Modulation masking: Effects of modulation frequency,

Journal of the Acoustical Society of America 85, 2575-2580 DOI: 10.1121/1.397751

Citation Report

#	Article	IF	CITATIONS
1	Modulation interference in detection and discrimination of amplitude modulation. Journal of the Acoustical Society of America, 1989, 86, 2138-2147.	1.1	142
2	Detection of frequency modulation (FM) in the presence of a second FM tone. Journal of the Acoustical Society of America, 1990, 88, 1333-1338.	1.1	26
3	Temporal integration in amplitude modulation detection. Journal of the Acoustical Society of America, 1990, 88, 796-805.	1.1	91
4	Comodulation detection differences with multiple signal bands. Journal of the Acoustical Society of America, 1990, 87, 292-303.	1.1	25
5	Across-channel Masking of Changes in Modulation Depth for Amplitude- and Frequency-modulated Signals. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1991, 43, 327-347.	2.3	32
6	Discrimination of formant transition onset frequency: Psychoacoustic cues at short, moderate, and long durations. Journal of the Acoustical Society of America, 1991, 90, 1298-1308.	1.1	15
7	Syllabic compression: Effective compression ratios for signals modulated at different rates. International Journal of Audiology, 1992, 26, 351-361.	0.7	94
8	Fringe effects in modulation masking. Journal of the Acoustical Society of America, 1992, 91, 3451-3455.	1.1	9
9	Modulation Detection, Modulation Masking, and Speech Understanding in Noise in the Elderly. Journal of Speech, Language, and Hearing Research, 1992, 35, 1410-1421.	1.6	186
10	Chapter 24 Quantitative comparison of electrically and acoustically evoked auditory perception: implications for the location of perceptual mechanisms. Progress in Brain Research, 1993, 97, 261-269.	1.4	20
11	Reducing informational masking by sound segregation. Journal of the Acoustical Society of America, 1994, 95, 3475-3480.	1.1	198
12	Speech enhancement based on physiological and psychoacoustical models of modulation perception and binaural interaction. Journal of the Acoustical Society of America, 1994, 95, 1593-1602.	1.1	103
13	Discrimination of envelope frequency in one spectral region in the presence of modulation in another. Journal of the Acoustical Society of America, 1994, 96, 1445-1457.	1.1	2
14	Stimulus intensity and fundamental frequency effects on duplex perception. Journal of the Acoustical Society of America, 1995, 98, 734-744.	1.1	5
15	Effects of combining maskers in modulation detection interference. Journal of the Acoustical Society of America, 1995, 97, 1847-1853.	1.1	12
16	Neuronal correlates of perceptual amplitude-modulation detection. Hearing Research, 1995, 90, 219-227.	2.0	25
17	PSYCHOACOUSTICS, SPEECH AND HEARING AIDS. , 1996, , .		4
18	Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. Journal of the Acoustical Society of America, 1997, 102, 2892-2905.	1.1	513

#	Article	IF	CITATIONS
19	Effect of the relative phase of amplitude modulation on the detection of modulation on two carriers. Journal of the Acoustical Society of America, 1997, 102, 3657-3664.	1.1	5
20	Modulation detection interference with two-component masker modulators. Journal of the Acoustical Society of America, 1997, 102, 1106-1112.	1.1	18
21	A comparison of detection and discrimination of temporal asymmetry in amplitude modulation. Journal of the Acoustical Society of America, 1997, 101, 430-439.	1.1	24
22	Modulation Masking in Listeners With Sensorineural Hearing Loss. Journal of Speech, Language, and Hearing Research, 1997, 40, 200-207.	1.6	17
23	Increment and decrement detection in sinusoids as a measure of temporal resolution. Journal of the Acoustical Society of America, 1997, 102, 1779-1790.	1.1	35
24	Temporal integration at 6 kHz as a function of masker bandwidth. Journal of the Acoustical Society of America, 1998, 103, 1033-1042.	1.1	15
25	Masking patterns for sinusoidal and narrow-band noise maskers. Journal of the Acoustical Society of America, 1998, 104, 1023-1038.	1.1	76
26	Detection of sinusoidal amplitude modulation at unexpected rates. Journal of the Acoustical Society of America, 1998, 104, 2991-2996.	1.1	20
27	Modulation masking produced by beating modulators. Journal of the Acoustical Society of America, 1999, 106, 908-918.	1.1	31
28	Intrinsic envelope fluctuations and modulation-detection thresholds for narrow-band noise carriers. Journal of the Acoustical Society of America, 1999, 106, 2752-2760.	1.1	93
29	Discrimination of amplitude-modulation phase spectrum. Journal of the Acoustical Society of America, 1999, 105, 2987-2990.	1.1	15
30	Representation of the Temporal Envelope of Sounds in the Human Brain. Journal of Neurophysiology, 2000, 84, 1588-1598.	1.8	314
31	On the role of envelope fluctuation processing in spectral masking. Journal of the Acoustical Society of America, 2000, 108, 285-296.	1.1	41
32	Effects of relative phase and frequency spacing on the detection of three-component amplitude modulation. Journal of the Acoustical Society of America, 2000, 108, 2337-2344.	1.1	20
33	Characterizing frequency selectivity for envelope fluctuations. Journal of the Acoustical Society of America, 2000, 108, 1181-1196.	1.1	235
34	Modulation detection interference: Effects of concurrent and sequential streaming. Journal of the Acoustical Society of America, 2001, 110, 402-408.	1.1	40
35	Second-order temporal modulation transfer functions. Journal of the Acoustical Society of America, 2001, 110, 1030-1038.	1.1	43
36	Second-order modulation detection thresholds for pure-tone and narrow-band noise carriers. Journal of the Acoustical Society of America, 2001, 110, 2470-2478.	1.1	33

#	Article	IF	CITATIONS
37	Consonant identification under maskers with sinusoidal modulation: Masking release or modulation interference?. Journal of the Acoustical Society of America, 2001, 110, 1130-1140.	1.1	76
38	Effect of duration on amplitude-modulation masking. Journal of the Acoustical Society of America, 2002, 111, 2551-2554.	1.1	5
39	Spectro-temporal processing in the envelope-frequency domain. Journal of the Acoustical Society of America, 2002, 112, 2921-2931.	1.1	76
40	Mechanisms of modulation gap detection. Journal of the Acoustical Society of America, 2002, 111, 2783-2792.	1.1	16
41	Modulation Detection Interference in Listeners With Normal and Impaired Hearing. Journal of Speech, Language, and Hearing Research, 2002, 45, 392-402.	1.6	16
42	Estimation of the signal-to-noise ratio with amplitude modulation spectrograms. Speech Communication, 2002, 38, 1-17.	2.8	19
43	Testing the concept of a modulation filter bank: The audibility of component modulation and detection of phase change in three-component modulators. Journal of the Acoustical Society of America, 2003, 113, 2801-2811.	1.1	26
44	Suprathreshold effects of adaptation produced by amplitude modulation. Journal of the Acoustical Society of America, 2003, 114, 991-997.	1.1	18
45	Modulation masking produced by complex tone modulators. Journal of the Acoustical Society of America, 2003, 114, 2135-2146.	1.1	19
46	Joint Acoustic and Modulation Frequency. Eurasip Journal on Advances in Signal Processing, 2003, 2003, 1.	1.7	106
47	Modulation masking in cochlear implant listeners: envelope versus tonotopic components. Journal of the Acoustical Society of America, 2003, 113, 2042-2053.	1.1	38
48	Temporal Envelope Processing in the Human Left and Right Auditory Cortices. Cerebral Cortex, 2004, 14, 731-740.	2.9	134
49	Estimation of the level and phase of the simple distortion tone in the modulation domain. Journal of the Acoustical Society of America, 2004, 116, 3031-3037.	1.1	8
50	Auditory detection of paired pulses by a dolphin in the presence of a pulse jam. Acoustical Physics, 2004, 50, 485-492.	1.0	2
51	Neural Processing of Amplitude-Modulated Sounds. Physiological Reviews, 2004, 84, 541-577.	28.8	817
52	Factors affecting psychophysical tuning curves for normally hearing subjects. Hearing Research, 2004, 194, 118-134.	2.0	47
53	A Temporal Model of Level-Invariant, Tone-in-Noise Detection Psychological Review, 2004, 111, 914-930.	3.8	9
55	Perception of the envelope-beat frequency of inharmonic complex temporal envelopes. Journal of the Acoustical Society of America, 2005, 118, 3757-3765.	1.1	6

#	Article	IF	CITATIONS
56	Forward masking of amplitude modulation: Basic characteristics. Journal of the Acoustical Society of America, 2005, 118, 3198-3210.	1.1	57
57	A perceptual learning investigation of the pitch elicited by amplitude-modulated noise. Journal of the Acoustical Society of America, 2005, 118, 3794-3803.	1.1	46
58	Multiresolution spectrotemporal analysis of complex sounds. Journal of the Acoustical Society of America, 2005, 118, 887-906.	1.1	584
60	Masking release for consonant features in temporally fluctuating background noise. Hearing Research, 2006, 211, 74-84.	2.0	113
61	No adaptation in the amplitude modulation domain in trained listeners. Journal of the Acoustical Society of America, 2006, 119, 3542-3545.	1.1	8
62	Amplitude modulation sensitivity as a mechanism for increment detection. Journal of the Acoustical Society of America, 2006, 119, 3919-3930.	1.1	14
63	Cues for masked amplitude-modulation detection. Journal of the Acoustical Society of America, 2006, 120, 978-990.	1.1	9
64	Effect of modulation maskers on the detection of second-order amplitude modulation with and without notched noise. Journal of the Acoustical Society of America, 2006, 119, 2937-2946.	1.1	3
65	A neural circuit transforming temporal periodicity information into a rate-based representation in the mammalian auditory system. Journal of the Acoustical Society of America, 2007, 121, 310-326.	1.1	29
66	Spectral modulation masking patterns reveal tuning to spectral envelope frequency. Journal of the Acoustical Society of America, 2007, 122, 1004-1013.	1.1	23
67	Envelope Processing and Sound-Source Perception. , 2008, , 233-280.		3
68	Neural Rate and Timing Cues for Detection and Discrimination of Amplitude-Modulated Tones in the Awake Rabbit Inferior Colliculus. Journal of Neurophysiology, 2007, 97, 522-539.	1.8	102
69	Psychoacoustics. , 2007, , 459-501.		7
70	Auditory Processing Models. , 2008, , 175-196.		4
71	The pulse-train auditory aftereffect and the perception of rapid amplitude modulations. Journal of the Acoustical Society of America, 2008, 123, 935-945.	1.1	7
72	Binaural processing of modulated interaural level differences. Journal of the Acoustical Society of America, 2008, 123, 1017-1029.	1.1	24
73	Selectivity of modulation interference for consonant identification in normal-hearing listeners. Journal of the Acoustical Society of America, 2008, 123, 1665-1672.	1.1	15
74	A computational model of human auditory signal processing and perception. Journal of the Acoustical Society of America, 2008, 124, 422-438.	1.1	157

#	Article	IF	CITATIONS
75	Age-related differences in the temporal modulation transfer function with pure-tone carriers. Journal of the Acoustical Society of America, 2008, 124, 3841-3849.	1.1	102
76	Exploring the Role of the Modulation Spectrum in Phoneme Recognition. Ear and Hearing, 2008, 29, 800-813.	2.1	41
77	Signal recognition by frogs in the presence of temporally fluctuating chorus-shaped noise. Behavioral Ecology and Sociobiology, 2010, 64, 1695-1709.	1.4	41
78	Single-channel speech enhancement using spectral subtraction in the short-time modulation domain. Speech Communication, 2010, 52, 450-475.	2.8	146
79	The origin of binaural interaction in the modulation domain. Journal of the Acoustical Society of America, 2010, 127, 2451-2460.	1.1	2
80	The effect of narrow-band noise maskers on increment detection. Journal of the Acoustical Society of America, 2010, 128, 2973-2987.	1.1	0
81	Sound Texture Perception via Statistics of the Auditory Periphery: Evidence from Sound Synthesis. Neuron, 2011, 71, 926-940.	8.1	284
82	Dip listening and the cocktail party problem in grey treefrogs: signal recognition in temporally fluctuating noise. Animal Behaviour, 2011, 82, 1319-1327.	1.9	64
83	Forward Masking in the Amplitude-Modulation Domain for Tone Carriers: Psychophysical Results and Physiological Correlates. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 361-373.	1.8	24
84	Extracting amplitude modulations from speech in the time domain. Speech Communication, 2011, 53, 903-913.	2.8	9
85	The effect of carrier level on tuning in amplitude-modulation masking. Journal of the Acoustical Society of America, 2011, 130, 3916-3925.	1.1	7
86	Perceptual learning and generalization resulting from training on an auditory amplitude-modulation detection task. Journal of the Acoustical Society of America, 2011, 129, 898-906.	1.1	32
87	Perceptual weighting of the envelope and fine structure across frequency bands for sentence intelligibility: Effect of interruption at the syllabic-rate and periodic-rate of speech. Journal of the Acoustical Society of America, 2011, 130, 489-500.	1.1	14
88	Masking of low-frequency signals by high-frequency, high-level narrow bands of noise. Journal of the Acoustical Society of America, 2011, 129, 876-887.	1.1	3
89	Notionally steady background noise acts primarily as a modulation masker of speech. Journal of the Acoustical Society of America, 2012, 132, 317-326.	1.1	141
90	Channel selection in the modulation domain for improved speech intelligibility in noise. Journal of the Acoustical Society of America, 2012, 131, 2904-2913.	1.1	30
91	Forward masking of frequency modulation. Journal of the Acoustical Society of America, 2012, 132, 3375-3386.	1.1	5
92	Perceptual Learning Evidence for Tuning to Spectrotemporal Modulation in the Human Auditory System. Journal of Neuroscience, 2012, 32, 6542-6549.	3.6	32

	CHAI	ION REPORT	
#	Article	IF	Citations
93	Acceptable Noise Level and Psychophysical Masking. American Journal of Audiology, 2012, 21, 199-205.	1.2	7
94	Dip listening or modulation masking? Call recognition by green treefrogs (Hyla cinerea) in temporally fluctuating noise. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2012, 198, 891-904.	1.6	25
95	Group Delay Based Methods for Speaker Segregation and its Application in Multimedia Information Retrieval. IEEE Transactions on Multimedia, 2013, 15, 1326-1339.	7.2	12
96	Signal recognition by green treefrogs (Hyla cinerea) and cope's gray treefrogs (Hyla chrysoscelis) in naturally fluctuating noise Journal of Comparative Psychology (Washington, D C: 1983), 2013, 127, 166-178.	0.5	25
97	Audition. , 2013, , .		1
98	Gap Detection in School-Age Children and Adults: Effects of Inherent Envelope Modulation and the Availability of Cues Across Frequency. Journal of Speech, Language, and Hearing Research, 2014, 57, 1098-1107.	1.6	9
99	On the near non-existence of "pure―energetic masking release for speech. Journal of the Acoustical Society of America, 2014, 135, 1967-1977.	1.1	64
100	Speech recognition against harmonic and inharmonic complexes: Spectral dips and periodicity. Journal of the Acoustical Society of America, 2014, 135, 2873-2884.	1.1	21
101	Computational speech segregation based on an auditory-inspired modulation analysis. Journal of the Acoustical Society of America, 2014, 136, 3350-3359.	1.1	11
102	Speech Perception in Tones and Noise via Cochlear Implants Reveals Influence of Spectral Resolution on Temporal Processing. Trends in Hearing, 2014, 18, 233121651455378.	1.3	83
103	Modulation masking within and across carriers for subjects with normal and impaired hearing. Journal of the Acoustical Society of America, 2015, 138, 1143-1153.	1.1	23
104	Psychometric functions for sentence recognition in sinusoidally amplitude-modulated noises. Journal of the Acoustical Society of America, 2015, 138, 3613-3624.	1.1	7
105	Modulation-Frequency-Specific Adaptation in Awake Auditory Cortex. Journal of Neuroscience, 2015, 35, 5904-5916.	3.6	20
106	Speech and Audio Processing for Coding, Enhancement and Recognition. , 2015, , .		7
107	Effects of inherent envelope fluctuations in forward maskers for listeners with normal and impaired hearing. Journal of the Acoustical Society of America, 2015, 137, 1336-1343.	1.1	6
108	Specificity of the Human Frequency Following Response for Carrier and Modulation Frequency Assessed Using Adaptation. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 747-762.	1.8	16
109	An Auditory Inspired Amplitude Modulation Filter Bank for Robust Feature Extraction in Automatic Speech Recognition. IEEE/ACM Transactions on Audio Speech and Language Processing, 2015, 23, 1926-1937.	5.8	35
110	Treefrogs as animal models for research on auditory scene analysis and the cocktail party problem. International Journal of Psychophysiology, 2015, 95, 216-237.	1.0	66

#	Article	IF	CITATIONS
111	Auditory "bubbles― Efficient classification of the spectrotemporal modulations essential for speech intelligibility. Journal of the Acoustical Society of America, 2016, 140, 1072-1088.	1.1	39
112	Masked threshold for noise bands masked by narrower bands of noise: Effects of masker bandwidth and center frequency. Journal of the Acoustical Society of America, 2016, 139, 2403-2406.	1.1	3
113	Discrimination of amplitude-modulation depth by subjects with normal and impaired hearing. Journal of the Acoustical Society of America, 2016, 140, 3487-3495.	1.1	30
115	Speech Perception and Hearing Aids. Springer Handbook of Auditory Research, 2016, , 151-180.	0.7	10
116	Integration of Optimized Modulation Filter Sets Into Deep Neural Networks for Automatic Speech Recognition. IEEE/ACM Transactions on Audio Speech and Language Processing, 2016, 24, 2439-2452.	5.8	9
117	Integrated acoustic echo and noise suppression in modulation domain. International Journal of Speech Technology, 2016, 19, 611-621.	2.2	2
118	Speech enhancement of instantaneous amplitude and phase for applications in noisy reverberant environments. Speech Communication, 2016, 84, 1-14.	2.8	4
119	Modulation masking and glimpsing of natural and vocoded speech during single-talker modulated noise: Effect of the modulation spectrum. Journal of the Acoustical Society of America, 2016, 140, 1800-1816.	1.1	30
120	Age-Related Changes in Processing Simultaneous Amplitude Modulated Sounds Assessed Using Envelope Following Responses. JARO - Journal of the Association for Research in Otolaryngology, 2016, 17, 119-132.	1.8	20
121	A cross-linguistic study of speech modulation spectra. Journal of the Acoustical Society of America, 2017, 142, 1976-1989.	1.1	102
122	The Temporal Regulation of S Phase Proteins During G1. Advances in Experimental Medicine and Biology, 2017, 1042, 335-369.	1.6	22
123	Speech enhancement in modulation domain using discriminative random fields. , 2017, , .		Ο
124	Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning. PLoS ONE, 2017, 12, e0168858.	2.5	6
126	Speech recognition for school-age children and adults tested in multi-tone vs multi-noise-band maskers. Journal of the Acoustical Society of America, 2018, 143, 1458-1466.	1.1	3
128	Cascaded Tuning to Amplitude Modulation for Natural Sound Recognition. Journal of Neuroscience, 2019, 39, 5517-5533.	3.6	25
129	Exploring the Role of Medial Olivocochlear Efferents on the Detection of Amplitude Modulation for Tones Presented in Noise. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 395-413.	1.8	14
130	Development of temporal auditory processing in childhood: Changes in efficiency rather than temporal-modulation selectivity. Journal of the Acoustical Society of America, 2019, 146, 2415-2429.	1.1	17
131	Accounting for masking of frequency modulation by amplitude modulation with the modulation filter-bank concept. Journal of the Acoustical Society of America, 2019, 145, 2277-2293.	1.1	14

#	Article	IF	CITATIONS
132	Amplitude modulation detection and modulation masking in school-age children and adults. Journal of the Acoustical Society of America, 2019, 145, 2565-2575.	1.1	8
133	Differential effects of sound level and temporal structure of calls on phonotaxis by female gray treefrogs, Hyla versicolor. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2019, 205, 223-238.	1.6	4
134	Contribution of binaural masking release to improved speech intelligibility for different masker types. European Journal of Neuroscience, 2020, 51, 1339-1352.	2.6	3
135	Masking of short tones in noise: Evidence for envelope-based, rather than energy-based detection. Journal of the Acoustical Society of America, 2020, 148, 211-221.	1.1	8
136	Characterizing amplitude and frequency modulation cues in natural soundscapes: A pilot study on four habitats of a biosphere reserve. Journal of the Acoustical Society of America, 2020, 147, 3260-3274.	1.1	9
137	Effects of speech-rhythm disruption on selective listening with a single background talker. Attention, Perception, and Psychophysics, 2021, 83, 2229-2240.	1.3	8
138	Forward masking of amplitude modulation across ears and its tuning in the modulation domain. Journal of the Acoustical Society of America, 2021, 149, 1764-1771.	1.1	5
140	The role of the medial olivocochlear reflex in psychophysical masking and intensity resolution in humans: a review. Journal of Neurophysiology, 2021, 125, 2279-2308.	1.8	18
141	Cortical Tracking of a Background Speaker Modulates the Comprehension of a Foreground Speech Signal. Journal of Neuroscience, 2021, 41, 5093-5101.	3.6	12
144	Informational masking in the modulation domain. Journal of the Acoustical Society of America, 2021, 149, 3665-3673.	1.1	3
145	Frequency selectivity in the modulation domain estimated using forward masking: Effects of masker modulation depth and masker-signal delay. Hearing Research, 2021, 405, 108244.	2.0	3
147	Modulation masking and fine structure shape neural envelope coding to predict speech intelligibility across diverse listening conditions. Journal of the Acoustical Society of America, 2021, 150, 2230-2244.	1.1	14
148	Mechanisms of Spectrotemporal Modulation Detection for Normal- and Hearing-Impaired Listeners. Trends in Hearing, 2021, 25, 233121652097802.	1.3	4
149	Using the Past to Understand the Present: Coping with Natural and Anthropogenic Noise. BioScience, 2021, 71, 223-234.	4.9	23
150	Time Analysis. Springer Handbook of Auditory Research, 1993, , 116-154.	0.7	57
151	Psychoacoustics. Springer Handbooks, 2014, , 475-517.	0.6	4
152	Across-Channel Processes in Masking. , 1995, , 243-266.		17
153	Across-channel processes in auditory masking Journal of the Acoustical Society of Japan (E), 1992, 13, 25-37.	0.1	19

#	Article	IF	CITATIONS
154	Relationship between contributions of temporal amplitude envelope of speech and modulation transfer function in room acoustics to perception of noise-vocoded speech. Acoustical Science and Technology, 2020, 41, 233-244.	0.5	12
155	Dynamic Reweighting of Auditory Modulation Filters. PLoS Computational Biology, 2016, 12, e1005019.	3.2	11
156	MTF-Based Kalman Filtering with Linear Prediction for Power Envelope Restoration in Noisy Reverberant Environments. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2016, E99.A, 560-569.	0.3	3
157	Modulation Enhancement of Temporal Envelopes for Increasing Speech Intelligibility in Noise. , 0, , .		4
158	Real-Time Modulation Enhancement of Temporal Envelopes for Increasing Speech Intelligibility. , 0, , .		6
159	Temporal fine structure influences voicing confusions for consonant identification in multi-talker babble. Journal of the Acoustical Society of America, 2021, 150, 2664-2676.	1.1	7
160	Real-time voice conversion using artificial neural networks with rectified linear units. , 0, , .		1
161	PSYCHOPHYSICAL TUNING IN AUDITORY AM-PROCESSING. , 1999, , 73-76.		0
162	Modulation Processing for Speech Enhancement. , 2015, , 319-345.		1
163	Processing of temporal information in the auditory system. Audiology Japan, 2016, 59, 615-622.	0.1	1
164	Interactions between auditory statistics processing and visual experience emerge only in late development. IScience, 2021, 24, 103383.	4.1	5
165	Defining the Proper Stimulus and Its Ecology - Mammals. , 2020, , 187-206.		3
166	Effects of noise precursors on the detection of amplitude and frequency modulation for tones in noise. Journal of the Acoustical Society of America, 2020, 148, 3581-3597.	1.1	0
169	Spatial Release From Informational and Energetic Masking in Bimodal and Bilateral Cochlear Implant Users. Journal of Speech, Language, and Hearing Research, 2020, 63, 3816-3833.	1.6	5
171	Temporal integration for amplitude modulation in childhood: Interaction between internal noise and memory. Hearing Research, 2022, 415, 108403.	2.0	5
172	Speech Categorization Reveals the Role of Early-Stage Temporal-Coherence Processing in Auditory Scene Analysis. Journal of Neuroscience, 2022, 42, 240-254.	3.6	9
173	Enhancement of speech in noise using multi-channel, time-varying gains derived from the temporal envelope. Applied Acoustics, 2022, 190, 108634.	3.3	4
174	Forward masking of spectrotemporal modulation detection. Journal of the Acoustical Society of America, 2022, 151, 1181-1190.	1.1	1

#	Article	IF	CITATIONS
178	Auditory perception of amplitude modulated sinusoid using a pure tone and band-limited noises as modulation signals. , 0, , .		0
179	Speech intelligibility prediction based on modulation frequency-selective processing. Hearing Research, 2022, 426, 108610.	2.0	6
180	Behind the mask(ing): how frogs cope with noise. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 0, , .	1.6	2
181	Amplitude-modulation forward masking for listeners with and without hearing loss. JASA Express Letters, 2022, 2, 124401.	1.1	1
182	Speech Enhancement Algorithm Based on a Convolutional Neural Network Reconstruction of the Temporal Envelope of Speech in Noisy Environments. IEEE Access, 2023, 11, 5328-5336.	4.2	10
183	Cues to reduce modulation informational masking. Journal of the Acoustical Society of America, 2023, 153, 274-285.	1.1	2
184	Age-related reduction of amplitude modulation frequency selectivity. Journal of the Acoustical Society of America, 2023, 153, 2298.	1.1	4
187	The silent assumption of the masking hypothesis: avian auditory processing and implications for behavioral responses to anthropogenic noise. Frontiers in Ecology and Evolution, 0, 11, .	2.2	0
188	Distinguishing Fine Structure and Summary Representation of Sound Textures from Neural Activity. ENeuro, 2023, 10, ENEURO.0026-23.2023.	1.9	1
189	Scene-adaptive pattern coding-based fringe projection profilometry: diffuse surfaces identification and 3-D reconstruction in cluttered scenes. Optics Express, 2023, 31, 32565.	3.4	1
190	Contributions of temporal envelope and temporal fine structure to segregation of Lombard speech from background noise. Acoustical Science and Technology, 2024, 45, 33-44.	0.5	0
192	Reduced processing efficiency impacts auditory detection of amplitude modulation in children: Evidence from an experimental and modeling study. Hearing Research, 2024, 445, 108982.	2.0	Ο