WOOD SPECIFIC GRAVITY GRADIENTS IN TROPICAL

American Journal of Botany 76, 924-928 DOI: 10.1002/j.1537-2197.1989.tb15070.x

Citation Report

#	Article	IF	CITATIONS
1	Radial and Vertical Wood Specific Gravity in Ochroma pyramidale (Cav. ex Lam.) Urb. (Bombacaceae). Biotropica, 1992, 24, 512.	1.6	38
2	J avelinoxylon , an Upper Cretaceous dicotyledonous tree from Big Bend National Park, Texas, with presumed malvalean affinities. American Journal of Botany, 1994, 81, 703-710.	1.7	33
3	Wood specific gravity and anatomy in Heliocarpus appendiculatus (Tiliaceae). American Journal of Botany, 1995, 82, 855-861.	1.7	20
4	Diameter, Height, Crown, and Age Relationship in Eight Neotropical Tree Species. Ecology, 1995, 76, 1926-1939.	3.2	178
5	Crown Architecture and Life-History Traits of 14 Tree Species in a Warm- Temperate Rain Forest: Significance of Spatial Heterogeneity. Journal of Ecology, 1997, 85, 611.	4.0	108
6	Mechanical Properties of Black Locust (Robinia pseudoacaciaL.) Wood. Size- and Age-dependent Variations in Sap- and Heartwood. Annals of Botany, 1997, 79, 265-272.	2.9	52
7	Size- and Age-dependent Variation in the Properties of Sap- and Heartwood in Black Locust (Robinia) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf

8	Mechanical Properties of Black Locust (Robinia pseudoacacia) Wood: Correlations among Elastic and Rupture Moduli, Proportional Limit, and Tissue Density and Specific Gravity. Annals of Botany, 1997, 79, 479-485.	2.9	27
9	Diversity in specific gravity and water content of wood among Bornean tropical rainforest trees. Ecological Research, 1999, 14, 211-224.	1.5	92
10	Biomechanical Properties of the Trunk of the Devil's Walking Stick (Aralia spinosa; Araliaceae) during the Crown-Building Phase: Implications for Tree Architecture. American Journal of Botany, 1999, 86, 1677.	1.7	9
11	Stem basic density and bark proportion of 45 woody species in young savanna coppice forests in Burkina Faso. Annals of Forest Science, 2000, 57, 143-153.	2.0	39
12	Developmental Patterns of Tree Dimensions in a Neotropical Deciduous Forest1. Biotropica, 2000, 32, 42-52.	1.6	33
13	Wood density of trees in black water floodplains of Rio Jaú National Park, Amazonia, Brazil. Acta Amazonica, 2000, 30, 441-441.	0.7	27
14	Developmental Patterns of Tree Dimensions in a Neotropical Deciduous Forest1. Biotropica, 2000, 32, 42.	1.6	2
15	The Buttressed Blue Marble Tree: Wood and Growth Characteristics of Elaeocarpus angustifolius (Elaeocarpaceae). Annals of Botany, 2000, 85, 1-6.	2.9	9
16	Scaling of stem and crown in eight Cecropia (Cecropiaceae) species of Brazil. American Journal of Botany, 2001, 88, 939-949.	1.7	49
17	RADIAL GRADIENTS IN WOOD SPECIFIC GRAVITY IN TREES OF CENTRAL AMAZONIAN FLOODPLAINS. IAWA Journal, 2002, 23, 449-457.	2.7	32
18	Tree allometry and crown shape of four tree species in Atlantic rain forest, south-east Brazil. Journal of Tropical Ecology, 2002, 18, 245-260.	1.1	54

CITATION REPORT

#	Article	IF	CITATIONS
19	Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. Journal of Ecology, 2003, 91, 240-252.	4.0	357
20	Interspecific and Inter-site Variation in Wood Specific Gravity of Tropical Trees1. Biotropica, 2004, 36, 20.	1.6	6
21	Wood Specific Gravity of Trees in Amazonian White-Water Forests in Relation to Flooding. IAWA Journal, 2006, 27, 255-268.	2.7	24
22	A biomechanical perspective on the role of large stem volume and high water content in baobab trees (<i>Adansonia</i> spp.; Bombacaceae). American Journal of Botany, 2006, 93, 1251-1264.	1.7	63
23	Ecological and evolutionary determinants of a key plant functional trait: wood density and its communityâ€wide variation across latitude and elevation. American Journal of Botany, 2007, 94, 451-459.	1.7	419
24	Branch xylem density variations across the Amazon Basin. Biogeosciences, 2009, 6, 545-568.	3.3	84
25	Wood characteristics of Terminalia amazonia, Vochysia guatemalensis and Hyeronima alchorneoides planted in Costa Rica. Bosque, 2009, 30, .	0.3	11
26	Allometric prediction of above-ground biomass of eleven woody tree species in the Sudanian savanna-woodland of West Africa. Journal of Forestry Research, 2010, 21, 475-481.	3.6	54
27	Distribution and population structure of four Central Amazonian high-vÃ _i rzea timber species. Wetlands Ecology and Management, 2010, 18, 665-677.	1.5	10
28	The relationship between stem biomechanics and wood density is modified by rainfall in 32 Australian woody plant species. New Phytologist, 2010, 185, 493-501.	7.3	66
29	Measuring wood specific gravity…Correctly. American Journal of Botany, 2010, 97, 519-524.	1.7	293
30	PCA of Cites Listed Pterocarpus Santalinus (Leguminosae) Wood. IAWA Journal, 2010, 31, 121-138.	2.7	19
31	Wood properties and trunk allometry of coâ€occurring rainforest canopy trees in a cycloneâ€prone environment. American Journal of Botany, 2011, 98, 1762-1772.	1.7	22
32	Radial wood allocation in Schizolobium parahyba. American Journal of Botany, 2012, 99, 1010-1019.	1.7	11
33	Testing a Novel Method to Approximate Wood Specific Gravity of Trees. Forest Science, 2012, 58, 577-591.	1.0	13
34	Successional variation in carbon content and wood specific gravity of four tropical tree species. Bosque, 2013, 34, 9-10.	0.3	6
35	Radial variation in wood specific gravity of tropical tree species differing in growth–mortality strategies. American Journal of Botany, 2014, 101, 803-811.	1.7	23
36	Radial changes in wood specific gravity of tropical trees: inter―and intraspecific variation during secondary succession. Functional Ecology, 2015, 29, 111-120.	3.6	60

CITATION REPORT

#	Article	IF	CITATIONS
37	Evaluation of wood properties from six native species of forest plantations in Costa Rica. Bosque, 2016, 37, 71-84.	0.3	25
38	Wood density is a poor predictor of competitive ability among individuals of the same species. Forest Ecology and Management, 2016, 372, 217-225.	3.2	23
39	Insights into intraspecific wood density variation and its relationship to growth, height and elevation in a treeline species. Plant Biology, 2018, 20, 456-464.	3.8	21
40	Developing relative stand density index for structurally complex mixed species cypress and pine forests. Forest Ecology and Management, 2018, 409, 425-433.	3.2	7
41	Radial variation of wood functional traits reflect sizeâ€related adaptations of tree mechanics and hydraulics. Functional Ecology, 2018, 32, 260-272.	3.6	41
42	MECHANICAL STABILITY OF THE Cabralea canjerana SAPLINGS SUBMITED TO LIBERATION IN SECONDARY FOREST, RS, BRAZIL. Revista Arvore, 2019, 43, .	0.5	0
43	A simple field based method for rapid wood density estimation for selected tree species in Western Kenya. Scientific African, 2019, 5, e00149.	1.5	3
44	Buckling behaviour of trees under self-weight loading. Forestry, 2019, 92, 393-405.	2.3	13
45	Wood Density Variations of Legume Trees in French Guiana along the Shade Tolerance Continuum: Heartwood Effects on Radial Patterns and Gradients. Forests, 2019, 10, 80.	2.1	24
46	Wood density, deposits and mineral inclusions of successional tropical dry forest species. European Journal of Forest Research, 2020, 139, 369-381.	2.5	7
47	A Numerical Approach to Estimate Natural Frequency of Trees with Variable Properties. Forests, 2020, 11, 915.	2.1	10
48	Leveraging Signatures of Plant Functional Strategies in Wood Density Profiles of African Trees to Correct Mass Estimations From Terrestrial Laser Data. Scientific Reports, 2020, 10, 2001.	3.3	11
49	Application of the GreenLab model to simulate and optimize wood production and tree stability: a theoretical study. Silva Fennica, 2009, 43, .	1.3	5
50	Heartwood, sapwood and bark content, and wood dry density of young and mature teak (Tectona) Tj ETQq1 1 ().784314 ı 1.3	gBT /Overloci
54	Radial variations in wood functional traits in a rain forest from eastern Amazonia. Trees - Structure and Function, 0, , 1.	1.9	3
55	A rapid exploratory assessment of vegetation structure and carbon pools of the remaining tropical lowland forests of Southwestern Nigeria. Trees, Forests and People, 2021, 6, 100158.	1.9	1
56	Carbon capture in living aerial biomass in Tingo MarÃa National Park. Tayacaja, 2021, 4, 131-142.	0.0	0
57	Sizeâ€dependent intraspecific variation in wood traits has little impact on aboveground carbon estimates in a tropical forest landscape. Functional Ecology, 0, , .	3.6	1

#	Article	IF	CITATIONS
58	Evaluation of some wood quality measures of eight-year-old Melia azedarach trees. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 0, , .	2.1	2
59	An application of mixed-effects model to evaluate the role of age and size on radial variation in wood specific gravity in teak (Tectona grandis). Journal of Wood Science, 2023, 69, .	1.9	0

CITATION REPORT