidizer. Energy, 2016, 114, 961-972.	4.5	34
1890	Catalytic Activity and Selectivities of Metal Oxides and Pt/Al ₂ O ₃ for NH ₃ Combustion. Chemistry Letters, 2016, 45, 179-181.	0.7	26
1891	Experimental and modelling study of 1CH2 in premixed very rich methane flames. Combustion and Flame, 2016, 171, 198-210.	2.8	37

#	Article	IF	CITATIONS
1892	Environmental benefits of co-combustion of light fuel oil with waste glycerol. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 2510-2516.	1.2	7
1893	Modelling of ammonia combustion characteristics at preheating combustion: NO formation analysis. International Journal of Global Warming, 2016, 10, 230.	0.2	9
1894	Analysis of the flamelet model for calculation of emissions of pollutants by combustors. High Temperature, 2016, 54, 541-546.	0.1	0
1895	NO formation in premixed flames of C1–C3 alkanes and alcohols. Combustion and Flame, 2016, 169, 242-260.	2.8	39
1896	Laminar burning velocity of acetic acid + air flames. Combustion and Flame, 2016, 170, 12-29.	2.8	45
1897	Effect of Volatile-Char Interaction on Nitrogen Oxide Emission during Combustion of Blended Coal. Journal of Energy Engineering - ASCE, 2016, 142, .	1.0	7
1898	Estimation of nitrogen oxides emissions from petrol and diesel passenger cars by means of on-board monitoring: Effect of vehicle speed, vehicle technology, engine type on emission rates. Transportation Research, Part D: Transport and Environment, 2016, 47, 251-264.	3.2	45
1899	Ammonia oxidation at high pressure and intermediate temperatures. Fuel, 2016, 181, 358-365.	3.4	223
1900	Quantitative CH measurements in atmospheric-pressure, premixed flames of C1–C4 alkanes. Combustion and Flame, 2016, 165, 109-124.	2.8	47
1901	Numerical study on the reburning characteristics of biomass syngas in a 2 MW pilot scale heavy oil furnace. Fuel, 2016, 181, 277-285.	3.4	6
1902	Comparative study of nitrogen migration among the products from catalytic pyrolysis and gasification of waste rigid polyurethane foam. Journal of Analytical and Applied Pyrolysis, 2016, 120, 144-153.	2.6	41
1903	NOx emissions and turbulent flow field in a partially premixed bluff body burner with CH4 and H2 fuels. International Journal of Hydrogen Energy, 2016, 41, 12397-12410.	3.8	29
1904	Effect of injection timing on mixture formation and combustion in an ethanol direct injection plus gasoline port injection (EDI+GPI) engine. Energy, 2016, 111, 92-103.	4.5	54
1905	Effects of heterogeneous–homogeneous interaction on theÂhomogeneous ignition in hydrogen-fueled catalytic microreactors. International Journal of Hydrogen Energy, 2016, 41, 11441-11454.	3.8	17
1906	Insights into gas-phase reaction mechanisms of small carbon radicals using isomer-resolved product detection. Physical Chemistry Chemical Physics, 2016, 18, 5867-5882.	1.3	15
1907	NOx Emissions Modeling and Uncertainty From Exhaust-Gas-Diluted Flames. Journal of Engineering for Gas Turbines and Power, $2016,138,.$	0.5	12
1908	Homogeneous charge compression ignition combustion: Advantages over compression ignition combustion, challenges and solutions. Renewable and Sustainable Energy Reviews, 2016, 57, 282-291.	8.2	91
1909	Effects of water vapor and Na/K additives on NO reduction through advanced biomass reburning. Fuel, 2016, 170, 60-66.	3.4	30

#	Article	IF	Citations
1910	A systematic study on the applicability and limits of detailed chemistry based NO x models for simulations of the entire engine operating map of spark-ignition engines. Applied Thermal Engineering, 2016, 98, 910-923.	3.0	17
1911	Modelling of oxide of nitrogen formation in a lean burn premixed charge stirred chemical reactor based engines. Journal of the Energy Institute, 2016, 89, 513-524.	2.7	4
1912	Combustion simulations of aqueous urea ammonium nitrate monofuel at high pressures. Combustion and Flame, 2016, 166, 295-306.	2.8	14
1913	Structure of premixed ammoniaÂ+Âair flames at atmospheric pressure: Laser diagnostics and kinetic modeling. Combustion and Flame, 2016, 163, 370-381.	2.8	83
1914	Modeling of NO formation in low pressure premixed flames. Combustion and Flame, 2016, 163, 557-575.	2.8	87
1915	Advances in sulfur chemistry for treatment of acid gases. Progress in Energy and Combustion Science, 2016, 54, 65-92.	15.8	136
1916	Application of Flame Speed Closure Model to RANS Simulations of Stratified Turbulent Combustion in a Gasoline Direct-Injection Spark-Ignition Engine. Combustion Science and Technology, 2016, 188, 98-131.	1.2	11
1917	Dependency of engine combustion on blending ratio variations of lipase-catalysed coconut oil biodiesel and petroleum diesel. Fuel, 2016, 169, 146-157.	3.4	33
1918	Effects of Continuous Volumetric Direct-Coupled Nonequilibrium Atmospheric Microwave Plasma Discharge on Swirl-Stabilized Premixed Flames. IEEE Transactions on Plasma Science, 2016, 44, 39-48.	0.6	22
1919	Improvement of NO and CO predictions for a homogeneous combustion SI engine using a novel emissions model. Applied Energy, 2016, 162, 172-182.	5.1	10
1920	A review on natural gas/diesel dual fuel combustion, emissions and performance. Fuel Processing Technology, 2016, 142, 264-278.	3.7	415
1921	Large eddy simulation of selective non-catalytic reduction (SNCR): A downsizing procedure for simulating nitric-oxide reduction units. Chemical Engineering Science, 2016, 139, 285-303.	1.9	19
1922	Influence of the interaction on NOx emission during co-combustion of combustible solid waste components. Journal of the Energy Institute, 2016, 89, 313-324.	2.7	4
1923	The effect of exhaust gas recirculation on performance and emission characteristics ofÂHCClÂengine. International Journal of Ambient Energy, 2017, 38, 178-185.	1.4	14
1924	Performance and emission characteristics of homogeneous charge compression ignition engine – a review. International Journal of Ambient Energy, 2017, 38, 672-684.	1.4	9
1925	Trends in the control of NOx and SOx combustion emissions: Implications to the design of fluidised bed combustion operations. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2017, 231, 349-358.	1.4	5
1926	NO formation in rich premixed flames of C1–C4 alkanes and alcohols. Proceedings of the Combustion Institute, 2017, 36, 627-635.	2.4	30
1927	Variations in non-thermal NO formation pathways in alcohol flames. Proceedings of the Combustion Institute, 2017, 36, 3995-4002.	2.4	17

#	Article	IF	CITATIONS
1928	Theoretical kinetics of O + C2H4. Proceedings of the Combustion Institute, 2017, 36, 219-227.	2.4	42
1929	Proper Orthogonal Decomposition for Flame Dynamics of Microwave Plasma Assisted Swirl Stabilized Premixed flames. , 2017, , .		1
1930	Boiler Design with Solid-Gaseous Fuel Staging to Reduce NOx Emissions and Optimize Load Flexibility. Chemical Engineering and Technology, 2017, 40, 289-297.	0.9	3
1931	Nitrogenous Gas Emissions from Coal/Biomass Co-combustion under a High Oxygen Concentration in a Circulating Fluidized Bed. Energy & Samp; Fuels, 2017, 31, 3234-3242.	2.5	24
1932	Disturbance energy budget of turbulent swirling premixed flame in a cuboid combustor. Proceedings of the Combustion Institute, 2017, 36, 3809-3816.	2.4	8
1933	Combustion of furniture wood waste and solid wood: Kinetic study and evolution of pollutants. Fuel, 2017, 192, 169-177.	3.4	43
1934	Direct emissions of nitrous oxide from combustion of gaseous fuels. International Journal of Hydrogen Energy, 2017, 42, 711-719.	3.8	20
1935	Influence of combusting methane-hydrogen mixtures on compression–ignition engine exhaust emissions and in-cylinder gas composition. International Journal of Hydrogen Energy, 2017, 42, 2381-2396.	3 . 8	45
1936	Analysis of the combustion process of syngas fuels containing high hydrocarbons and nitrogen compounds in Zonal Volumetric Combustion technology. Energy, 2017, 121, 716-725.	4.5	15
1937	Theoretical investigation on the reaction of Methylidyne Radical (CH) with acetaldehyde (CH 3 CHO). Computational and Theoretical Chemistry, 2017, 1103, 56-62.	1.1	1
1938	Chemical Kinetic Mechanism Study on Premixed Combustion of Ammonia/Hydrogen Fuels for Gas Turbine Use. Journal of Engineering for Gas Turbines and Power, 2017, 139, .	0.5	76
1939	VULCAN: An Open-source, Validated Chemical Kinetics Python Code for Exoplanetary Atmospheres. Astrophysical Journal, Supplement Series, 2017, 228, 20.	3.0	135
1940	Molecular potential energy surface constructed from <i>ab initio</i> interpolation for HCN ^{â°'} + H reaction and deuterated analogues. Molecular Physics, 2017, 115, 860-868.	0.8	2
1941	Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions. Applied Energy, 2017, 194, 123-135.	5.1	42
1942	Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine. Energy, 2017, 124, 397-412.	4.5	43
1943	Hydrogen Abstraction from Hydrocarbons by NH ₂ . Journal of Physical Chemistry A, 2017, 121, 2221-2231.	1.1	33
1944	On the structure of the H 2 CO-HNO dimer: Planar or orthogonal?. Computational and Theoretical Chemistry, 2017, 1108, 10-17.	1.1	2
1945	Investigation of n-butanol as fuel in a four-cylinder MPFI SI engine. Energy, 2017, 125, 726-735.	4.5	40

#	Article	IF	CITATIONS
1946	Reaction of the hydrogen atom with nitrous oxide in aqueous solution $\hat{a} \in$ "pulse radiolysis and theoretical study. RSC Advances, 2017, 7, 8800-8807.	1.7	4
1947	Effects of Damköhler Number on Methane/Oxygen Tubular Combustion Diluted by N2 and CO2. Journal of Energy Resources Technology, Transactions of the ASME, 2017, 139, .	1.4	2
1948	Two-color laser absorption near 5 \hat{l} 4m for temperature and nitric oxide sensing in high-temperature gases. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203, 572-581.	1.1	28
1949	Effect of Pulverized Coal Preheating on NO _{<i>x</i>} Reduction during Combustion. Energy & Lamp; Fuels, 2017, 31, 4436-4444.	2.5	19
1950	Effect of Some Spark Ignition Engine Operating Variables on $\{\{varvec\{NO\}\}\}_{\{varvec\{X\}\}\}$ N O X Production and Control. Arabian Journal for Science and Engineering, 2017, 42, 2087-2103.	1.7	2
1951	Effects of natural gas composition on performance and regulated, greenhouse gas and particulate emissions in spark-ignition engines. Energy Conversion and Management, 2017, 143, 338-347.	4.4	53
1952	Reduction of NO by Biomass Pyrolysis Products in an Experimental Drop-Tube. Energy &	2.5	19
1953	Mechanism of CO ₂ Reforming of CH ₄ on a Pt ₄ /ZrO ₂ (101) Surface: A Density Functional Theory Study. Journal of Physical Chemistry B, 2017, 121, 5238-5246.	1.2	9
1954	CFD study on stability limits of hydrogen/air premixed flames in planar micro-combustors with catalytic walls. Applied Thermal Engineering, 2017, 121, 325-335.	3.0	24
1955	Effect of gas-phase reaction on catalytic reaction for H2/O2 mixture in micro combustor. International Journal of Hydrogen Energy, 2017, 42, 16855-16865.	3.8	20
1956	Assessing the predictions of a NO x kinetic mechanism on recent hydrogen and syngas experimental data. Combustion and Flame, 2017, 182, 122-141.	2.8	168
1957	Study of the performance, simplification and characteristics of SNCR de-NOx in large-scale cyclone separator. Applied Thermal Engineering, 2017, 123, 635-645.	3.0	36
1958	Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition. Energy, 2017, 126, 796-809.	4.5	104
1959	Experimental and numerical study on NO x formation in CH 4 –air mixtures diluted with exhaust gas components. Combustion and Flame, 2017, 179, 325-337.	2.8	34
1960	Characterization of Coal Combustion in a Hot and Diluted Environment Using a Surface-Stabilized Gas Natural Flame. Energy & Samp; Fuels, 2017, 31, 4479-4487.	2.5	1
1961	Modelling pollutant emissions in diesel engines, influence of biofuel on pollutant formation. Journal of Environmental Management, 2017, 203, 1038-1046.	3.8	43
1962	Performance, emission and combustion characteristics of a branched higher mass, C 3 alcohol (isopropanol) blends fuelled medium duty MPFI SI engine. Engineering Science and Technology, an International Journal, 2017, 20, 528-535.	2.0	19
1963	Intrinsic Conversion Mechanism on Nitrous Oxide and Nitrogen Oxide During Circulating Fluidized Bed Combustion of Oil Shale. Combustion Science and Technology, 2017, 189, 1162-1185.	1.2	2

#	Article	IF	Citations
1964	Numerical study of a low emission gas turbine like combustor for turbulent ammonia/air premixed swirl flames with a secondary air injection at high pressure. International Journal of Hydrogen Energy, 2017, 42, 27388-27399.	3.8	158
1965	On the interaction of cyanoformaldehyde with HNO, HF, HCl, H 2 O, and CH 3 OH: A preference for orthogonal structures. Computational and Theoretical Chemistry, 2017, 1120, 34-45.	1.1	1
1966	Benzene-like N $<$ sub $>$ 6 $<$ /sub $>$ rings in a Be $<$ sub $>$ 2 $<$ /sub $>$ N $<$ sub $>$ 6 $<$ /sub $>$ monolayer: a stable 2D semiconductor with high carrier mobility. Journal of Materials Chemistry C, 2017, 5, 11515-11521.	2.7	15
1967	Experimental Study of the Combustion Process of Gaseous Fuels Containing Nitrogen Compounds in New, Low-emission Zonal Volumetric Combustion Technology. Energy Procedia, 2017, 120, 697-704.	1.8	1
1968	Formation of nitrogen oxides from atmospheric electrodeless microwave plasmas in nitrogen–oxygen mixtures. Journal of Applied Physics, 2017, 122, .	1.1	15
1969	Thermochemical Mechanism Optimization for Accurate Predictions of CH Concentrations in Premixed Flames of C1-C3 Alkane Fuels., 2017, , .		1
1970	Preliminary study on lean premixed combustion ofÂammonia-hydrogen for swirling gas turbine combustors. International Journal of Hydrogen Energy, 2017, 42, 24495-24503.	3.8	161
1971	Numerical model to analyze Nox reduction by ammonia injection in diesel-hydrogen engines. International Journal of Hydrogen Energy, 2017, 42, 26132-26141.	3.8	39
1974	Co-Combustion of Tannery Sludge in a Bench-Scale Fluidized-Bed Combustor: Gaseous Emissions and Cr Distribution and Speciation. Energy & E	2.5	9
1975	Kinetic modeling of ammonia/air weak flames in a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2017, 185, 16-27.	2.8	204
1976	Strategy for improved NH 2 detection in combustion environments using an Alexandrite laser. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 184, 235-242.	2.0	17
1977	Low-energy electron impact cross-sections and rate constants of \$\$hbox {NH}_2\$\$ NH 2. Pramana - Journal of Physics, 2017, 89, 1.	0.9	13
1978	Atmospheric emission of NO from mining explosives: A critical review. Atmospheric Environment, 2017, 167, 81-96.	1.9	38
1979	Detailed Reaction Mechanisms for the Oxidative Coupling of Methane over La ₂ O ₃ /CeO ₂ Nanofiber Fabric Catalysts. ChemCatChem, 2017, 9, 4538-4551.	1.8	46
1980	Numerical study of exhaust reforming characteristics on hydrogen production for a marine engine fueled with LNG. Applied Thermal Engineering, 2017, 124, 241-249.	3.0	29
1981	High-level theoretical study of the reaction between hydroxyl and ammonia: Accurate rate constants from 200 to 2500 K. Journal of Chemical Physics, 2017, 147, 152704.	1.2	24
1982	Modeling Combustion of Ammonia/Hydrogen Fuel Blends under Gas Turbine Conditions. Energy & Energy & Fuels, 2017, 31, 8631-8642.	2.5	96
1983	Measurements and modelling of nitrogen species in CH4/O2/N2 flames doped with NO, NH3, or NH3+NO. Combustion and Flame, 2017, 176, 48-59.	2.8	15

#	Article	IF	CITATIONS
1984	From theoretical reaction dynamics to chemical modeling of combustion. Proceedings of the Combustion Institute, 2017, 36, 77-111.	2.4	199
1985	A direct numerical simulation study on NO formation in lean premixed flames. Proceedings of the Combustion Institute, 2017, 36, 2033-2043.	2.4	20
1986	Rate coefficients for fuel + NO2: Predictive kinetics for HONO and HNO2 formation. Proceedings of the Combustion Institute, 2017, 36, 617-626.	2.4	64
1987	Lower particulate matter emissions with a stoichiometric LPG direct injection engine. Fuel, 2017, 187, 197-210.	3.4	25
1988	Performances and emission characteristics of NH3–air and NH3CH4–air combustion gas-turbine power generations. Proceedings of the Combustion Institute, 2017, 36, 3351-3359.	2.4	292
1989	Combustion and ignition characteristics of ammonia/air mixtures in a micro flow reactor with a controlled temperature profile. Proceedings of the Combustion Institute, 2017, 36, 4217-4226.	2.4	61
1990	Importance of the Hydrogen Isocyanide Isomer in Modeling Hydrogen Cyanide Oxidation in Combustion. Energy & Ene	2.5	22
1991	An experimental study on the effect of a turbulence generating plate in low swirl combustor. Journal of Mechanical Science and Technology, 2017, 31, 6077-6084.	0.7	3
1992	Experimental Investigation of Low Emission Liquid Fuelled Reverse Cross Flow Combustor., 2017,,.		1
1993	Performance analysis of addition of hydrogen to compression ignition diesel engine with bio diesel blends. , 2017, , .		6
1994	Influence of small additives of nitrogen in 1D-modeling of non-uniform microwave discharge of low pressure in hydrogen. Journal of Physics: Conference Series, 2017, 927, 012029.	0.3	1
1995	Investigating the Combustion and Emissions Characteristics of Biomass-Derived Platform Fuels as Gasoline Extenders in a Single Cylinder Spark-Ignition Engine. , 0, , .		3
1996	Corrosion Mechanisms and Materials Selection for the Construction of Flue Gas Component in Advanced Heat and Power Systems. Industrial & Engineering Chemistry Research, 2017, 56, 14141-14154.	1.8	24
1997	Effect of CaO on NOx Reduction by Selective Non-Catalytic Reduction under Variable Gas Compositions in a Simulated Cement Precalciner Atmosphere. International Journal of Environmental Research and Public Health, 2017, 14, 1474.	1.2	10
1998	Numerical Study of the Performance and Emission of a Diesel-Syngas Dual Fuel Engine. Mathematical Problems in Engineering, 2017, 2017, 1-12.	0.6	10
1999	Fuel sensitivity of biomass cookstove performance. Applied Energy, 2018, 215, 13-20.	5.1	27
2000	Modeling nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 2018, 67, 31-68.	15.8	980
2001	Emission characteristics of NOx, CO, NH3 and VOCs from gas-fired industrial boilers based on field measurements in Beijing city, China. Atmospheric Environment, 2018, 184, 1-8.	1.9	35

#	Article	IF	CITATIONS
2002	Effect of fuel composition on NO x formation in highâ€pressure syngas/air combustion. AICHE Journal, 2018, 64, 3134-3140.	1.8	6
2003	Hydrogen-diesel fuel co-combustion strategies in light duty and heavy duty CI engines. International Journal of Hydrogen Energy, 2018, 43, 9046-9058.	3.8	54
2004	Catalytic decomposition of HCN on copper manganese oxide at low temperatures: Performance and mechanism. Chemical Engineering Journal, 2018, 346, 621-629.	6.6	16
2005	An investigation on the mechanism of the increased NO2 emissions from H2-diesel dual fuel engine. International Journal of Hydrogen Energy, 2018, 43, 3837-3844.	3.8	16
2006	Modeling the Contributions of Volatile and Char-Bound Nitrogen to the Formation of NOxSpecies in Iron Ore Rotary Kilns. Energy & Energy & 2018, 32, 2321-2331.	2.5	2
2007	Automated Reaction Mechanism Generation Including Nitrogen as a Heteroatom. International Journal of Chemical Kinetics, 2018, 50, 243-258.	1.0	23
2008	Review of Novel Combustion Techniques for Clean Power Production in Gas Turbines. Energy & Energy & Fuels, 2018, 32, 979-1004.	2.5	71
2009	Assessing impacts of discrepancies in model parameters on autoignition model performance: A case study using butanol. Combustion and Flame, 2018, 190, 284-292.	2.8	5
2010	Mechanism and kinetics for the reaction of fulminic acid, HCNO, with an amino radical, NH2. Combustion and Flame, 2018, 190, 317-326.	2.8	3
2011	Shockâ€Tube Experiments and Kinetic Modeling of CH ₃ NHCH ₃ Ignition at Elevated Pressures. International Journal of Chemical Kinetics, 2018, 50, 90-97.	1.0	14
2012	Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion. International Journal of Hydrogen Energy, 2018, 43, 3004-3014.	3.8	317
2013	A Simple "Boxed Molecular Kinetics―Approach To Accelerate Rare Events in the Stochastic Kinetic Master Equation. Journal of Physical Chemistry A, 2018, 122, 1531-1541.	1.1	5
2014	Impact of increasing methyl branches in aromatic hydrocarbons on diesel engine combustion and emissions. Fuel, 2018, 216, 579-588.	3.4	31
2015	Power generation performance of hydrogen-fueled micro thermophotovoltaic reactor. International Journal of Hydrogen Energy, 2018, 43, 1459-1469.	3.8	23
2016	Investigation on the solution of nitric oxide emission model for diesel engine using optimization algorithms. Fuel, 2018, 228, 81-91.	3.4	13
2017	Production of nitrogen oxides in air pulse-periodic discharge with apokamp. Journal Physics D: Applied Physics, 2018, 51, 204005.	1.3	5
2018	Including real fuel chemistry in LES of turbulent spray combustion. Combustion and Flame, 2018, 193, 397-416.	2.8	49
2019	Shock-Tube Experiments and Chemical Kinetic Modeling Study of CH ₄ Sensitized by CH ₃ NHCH ₃ . Energy & Energ	2.5	6

#	ARTICLE	IF	CITATIONS
2020	In-cylinder pressure sensor–based NOx model for real-time application in diesel engines. International Journal of Engine Research, 2018, 19, 293-307.	1.4	9
2021	Effect of Ignition Delay (ID) on performance, emission and combustion characteristics of 2-Methyl Furan-Unleaded gasoline blends in a MPFI SI engine. AEJ - Alexandria Engineering Journal, 2018, 57, 499-507.	3.4	17
2022	Improved NO and NO2 Concentration Estimation for a Diesel-Engine-Aftertreatment System. IEEE/ASME Transactions on Mechatronics, 2018, 23, 190-199.	3.7	12
2023	The use of CO2 as an additive for ignition delay and pollutant control in CH4/air autoignition. Fuel, 2018, 211, 898-905.	3.4	30
2024	Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames. Combustion and Flame, 2018, 187, 185-198.	2.8	449
2025	Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames. Combustion Theory and Modelling, 2018, 22, 264-290.	1.0	18
2026	Synthesis, characterization and antioxidant properties of 2,4,6-tris-isopropylbenzoic acid hydrazide in biodiesel. Fuel, 2018, 215, 249-257.	3.4	8
2027	NOx emissions in direct injection diesel engines: Part 2: model performance for conventional, prolonged ignition delay, and premixed charge compression ignition operating conditions. International Journal of Engine Research, 2018, 19, 528-541.	1.4	6
2028	Effect of compression ratio on combustion and emission characteristics of C.I. Engine operated with acetylene in conjunction with diesel fuel. Fuel, 2018, 214, 489-496.	3.4	61
2029	Thermochemical Mechanism Optimization for Accurate Predictions of CH Concentrations in Premixed Flames of C1–C3 Alkane Fuels. Journal of Engineering for Gas Turbines and Power, 2018, 140, .	0.5	8
2030	Selective Non-catalytic Reduction (SNCR) of Nitrogen Oxide Emissions: A Perspective from Numerical Modeling. Flow, Turbulence and Combustion, 2018, 100, 301-340.	1.4	48
2031	High Temperature Modification of SNCR Technology and its Impact on NOx Removal Process. EPJ Web of Conferences, 2018, 180, 02009.	0.1	6
2032	Investigation of NO2 Formation Kinetics in Dual-Fuel Engines With Lean Premixed Methane-Air Charge. , 2018, , .		0
2033	Application of ultra-low NOx emission control for CFB boilers based on theoretical analysis and industrial practices. Fuel Processing Technology, 2018, 181, 252-258.	3.7	55
2034	The effect of embedded high thermal conductivity material on combustion performance of catalytic micro combustor. Energy Conversion and Management, 2018, 174, 730-738.	4.4	28
2035	Experimental and chemical kinetic study of the impact of n-butanol blending on the gross engine performance of a CRDI engine. Energy Conversion and Management, 2018, 178, 400-414.	4.4	12
2036	Ammonia for power. Progress in Energy and Combustion Science, 2018, 69, 63-102.	15.8	1,175
2037	Uncertainty Quantification of NOx Emissions Induced Through the Prompt Route in Premixed Alkane Flames. , 2018, , .		1

#	ARTICLE	IF	Citations
2038	Formation of NO and NH in NH3-doped CH4 + N2 + O2 flame: Experiments and modelling. Combustion Flame, 2018, 194, 278-284.	and 2.8	16
2039	Beyond fossil fuel–driven nitrogen transformations. Science, 2018, 360, .	6.0	1,379
2040	Theory and modeling of relevance to prompt-NO formation at high pressure. Combustion and Flame, 2018, 195, 3-17.	2.8	57
2041	Effects of water content and diluent pressure on the ignition of aqueous ammonia/ammonium nitrate and urea/ammonium nitrate fuels. Applied Energy, 2018, 224, 300-308.	5.1	6
2042	Study on pollutants formation under knocking combustion conditions using an optical single cylinder SI research engine. Energy, 2018, 158, 899-910.	4.5	6
2043	Modelling of ammonia/air non-premixed turbulent swirling flames in a gas turbine-like combustor at various pressures. Combustion Theory and Modelling, 2018, 22, 973-997.	1.0	53
2044	Computational fluid dynamics modeling of the combustion and emissions characteristics in high-temperature catalytic micro-combustors. Applied Thermal Engineering, 2018, 141, 711-723.	3.0	12
2045	PLIF measurements of non-thermal NO concentrations in alcohol and alkane premixed flames. Combustion and Flame, 2018, 194, 363-375.	2.8	22
2046	Studying the influence of nitrogen seeding in a detached-like hydrogen plasma by means of numerical simulations. Plasma Physics and Controlled Fusion, 2018, 60, 105004.	0.9	18
2047	Innovative scheme for high-repetition-rate imaging of CN radical. Optics Letters, 2018, 43, 443.	1.7	5
2048	An Experimental Investigation on the NO and CO Emission Characteristics of a Swirl Convergent-divergent Nozzle at Elevated Pressure. Energies, 2018, 11, 1410.	1.6	4
2049	Combustion of Poplar and Pine Pellet Blends in a 50 kW Domestic Boiler: Emissions and Combustion Efficiency. Energies, 2018, 11, 1580.	1.6	16
2050	A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners. Energy, 2018, 160, 399-409.	4. 5	27
2051	Stability limits of methane/oxygen mixtures diluted by N ₂ and CO ₂ under various oxygen contents., 2018,,.		0
2052	Possibilities of elimination of ammonia slip from technological water in power plants. IOP Conference Series: Materials Science and Engineering, 2018, 379, 012032.	0.3	1
2053	Effect of Fuel Unsaturation on Emissions in Flames and Diesel Engines. Green Energy and Technology, 2018, , 51-76.	0.4	1
2054	Development of combustion strategy for the internal combustion engine fueled by ammonia and its operating characteristics. Journal of Mechanical Science and Technology, 2018, 32, 1905-1925.	0.7	48
2055	An evaluation of equilibrium conditions and temperature-dependent speciation in a laser-produced air plasma. Physics of Plasmas, 2018, 25, 083303.	0.7	10

#	Article	IF	CITATIONS
2056	Use of Modified Temperature-Composition PDF Formulation in Modeling of Flame Dynamics in Diesel Engine Combustion. International Journal of Nonlinear Sciences and Numerical Simulation, 2018, 19, 643-667.	0.4	0
2057	Description of kerosene / air combustion with Hybrid Transported-Tabulated Chemistry. Fuel, 2018, 233, 146-158.	3.4	8
2058	The characteristics of pure heterogeneous reaction for H2/Air mixture in the micro-combustors with different thermophysical properties. Applied Thermal Engineering, 2018, 141, 741-750.	3.0	12
2059	Effect of Operational Parameters on Combustion and Emissions in an Industrial Gas Turbine Combustor. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, .	1.4	21
2060	Experimental and numerical study, under LTC conditions, of ammonia ignition delay with and without hydrogen addition. Proceedings of the Combustion Institute, 2019, 37, 621-629.	2.4	119
2061	Developing detailed chemical kinetic mechanisms for fuel combustion. Proceedings of the Combustion Institute, 2019, 37, 57-81.	2.4	228
2062	Effects of radiation heat loss on laminar premixed ammonia/air flames. Proceedings of the Combustion Institute, 2019, 37, 1741-1748.	2.4	60
2063	Study on the emission characteristics of nitrogen oxides with coal combustion in pressurized fluidized bed. Chinese Journal of Chemical Engineering, 2019, 27, 1177-1183.	1.7	17
2064	Historic and futuristic review of electron beam technology for the treatment of SO2 and NOx in flue gas. Chemical Engineering Journal, 2019, 355, 351-366.	6.6	123
2065	A shock tube and modeling study on the autoignition properties of ammonia at intermediate temperatures. Proceedings of the Combustion Institute, 2019, 37, 205-211.	2.4	127
2066	Effects of High-temperature Char Layer and Pyrolysis Gas on NOx Reduction in a Typical Decoupling Combustion Coal-fired Stove. Journal of Thermal Science, 2019, 28, 40-50.	0.9	8
2067	Effect of pressure on the combustion of an aqueous urea and ammonium nitrate monofuel. Proceedings of the Combustion Institute, 2019, 37, 5663-5670.	2.4	1
2068	The sensitizing effects of NO2 and NO on methane low temperature oxidation in a jet stirred reactor. Proceedings of the Combustion Institute, 2019, 37, 667-675.	2.4	124
2069	Deflagration-to-Detonation Transition in Nitrous Oxide/Oxygen-Fuel Mixtures for Propulsion. Journal of Propulsion and Power, 2019, 35, 944-952.	1.3	9
2070	The effects of the air-fuel ratio on a stationary diesel engine under dual-fuel conditions and multi-objective optimization. Energy, 2019, 187, 115884.	4.5	17
2071	Flamelet tabulation methods for solid fuel combustion with fuel-bound nitrogen. Combustion and Flame, 2019, 209, 155-166.	2.8	17
2072	Investigation of factors affecting the gaseous and particulate matter emissions from diesel vehicles. Air Quality, Atmosphere and Health, 2019, 12, 1113-1126.	1.5	5
2073	A multiscale combustion model formulation for NO predictions in hydrogen enriched jet flames. International Journal of Hydrogen Energy, 2019, 44, 23436-23457.	3.8	30

#	Article	IF	CITATIONS
2074	Advanced control of NO emission from algal biomass combustion using loaded iron-based additives. Energy, 2019, 185, 229-238.	4. 5	28
2075	Ab initio kinetics of the C2H2 + NH2 reaction: a revisited study. Physical Chemistry Chemical Physics, 2019, 21, 17232-17239.	1.3	12
2076	Combustion characterization of the mixtures biogas-syngas, strain rate and ambient pressure effects. International Journal of Hydrogen Energy, 2019, 44, 22478-22491.	3.8	11
2077	Study of co-combustion of dried sewage sludge with coke: Thermogravimetric assessment and gaseous emissions. Journal of Environmental Chemical Engineering, 2019, 7, 102871.	3.3	18
2078	Quasi-Classical Trajectory Study of NH(3â^â€") + NH(3â^â€") Reactive Collisions. Journal of Physical Chemistry A, 2019, 123, 9113-9122.	1.1	6
2079	Comparison of the effect of heat release and products from heterogeneous reaction on homogeneous combustion of H2/O2 mixture in the catalytic micro combustor. International Journal of Hydrogen Energy, 2019, 44, 31557-31566.	3.8	16
2080	Measurements of Low Temperature Rate Coefficients for the Reaction of CH with CH ₂ O and Application to Dark Cloud and AGB Stellar Wind Models. Astrophysical Journal, 2019, 885, 134.	1.6	13
2081	On the Oxidation of Ammonia and Mutual Sensitization of the Oxidation of No and Ammonia: Experimental and Kinetic Modeling. Combustion Science and Technology, 2022, 194, 117-129.	1.2	28
2082	Kinetic Analysis of the Oxidative Conversion of Methane in Slow Combustion. I. Key Steps of the Chemical Mechanism. Combustion, Explosion and Shock Waves, 2019, 55, 513-525.	0.3	4
2083	An Engineering Approach for Estimating the Formation of Nitric Oxide from Fuelâ€Nitrogen. Chemical Engineering and Technology, 2019, 42, 2428-2433.	0.9	1
2084	Investigation of the contribution of homogeneous flame fronts to the formation of NOx in combustion chambers with promising fuel combustion schemes. Journal of Physics: Conference Series, 2019, 1261, 012012.	0.3	O
2085	Modeling of HMX Monopropellant Combustion with Detailed Condensed-Phase Kinetics. , 2019, , .		1
2086	Computational investigation on the reaction of dimethyl ether with nitric dioxide. I. Underlying mechanism and accurate energetics. Theoretical Chemistry Accounts, 2019, 138, 1.	0.5	4
2087	Emission characteristics of turbulent non-premixed ammonia/air and methane/air swirl flames through a rich-lean combustor under various wall thermal boundary conditions at high pressure. Combustion and Flame, 2019, 210, 247-261.	2.8	110
2088	Performance and Emission Parameters of Homogeneous Charge Compression Ignition (HCCI) Engine: A Review. Energies, 2019, 12, 3557.	1.6	37
2089	R-branch line intensities and temperature-dependent line broadening and shift coefficients of the nitric oxide fundamental rovibrational band. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 239, 106612.	1.1	21
2090	Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions. Combustion and Flame, 2019, 210, 236-246.	2.8	275
2091	The rotational spectrum of ¹⁵ ND. Isotopic-independent Dunham-type analysis of the imidogen radical. Physical Chemistry Chemical Physics, 2019, 21, 3564-3573.	1.3	21

#	Article	IF	CITATIONS
2092	A new era for combustion research. Pure and Applied Chemistry, 2019, 91, 271-288.	0.9	20
2093	Study on the Combustion Process of Premixed Methane Flames with CO2 Dilution at Elevated Pressures. Energies, 2019, 12, 348.	1.6	7
2094	Ab initio thermal rate coefficients for H + NH $<$ sub $>3<$ sub $>$ â‡ \times H $<$ sub $>2<$ sub $>$ + NH $<$ sub $>2<$ sub $>$ International Journal of Chemical Kinetics, 2019, 51, 321-328.	1.0	20
2095	Decomposition kinetics for HONO and HNO (sub) 2 (sub). Reaction Chemistry and Engineering, 2019, 4, 323-333.	1.9	52
2096	On the interaction of propynal with HNO, HF, HCl, H2O, CH3OH, and NH3: Red- and blue-shifting hydrogen bonds and tetrel bonds. Computational and Theoretical Chemistry, 2019, 1160, 1-13.	1.1	12
2097	Models To Predict Kinetics of NOx Reduction by Chars as a Function of Coal Rank. Energy & Chars, 2019, 33, 5498-5504.	2.5	10
2098	Skeletal mechanisms for prediction of <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>NO</mml:mtext></mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math> emission in solid fuel combustion. Fuel, 2019, 254, 115569.	v> <mml:n 3.4</mml:n 	^{ાં} 25
2099	Ab initio kinetics for pyrolysis and combustion systems. Computer Aided Chemical Engineering, 2019, , 115-167.	0.3	27
2100	Kinetic modeling of the pyrolysis chemistry of fossil and alternative feedstocks. Computer Aided Chemical Engineering, 2019, , 295-362.	0.3	9
2101	Detailed Kinetic Mechanisms of Pollutant Formation in Combustion Processes. Computer Aided Chemical Engineering, 2019, , 603-645.	0.3	11
2102	Combustion and emission characteristics from biojet fuel blends in a gas turbine combustor. Energy, 2019, 182, 689-705.	4.5	47
2103	Temperature and oxygen partial pressure dependencies of the coal-bound nitrogen to NOx conversion in O2/CO2 environments. Combustion and Flame, 2019, 206, 98-111.	2.8	31
2104	Kinetic Modeling of NO <i></i> > Formation and Consumption during Methanol and Ethanol Oxidation. Combustion Science and Technology, 2019, 191, 1627-1659.	1.2	33
2105	Improved Chemical Reactor Network Application for Predicting the Emission of Nitrogen Oxides in a Lean Premixed Gas Turbine Combustor. Combustion, Explosion and Shock Waves, 2019, 55, 267-273.	0.3	2
2106	Human exposure to NO2 in school and office indoor environments. Environment International, 2019, 130, 104887.	4.8	86
2107	Experimental and Numerical Study of the Fuel-NO _{<i>x</i>} Formation at High CO ₂ Concentrations in a Jet-Stirred Reactor. Energy & Energy	2.5	11
2108	Numerical study on stability and influencing factors of heterogeneous reaction for hydrogen/oxygen mixture in planar catalytic micro combustor. International Journal of Hydrogen Energy, 2019, 44, 15587-15597.	3.8	15
2109	Fuel Staging and Air Staging To Reduce Nitrogen Emission in the CFB Combustion of Bark and Coal. Energy & Energ	2.5	11

#	Article	IF	CITATIONS
2110	Investigation of A Low Emission Liquid Fueled Reverse-Cross-Flow Combustor. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, .	1.4	8
2111	A laser diagnostic at 427Ânm for quantitative measurements of CH in a shock tube. Applied Physics B: Lasers and Optics, 2019, 125, 1.	1.1	3
2113	Investigating the effect of local addition of hydrogen to acoustically excited ethylene and methane flames. International Journal of Hydrogen Energy, 2019, 44, 11168-11184.	3.8	24
2114	Product Detection of the CH Radical Reactions with Ammonia and Methyl-Substituted Amines. Journal of Physical Chemistry A, 2019, 123, 2178-2193.	1.1	4
2115	Self-aspirating/air-preheating porous medium gas burner. Applied Thermal Engineering, 2019, 153, 181-189.	3.0	21
2116	Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism. Combustion and Flame, 2019, 204, 162-175.	2.8	265
2117	Investigation of NO2 Formation Kinetics in Dual-Fuel Engines With Lean Premixed Methane–Air Charge. Journal of Engineering for Gas Turbines and Power, 2019, 141, .	0.5	0
2118	Experimental and numerical study of the effect of injection strategy and intake valve lift on super-knock and engine performance in a boosted GDI engine. Fuel, 2019, 249, 309-325.	3.4	28
2119	Suppressing the formation of NO _x and N ₂ O in CO ₂ /N ₂ dielectric barrier discharge plasma by adding CH ₄ : scavenger chemistry at work. Sustainable Energy and Fuels, 2019, 3, 1388-1395.	2.5	10
2120	Generation of biodiesel from industrial wastewater using oleaginous yeast: performance and emission characteristics of microbial biodiesel and its blends on a compression injection diesel engine. Environmental Science and Pollution Research, 2019, 26, 11371-11386.	2.7	22
2122	NH3 as a Transport Fuel in Internal Combustion Engines: A Technical Review. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, .	1.4	70
2125	Computational modeling of pulverized coal fired boilers – A review on the current position. Fuel, 2019, 236, 643-665.	3.4	81
2126	Coal and biomass cofiring. , 2019, , 89-116.		1
2127	Computational Study of the Reaction of Dimethyl Ether with Nitric Oxide. Mechanism and Kinetic Modeling. Journal of Physical Chemistry A, 2019, 123, 26-36.	1.1	6
2128	Progress in non-intrusive laser-based measurements of gas-phase thermoscalars and supporting modeling near catalytic interfaces. Progress in Energy and Combustion Science, 2019, 70, 169-211.	15.8	47
2129	Interaction of NH2 radical with alkylbenzenes. Combustion and Flame, 2019, 200, 85-96.	2.8	9
2130	Mesoscale burner array performance analysis. Combustion and Flame, 2019, 199, 324-337.	2.8	30
2131	Science and technology of ammonia combustion. Proceedings of the Combustion Institute, 2019, 37, 109-133.	2.4	997

#	Article	IF	CITATIONS
2132	Influence of Ammonium Dihydrogen Phosphate on Combustion Performance and Ash Characteristics during Combustion of Zhundong Coal. Combustion Science and Technology, 2019, 191, 2053-2070.	1.2	3
2133	Theoretical investigation on atmospheric reaction of O(3P) with CH2CN. Journal of Physical Organic Chemistry, 2019, 32, e3913.	0.9	1
2134	Coriolis coupling effects in the dynamics of the D(2S) + NH(X3Σâ^') â†' N(4S) + HD(X kinetic isotope effect. Journal of Mathematical Chemistry, 2019, 57, 465-472.	(1Ĵ£.g+)r	eaction and
2135	Effects of N2 and CO2 dilution on the combustion characteristics of C3H8/O2 mixture in a swirl tubular flame burner. Experimental Thermal and Fluid Science, 2019, 100, 251-258.	1.5	19
2136	Conversions of fuel-N to NO and N2O during devolatilization and char combustion stages of a single coal particle under oxy-fuel fluidized bed conditions. Journal of the Energy Institute, 2019, 92, 351-363.	2.7	45
2137	A comprehensive study on NOx emission and fuel nitrogen conversion of solid biomass in bubbling fluidized beds under staged combustion. Journal of the Energy Institute, 2020, 93, 324-334.	2.7	36
2138	Impact of Kinetic Uncertainties on Accurate Prediction of NO Concentrations in Premixed Alkane-Air Flames. Combustion Science and Technology, 2020, 192, 959-985.	1.2	6
2139	Isocyanic acid (HNCO) adsorption on the flat and defective Rh(001) surfaces: Pure DFT and DFT+vdW calculations. Journal of Physics and Chemistry of Solids, 2020, 138, 109162.	1.9	4
2140	Experimental investigation on combustion and emissions of a two-stroke DISI engine fueled with aviation kerosene at various compression ratios. Fuel, 2020, 259, 116224.	3.4	32
2141	Combustion performance of hydrogen-enriched fuels in a premixed burner. Environmental Technology (United Kingdom), 2020, 41, 2-13.	1.2	13
2142	Combustion behavior of large size coal over a wide range of heating rates in a concentrating photothermal reactor. Fuel Processing Technology, 2020, 197, 106187.	3.7	8
2143	Experimental investigation of lean premixed pre-vaporized liquid-fuel combustion in porous media burners at elevated pressures up to 20Âbar. Combustion and Flame, 2020, 212, 123-134.	2.8	25
2144	Influence of pressure on chemical vapor deposition of boron nitride from BCl3/NH3/H2 gas mixtures. Ceramics International, 2020, 46, 4843-4849.	2.3	9
2145	Numerical investigation on effects of fuel tube diameter and co-flow velocity in a methane/air non-premixed flame. Heat and Mass Transfer, 2020, 56, 1697-1711.	1.2	7
2146	Determination of rate parameters of key N/H/O elementary reactions based on H2/O2/NOx combustion experiments. Fuel, 2020, 264, 116720.	3.4	34
2147	Analysis of nitrogen oxide emissions from modern vehicles using hydrogen or other natural and synthetic fuels in combustion chamber. International Journal of Hydrogen Energy, 2020, 45, 1151-1157.	3.8	9
2148	Comparative Chemical Kinetic Analysis and Skeletal Mechanism Generation for Syngas Combustion with NO _{<i>x</i>} Chemistry. Energy & Energy	2.5	19
2149	Investigation of peripheral vortex reverse flow (PVRF) combustor for gas turbine engines. Energy, 2020, 193, 116766.	4.5	8

#	Article	IF	CITATIONS
2150	A physics-based approach to modeling real-fuel combustion chemistry – V. NO formation from a typical Jet A. Combustion and Flame, 2020, 212, 270-278.	2.8	23
2151	Effect of CO2 diluent on the formation of pollutant NOx in the laminar non-premixed methane-air flame. International Journal of Heat and Mass Transfer, 2020, 148, 119071.	2.5	10
2152	An updated short chemicalâ€kinetic nitrogen mechanism for carbonâ€free combustion applications. International Journal of Energy Research, 2020, 44, 795-810.	2.2	51
2153	Effect of flame interaction on swirl-stabilized mesoscale burner array performance. Energy, 2020, 192, 116661.	4.5	15
2154	Effects of plant additives on the concentration of sulfur and nitrogen oxides in the combustion products of coal-water slurries containing petrochemicals. Environmental Pollution, 2020, 258, 113682.	3.7	36
2155	Technical Route to Achieve Ultra-Low Emission of Nitrogen Oxides with Predictive Model of Nitrogen Oxide Background Concentration. Processes, 2020, 8, 1104.	1.3	5
2156	Collision processes, dynamic and kinetic parameters, and energy exchanges of particles in astrochemistry reaction of NH+H2 and deuterated analogs on an interpolated potential energy surface. Molecular Astrophysics, 2020, 20, 100085.	1.7	3
2157	Probing hydrogen–nitrogen chemistry: A theoretical study of important reactions in NxHy, HCN and HNCO oxidation. International Journal of Hydrogen Energy, 2020, 45, 23624-23637.	3.8	35
2158	A review on the applications of the chemical reactor network approach on the prediction of pollutant emissions. Aircraft Engineering and Aerospace Technology, 2020, 92, 551-570.	0.7	6
2159	Accurate prediction of NOx emissions from diesel engines considering in-cylinder ion current. Environmental Pollution, 2020, 266, 115347.	3.7	20
2160	Currunt status of NOx emission treatment in Marine Diesel Engine. IOP Conference Series: Earth and Environmental Science, 0, 474, 022028.	0.2	3
2161	NOx Emissions and Nitrogen Fate at High Temperatures in Staged Combustion. Energies, 2020, 13, 3557.	1.6	9
2162	A Comprehensive, Three-Dimensional Analysis of a Large-Scale, Multi-Fuel, CFB Boiler Burning Coal and Syngas. Part 2. Numerical Simulations of Coal and Syngas Co-Combustion. Entropy, 2020, 22, 856.	1.1	17
2163	Experimental study on N2O and NOx emission characteristics of five high-volatile fuels in bubbling bed combustion. Fuel Processing Technology, 2020, 208, 106517.	3.7	18
2164	Method for Experimental Data Processing Concerning Chemical Reaction Rates in Low-Atomic Gases. Computational Mathematics and Mathematical Physics, 2020, 60, 1199-1207.	0.2	0
2165	Temperature Profile Mapping over a Catalytic Unit of a Hydrogen Passive Autocatalytic Recombiner: An Experimental and Computational Fluid Dynamics Study. Energy & Samp; Fuels, 2020, 34, 11637-11649.	2.5	16
2166	Chemical Kinetics Modeling and Analysis of Monomethylamine for Power Plants Selective Non-Catalytic Reduction (SNCR) Systems. Emission Control Science and Technology, 2020, 6, 431-441.	0.8	3
2167	The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions. Energies, 2020, 13, 5107.	1.6	17

#	Article	IF	CITATIONS
2168	Mutual inhibition effect of hydrogen and ammonia in oxidation processes and the role of ammonia as "strong―collider in third-molecular reactions. International Journal of Hydrogen Energy, 2020, 45, 32113-32127.	3.8	26
2169	A nitrogen fixation strategy to synthesize NO <i>via</i> the thermally assisted photocatalytic conversion of air. Journal of Materials Chemistry A, 2020, 8, 19623-19630.	5.2	24
2170	Effects of Air Temperature on Combustion Characteristics of LPG Diffusion Flame. Materials Science Forum, 0, 1008, 128-138.	0.3	2
2171	Kinetic modeling of ammonia decomposition at chemical vapor deposition conditions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	13
2173	Mechanisms of Acid-Promoted N ₂ and N ₂ O Generation from NH ₂ NO and NH ₂ NO ₂ . Journal of Physical Chemistry A, 2020, 124, 7575-7584.	1.1	3
2174	Onâ€Chip Chemiresistive Sensor Array for Onâ€Road NO <i></i> < Monitoring with Quantification. Advanced Science, 2020, 7, 2002014.	5.6	19
2175	Relationship between the N2O decomposition and NO formation in H2O/CO2/NH3/NO atmosphere under the conditions of simulated air-staged combustion in the temperature interval of 900–1600°C. Energy, 2020, 211, 118647.	4.5	12
2176	A Study on the High Load Operation of a Natural Gas-Diesel Dual-Fuel Engine. Frontiers in Mechanical Engineering, 2020, 6, .	0.8	1
2177	Photolytic mechanisms of hydroxylamine. RSC Advances, 2020, 10, 8319-8331.	1.7	3
2178	Experimental and kinetic modeling study of the pyrolysis and oxidation of diethylamine. Fuel, 2020, 275, 117744.	3.4	11
2179	Surface density function evolution and the influence of strain rates during turbulent boundary layer flashback of hydrogen-rich premixed combustion. Physics of Fluids, 2020, 32, .	1.6	16
2180	Investigation of Camelina Oil Derived Jet Fuel Blends on Performance and Emissions under Distributed Combustion Condition. , 2020, , .		0
2181	Experimental and kinetic modelling studies of laminar flame speed in mixtures of partially dissociated NH3 in air. Fuel, 2020, 278, 118428.	3.4	28
2182	Progress and Prospective of Nitrogen-Based Alternative Fuels. Chemical Reviews, 2020, 120, 5352-5436.	23.0	165
2183	Flamelet tabulation methods for SOx formation in pulverized solid fuel combustion. Combustion and Flame, 2020, 218, 150-167.	2.8	4
2184	Diesel Exhaust Emissions and Mitigations. , 0, , .		3
2185	NO x emissions of pulverized coal combustion in highâ€temperature flue gas. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2534.	0.8	7
2186	Dynamics of imidogen reaction with hydroxyl radical: a theoretical approach. Journal of the Iranian Chemical Society, 2020, 17, 1987-2000.	1.2	2

#	Article	IF	Citations
2187	Geopolymer-composites with thermomechanical stability as oxygen carriers for fluidized bed chemical looping combustion with oxygen uncoupling. Chemical Engineering Journal, 2020, 393, 124756.	6.6	13
2188	Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions. Fuel, 2020, 269, 117448.	3.4	238
2189	Numerical study of the effect of H2O diluents on NOx and CO formation in turbulent premixed methane-air flame. International Journal of Hydrogen Energy, 2020, 45, 10882-10894.	3.8	7
2190	Dynamic and Kinetic Parameters and Energy Exchanges of Particles in Reaction of NH + OH and Deuterated Analogues on an Interpolated Potential Energy Surface. ChemistrySelect, 2020, 5, 3518-3528.	0.7	3
2191	Pragmatic Solution for a Fully <i>E</i> , <i>J</i> -Resolved Master Equation. Journal of Physical Chemistry A, 2020, 124, 2907-2918.	1.1	17
2192	Numerical study on NOx reduction in a large-scale heavy fuel oil-fired boiler using suitable burner adjustments. Energy, 2020, 199, 117371.	4.5	9
2193	Development and characterization of swirl-stabilized diffusion mesoscale burner array. Applied Thermal Engineering, 2020, 175, 115373.	3.0	6
2194	Estimation of NOx and soot emission from a constant volume n-butanol/n-dodecane blended spray using unsteady flamelet model based on n-dodecane/n-butanol/NOx/PAH chemistry. Journal of the Energy Institute, 2020, 93, 1868-1882.	2.7	12
2195	Theoretical kinetics of the C2H4Â+ÂNH2 reaction. Combustion and Flame, 2020, 215, 193-202.	2.8	5
2196	Biogas combustion with various oxidizers in a nanosecond DBD microplasma burner. Experimental Thermal and Fluid Science, 2020, 118, 110166.	1.5	16
2197	An experimental, theoretical and kinetic-modeling study of the gas-phase oxidation of ammonia. Reaction Chemistry and Engineering, 2020, 5, 696-711.	1.9	275
2198	Emission Characteristics of Heat Recirculating Porous Burners With High Temperature Energy Extraction. Frontiers in Chemistry, 2020, 8, 67.	1.8	6
2199	Numerical Analysis of NOx Reduction Using Ammonia Injection and Comparison with Water Injection. Journal of Marine Science and Engineering, 2020, 8, 109.	1.2	29
2200	Experimental study of the combustion and emission characteristics of oxygenated fuels on a heavy-duty diesel engine. Fuel, 2020, 268, 117219.	3.4	42
2201	Accurate Potential Energy Surface for Quartet State HN ₂ and Interplay of N(⁴ <i>S</i>) + NH(<i>XÌf</i> 3Σ [–]) versus H + N ₂ (<i>A</i> 3Σ _u ⁺) Reactions. Journal of Physical Chemistry A, 2020, 124, 781-789.	1.1	5
2202	A review of ammonia as a compression ignition engine fuel. International Journal of Hydrogen Energy, 2020, 45, 7098-7118.	3.8	388
2203	Response of Heat Release Rate to Flame Straining in Swirling Hydrogen-Air Premixed Flames. Flow, Turbulence and Combustion, 2020, 104, 451-478.	1.4	8
2204	Air pollution (volatile organic compound, etc.) and climate change. , 2020, , 31-46.		2

#	Article	IF	CITATIONS
2205	Numerical Predictions of a Swirl Combustor Using Complex Chemistry Fueled with Ammonia/Hydrogen Blends. Energies, 2020, 13, 288.	1.6	28
2206	Investigation of the fate of nitrogen in chemical looping combustion of gaseous fuels using two different oxygen carriers. Energy, 2020, 195, 116926.	4.5	15
2207	Performance and emissions of camelina oil derived jet fuel blends under distributed combustion condition. Fuel, 2020, 271, 117685.	3.4	19
2208	Transient Spark Discharge Generated in Various N2/O2 Gas Mixtures: Reactive Species in the Gas and Water and Their Antibacterial Effects. Plasma Chemistry and Plasma Processing, 2020, 40, 749-773.	1.1	34
2209	Theoretical investigations on mechanisms and pathways of CH2ClO2/CHCl2O2 with ClO reactions in the atmosphere. Environmental Science and Pollution Research, 2020, 27, 20457-20468.	2.7	0
2210	Comparative analysis of factors affecting differences in the concentrations of gaseous anthropogenic emissions from coal and slurry fuel combustion. Fuel, 2020, 270, 117581.	3.4	26
2211	NOx Formation in MILD Combustion: Potential and Limitations of Existing Approaches in CFD. Frontiers in Mechanical Engineering, 2020, 6, .	0.8	12
2212	Combustion and Emission Characteristics of Ammonia under Conditions Relevant to Modern Gas Turbines. Combustion Science and Technology, 2021, 193, 2514-2533.	1.2	61
2213	Ecological Assessment of Industrial Waste as a High-Potential Component of Slurry Fuels. Waste and Biomass Valorization, 2021, 12, 1659-1676.	1.8	0
2214	Effect of hydrogen blending on the high temperature auto-ignition of ammonia at elevated pressure. Fuel, 2021, 287, 119563.	3.4	118
2215	Experimental and kinetic modelling studies of flammability limits of partially dissociated NH3 and air mixtures. Proceedings of the Combustion Institute, 2021, 38, 2023-2030.	2.4	17
2216	Understanding the effect of CaO on HCN conversion and NOx formation during the circulating fluidized combustion process using DFT calculations. Proceedings of the Combustion Institute, 2021, 38, 5355-5362.	2.4	10
2217	Homogeneous conversion of NO _x and NH ₃ with CH ₄ , CO, and C ₂ H ₄ at the diluted conditions of exhaustâ€gases of lean operated natural gas engines. International Journal of Chemical Kinetics, 2021, 53, 213-229.	1.0	12
2218	Effects of O2/CO/CO2 on NH3 reducing NO at 1073–1773ÂK in different flow reactors-Part â¡: The effects of CO, CO2 and the complex atmosphere. Fuel, 2021, 288, 119837.	3.4	5
2219	Numerical study of the premixed ammonia-hydrogen combustion under engine-relevant conditions. International Journal of Hydrogen Energy, 2021, 46, 2667-2683.	3.8	90
2220	Numerical and chemical kinetic analysis to evaluate the effect of steam dilution and pressure on combustion of n-dodecane in a swirling flow environment. Fuel, 2021, 288, 119710.	3.4	23
2221	Kinetics modeling of NOx emissions characteristics of a NH3/H2 fueled gas turbine combustor. International Journal of Hydrogen Energy, 2021, 46, 4526-4537.	3.8	42
2222	Experimental and kinetic modeling study of NO formation in premixed CH4+O2+N2 flames. Combustion and Flame, 2021, 223, 349-360.	2.8	33

#	Article	IF	CITATIONS
2223	Experimental analysis of CO/H2 syngas with NOx and SOx reactions in pressurized oxy-fuel combustion. Energy, 2021, 219, 119550.	4.5	17
2224	Prediction of the product channels in the reaction of the methyl radical with fulminic acid. International Journal of Chemical Kinetics, 2021, 53, 479-491.	1.0	0
2225	Assessment of wood chip combustion and emission behavior of different agricultural biomasses. Fuel, 2021, 289, 119758.	3.4	33
2226	Influence of water addition on MILD ammonia combustion performances and emissions. Proceedings of the Combustion Institute, 2021, 38, 5147-5154.	2.4	69
2227	Characterizing ammonia and nitric oxide interaction with outwardly propagating spherical flame method. Proceedings of the Combustion Institute, 2021, 38, 2477-2485.	2.4	27
2228	Isocyanic acid (HNCO) dissociation on Rh(001) surface: A DFT study with and without dispersion correction. Surface Science, 2021, 709, 121744.	0.8	7
2229	Use of Ammonia for Heat, Power and Propulsion. , 2021, , 105-154.		8
2230	The impact of NO _{<i>x</i>} addition on the ignition behaviour of <i>n</i> -pentane. Reaction Chemistry and Engineering, 2021, 6, 2191-2203.	1.9	7
2231	Analysis of Oscillating Combustion for NOxâ^'Reduction in Pulverized Fuel Boilers. Inventions, 2021, 6, 9.	1.3	6
2232	Experimental Research on the Conversion of Fuel Nitrogen in the Postcombustion Chamber of the Circulating Fluidized Bed. Energy & Samp; Fuels, 2021, 35, 2416-2424.	2.5	2
2233	Theoretical mechanistic study on the reaction of the methoxymethyl radical with nitrogen dioxide. Journal of Molecular Modeling, 2021, 27, 18.	0.8	0
2234	Structure and Laminar Flame Speed of an Ammonia/Methane/Air Premixed Flame under Varying Pressure and Equivalence Ratio. Energy & Energy & 2021, 35, 7179-7192.	2.5	60
2235	Alcohols as Energy Carriers in MILD Combustion. Energy & Samp; Fuels, 2021, 35, 7253-7264.	2.5	19
2236	Theoretical calculations and anahrmonic effect analysis for the conversion of nitrogen radical in burning reaction. Journal of the Chinese Chemical Society, 2021, 68, 1214-1230.	0.8	2
2237	Catalytic pyrolysis of biodiesel surrogate over HZSM-5 zeolite catalyst. Chinese Journal of Chemical Physics, 2021, 34, 102-111.	0.6	5
2238	Refining the Rates of Reactions Describing Ethane Pyrolysis. Bulletin of the Russian Academy of Sciences: Physics, 2021, 85, 196-200.	0.1	1
2239	Review on Ammonia as a Potential Fuel: From Synthesis to Economics. Energy & Energy	2.5	403
2240	Surrogate Reaction Mechanism for Waste Incineration and Pollutant Formation. Energy & Energy	2.5	20

#	Article	IF	CITATIONS
2241	Kinetic study and optimization on SNCR process in pressurized oxy-combustion. Journal of the Energy Institute, 2021, 94, 263-271.	2.7	19
2242	Effect of NO \langle sub \rangle 2 \langle /sub \rangle on Gas-Phase Reactions in Lean NO \langle sub \rangle x \langle /sub \rangle NH \langle sub \rangle 3 \langle /sub \rangle O \langle sub \rangle 2 \langle /sub \rangle H \langle sub \rangle 2 \langle /sub \rangle O Mixtures at Conditions Relevant for Exhaust Gas Aftertreatment. , 0, , .		2
2243	Nitric Oxide Emission Reduction in Reheating Furnaces through Burner and Furnace Air-Staged Combustions. Energies, 2021, 14, 1599.	1.6	2
2244	Stability limits and NO emissions of premixed swirl ammonia-air flames enriched with hydrogen or methane at elevated pressures. International Journal of Hydrogen Energy, 2021, 46, 11969-11981.	3.8	91
2245	Effect of convex platform structure on hydrogen and oxygen combustion characteristics in micro combustor. International Journal of Hydrogen Energy, 2021, 46, 10973-10983.	3.8	14
2246	Numerical Study of Ammonia/O2-Fired Semiclosed Cycle Gas Turbine for Oxy-Fuel IGCC Power Generation With CO2 Capture. Journal of Engineering for Gas Turbines and Power, 2021, 143, .	0.5	0
2247	Reactive, Inelastic, and Dissociation Processes in Collisions of Atomic Nitrogen with Molecular Oxygen. Journal of Physical Chemistry A, 2021, 125, 3953-3964.	1.1	16
2248	Emission characteristics and heat release rate surrogates for ammonia premixed laminar flames. International Journal of Hydrogen Energy, 2021, 46, 13461-13470.	3.8	25
2249	A Review of the Numerical Modeling of Pulverized Coal Combustion for High-Efficiency, Low-Emissions (HELE) Power Generation. Energy & Samp; Fuels, 2021, 35, 7434-7466.	2.5	10
2250	An alternative approach to evaluate fuel/air mixing quality. Aeronautical Journal, 2021, 125, 1469-1483.	1.1	0
2251	Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines. Journal of Cleaner Production, 2021, 296, 126562.	4.6	194
2252	Experimental and Computational Study of Natural Gas Pyrolysis in a Pilot-Scale Cracker. Industrial & Experimental Engineering Chemistry Research, 2021, 60, 6993-7002.	1.8	1
2253	Emission of typical pollutants (NOX, SO2) in the oxygen combustion process with air in-leakages. Environmental Science and Pollution Research, 2021, 28, 50683-50695.	2.7	1
2254	Chemical Effect of CH ₄ on NH ₃ Combustion in an O ₂ /N ₂ Environment Via ReaxFF. Energy & Samp; Fuels, 2021, 35, 10918-10928.	2.5	15
2255	Heterogeneous reaction of N2O with phenol-formaldehyde resin char and NO formation, reduction and inhibition at high temperature. Fuel Processing Technology, 2021, 216, 106791.	3.7	3
2256	Hourly emission inventories for air toxic emissions for eastern Australian electricity generators derived from energy distribution data. International Journal of Environmental Science and Technology, 0 , 1 .	1.8	1
2257	Mathematical modeling of the thermochemical processes of nitrogen oxides sequestration during combustion of wood-coal mixture particles. Journal of the Energy Institute, 2021, 96, 280-293.	2.7	15
2258	An experimental and kinetic modeling study on the laminar burning velocity of NH3+N2O+air flames. Combustion and Flame, 2021, 228, 13-28.	2.8	56

#	Article	IF	CITATIONS
2259	Characterising premixed ammonia and hydrogen combustion for a novel Linear Joule Engine Generator. International Journal of Hydrogen Energy, 2021, 46, 23075-23090.	3.8	10
2260	The role of hydrogen in microwave plasma valorization of producer gas. International Journal of Hydrogen Energy, 2023, 48, 11640-11651.	3.8	8
2261	Estimation of Gasoline Engine Emissions from Cylinder Pressure Parameters: Artificial Neural Network Approach. , 0, , .		0
2262	Hydrogen addition effect on NO formation in methane/air lean-premixed flames at elevated pressure. International Journal of Hydrogen Energy, 2021, 46, 25712-25725.	3.8	21
2263	Effects of O2 enrichment on NH3/air flame propagation and emissions. International Journal of Hydrogen Energy, 2021, 46, 23916-23926.	3.8	12
2264	Numerical study on fuel-NO formation characteristics of ammonia-added methane fuel in laminar non-premixed flames with oxygen/carbon dioxide oxidizer. Energy, 2021, 226, 120365.	4.5	8
2265	Toward a More Comprehensive Understanding of the Kinetics of a Common Biomass-Derived Impurity: NH ₃ Oxidation by N ₂ O in a Jet-Stirred Reactor. Energy &	2.5	10
2266	Ethanol/Gasoline Blends as Alternative Fuel in Last Generation Spark-Ignition Engines: A Review on CO and HC Engine Out Emissions. Energies, 2021, 14, 4034.	1.6	31
2267	Influence of Graphene Nano Particles and Antioxidants with Waste Cooking Oil Biodiesel and Diesel Blends on Engine Performance and Emissions. Energies, 2021, 14, 4306.	1.6	18
2268	Biyokömür-Soma kömür karışımlarının oksiyanma koşullarında birlikte yakılmasının d ve emisyonlar üzerindeki etkileri. Mühendis Ve Makina, 0, , .	eneysel ind 0.4	celenmesi O
2269	Michel Boudart, Catalytica and catalytic combustionâ€"A scientific odyssey. Journal of Catalysis, 2021, 404, 897-897.	3.1	0
2270	Comprehensive studies on suitable reaction mechanisms to predict the behavior of high speed reacting flows. Chemical Engineering Communications, 2023, 210, 504-515.	1.5	3
2271	Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies. Energies, 2021, 14, 4897.	1.6	22
2272	Evaluation of Hazard Correlations for Hydrogen-Rich Fuels Using Stretched Transient Flames. Green Energy and Technology, 2022, , 197-222.	0.4	0
2273	Investigating the effect of flue gas temperature and excess air coefficient on the size distribution of condensable particulate matters. Fuel, 2021, 298, 120866.	3.4	8
2274	Chemical Kinetic Modeling of the Autoignition Properties of Ammonia at Low–Intermediate Temperature and High Pressure using a Newly Proposed Reaction Mechanism. Energy & Dels, 2021, 35, 13506-13522.	2.5	16
2275	Interaction of NH3 and NO under combustion conditions. Experimental flow reactor study and kinetic modeling simulation. Combustion and Flame, 2022, 235, 111691.	2.8	21
2276	The effects of particle size on flameless combustion characteristics and NO emissions of semi-coke with coal preheating technology. Fuel, 2021, 297, 120758.	3.4	37

#	Article	IF	CITATIONS
2277	An experimental and modeling study of ammonia pyrolysis. Combustion and Flame, 2022, 235, 111694.	2.8	48
2278	Investigating the effects of duct length and diameter and fuel-injector orifice diameter in a compression-ignition engine equipped with ducted fuel injection. Applications in Energy and Combustion Science, 2021, 7, 100030.	0.9	8
2279	A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. Renewable and Sustainable Energy Reviews, 2021, 147, 111254.	8.2	343
2280	Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm. Combustion and Flame, 2021, 231, 111472.	2.8	120
2283	Effect of multi-walled carbon nanotubes on pre-vaporized palm oil biodiesel/air premixed flames. Fuel Communications, 2021, 8, 100020.	2.0	4
2284	Fuel feedstock determines biodiesel exhaust toxicity in a human airway epithelial cell exposure model. Journal of Hazardous Materials, 2021, 420, 126637.	6.5	8
2285	A review of water injection application on spark-ignition engines. Fuel Processing Technology, 2021, 221, 106956.	3.7	30
2286	Measurement and evaluation of gaseous and particulate emissions from burning scented and unscented candles. Environment International, 2021, 155, 106590.	4.8	16
2287	The story of NCN as a key species in prompt-NO formation. Progress in Energy and Combustion Science, 2021, 87, 100940.	15.8	14
2288	Experimental and kinetic modeling study on NH3/syngas/air and NH3/bio-syngas/air premixed laminar flames at elevated temperature. Combustion and Flame, 2021, 233, 111594.	2.8	38
2289	$N\hat{A}+\hat{A}O2(v)$ collisions: reactive, inelastic and dissociation rates for state-to-state vibrational kinetic models. Chemical Physics, 2021, 551, 111325.	0.9	9
2290	Applications of porous materials in combustion systems: A comprehensive and state-of-the-art review. Fuel, 2021, 304, 121411.	3.4	55
2291	Experimental investigation of the effect of gaseous fuel injector geometry on the pollutant formation and thermal characteristics of a micro gas turbine combustor. Energy, 2021, 235, 121372.	4.5	9
2292	Combustion chemistry of ammonia/hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modeling. Combustion and Flame, 2021, 234, 111653.	2.8	146
2293	Experimental analysis of late direct injection combustion mode in a compression-ignition engine fuelled with biodiesel/diesel blends. Energy, 2022, 239, 121895.	4.5	9
2294	The highly efficient removal of HCN over Cu8Mn2/CeO2 catalytic material. RSC Advances, 2021, 11, 8886-8896.	1.7	1
2295	Mechanism investigation on the reaction of methylmethoxy radical with nitrogen monoxide. Structural Chemistry, 2021, 32, 1563-1570.	1.0	0
2296	Energetics and kinetics of various cyano radical hydrogen abstractions. Physical Chemistry Chemical Physics, 2021, 23, 3389-3400.	1.3	4

#	Article	IF	CITATIONS
2297	Methanol as a Low-Cost Alternative Fuel for the Reduction of Emissions. Energy, Environment, and Sustainability, 2021, , 37-83.	0.6	2
2298	Theoretical study of reactions of N2O with NO and OH radicals. International Journal of Chemical Kinetics, 1996, 28, 693-703.	1.0	18
2299	Incineration and Thermal Treatment of Chemical Agents and Chemical Weapons., 1997,, 33-47.		1
2300	Mitigation of Airborne Pollutants in Coal Combustion: Use of Simulation. , 2017, , 1-36.		1
2301	Internal Combustion Engines, Developments in. , 2020, , 133-184.		1
2302	A Shock Tube Study of Nitric Acid Decomposition. , 1995, , 83-88.		4
2303	Chemical Kinetic Modelling of Hydrocarbon Ignition. Springer Series in Chemical Physics, 1996, , 279-290.	0.2	2
2304	Modelling the Formation of N2O and NO2 in the Thermal De-NOx Process. Springer Series in Chemical Physics, 1996, , 318-333.	0.2	46
2305	Successes and Uncertainties in Modeling Soot Formation in Laminar, Premixed Flames. Springer Series in Chemical Physics, 1994, , 442-470.	0.2	37
2306	Schadstoffbildung., 2011, , 259-286.		1
2307	Gas-Phase Reaction Mechanisms for Nitrogen Oxide Formation and Removal in Combustion. , 2000, , 123-144.		9
2308	Reactions of CH2 and CH with N2 and CH with NO. , 1993, , 101-116.		3
2309	Laser measurement of chemically reactive intermediates in combustion., 1993,, 221-233.		3
2310	High-Resolution Measurements of Molecular Transport and Reaction Processes in Turbulent Combustion., 1993,, 287-302.		5
2311	FACTORS IN THE CONVERSION OF FUEL NITROGEN TO NITRIC AND NITROUS OXIDES DURING FLUIDISED BED COMBUSTION. , 1991 , , $347-350$.		5
2312	PREDICTION OF NITRIC OXIDE FORMATION IN A TURBULENT PREMIXED PULVERISED COAL FLAME. , 1995, , 199-208.		2
2313	Environmental Combustion Considerations. , 1996, , 351-433.		17
2314	Ammonia oxidation features in a Jet Stirred Flow Reactor. The role of NH2 chemistry Fuel, 2020, 276, 118054.	3.4	44

#	Article	IF	CITATIONS
2315	A kinetic study of an advanced reburning process. Combustion Theory and Modelling, 1997, 1, 377-393.	1.0	10
2316	Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data. Combustion Theory and Modelling, 1999, 3, 233-257.	1.0	69
2317	Statistical behavior of turbulent kinetic energy transport in boundary layer flashback of hydrogen-rich premixed combustion. Physical Review Fluids, 2019, 4, .	1.0	22
2318	Residual Reactivity of Burned Gases in the Early Expansion Process of Future Gas Turbines. Journal of Engineering for Gas Turbines and Power, 1996, 118, 54-60.	0.5	3
2319	CH Kinetics Measurements and Their Importance for Modeling Prompt NOx Formation in Gas Turbines. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	0.5	5
2320	Emissions From Oxy-Combustion of Raw and Torrefied Biomass. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, .	1.4	12
2321	Performance and Emissions of Drop-In Aviation Biofuels in a Lab-Scale Gas Turbine Combustor. Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143, .	1.4	10
2322	Test Validation of Flamelet Model Predictions of NOx. , 1999, , .		1
2323	PORTABLE POWER GENERATION VIA INTEGRATED CATALYTIC MICROCOMBUSTION-THERMOELECTRIC DEVICES. , 2006, , .		9
2324	Fundamental Concepts in Molecular Simulation of NOx Catalysis. , 2005, , 233-268.		5
2325	Kinetic Study of Fuel NO Formation Using Pyridine as a Model Compound of Fuel Nitrogen Kagaku Kogaku Ronbunshu, 2002, 28, 693-698.	0.1	3
2326	Supercritical Water Oxidation of Simulated Waste Containing Inorganic Salts and Nitrogenous Compounds by a Downflow Type Reactor. Kagaku Kogaku Ronbunshu, 2006, 32, 281-287.	0.1	2
2327	Investigation of Fuel NO Formation from Pyrrole Type Nitrogen. Kagaku Kogaku Ronbunshu, 2009, 35, 488-494.	0.1	2
2328	Emissions and Furnace Gas Temperature for Electricity Generation Via Co-Firing of Coal and Biomass. Journal of Sustainable Development of Energy, Water and Environment Systems, 2015, 3, 344-358.	0.9	8
2329	Investigation of low emission combustors using hydrogen lean direct injection. INCAS Bulletin, 2011, 3, 45-52.	0.3	5
2330	Effect of Nitrate Ester on the Combustion Characteristics of PET/HMX -based Propellants. Defence Science Journal, 2011, 61, 206-213.	0.5	1
2331	A comparative kinetic study of SNCR process using ammonia. Brazilian Journal of Chemical Engineering, 2008, 25, 109-117.	0.7	14
2332	CATALYTIC COMBUSTION OF HYDROGEN-AIR MIXTURES OVER PLATINUM: VALIDATION OF HETERO/HOMOGENEOUS CHEMICAL REACTION SCHEMES. Clean Air, 2004, 5, 21-44.	0.0	42

#	Article	IF	CITATIONS
2335	Comparison of different chemical kinetic mechanisms of methane combustion in an internal combustion engine configuration. Thermal Science, 2008, 12, 43-51.	0.5	14
2336	Numerical study of hydrogen mild combustion. Thermal Science, 2009, 13, 59-67.	0.5	4
2337	Design and working performance study of a novel micro parallel plate combustor with two nozzles for micro thermophotovotaic system. Thermal Science, 2015, 19, 2185-2194.	0.5	2
2338	CFD analysis of mixing intensity in jet stirred reactors. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2012, 33, 397-410.	0.7	6
2339	Pollutant emissions research using a well stirred reactor., 1994,,.		3
2340	Markstein numbers and unstretched laminar burning velocities of hydrogen-air flames. , 1995, , .		1
2341	Markstein numbers and unstretched laminar burning velocities of wet carbon monoxide flames. , 1996,		3
2342	On the Influence of Kinetic Uncertainties on the Accuracy of Numerical Modeling of an Industrial Flameless Furnace Fired With NH3/H2 Blends: A Numerical and Experimental Study. Frontiers in Energy Research, 2020, 8, .	1.2	18
2343	NO Formation and Autoignition Dynamics during Combustion of H2O-Diluted NH3/H2O2 Mixtures with Air. Energies, 2021, 14, 84.	1.6	24
2344	Characteristics of Ammonia/Hydrogen Premixed Combustion in a Novel Linear Engine Generator. Proceedings (mdpi), 2020, 58, .	0.2	6
2345	Development of Closed-Cycle Gas Turbine for Oxy-Fuel IGCC Power Generation with CO2 Capture - Emission Analysis of Gasified-Fueled Gas Turbines with Circulating Exhaust & Stoichiometric Combustion Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2012, 91, 134-137.	0.2	1
2346	Oxy-Fuel and Flue Gas Recirculation Combustion Technology: A Review. Transactions of the Korean Society of Mechanical Engineers, B, 2008, 32, 729-753.	0.0	2
2347	A Chemical Reactor Modeling for Prediction of NO Formation of Methane-Air Lean Premixed Combustion in Jet Stirred Reactor. Transactions of the Korean Society of Mechanical Engineers, B, 2010, 34, 365-373.	0.0	2
2348	Numerical Study of the Optimization of Combustion and Emission Characteristics of Air-Staged Combustion in a Pulverized Coal-Fired Boiler. Transactions of the Korean Society of Mechanical Engineers, B, 2010, 34, 587-597.	0.0	1
2349	Development of Gas Turbine Combustor for Each Gasified Fuel and prospect of high-efficiency generation of various resources. International Journal of Gas Turbine, Propulsion and Power Systems, 2007, 1, 9-21.	0.4	2
2350	HCN Production in Titan's Atmosphere: Coupling Quantum Chemistry and Disequilibrium Atmospheric Modeling. Astrophysical Journal, 2020, 901, 110.	1.6	11
2351	Analysis of Emissions and Furnace Exit Gas Temperature for a Biomass Co-firing Coal Power Generation System. Research Journal of Environmental Sciences, 2014, 8, 274-286.	0.5	5
2352	Improvement on Hybrid SNCR-SCR Process for NO Control: a Bench Scale Experiment. Aerosol and Air Quality Research, 2006, 6, 30-42.	0.9	7

#	Article	IF	CITATIONS
2353	Reduction of NOx in a Single Cylinder Diesel Engine Emissions Using Selective Non-Catalytic Reduction (SNCR) with In-Cylinder Injection of Aqueous Urea. , 0 , , .		1
2354	DIESEL ENGINE NOx REDUCTION BY SNCR UNDER SIMULATED FLOW REACTOR CONDITIONS. Environmental Engineering Research, 2006, 11, 149-155.	1.5	2
2355	Shock Tube and Modeling Study of the Monomethylamine Oxidation at High Temperature. Bulletin of the Korean Chemical Society, 2004, 25, 293-297.	1.0	8
2356	Chemical structure and laminar burning velocity of atmospheric pressure premixed ammonia/hydrogen flames. International Journal of Hydrogen Energy, 2021, 46, 39942-39954.	3.8	34
2357	Numerical Analysis on the Evolution of NH ₂ in Ammonia/hydrogen Swirling Flames and Detailed Sensitivity Analysis under Elevated Conditions. Combustion Science and Technology, 2023, 195, 1251-1278.	1.2	11
2358	A Review on Combustion Characteristics of Ammonia as a Carbon-Free Fuel. Frontiers in Energy Research, 2021, 9, .	1.2	21
2359	A comprehensive review on synthesis, chemical kinetics, and practical application of ammonia as future fuel for combustion. Journal of the Energy Institute, 2021, 99, 273-298.	2.7	81
2360	A numerical study on NOx reduction by steam addition in counterflow diffusion flame using detailed chemical kinetics., 2000,, 19-30.		1
2363	NOx Formation and Effect of Steam Addition in Fuel-rich Premixed Flame Kagaku Kogaku Ronbunshu, 2001, 27, 779-785.	0.1	0
2364	Numerical Analysis of Reaction Mechanism of Selective Non-Catalytic NO Reduction using Urea Solution Kagaku Kogaku Ronbunshu, 2001, 27, 616-623.	0.1	2
2365	Effects of induced air-flow on in-flame concentrations of radicals. , 2001, , .		1
2366	Deposition Chemistry., 2002, , .		O
2367	Implementation of Complex Chemical Reaction Mechanisms Into a 3D Furnace Simulation Code., 2002,, 409-417.		0
2370	Pollutant Formation. Heat and Mass Transfer, 2003, , 255-273.	0.2	O
2371	Spray Characteristics for Specified Regions of High Pressure Swirl Injector in Gasoline Direct Injection Engine. Transactions of the Korean Society of Mechanical Engineers, B, 2003, 27, 9-16.	0.0	1
2375	NOx REDUCTION BY SNCR AND ITS REACTION MECHANISM UNDER OXIDIZING DIESEL FLUE GAS CONDITIONS. Environmental Engineering Research, 2003, 8, 31-40.	1.5	O
2377	Characteristics of NOB Formation in a Coaxial Multi-Air Staged LPG Flame. Transactions of the Korean Society of Mechanical Engineers, B, 2003, 27, 215-226.	0.0	1
2380	CFD Analysis of NOX Reduction by Domestic Natural Gas Added to Coal Combustion. International Journal of Power and Energy Systems, 2004, 24, .	0.2	O

#	Article	IF	CITATIONS
2383	Flue-Gas Versus Fuel-Injection Recirculation: Effects on Structure and Pollutant Emissions., 2005,,.		0
2384	Control of NO x During Stationary Combustion. , 2005, , 113-126.		0
2386	OPTIMIZATION OF THE OXIDIZER REPARTITION IN ORDER TO REDUCE THE NO EMISSIONS IN MUNICIPAL WASTE INCINERATION. International Journal of Energy for A Clean Environment, 2006, 7, 43-58.	0.6	0
2387	ç'°å¢fè²è•åŒ−å•̂物ã®å^†è§£ãf»é™ å Ž»ã«ãŠã'ã,‹æ"¾å°"ç·šã®å^©ç"¨. Radioisotopes, 2006, 55, 163-174.	0.1	1
2388	Gas Phase and Surface Chemistry of Nitrogen in a Quartz Tube Using Vacuum Ultraviolet Single-Photon Ionization Time-of-Flight Mass Spectrometry (VUV-SPI-TOFMS). Journal of Chemical Engineering of Japan, 2008, 41, 1024-1030.	0.3	O
2392	Schadstoffbildung., 2009, , 189-219.		3
2394	Non-catalytic Oxidation of NO to NO2 by Addition of Alcohol. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2009, 88, 430-436.	0.2	6
2395	NOx Formation Characteristics on Heat Loss Rate for CH ₄ /Air Premixed Flames in a Perfectly Stirred Reactor. Journal of the Korea Academia-Industrial Cooperation Society, 2009, 10, 1465-1472.	0.0	1
2396	Prediction Methodology of Fuel-NOx Emissions in Gasified Fuels' Combustion. International Journal of Gas Turbine, Propulsion and Power Systems, 2010, 3, 10-21.	0.4	0
2397	Innovative technique for the control of NOxformed in combustion processes. , 2010, , .		0
2398	DeNOx Characteristics of Hybrid SNCR-SCR Process in a Pilot Scale Flow Reactor. Korean Chemical Engineering Research, 2011, 49, 89-94.	0.2	0
2399	Detailed Kinetic Mechanism of CNG Combustion in an IC Engine. Advances in Chemical Engineering and Science, 2011, 01, 102-117.	0.2	O
2400	The structure and analytical potential energy function of the ground state of HNO molecule. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 113102.	0.2	3
2401	NUMERICAL STUDY OF NATURAL GAS COMBUSTION IN A PUSHER FURNACE. Metallurgy and Foundry Engineering, 2012, 38, 151.	0.1	1
2402	Schadstoffbildung., 2012,, 259-286.		0
2403	SNCR Application to Diesel Engine DeNOx under Combustion-driven Flow Reactor Conditions. Journal of Environmental Science International, 2012, 21, 769-778.	0.0	2
2404	MILD Combustion Characteristics with Inlet Air Velocity in a Conical Combustor. Journal of Advanced Marine Engineering and Technology, 2012, 36, 774-779.	0.1	1
2405	Developments in Internal Combustion Engines. , 2013, , 149-219.		0

#	ARTICLE	IF	CITATIONS
2406	Numerical Simulation of the Acenaphthylene Compound in an Atmospheric Plasma Reactor to Treat Cooking Fumes. Aerosol and Air Quality Research, 2013, 13, 122-136.	0.9	2
2407	Isotope effects on the dynamics properties and reaction mechanism in the CI(2P) + NH3 reaction: a QCT and QM study. Highlights in Theoretical Chemistry, 2014, , 69-78.	0.0	0
2409	Schadstoffbildung und -reduktion. , 2014, , 471-523.		0
2410	REDUCED MECHANISM FOR COMBUSTION OF HYDROGEN AND METHANE WITH NITROGEN CHEMISTRY. Computational Thermal Sciences, 2014, 6, 541-551.	0.5	1
2411	Mechanisms and modeling of the effects of additives on the nitrogen oxides emission. , $1991, \dots$		0
2412	ç‡f焼ã«ãŠã'ã,‹çª'ç´é…¸åŒ–物ã®ç"Ÿæˆãã®ä½Žæ¸. Journal of the Marine Engineering Society in Japan, 199	919 26 , 510)- 5 15.
2413	Kinetics., 1993,, 137-160.		0
2414	Prediction of NOx emission index of turbulent diffusion flame. , 1993, , 375-391.		6
2415	NO(x) reduction additives for aircraft gas turbine engines., 1993,,.		0
2417	OH Rotational Temperature and Concentration Measurements in Hypersonic Shock Waves. , 1994, , 79-89.		0
2418	Nitric oxide formation in strained laminar hydrogen-air counter flow diffusion flames. , 1995, , .		0
2419	Combustion and the environment. , 1995, , 267-287.		O
2420	Cross Sections and Rate Constants for Triatomic and Tetraatomic Reactions: Three-Dimensional Quantum Mechanical Calculations. Springer Series in Chemical Physics, 1996, , 125-143.	0.2	0
2421	Recent Advances in the Measurement of High-Temperature Bimolecular Rate Constants. Springer Series in Chemical Physics, 1996, , 177-189.	0.2	O
2422	Chemical reactor modeling applied to the production of pollutant emission in LP combustors. , $1997, , .$		0
2424	NO(x) formation characteristics and its intrinsic processes in premixed flames and well-stirred staged combustion., 1998, , .		O
2425	Ecological After-Effects Numerical Modelling under Methane Combustion. , 1999, , 147-152.		1
2426	Utilisation des écumes de sucrerie pour la désulfuration des fumées. Oil and Gas Science and Technology, 1999, 54, 95-103.	1.4	O

#	Article	IF	Citations
2427	Non-catalytic Oxidation of NO to NO2 by Addition of Dimethyl Ether Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 1999, 78, 265-274.	0.2	11
2428	Measurements of Velocities, Temperatures, Emissions and Particle Sizes in Model Furnaces. Heat and Mass Transfer, 1999, , 347-380.	0.2	1
2431	Numerical study of a conical MILD combustor with varing the fuel flow rate. Journal of the Korea Academia-Industrial Cooperation Society, 2014, 15, 3370-3375.	0.0	0
2432	Conversion of nitrogen compounds into nitrogen oxides during combustion in a fluidised bed reactor., 2014,,.		0
2433	EFFECT OF WALL THERMAL CONDUCTIVITY ON MICRO-SCALE COMBUSTION CHARACTERISTICS OF HYDROGEN-AIR MIXTURES WITH DETAILED CHEMICAL KINETIC MECHANISMS IN Pt/Î ³ -Al ² O ³ CATALYTIC MICRO-COMBUSTORS. Frontiers in Heat and Mass Transfer, 0, 5, .	0.1	O
2434	Investigation on emission characteristics of nitrous oxide from marine diesel engine. Journal of Advanced Marine Engineering and Technology, 2014, 38, 1051-1056.	0.1	1
2435	IN-CYLINDER OH AND CO2* DETECTION IN SI ENGINE THROUGH UV NATURAL EMISSION SPECTROSCOPY. Journal of KONES, 2015, 19, 429-437.	0.2	0
2438	Internal Combustion Engines, Developments in. , 2018, , 1-53.		0
2439	Schadstoffbildung., 2018,, 941-975.		0
2440	The application of chemical kinetic models in numerical simulation of the process of non-catalitic reduction of NOX with amonia in biomass combustion products. Savremena Poljoprivredna Tehnika, 2018, 44, 37-44.	0.2	O
2441	NOx formation in apokamp-type atmospheric pressure plasma jets in air initiated by a pulse-repetitive discharge. , $2018, , .$		0
2443	Farklı Uygulama ve Tasarımların Bir Gaz Yakıcıdaki Emisyonların Dýşýrülmesine Etkileri. Marn Bilimleri Dergisi, 0, , .	nara Fen 0.2	1
2444	Effect of Hydrocarbon Additives on SNCR DeNOx Characteristics under Oxidizing Diesel Exhaust Gas Conditions. Journal of Environmental Science International, 2018, 27, 809-820.	0.0	2
2446	Schadstoffbildung., 2019,, 943-977.		1
2447	A Comparison Study on Emission Characteristics of Using Higher Alcohol Oxygenates with Gasoline in a Multipoint Fuel Injection Spark-Ignition Engine. Journal of Testing and Evaluation, 2020, 48, 20180716.	0.4	1
2448	Analysis of Nitrogen Oxides Emission by Modern Vehicles when Used Hydrogen or Other Natural and Synthetic Fuels in Combustion Chamber. Alternative Energy and Ecology (ISJAEE), 2019, , 73-84.	0.2	O
2449	Quantifying the Effect of Kinetic Uncertainties on NO Predictions at Engine-Relevant Pressures in Premixed Methane-Air Flames. , 2019, , .		0
2450	CH Kinetics Measurements and Their Importance for Modeling Prompt NOx Formation in Gas Turbines. , 2019, , .		2

#	Article	IF	CITATIONS
2451	Mitigation of Airborne Pollutants in Coal Combustion: Use of Simulation., 2020, , 467-501.		0
2452	High Resolution Global NOx Sub-Model for Embedded System Application with Low Calibration Effort. , 0, , .		0
2453	Quantifying the Effect of Kinetic Uncertainties on NO Predictions at Engine-Relevant Pressures in Premixed Methane–Air Flames. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	0.5	4
2454	Effect of Engine Speeds and Dimethyl Ether on Methyl Decanoate HCCI Combustion and Emission Characteristics Based on Low-Speed Two-Stroke Diesel Engine. Polish Maritime Research, 2020, 27, 85-95.	0.6	10
2455	Conversion of volatile nitrogen and char nitrogen to NO in oxy-biomass combustion. Journal of the Energy Institute, 2022, 100, 120-128.	2.7	10
2456	Oxygenâ€enriched flameless combustion of <scp> CH ₄ </scp> / <scp> H ₂ </scp> / <scp> CO</scp> mixtures. International Journal of Energy Research, 2022, 46, 4320-4338.	2.2	1
2457	Ammonia and ammonia/hydrogen blends oxidation in a jet-stirred reactor: Experimental and numerical study. Fuel, 2022, 310, 122202.	3.4	34
2458	Premixed Combustion for Gas-Turbine Applications. Fluid Mechanics and Its Applications, 2020, , 13-97.	0.1	0
2459	The NOx Formation Routes. Green Energy and Technology, 2020, , 7-15.	0.4	0
2460	Numerical investigation of the effect of water vapor diluent injection on the formation of NOx pollutants. Chemical Engineering Communications, 0 , , 1 - 13 .	1.5	0
2461	Effects of local flow field on chemical reactions in thin reaction zone of premixed flames., 1995 ,, $36-43$.		0
2462	Modeling Non-Equilibrium CO Oxidation in Combustion Systems. , 2000, , .		6
2463	Combustion Chemistry., 2021,, 1-32.		0
2464	Review on the production and utilization of green ammonia as an alternate fuel in dual-fuel compression ignition engines. Energy Conversion and Management, 2022, 251, 114990.	4.4	153
2465	The role of H2O in NO formation and reduction during oxy-steam combustion of bituminous coal char. Combustion and Flame, 2022, 237, 111883.	2.8	14
2466	Numerical investigation on the self-ignition and combustion characteristics of H2/air in catalytic micro channel. International Journal of Hydrogen Energy, 2022, 47, 1965-1978.	3.8	14
2467	Investigation on combustion characteristics and emissions of biogas/hydrogen blends in gas turbine combustors. Thermal Science and Engineering Progress, 2022, 27, 101178.	1.3	23
2468	Nitrogen evolution, NOX formation and reduction in pressurized oxy coal combustion. Renewable and Sustainable Energy Reviews, 2022, 157, 112020.	8.2	31

#	Article	IF	CITATIONS
2469	Temperature and NOx distribution characteristics of coal particles under high-temperature and low-oxygen environments simulating MILD oxy-coal combustion conditions. Journal of the Energy Institute, 2022, 101, 73-86.	2.7	8
2470	Pollutant Formation during Utilization of Renewable Natural Gas Containing Trace Ammonia Impurities. Industrial & Engineering Chemistry Research, 2020, 59, 19177-19184.	1.8	6
2471	Investigating the Effects of Adding Butene, Homopolymer to Gasoline on Engine Performance Parameters and Pollutant Emissions: Empirical Study and Process Optimization. Journal of the Institution of Engineers (India): Series $C,0,$, $1.$	0.7	0
2472	Effects of inter-stage mixing on the NOx emission of staged ammonia combustion. International Journal of Hydrogen Energy, 2022, 47, 9791-9799.	3.8	16
2473	Effect of the Structure Parameters of a Low Swirler on Premixed Characteristics. Journal of Thermal Science, 2022, 31, 207-213.	0.9	0
2474	Exploring NH3 and NOx Interaction Chemistry With CH4 and C2H4 at Moderate Temperatures and Various Pressures. Frontiers in Energy Research, 2022, 10, .	1.2	3
2475	Numerical modeling of hydrogen catalytic reactions over a circular bluff body. International Journal of Hydrogen Energy, 2022, 47, 37204-37217.	3.8	4
2476	Laser Absorption Spectroscopy Measurements of Temperature, Pressure, and NO X2Î1/2at 500 kHz in Shock-Heated Air., 2022,,.		3
2477	Impact of NOx control measures on engine life. , 2022, , 387-421.		2
2478	NOx formation chemical kinetics in IC engines. , 2022, , 39-68.		O
2479	The decreasing effect of ammonia enrichment on the combustion emission of hydrogen, methane, and propane fuels. International Journal of Hydrogen Energy, 2022, 47, 19916-19934.	3.8	17
2480	Challenges in Kinetic modeling of ammonia pyrolysis. Fuel Communications, 2022, 10, 100049.	2.0	28
2481	Improvement of kinetic parameters and modeling of the N2O chemical reaction in combustion. Energy, 2022, 247, 123445.	4.5	3
2482	Direct numerical simulation of turbulent premixed ammonia and ammonia-hydrogen combustion under engine-relevant conditions. International Journal of Hydrogen Energy, 2022, 47, 11083-11100.	3.8	34
2483	Research of coupling technologies on NOx reduction in a municipal solid waste incinerator. Fuel, 2022, 314, 122769.	3.4	8
2484	Controllable No Emission and High Flame Performance of Ammonia Combustion Assisted by Non-Equilibrium Plasma. SSRN Electronic Journal, 0, , .	0.4	O
2485	Study on NOx emission from an improved wood stove. IOP Conference Series: Earth and Environmental Science, 2022, 983, 012098.	0.2	0
2486	Role of Sulfite Oxidation in NO ₂ Absorption in a pH-Neutral Scrubber Solution. Energy & Samp; Fuels, 2022, 36, 2666-2672.	2.5	8

#	Article	IF	Citations
2487	Kinetics and dynamics of the H($\langle \sup 2 \langle \sup S \rangle + NO(\langle i \rangle X \langle i \rangle \langle \sup 2 \langle \sup \rangle \hat{1})$ → N($\langle \sup 2 \langle \sup S \rangle + OH(\langle i \rangle X \langle i \rangle \langle \sup 2 \langle \sup \rangle \hat{1})$ Reaction: A quasi-classical trajectory study. Chinese Journal of Chemical Physics, 2022, 35, 207-212.	0.6	0
2488	Combustion Characteristics of Methane-Air Mixtures in Millimeter-Scale Systems With a Cavity Structure: An Experimental and Numerical Study. Frontiers in Energy Research, 2022, 10, .	1.2	0
2489	Numerical investigation on NO formation in laminar counterflow methane/n-heptane dual fuel flames. International Journal of Hydrogen Energy, 2022, 47, 13143-13156.	3.8	3
2490	Effects of CO2 and N2 dilution on the characteristics and NOX emission of H2/CH4/CO/air partially premixed flame. International Journal of Hydrogen Energy, 2022, 47, 15909-15921.	3.8	10
2491	An experimental and modeling study of ammonia oxidation in a jet stirred reactor. Combustion and Flame, 2022, 240, 112007.	2.8	35
2492	An experimental investigation into the effect of spark gap and duration on minimum ignition energy of partially dissociated NH3 in air. Combustion and Flame, 2022, 241, 112053.	2.8	12
2493	Controllable NO emission and high flame performance of ammonia combustion assisted by non-equilibrium plasma. Fuel, 2022, 319, 123818.	3.4	20
2494	Research of kinetics and anharmonicity for related reactions of NOxÂ+ÂH2O and cracking NOx. Chemical Physics Letters, 2022, 798, 139580.	1.2	1
2495	Numerical study on propagation and NO reduction behavior of laminar stratified ammonia/air flames. Combustion and Flame, 2022, 241, 112102.	2.8	11
2496	The Use of Ammonia as a Fuel for Combustion Engines. Energy, Environment, and Sustainability, 2022, , 233-256.	0.6	3
2497	Oscillating Combustionâ€"Primary Measure to Reduce Nitrogen Oxide in a Grate Furnaceâ€"Experiments and Simulations. Processes, 2021, 9, 2210.	1.3	6
2498	Ammonia as Fuel for Transportation to Mitigate Zero Carbon Impact. Energy, Environment, and Sustainability, 2022, , 257-279.	0.6	10
2499	Fundamental Study on Ammonia Low-NOx Combustion Using Two-Stage Combustion by Parallel Air Jets. Processes, 2022, 10, 23.	1.3	8
2500	NH3 combustion using three-layer stratified fuel injection for a large two-stroke marine engine: Experimental verification of the concept. Applications in Energy and Combustion Science, 2022, 10, 100071.	0.9	9
2501	Nitrogen trade-off during lignite chemical looping combustion using hematite as an oxygen carrier. Fuel Processing Technology, 2022, 232, 107286.	3.7	5
2502	Review on thermal conversion characteristics of coal in O2/H2O atmosphere. Fuel Processing Technology, 2022, 232, 107266.	3.7	14
2503	An experimental and modeling study of the enhancement of H2O2 on the activity of SNCR. Fuel, 2022, 322, 124215.	3.4	5
2509	Experimental study and kinetic modeling of the thermal decomposition of gaseous monomethylhydrazine. Application to detonation sensitivity. Shock Waves, 1996, 6, 139-146.	1.0	О

#	Article	IF	Citations
2510	Chemical effect of water addition on the ammonia combustion reaction. Thermal Science and Engineering Progress, 2022, 32, 101318.	1.3	5
2511	Establishment of the N ₂ O and NO Prediction Model and Reveal of the N ₂ O Formation Mechanism during Air-Staged Combustion. Industrial & Engineering Chemistry Research, 2022, 61, 6375-6388.	1.8	2
2512	An experimental and modelling study of the Selective Non-Catalytic Reduction (SNCR) of NOx and NH3 in a cyclone reactor. Chemical Engineering Research and Design, 2022, 183, 331-344.	2.7	6
2514	Designing of modelled engine combustor for reducing NOx emission using hydrogen as fuel and its analytical verification. AIP Conference Proceedings, 2022, , .	0.3	0
2515	Nitric Oxide Generation in N2-Diluted H2–N2O Flames: A Computational Study. Processes, 2022, 10, 1032.	1.3	3
2516	A Skeletal Chemical Kinetic Mechanism for Ammonia/N-Heptane Combustion. SSRN Electronic Journal, 0, , .	0.4	0
2520	Experimental and numerical analyses of nitrogen oxides formation in a high ammonia-low hydrogen blend using a tangential swirl burner. , 2022, 1 , .		5
2521	Experimental and computational studies of the kinetics of the reaction of hydrogen peroxide with the amidogen radical. Journal of Chemical Physics, 2022, 157, .	1.2	3
2522	Combustion performance of low calorific gas enriched by oxygen and ozone. Fuel, 2022, 324, 124761.	3.4	3
2523	Fate of NO and Ammonia in Chemical Looping Combustion─Investigation in a 300 W Chemical Looping Combustion Reactor System. Energy & Samp; Fuels, 2022, 36, 9628-9647.	2.5	4
2524	Experimental verification of the impact of the air staging on the NOx production and on the temperature profile in a BFB. Acta Polytechnica, 2022, 62, 400-408.	0.3	0
2525	Experimental verification of the efficiency of selective non-catalytic reduction in a bubbling fluidized bed combustor. Acta Polytechnica, 2022, 62, 361-369.	0.3	0
2526	Stability and characteristics of NH3/CH4/air flames in a combustor fired by a double swirl stabilized burner. Proceedings of the Combustion Institute, 2023, 39, 4205-4213.	2.4	10
2527	Effects of radiation reabsorption on the flame speed and NO emission of NH3/H2/air flames at various hydrogen ratios. Fuel, 2022, 327, 125176.	3.4	15
2528	Ammonia as Green Fuel in Internal Combustion Engines: State-of-the-Art and Future Perspectives. Frontiers in Mechanical Engineering, 0, 8, .	0.8	23
2529	Modelling and prediction of NO _x emission of a coal-fired boiler by a learning-based <i>K</i> NN mechanism. International Journal of Pattern Recognition and Artificial Intelligence, 0, , .	0.7	0
2530	$\mbox{\ensuremath{$\wedge$}}\mbox{\ensuremath{$J$}}\mbox{\ensuremath{$b$}}\mbox{\ensuremath{$b$}}\mbox{\ensuremath{$a$}}\ensuremath{$a$	1.6	4
2531	Emission of Nitric Oxide during the Combustion of Various Forms of Solid Biofuels in a Low-Power Heating Device. Energies, 2022, 15, 5960.	1.6	4

#	Article	IF	Citations
2532	A case study on laminar flame propagation of flame synthesis precursors using spherically propagating flame: Tetramethylsilane and its alkane counterpart. Proceedings of the Combustion Institute, 2023, 39, 1555-1566.	2.4	1
2533	Measurement of the NO _{<i>x</i>} reduction effect on food wastewater during waste incineration. Waste Management and Research, 0, , 0734242X2211054.	2.2	0
2534	Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures. Energy, 2022, 260, 125090.	4.5	42
2535	Effect of air staging on NOx emissions in biomass combustion in a bubbling fluidized bed. Fuel, 2022, 330, 125565.	3.4	6
2536	Unraveling the role of EGR olefins at advanced combustion conditions in the presence of nitric oxide: Ethylene, propene and isobutene. Combustion and Flame, 2022, 245, 112344.	2.8	6
2537	The systematic study of quenching rate coefficients of NO(X2Î) colliding by NO(A2Σ+) and N2(A3Σ+u, B3Îg). Chemical Physics Letters, 2022, 806, 140031.	1.2	0
2538	Investigation of combustion noise generated by an open lean-premixed H <mml:math altimg="si48.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> /air low-swirl flame using the hybrid LES/APE-RF framework. Combustion and Flame, 2022, 245, 112360.	2.8	10
2539	A skeletal chemical kinetic mechanism for ammonia/n-heptane combustion. Fuel, 2023, 331, 125830.	3.4	34
2540	Chemistry of nitrogen oxides (NOx) formation in flameless combustion. , 2022, , 421-451.		1
2541	Molecular Adsorption of the Nco, Cno and Con Isomers on the Rh(001) Surface: A Density Functional Theory Study. SSRN Electronic Journal, 0, , .	0.4	0
2542	Molecular Adsorption of the Nco, Cno and Con Isomers on the Rh(001) Surface: A Density Functional Theory Study. SSRN Electronic Journal, 0 , , .	0.4	0
2543	High-temperature air flameless combustion. , 2022, , 81-117.		1
2544	Characterizing methane and nitric oxide interaction in oxygen-free outwardly propagating spherical flame. Proceedings of the Combustion Institute, 2022, , .	2.4	1
2545	Molecular Dynamic Investigation of HN2ON a Potential Energy Surface Designed by Lie Algebra Method. Russian Journal of Physical Chemistry B, 2022, 16, 572-578.	0.2	0
2546	Re-evaluation of rate constants for the reaction N2H4 (+ M) â‡,, NH2Â+ÂNH2 (+ M). Combustion and Flame, 2023, 257, 112374.	2.8	4
2547	Numerical analysis on influence of hydrogen peroxide (H2O2) addition on the combustion and emissions characteristics of NH3/CH4-air (O2/N2)/ H2O2 mixture. International Journal of Hydrogen Energy, 2022, 47, 37052-37071.	3.8	8
2548	Biodiesel Exhaust Toxicity with and without Diethylene Glycol Dimethyl Ether Fuel Additive in Primary Airway Epithelial Cells Grown at the Air–Liquid Interface. Environmental Science & Environmen	4.6	3
2550	Interactions of hydrogen and nitric oxide in outwardly propagating spherical flame: Insight into non-hydrocarbon NOX reduction mechanism. Proceedings of the Combustion Institute, 2022, , .	2.4	0

#	ARTICLE	IF	CITATIONS
2551	Reduced modeling of the NOx formation based on the reaction-diffusion manifolds method for counterflow diffusion flames. Proceedings of the Combustion Institute, 2023, 39, 1587-1596.	2.4	2
2552	NO and NO2 emissions of waste tire pyrolysis oil (TPO) blended with diesel in a flameless combustor. International Journal of Energy and Environmental Engineering, 0, , .	1.3	O
2553	Combustion performances of premixed ammonia/hydrogen/air laminar and swirling flames for a wide range of equivalence ratios. International Journal of Hydrogen Energy, 2022, 47, 41170-41182.	3.8	10
2554	Negative impact of constant RPM control strategy on ship NOx emission in waves. International Journal of Energy and Environmental Engineering, 0, , .	1.3	O
2555	H-abstractions by O2, NO2, NH2, and HO2 from H2NO: Theoretical study and implications for ammonia low-temperature kinetics. Proceedings of the Combustion Institute, 2023, 39, 633-641.	2.4	11
2556	Analysis of NO Formation and Entropy Generation in a Reactive Flow. Aerospace, 2022, 9, 666.	1.1	1
2557	A shock-tube study of NH3 and NH3/H2 oxidation using laser absorption of NH3 and H2O. Proceedings of the Combustion Institute, 2023, 39, 233-241.	2.4	9
2558	Investigation of N Transfer during Coal Char Oxidation by Reactive Molecular Dynamics. Energy & Samp; Fuels, 2022, 36, 13073-13083.	2.5	5
2559	Preparation of a Cartridge-Type Pt/Al ₂ O ₃ Catalyst Using a Sputter Deposition Method for Catalytic Hydrogen Combustion. Energy & Energy	2.5	4
2560	Characteristics of NH3/H2 blend as carbon-free fuels: A review. International Journal of Hydrogen Energy, 2023, 48, 38077-38100.	3.8	16
2561	Detailed prediction of HRR and NOx emissions in CI engines via a novel thermodynamic model with constant equivalence ratio zones. International Journal of Engine Research, 0, , 146808742211286.	1.4	0
2562	Ammonia Combustion Chemistry. , 2023, , 565-577.		1
2563	Radiation-induced transformation of the C ₂ H ₂ â<\table NH ₃ complex in cryogenic media: Identification of C ₂ H ₂ â<\table NH ₂ <amble 157,="" 174306.<="" 2022,="" and="" chemical="" cold="" evidence="" journal="" of="" physics,="" routes.="" synthetic="" td="" x=""><td>1.2</td><td>2</td></amble>	1.2	2
2564	Effect of temperature, oxygen concentration, and CaO addition on SO2 and NOx emissions during oxygen-fuel combustion of municipal sludge. Journal of the Energy Institute, 2022, 105, 424-432.	2.7	5
2565	Chemical structure of premixed ammonia/hydrogen flames at elevated pressures. Combustion and Flame, 2022, 246, 112419.	2.8	11
2566	Biodiesel feedstock determines exhaust toxicity in 20% biodiesel: 80% mineral diesel blends. Chemosphere, 2023, 310, 136873.	4.2	4
2568	Impact of ammonia addition on soot and NO/N2O formation in methane/air co-flow diffusion flames. Combustion and Flame, 2023, 247, 112483.	2.8	15
2569	NH3 oxidation by NO2 in a jet-stirred reactor: The effect of significant uncertainties in H2NO kinetics. Applications in Energy and Combustion Science, 2022, 12, 100095.	0.9	О

#	Article	IF	CITATIONS
2570	Shifts in Product Distribution in Microwave Plasma Methane Pyrolysis Due to Hydrogen and Nitrogen Addition. Methane, 2022, 1, 286-299.	0.8	1
2571	Gas composition during thermochemical conversion of dry solid fuels and waste-derived slurries. Environmental Science and Pollution Research, 2023, 30, 24192-24211.	2.7	3
2572	Counterflow flame extinction of ammonia and its blends with hydrogen and C1-C3 hydrocarbons. Applications in Energy and Combustion Science, 2022, 12, 100099.	0.9	3
2573	Temperature Extrapolation of Molecular Dynamics Simulations of Complex Chemistry to Microsecond Timescales Using Kinetic Models: Applications to Hydrocarbon Pyrolysis. Journal of Chemical Theory and Computation, 2022, 18, 7496-7509.	2.3	1
2574	An experimental and kinetic modeling study on the low and intermediate temperatures oxidation of NH3/O2/Ar, NH3/H2/O2/Ar, NH3/CO/O2/Ar, and NH3/CH4/O2/Ar mixtures in a jet-stirred reactor. Combustion and Flame, 2023, 248, 112529.	2.8	3
2575	An experimental and kinetic modeling study on NH3/air, NH3/H2/air, NH3/CO/air, and NH3/CH4/air premixed laminar flames at elevated temperature. Combustion and Flame, 2023, 248, 112536.	2.8	22
2576	Characteristics of fuel-air mixing in the subsonic combustion regime with opposed fuel jets for flame stabilization. AIP Conference Proceedings, 2022, , .	0.3	0
2577	Pollutant Emissions of Alternative Fuels. , 2022, , 451-484.		0
2578	Quantitative analyses of NO formations from different reaction pathways in methane-air combustion at various pressures and temperatures. Fuel, 2023, 337, 126856.	3.4	1
2579	CO assisted NH <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> oxidation. Combustion and Flame, 2023, 257, 112438.	2.8	8
2580	Unraveling the NO reduction mechanisms occurring during the combustion of NH3/CH4 mixtures. Combustion and Flame, 2023, 257, 112531.	2.8	5
2581	The Impact of Fuel Injection Timing and Charge Dilution Rate on Low Temperature Combustion in a Compression Ignition Engine. Energies, 2023, 16, 139.	1.6	3
2582	Numerical investigation of wall effects on combustion noise from a lean-premixed hydrogen/air low-swirl flame. Physics of Fluids, 2023, 35, .	1.6	7
2583	Transformation of CFB boilers pollutant treatment strategies under China's stricter requirements and the background of carbon neutrality (FBC24). Fuel, 2023, 342, 127009.	3.4	6
2584	Effect of methanol blending on the high-temperature auto-ignition of ammonia: An experimental and modeling study. Fuel, 2023, 339, 126911.	3.4	10
2585	Experimental and numerical study of product gas and N2O emission characteristics of ammonia/hydrogen/air premixed laminar flames stabilized in a stagnation flow. Proceedings of the Combustion Institute, 2023, 39, 1625-1633.	2.4	11
2586	Experimental and modeling study on the ignition delay times of ammonia/methane mixtures at high dilution and high temperatures. Proceedings of the Combustion Institute, 2023, 39, 4399-4407.	2.4	9
2587	DNS predictions of NO _x production in developing turbulent mixing layers with non-premixed hydrogen–air combustion. Journal of Turbulence, 0, , .	0.5	0

#	Article	IF	CITATIONS
2588	Mid-infrared Frequency Modulation Detection of HCN and Its Reaction with O Atoms behind Shock Waves. Journal of Physical Chemistry A, 2022, 126, 9485-9496.	1.1	2
2589	Effect of air humidity on premixed combustion of ammonia/air under engine relevant conditions: numerical investigation. Journal of Thermal Analysis and Calorimetry, 2023, 148, 8347-8364.	2.0	1
2590	Mechanisms of N ₂ Formation from Armchair Configurations with Different Dinitrogen Active Sites During Coal Pyrolysis. Combustion Science and Technology, 0, , 1-20.	1,2	0
2591	The Role of the Sextet Potential Energy Surface in O2 + N Inelastic Collisions Processes. Physical Chemistry Chemical Physics, 0, , .	1.3	1
2592	The state-to-state dynamics of the N + NH(³ Σ ^{â^'}) â†' N ₂ (X ^{Physics, 2023, 121, .}	1) 0.8	Tj ETQq0 0 (O
2593	Uncertainty quantification of the premixed combustion characteristics of NH3/H2/N2 fuel blends. International Journal of Hydrogen Energy, 2023, 48, 14477-14491.	3.8	7
2594	Water Complex of Imidogen. Journal of the American Chemical Society, 2023, 145, 1982-1987.	6.6	4
2595	A sustainable thermochemical conversion of animal biomass to N-heterocycles. Journal of Leather Science and Engineering, 2023, 5, .	2.7	3
2596	Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves. Chinese Journal of Chemical Engineering, 2023, 59, 182-192.	1.7	3
2597	Overview of fundamental kinetic mechanisms and emission mitigation in ammonia combustion. Chemical Engineering Journal, 2023, 458, 141391.	6.6	61
2598	Feedstock flexible numerical analysis of sewage sludge gasification. Fuel, 2023, 338, 127297.	3.4	2
2599	An indirect approach to optimize the reaction rates of thermal NO formation for diesel engines. Fuel, 2023, 338, 127287.	3.4	0
2600	LES flamelet modeling of hydrogen combustion considering preferential diffusion effect. International Journal of Hydrogen Energy, 2023, 48, 11086-11101.	3.8	10
2601	A new insight on the NO–CO reaction at the electronic level: homogeneous, E-R, and L–H mechanisms. Journal of Molecular Modeling, 2023, 29, .	0.8	2
2602	Investigations on Pressure Broadening Coefficients of NO Lines in the 1â†0 Band for N2, CO2, Ar, H2, O2 and He. Applied Sciences (Switzerland), 2023, 13, 1370.	1.3	0
2603	On the role of HNNO in NO <mml:math altimg="si20.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mtext></mml:mtext></mml:msub></mml:math> formation. Proceedings of the Combustion Institute, 2023, 39, 551-560.	2.4	3
2604	Combustion and emission characteristics of NH3/CH4/air in a model swirl combustor: Comparison between premixed and non-premixed modes. International Journal of Hydrogen Energy, 2023, 48, 17311-17323.	3.8	3
2605	Combustion chemistry of ammonia/C1 fuels: A comprehensive kinetic modeling study. Fuel, 2023, 341, 127676.	3.4	9

#	Article	IF	CITATIONS
2606	Predictions of NOx and SOx in MILD regime based on thermal conversion of solid sewage sludge surrogates. Fuel, 2023, 341, 127666.	3.4	1
2607	Chemistry diagnostics for monitoring. , 2023, , 417-501.		0
2608	Immigration, transformation, and emission control of sulfur and nitrogen during gasification of MSW: Fundamental and engineering review. Carbon Resources Conversion, 2023, 6, 184-204.	3.2	6
2609	Investigation on the reaction mechanism of methane combustion near flammability limits at elevated pressures and temperaturaes. Energy, 2023, 269, 126786.	4.5	6
2610	Numerical analysis for optimizing combustion strategy in an ammonia-diesel dual-fuel engine. Energy Conversion and Management, 2023, 284, 116980.	4.4	29
2611	Performance enhancement of swirl-assisted distributed combustion with hydrogen-enriched methane. Applied Energy, 2023, 338, 120919.	5.1	4
2612	A comparative study of oxidation of pure ammonia and ammonia/dimethyl ether mixtures in a jet-stirred reactor using SVUV-PIMS. Combustion and Flame, 2023, 250, 112643.	2.8	8
2613	Testing of NH3/H2 and NH3/syngas combustion mechanisms using a large amount of experimental data. Applications in Energy and Combustion Science, 2023, 14, 100127.	0.9	2
2614	Investigation of a low emission peripheral vortex reverse flow (PVRF) combustor fuelled by LPG and ethylene. Journal of the Energy Institute, 2023, 108, 101200.	2.7	1
2615	NO formation and reduction during methane/hydrogen MILD combustion over a wide range of hydrogen-blending ratios in a well-stirred reactor. Fuel, 2023, 346, 128324.	3.4	5
2616	Exhaust Gas Recirculation (EGR) analysis of a swirl-stabilized pulverized coal flame with focus on NOx release using FPV-LES. Fuel, 2023, 343, 127939.	3.4	5
2617	Flame self-interaction during turbulent boundary layer flashback of hydrogen-rich premixed combustion. Physical Review Fluids, 2023, 8, .	1.0	2
2618	Quantitative Detection of CH Radicals by Laser-Induced Fluorescence in ARCJETS and Flames. , 1996, , .		0
2619	Causal analysis of nitrogen oxides emissions process in coal-fired power plant with LiNGAM. Frontiers in Analytical Science, 0, 3, .	1.1	1
2620	Catalytic removal of nitrogen oxides (NO, NO2, N2O) from ammonia-fueled combustion exhaust: A review of applicable technologies. Chemical Engineering Journal, 2023, 461, 141958.	6.6	16
2621	Experimental support for a new NOx formation route via an HNNO intermediate. Combustion and Flame, 2023, 257, 112632.	2.8	3
2622	A Numerical Investigation on Effects of Hydrogen Enrichment and Turbulence on NO Formation Pathways in Premixed Ammonia/Air Flames. Combustion Science and Technology, 0, , 1-30.	1.2	1
2623	Effect of H ₂ O on NO at oxy-fuel combustion condition of ethanol/NH ₃ and ethylene glycol/ NH ₃ . Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2023, 45, 2193-2205.	1.2	O

#	Article	IF	CITATIONS
2624	Development of a reduced chemical kinetic mechanism for ammonia combustion using species-based global sensitivity analysis. Fuel, 2023, 344, 128036.	3.4	1
2625	NO Emission and Burnout Characteristic in Combustion of Coal Gasification Fine Slag with Preheating Technology. Combustion Science and Technology, 0, , 1-17.	1.2	0
2626	Impact of Trace Ammonia Impurities on the Utilization of Renewable Natural Gas. Industrial & Engineering Chemistry Research, 2023, 62, 5677-5690.	1.8	0
2627	The impact of ammonia addition on soot formation in ethylene flames. Combustion and Flame, 2023, 258, 112724.	2.8	3
2628	The impact of hydrogen substitution by ammonia on low- and high-temperature combustion. Combustion and Flame, 2023, 257, 112733.	2.8	2
2630	Combustion, Chemistry, and Carbon Neutrality. Chemical Reviews, 2023, 123, 5139-5219.	23.0	37
2631	Low temperature state-to-state vibrational kinetics of OÂ+ÂN2(v) and NÂ+ÂO2(v) collisions. Chemical Physics, 2023, 571, 111937.	0.9	0
2663	Emerging Materials and Environment: AÂBrief Introduction. Challenges and Advances in Computational Chemistry and Physics, 2024, , 1-78.	0.6	0