cAMPâ€dependent protein kinase: prototype for a fami

FASEB Journal 2, 2677-2685

DOI: 10.1096/fasebj.2.11.3294077

Citation Report

#	Article	IF	CITATIONS
1	Intestinal Electrolyte Transport and Diarrheal Disease. New England Journal of Medicine, 1989, 321, 800-806.	13.9	238
2	Activation of type I cyclic AMP-dependent protein kinases is impaired by a point mutation in cyclic AMP binding sites. European Journal of Pharmacology, 1989, 172, 263-271.	2.7	6
3	Multiple cAMP-binding proteins inAplysia tissues. Journal of Neurobiology, 1989, 20, 746-761.	3.7	11
4	Secretagogue and second messenger-activated Cl? permeabilities in isolated pancreatic zymogen granules. Pflugers Archiv European Journal of Physiology, 1989, 415, 29-36.	1.3	41
5	A synthetic peptide analog of the putative substrate-binding motif activates protein kinase C. FEBS Letters, 1989, 249, 243-247.	1.3	37
6	Affinity labeling of Avena phytochrome with ATP analogs. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 3469-3473.	3.3	26
7	Manganese Modulates Protein Phosphorylation in the Rat Pancreas. Pancreas, 1990, 5, 589-597.	0.5	3
8	Acidosis inhibits 1,25-(OH)2D3 but not cAMP production in response to parathyroid hormone in the rat. Journal of Bone and Mineral Research, 1990, 5, 273-278.	3.1	13
9	Peptide modulators of myosin light chain kinase affect smooth muscle cell contraction. American Journal of Physiology - Cell Physiology, 1990, 259, C315-C324.	2.1	67
10	Molecular Cloning of a Tissue-Specific Protein Kinase (C _γ) from Human Testis—Representing a Third Isoform for the Catalytic Subunit of cAMP-Dependent Protein Kinase. Molecular Endocrinology, 1990, 4, 465-475.	3.7	235
11	Adrenergic receptors. Models for regulation of signal transduction processes Hypertension, 1990, 15, 119-131.	1.3	93
12	Molecular basis of new approaches to the therapy of rheumatoid arthritis. Molecular Aspects of Medicine, 1991, 12, 397-473.	2.7	7
13	Role of site-selective cAMP analogs in the control and reversal of malignancy. , 1991, 50, 1-33.		57
14	PGE2regulates cholecystokinin-octapeptide (CCK-8)-stimulated Clâ^'conductance in isolated zymogen granules from rat pancreas. FEBS Letters, 1991, 295, 89-92.	1.3	3
15	Manganese-stimulated phosphorylation of a rat pancreatic protein: identity with elongation factor 2. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1092, 196-204.	1.9	6
16	[41] Carbodiimides as probes for protein kinase structure and function. Methods in Enzymology, 1991, 200, 487-500.	0.4	4
18	A 20 kDa erythrocyte membrane phosphoprotein. Molecular and Cellular Biochemistry, 1991, 106, 75-85.	1.4	1
19	Comparison of Adenylate Cyclase and cAMP-Dependent Protein Kinase in Gametocytogenic and Nongametocytogenic Clones of Plasmodium falciparum. Journal of Parasitology, 19 <u>91, 77, 346.</u>	0.3	58

#	Article	IF	CITATIONS
20	Adenosine 3′,5′-Monophosphate-Dependent Stabilization of Messenger Ribonucleic Acids (mRNAs) for Protein Kinase-A (PKA) Subunits in Rat Sertoli Cells: Rapid Degradation of mRNAs for PKA Subunits Is Dependent on Ongoing RNA and Protein Synthesis*. Endocrinology, 1991, 129, 2496-2502.	1.4	34
21	Protein kinase C activation by 12-O-tetradecanoylphorbol 13-acetate modulates messenger ribonucleic acid levels for two of the regulatory subunits of 3',5'-cyclic adenosine monophosphate-dependent protein kinases (RII beta and RI alpha) via multiple and distinct mechanisms Endocrinology, 1992, 130, 1271-1280.	1.4	15
22	Immunodetection of multiple species of retinoic acid receptor α: Evidence for phosphorylation. Experimental Cell Research, 1992, 201, 335-346.	1.2	127
23	Serine/threonine kinases in the propagation of the early mitogenic response. Reviews of Physiology, Biochemistry and Pharmacology, 1992, 119, 123-155.	0.9	30
24	Transmembrane signaling in periodontal mesenchymal cells: the linkage between stimulus and response. Periodontology 2000, 1993, 3, 76-98.	6.3	4
25	lsobutylmethylxanthine and other classical cyclic nucleotide phosphodiesterase inhibitors affect cAMP-dependent protein kinase activity. Cellular Signalling, 1993, 5, 615-621.	1.7	14
26	The regulatory subunit of cAMP-dependent protein kinase as a target for chemotherapy of cancer and other cellular dysfunctional-related diseases. , 1993, 60, 265-288.		60
27	Antibodies against highly conserved sites in the epidermal growth factor receptor tyrosine kinase domain as probes for structure and function. Biochemistry, 1993, 32, 4659-4664.	1.2	5
28	A single-injection protein kinase A-directed antisense treatment to inhibit tumour growth. Nature Medicine, 1995, 1, 528-533.	15.2	123
29	cAMP-dependent protein kinase: role in normal and malignant growth. Critical Reviews in Oncology/Hematology, 1995, 21, 33-61.	2.0	131
30	Point mutation of the autophosphorylation site or in the nuclear location signal causes protein kinase A RII beta regulatory subunit to lose its ability to revert transformed fibroblasts Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 10634-10638.	3.3	44
31	Histamine, Histamine H2-Receptor Antagonists, Gastric Acid Secretion and Ulcers: An Overview. Drug Metabolism and Drug Interactions, 1995, 12, 1-36.	0.3	13
32	cAMP-dependent protein kinase: structure, function and control. , 0, , 37-79.		2
33	Protein Kinase A-Directed Antisense Restrains Cancer Growth: Sequence-Specific Inhibition of Gene Expression. Oligonucleotides, 1996, 6, 237-244.	4.4	10
34	Pigment cell signalling for physiological color change. Comparative Biochemistry and Physiology A, Comparative Physiology, 1997, 118, 1135-1144.	0.7	106
35	Interleukin-4 overcomes the negative influence of cyclic amp accumulation on antigen receptor stimulated B lymphocytes. Molecular Immunology, 1998, 35, 997-1014.	1.0	13
36	Granulocyte Colony-Stimulating Factor Activates Protein Kinase A in Granulocytic but Not Monocytic Precursors or Neutrophils. Journal of Interferon and Cytokine Research, 1998, 18, 579-586.	0.5	1
37	Antisense DNA-targeting protein kinase A-RIA subunit: a novel approach to cancer treatment. Frontiers in Bioscience - Landmark, 1999, 4, d898.	3.0	28

#	Article	IF	CITATIONS
39	Ala99ser mutation in RI alpha regulatory subunit of protein kinase A causes reduced kinase activation by cAMP and arrest of hormone-dependent breast cancer cell growth. Molecular and Cellular Biochemistry, 1999, 195, 77-86.	1.4	17
40	Antisense Oligonucleotide Inhibition of Serine/Threonine Kinases. , 1999, 82, 437-449.		22
41	Crystal Structure of the Potent Natural Product Inhibitor Balanol in Complex with the Catalytic Subunit of cAMP-Dependent Protein Kinaseâ€. Biochemistry, 1999, 38, 2367-2376.	1.2	98
42	Daphnetin, One of Coumarin Derivatives, Is a Protein Kinase Inhibitor. Biochemical and Biophysical Research Communications, 1999, 260, 682-685.	1.0	140
43	Drosophila Src42AIs a Negative Regulator of RTK Signaling. Developmental Biology, 1999, 208, 233-243.	0.9	28
44	Regulation of Human Endothelial Cell Focal Adhesion Sites and Migration by cGMP-dependent Protein Kinase I. Journal of Biological Chemistry, 2000, 275, 25723-25732.	1.6	115
45	Oligonucleotide Sequence-Specific Inhibition of Gene Expression, Tumor Growth Inhibition, and Modulation of cAMP Signaling by an RNA-DNA Hybrid Antisense Targeted to Protein Kinase A RIα Subunit. Oligonucleotides, 2000, 10, 423-433.	4.4	32
46	Identification and Characterization of a Novel cAMP Receptor Protein in the Cyanobacterium Synechocystis sp. PCC 6803. Journal of Biological Chemistry, 2000, 275, 6241-6245.	1.6	46
47	Novel compounds, '1,3-selenazine derivatives' as specific inhibitors of eukaryotic elongation factor-2 kinase. Biochimica Et Biophysica Acta - General Subjects, 2000, 1475, 207-215.	1.1	58
48	Vibrio cholerae. , 2002, , 1191-1236.		0
49	Dopamine in the CNS I. Handbook of Experimental Pharmacology, 2002, , .	0.9	7
50	Interactions between regulatory and catalytic subunits of the Candida albicans cAMP-dependent protein kinase are modulated by autophosphorylation of the regulatory subunit. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1542, 73-81.	1.9	13
51	Dissecting the Circuitry of Protein Kinase A and cAMP Signaling in Cancer Genesis. Annals of the New York Academy of Sciences, 2002, 968, 22-36.	1.8	48
52	Nucleic Acid Therapeutics in Cancer. , 2004, , .		1
53	cAMP Signaling in Cancer Genesis and Treatment. , 2003, 115, 123-143.		14
54	Protein kinase A isozyme switching: eliciting differential cAMP signaling and tumor reversion. Oncogene, 2004, 23, 8847-8856.	2.6	58
55	Photoresponsive cAMP signal transduction in cyanobacteria. Photochemical and Photobiological Sciences, 2004, 3, 503.	1.6	50
56	Communication Pathways between the Nucleotide Pocket and Distal Regulatory Sites in Protein Kinases. Accounts of Chemical Research, 2004, 37, 304-311.	7.6	23

ARTICLE IF CITATIONS # Two cAMP receptor proteins with different biochemical properties in the filamentous 57 1.310 cyanobacteriumAnabaenasp. PCC 7120. FEBS Letters, 2004, 571, 154-160. Chapter II Signal transduction of dopamine receptors. Handbook of Chemical Neuroanatomy, 2005, 0.3 109-151. Identification and Overexpression of Genes Encoding cAMP-Dependent Protein Kinase Catalytic 59 Subunits in HomobasidiomyceteSchizophyllum commune. Bioscience, Biotechnology and Biochemistry, 7 0.6 2005, 69, 2333-2342. Differential activity profile of cAMP-dependent protein kinase isoforms during long-term memory consolidation in the crab Chasmagnathus. Neurobiology of Learning and Memory, 2005, 83, 232-242. Use of pseudosubstrate affinity to measure active protein kinase A. Analytical Biochemistry, 2006, 355, 61 1.1 8 175-182. A PKA survival pathway inhibited by DPT-PKI, a new specific cell permeable PKA inhibitor, is induced by T. annulata in parasitized B-lymphocytes. Apoptosis: an International Journal on Programmed Cell Death, 2.2 2006, 11, 1263-1273. Physical Nature of Intermolecular Interactions within cAMP-Dependent Protein Kinase Active Site: Differential Transition State Stabilization in Phosphoryl Transfer Reaction. Journal of Physical 63 1.2 32 Chemistry B, 2008, 112, 11819-11826. Solid phase synthesis of peptides containing the nonâ€hydrolysable analog of (O)phosphotyrosine, P(CH₂PO₃H₂)Phe. International Journal of Peptide and Protein 0.1 21 Research, 1992, 39, 523-527. Affinity Reagents that Target a Specific Inactive Form of Protein Kinases. Chemistry and Biology, 2010, 65 6.2 36 17, 195-206. Biochemical Mechanisms of Resistance to Small-Molecule Protein Kinase Inhibitors. ACS Chemical 1.6 Biology, 2010, 5, 121-138. Affinity-Based Probes Based on Type II Kinase Inhibitors. Journal of the American Chemical Society, 2012, 67 6.6 47 134, 19017-19025. Molecular Dynamics Simulation Studies on the Positive Cooperativity of the Kemptide Substrate with 1.2 68 Protein Kinase A Induced by the ATP Ligand. Journal of Physical Chemistry B, 2014, 118, 1273-1287. Bivalent inhibitors of protein kinases. Critical Reviews in Biochemistry and Molecular Biology, 2014, 69 2.3 52 49, 102-115. A QM/MM study of Kemptide phosphorylation catalyzed by protein kinase A. The role of Asp166 as a general acid/base catalyst. Physical Chemistry Chemical Physics, 2015, 17, 3497-3511. 1.3 Protein Kinase A and Anxiety-Related Behaviors: A Mini-Review. Frontiers in Endocrinology, 2016, 7, 83. 71 1.5 26 The Role of Protein Kinase A in Anxiety Behaviors. Neuroendocrinology, 2016, 103, 625-639. Mutation of a kinase allosteric node uncouples dynamics linked to phosphotransfer. Proceedings of 73 3.3 47 the National Academy of Sciences of the United States of America, 2017, 114, E931-E940. Sequence Analysis of the cAMP-Dependent Protein Kinase Regulatory Subunit-Like Protein From 74 Trypanosoma brucei. Acta Parasitologica, 2019, 64, 262-267.

CITATION REPORT

#	Article	IF	CITATIONS
75	Signal Transduction by the Colony-Stimulating Factor-1 Receptor; Comparison to Other Receptor Tyrosine Kinases. Current Topics in Cellular Regulation, 1992, 32, 73-181.	9.6	9
76	Cellular concentrations of protein kinase A modulate prostaglandin and cAMP induction of alkaline phosphatase Journal of Biological Chemistry, 1992, 267, 8658-8665.	1.6	10
77	Affinity Purification of the Cα and Cβ Isoforms of the Catalytic Subunit of cAMP-dependent Protein Kinase. Journal of Biological Chemistry, 1989, 264, 18662-18666.	1.6	60
78	Characterization of a purified bovine lung cGMP-binding cGMP phosphodiesterase Journal of Biological Chemistry, 1990, 265, 14964-14970.	1.6	202
79	Sequence-selective DNA binding to the regulatory subunit of cAMP-dependent protein kinase. Journal of Biological Chemistry, 1989, 264, 9989-9993.	1.6	24
80	cAMP-dependent Protein Kinase. Journal of Biological Chemistry, 1989, 264, 8443-8446.	1.6	256
81	Expression of the Catalytic Subunit of cAMP-Dependent Protein Kinase in Escherichia coli. Journal of Biological Chemistry, 1989, 264, 20940-20946.	1.6	174
82	Induction of alkaline phosphatase in mouse L cells by overexpression of the catalytic subunit of cAMP-dependent protein kinase Journal of Biological Chemistry, 1990, 265, 13181-13189.	1.6	38
83	A mutation in the catalytic subunit of protein kinase A prevents myristylation but does not inhibit biological activity. Journal of Biological Chemistry, 1989, 264, 20140-20146.	1.6	65
84	Luteinization-associated changes in protein stability of the regulatory subunit of the type I cAMP-dependent protein kinase Journal of Biological Chemistry, 1992, 267, 14335-14344.	1.6	11
85	Regulation of the Ca2+ dependence of smooth muscle contraction Journal of Biological Chemistry, 1992, 267, 11839-11845.	1.6	73
86	Isozymes of cAMP-dependent protein kinase present in the rat corpus luteum Journal of Biological Chemistry, 1991, 266, 7166-7175.	1.6	26
87	The in Vitro Effect of the Tumor Promoter 12-O-tetradecanoylphorbol-13-acetate on Sertoli Cell Morphology. Cancer Detection and Prevention, 1999, 23, 280-289.	2.1	8
88	Toxins of <i>Vibrio cholerae</i> ., 0, , 143-176.		36
89	Signal Transduction by Dopamine D1 Receptors. Handbook of Experimental Pharmacology, 2002, , 235-255.	0.9	0
90	Antisense Protein Kinase A-RlÎ \pm Restores Normal Signal Transduction Signatures to Inhibit Tumor Growth. , 2004, , 199-212.		0
91	Protein Kinase A: The Enzyme and Cyclic AMP Signaling. , 2011, , 145-169.		0
92	Noncovalent active site interactions enhance the affinity and control the binding order of reversible inhibitors of the cAMP-dependent protein kinase Journal of Biological Chemistry, 1990, 265, 18079-18082.	1.6	15

CITATION REPORT

#	Article	IF	CITATIONS
93	Receptors and Responses. , 1993, , 223-296.		1
94	Targeting Antisense Oligonucleotide Chemotherapy to the Type I Regulatory Subunit of cAMP-Dependent Protein Kinase. , 1995, , 433-454.		0
95	Effects of H-89, an inhibitor of protein kinase A, on the acetylcholine release from myenteric plexus of guinea pig ileum Journal of Smooth Muscle Research, 1995, 31, 143-151.	0.7	1
96	Signaling Components and Pathways. , 1998, , 41-95.		1

CITATION REPORT