Localization of glucocorticoid receptor mRNA in the many hybridization.

Proceedings of the National Academy of Sciences of the Unite 85, 9331-9335

DOI: 10.1073/pnas.85.23.9331

Citation Report

#	Article	IF	CITATIONS
1	Effects of glucocorticoids and norepinephrine on the excitability in the hippocampus. Science, 1989, 245, 1502-1505.	12.6	379
2	Glucocorticoid Regulation of Parathyroid Hormone-Related Peptide Gene Transcription in a Human Neuroendocrine Cell Line. Molecular Endocrinology, 1989, 3, 2034-2040.	3.7	54
3	Coexistence of glucocorticoid receptor-like immunoreactivity with neuropeptides in the hypothalamic paraventricular nucleus. Experimental Brain Research, 1989, 78, 33-42.	1.5	63
4	Quantification of type I and II adrenal steroid receptors in neuronal, lymphoid and pituitary tissues. Brain Research, 1989, 503, 191-197.	2.2	73
5	Characterization of Glucocorticoid Type II Receptors in Neuronal and Glial Cultures from Rat Brain. Journal of Neuroendocrinology, 1990, 2, 29-38.	2.6	36
6	Optimization of cRNA probein situ hybridization methodology for localization of glucocorticoid receptor mRNA in rat brain: A detailed protocol. Cellular and Molecular Neurobiology, 1990, 10, 145-157.	3.3	190
7	Distribution of androgen and estrogen receptor mRNAâ€containing cells in the rat brain: An in situ hybridization study. Journal of Comparative Neurology, 1990, 294, 76-95.	1.6	2,020
8	Binding Characteristics of Mineralocorticoid and Glucocorticoid Receptors in Dog Brain and Pituitary. Endocrinology, 1990, 127, 907-915.	2.8	98
9	Molecular biology and respiratory disease. 5. Molecular biology of receptors: implications for lung disease Thorax, 1990, 45, 482-488.	5.6	7
10	Mineralocorticoid receptor-mediated changes in membrane properties of rat CA1 pyramidal neurons in vitro Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 4495-4498.	7.1	161
11	Duration-dependent effects of repeated restraint stress on cortical projections of locus coeruleus neurons. Neuroscience Letters, 1990, 118, 193-196.	2.1	32
12	Selective reduction of glucocorticoid receptor immunoreactivity in the hippocampal formation and central amygdaloid nucleus of the aged rat. Brain Research, 1991, 545, 199-207.	2.2	20
13	Postnatal ontogeny of mineralocorticoid and glucocorticoid receptor gene expression in regions of the rat tel- and diencephalon. Developmental Brain Research, 1991, 61, 33-43.	1.7	92
14	Effects of dexamethasone on microglial activation in vivo: selective downregulation of major histocompatibility complex class II expression in regenerating facial nucleus. Journal of Neuroimmunology, 1991, 34, 99-108.	2.3	81
15	Chronic estrogen exposure maintains elevated levels of progesterone receptor mRNA in guinea pig hypothalamus. Molecular Brain Research, 1991, 10, 167-172.	2.3	17
16	Brain corticosteroid receptor gene expression and neuroendocrine dynamics during aging. Journal of Steroid Biochemistry and Molecular Biology, 1991, 40, 679-683.	2.5	39
17	Regulation of Vasopressin Expression in Cultured Diencephalic Neurons by Glucocorticoids. Neuroendocrinology, 1991, 53, 528-535.	2.5	25
18	Cortisol Exerts Site-, Context- and Dose-Dependent Effects on Agonistic Responding in Hamsters. Journal of Neuroendocrinology, 1991, 3, 613-622.	2.6	47

#	Article	IF	CITATIONS
19	Hormonal Regulation of Type II Glucocorticoid Receptor Messenger Ribonucleic Acid in Rat Brain*. Endocrinology, 1991, 129, 2166-2174.	2.8	97
20	Type II Corticosteroid Receptor-Like Immunoreactivity in the Rat Cerebellar Cortex: Differential Regulation by Corticosterone. Neuroendocrinology, 1992, 55, 683-694.	2.5	19
21	In-Situ Hybridization of Tropoelastin mRNA during the Development of the Multilayered Neonatal Rat Aortic Smooth Muscle Cell Culture. Matrix Biology, 1992, 12, 321-332.	1.7	19
22	Distribution of cells containing progesterone receptor mRNA in the female rat di- and telencephalon: an in situ hybridization study. Molecular Brain Research, 1992, 14, 239-249.	2.3	130
23	6.3 Co-localization of brain corticosteroid receptors in the rat hippocampus. Progress in Histochemistry and Cytochemistry, 1992, 26, 250-258.	5.1	43
24	Corticosteroids, Stress, and Aging. Annals of the New York Academy of Sciences, 1992, 663, 357-371.	3 . 8	34
25	Effects of adrenal steroid agonists on food intake and macronutrient selection. Physiology and Behavior, 1992, 52, 1161-1166.	2.1	42
26	Molecular Biology of Receptors. QJM - Monthly Journal of the Association of Physicians, 0, , .	0.5	3
27	Widespread constitutive expression of HSP90 messenger RNA in rat brain. Journal of Neuroscience Research, 1993, 35, 20-28.	2.9	29
28	Regulation of adrenocorticosteroid receptor mRNA expression in the central nervous system. Cellular and Molecular Neurobiology, 1993, 13, 349-372.	3.3	172
29	Functional implications of brain corticosteroid receptor diversity. Cellular and Molecular Neurobiology, 1993, 13, 433-455.	3.3	193
30	Regulation of vasopressin gene expression: Changes in the level, but not the size, of vasopressin mRNA following endocrine manipulations. Cellular and Molecular Neurobiology, 1993, 13, 87-95.	3.3	19
31	Entorhinal Cortex Lesions Transiently Alter Glucocorticoid but Not Mineralocorticoid Receptor Gene Expression in the Rat Hippocampus. Journal of Neurochemistry, 1993, 61, 356-359.	3.9	4
32	Alterations in glucocorticoid inducible RNAs in the limbic system of learned helpless rats. Brain Research, 1993, 609, 110-116.	2.2	36
33	Glucocorticoid and mineralocorticoid receptors in rat neocortical and hippocampal brain cells in culture: characterization and regulatory studies. Brain Research, 1993, 605, 18-24.	2.2	48
34	Chronic treatment of rats with the antidepressant amitriptyline attenuates the activity of the hypothalamic-pituitary-adrenocortical system Endocrinology, 1993, 133, 312-320.	2.8	324
35	Lesions of the Hippocampal Efferent Pathway (Fimbria-Fornix) Do Not Alter Sensitivity of Adrenocorticotropin to Feedback Inhibition by Corticosterone in Rats. Neuroendocrinology, 1993, 58, 396-407.	2.5	47
36	Hybridization Studies of Adrenocorticosteroid Receptors in the Central Nervous System. Methods in Neurosciences, 1994, 22, 189-210.	0.5	0

#	ARTICLE	IF	Citations
37	Roles of type I and II corticosteroid receptors in regulation of basal activity in the hypothalamo-pituitary-adrenal axis during the diurnal trough and the peak: evidence for a nonadditive effect of combined receptor occupation Endocrinology, 1994, 134, 1286-1296.	2.8	152
38	Hippocampal glucocorticoid receptor expression in the tree shrew: Regulation by psychosocial conflict. Cellular and Molecular Neurobiology, 1994, 14, 281-296.	3.3	43
39	Adrenal Steroid Receptors: Interactions with Brain Neuropeptide Systems in Relation to Nutrient Intake and Metabolism. Journal of Neuroendocrinology, 1994, 6, 479-501.	2.6	191
40	Effects of adrenalectomy and Type I or Type II glucocorticoid receptor activation on AVP and CRH mRNA in the rat hypothalamus. Molecular Brain Research, 1994, 26, 129-134.	2.3	47
41	Differential expression of sgk mRNA, a member of the Ser/Thr protein kinase gene family, in rat brain after CNS injury. Molecular Brain Research, 1994, 26, 189-196.	2.3	119
42	Corticosteroid receptor-dependent modulation of calcium currents in rat hippocampal CA1 neurons. Brain Research, 1994, 649, 234-242.	2.2	112
43	Corticosterone-responsive mRNAs in primary rat astrocytes. Molecular Brain Research, 1994, 22, 57-68.	2.3	23
44	Long- and Short-Term Administration of Corticosterone Alters CA1 Hippocampal Neuronal Properties. Neuroendocrinology, 1994, 60, 261-272.	2.5	49
45	Arcuate nucleus neurons that project to the hypothalamic paraventricular nucleus: Neuropeptidergic identity and consequences of adrenalectomy on mRNA levels in the rat. Journal of Comparative Neurology, 1995, 358, 518-530.	1.6	178
46	Chronic corticosterone treatment maintains synaptic activity of CA1 hippocampal pyramidal cells: Acute high corticosterone administration increases action potential number. Synapse, 1995, 20, 117-124.	1.2	29
47	Increased Expression of Type 1 Angiotensin II Receptors in the Hypothalamic Paraventricular Nucleus following Stress and Glucocorticoid Administration. Journal of Neuroendocrinology, $1995, 7, 775-783$.	2.6	99
48	The pedunculopontine nucleus—Auditory input, arousal and pathophysiology. Progress in Neurobiology, 1995, 47, 105-133.	5.7	224
49	Roles of steroid hormones and their receptors in structural organization in the nervous system. Neuroscience Research, 1995, 24, 1-46.	1.9	300
50	Changes in the central and peripheral serotonergic system in rats exposed to water-immersion restrained stress and nicotine administration. Neuroscience Research, 1995, 23, 305-311.	1.9	21
51	Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: an immunohistochemical and in situ hybridization study. Neuroscience Research, 1996, 26, 235-269.	1.9	432
52	Ibotenic acid in the medial septum increased brain-derived neurotrophic factor mRNA levels in the dorsal rat hippocampal formation. Neuroscience Letters, 1996, 213, 169-172.	2.1	4
53	Glucocorticoid regulation of vasopressin V1a receptors in rat forebrain. Molecular Brain Research, 1996, 38, 276-284.	2.3	34
54	The Impact of Physiological Stimuli on the Expression of Corticotropin-Releasing Hormone (CRH) and Other Neuropeptide Genes. Frontiers in Neuroendocrinology, 1996, 17, 281-326.	5 . 2	123

#	Article	IF	Citations
55	The alteration of glucocorticoid receptor-immunoreactivity in the rat forebrain following short-term and long-term adrenalectomy. Brain Research, 1996, 729, 216-222.	2.2	28
56	Effect of adrenalectomy and corticosterone substitution on glucose and glycogen metabolism in rat brain. Journal of Neural Transmission, 1996, 103, 89-100.	2.8	40
57	Expression of mRNA species encoding heat shock protein 90 (hsp90) in control and hyperthermic rabbit brain., 1996, 43, 335-345.		17
58	Vasopressin and developmental onset of flank marking behavior in golden hamsters. Journal of Neurobiology, 1996, 30, 192-204.	3.6	26
59	Activation and Proliferation of Murine Microglia are Insensitive to Glucocorticoids in Wallerian Degeneration. European Journal of Neuroscience, 1996, 8, 581-588.	2.6	31
60	Chemoarchitecture of the rat lateral septal nucleus 1Published on the World Wide Web on 2 June 1997. 1. Brain Research Reviews, 1997, 24, 91-113.	9.0	220
61	Disorders of the reticular activating system. Medical Hypotheses, 1997, 49, 379-387.	1.5	92
62	Increased Stress-Induced Adrenocorticotropin Response after Long-Term Intracerebroventricular Treatment of Rats with Antisense Mineralocorticoid Receptor Oligodeoxynucleotides. Neuroendocrinology, 1997, 65, 189-199.	2.5	37
63	Stressâ€induced alterations of somatodendritic 5â€HT _{1A} autoreceptor sensitivity in the rat dorsal raphe nucleus â€" in vitro electrophysiological evidence. Fundamental and Clinical Pharmacology, 1997, 11, 206-214.	1.9	57
64	Steroid Hormones and Excitability in the Mammalian Brain. Frontiers in Neuroendocrinology, 1997, 18, 2-48.	5.2	257
65	Corticotropin-releasing factor and glucocorticoid receptor (GR) gene expression in the paraventricular nucleus of immune-challenged transgenic mice expressing type II GR antisense ribonucleic acid. Journal of Molecular Neuroscience, 1997, 8, 165-179.	2.3	18
66	Fluoxetine-induced desensitization of somatodendritic 5-HT1A autoreceptors is independent of glucocorticoid(s). Synapse, 1997, 27, 303-312.	1.2	22
67	CONTRIBUTION OF SEX AND GENETICS TO NEUROENDOCRINE ADAPTATION TO STRESS IN MICE. Psychoneuroendocrinology, 1998, 23, 505-517.	2.7	63
68	Gender specificity in the neural regulation of the response to stress. Molecular Neurobiology, 1998, 16, 63-77.	4.0	89
69	Corticosteroids in the brain. Molecular Neurobiology, 1998, 17, 87-108.	4.0	48
70	Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Progress in Neurobiology, 1998, 54, 99-125.	5.7	535
71	Cloning of glucocorticoid receptor and mineralocorticoid receptor cDNA and gene expression in the central nervous system of the tree shrew (Tupaia belangeri). Molecular Brain Research, 1998, 55, 243-253.	2.3	48
72	Steroid hormones and their receptors in the brain. Journal of Steroid Biochemistry and Molecular Biology, 1998, 65, 273-280.	2.5	36

#	Article	IF	Citations
73	Brain Corticosteroid Receptor Balance in Health and Disease*. Endocrine Reviews, 1998, 19, 269-301.	20.1	1,922
74	Evidence for Mineralocorticoid Receptor Facilitation of Glucocorticoid Receptor-Dependent Regulation of Hypothalamic-Pituitary-Adrenal Axis Activity*. Endocrinology, 1998, 139, 2718-2726.	2.8	142
75	The Pathophysiology of Depression: A Synthesis of the Role of Serotonin and Corticosteroids. , 1998, 19, 170-198.		7
76	Mood and neuropsychological function in depression: the role of corticosteroids and serotonin. Psychological Medicine, 1998, 28, 573-584.	4.5	162
77	Regulation of Hippocampal Glucocorticoid Receptor Gene Transcription and Protein Expression < i > In Vivo < /i > . Journal of Neuroscience, 1998, 18, 7462-7473.	3.6	183
78	Effects of adrenalectomy on 8-OH-DPAT induced hypothermia in mice. Psychopharmacology, 1999, 142, 73-77.	3.1	12
79	Detection of mRNA species in bulbospinal neurons isolated from the rostral ventrolateral medulla using single-cell RT–PCR. Brain Research Protocols, 1999, 4, 367-377.	1.6	27
80	Cognitive decline in patients with Cushing's syndrome. Journal of the International Neuropsychological Society, 2000, 6, 20-29.	1.8	149
81	Gluco―and mineralocorticoid receptorâ€mediated regulation of neurotrophic factor gene expression in the dorsal hippocampus and the neocortex of the rat. European Journal of Neuroscience, 2000, 12, 2918-2934.	2.6	119
82	Glucocorticoid and mineralocorticoid receptor mRNA expression in squirrel monkey brain. Journal of Psychiatric Research, 2000, 34, 383-392.	3.1	216
83	Effects of adrenalectomy and corticosterone replacement on the hypothalamic–pituitary response to neural stimuli. Brain Research, 2000, 877, 73-78.	2.2	7
84	Overview of steroids in the aging brain. , 2000, , 15-34.		0
85	Chronic lithium chloride injection increases glucocorticoid receptor but not mineralocorticoid receptor mRNA expression in rat brain. Neuroscience Research, 2000, 38, 313-319.	1.9	19
86	Tissue-specific expression of the transcriptionally regulated serum and glucocorticoid-inducible protein kinase (Sgk) during mouse embryogenesis. Mechanisms of Development, 2001, 103, 177-181.	1.7	29
87	Intracellular dynamics of steroid hormone receptor. Neuroscience Research, 2001, 40, 197-203.	1.9	23
88	Histochemistry and Cytochemistry of Nuclear Receptors. Progress in Histochemistry and Cytochemistry, 2001, 36, 91-176.	5.1	15
89	Subcellular Steroid/Nuclear Receptor Dynamics Archives of Histology and Cytology, 2001, 64, 353-368.	0.2	34
91	Combination of hypothyroidism and stress abolishes early LTP in the CA1 but not dentate gyrus of hippocampus of adult rats. Brain Research, 2001, 922, 250-260.	2.2	151

#	Article	IF	CITATIONS
92	Clozapine-induced Fos-protein expression in rat forebrain regions: differential effects of adrenalectomy and corticosterone supplement. European Journal of Pharmacology, 2001, 417, 149-155.	3.5	9
93	Hormones and the hippocampus. Journal of Endocrinology, 2001, 169, 205-231.	2.6	242
94	Diurnal Rhythm of Agouti-Related Protein and Its Relation to Corticosterone and Food Intake. Endocrinology, 2002, 143, 3905-3915.	2.8	82
95	Mifepristone protects CA1 hippocampal neurons following traumatic brain injury in rat. Neuroscience, 2002, 109, 219-230.	2.3	96
96	Effects of cholinergic lesions produced by infusions of 192 IgG-saporin on glucocorticoid receptor mRNA expression in hippocampus and medial prefrontal cortex of the rat. Neuroscience, 2002, 115, 765-774.	2.3	27
97	Biphasic Autoregulation of Mineralocorticoid Receptor mRNA in the Medial Septal Nucleus by Aldosterone. Neuroendocrinology, 2002, 75, 358-366.	2.5	14
98	The Effects of Hydrocortisone on Cognitive and Neural Function A Behavioral and Event-Related Potential Investigation. Neuropsychopharmacology, 2002, 26, 505-519.	5.4	59
99	Dexamethasone attenuates by colchicine induced Fos expression in the rat deep cerebellar and vestibular nuclei. Cellular and Molecular Neurobiology, 2002, 22, 431-444.	3.3	2
100	Title is missing!. Neurophysiology, 2002, 34, 273-282.	0.3	4
101	Systemic immune challenge induces preproenkephalin gene transcription in distinct autonomic structures of the rat brain. Journal of Comparative Neurology, 2003, 462, 450-461.	1.6	15
102	Fear and power-dominance motivation: proposed contributions of peptide hormones present in cerebrospinal fluid and plasma. Neuroscience and Biobehavioral Reviews, 2003, 27, 247-267.	6.1	25
103	Chronic Excess of Corticosterone Increases Serotonergic Fibre Degeneration in Aged Rats. Journal of Neuroendocrinology, 2003, 15, 498-507.	2.6	5
104	Selective Hippocampal Lesions Do Not Increase Adrenocortical Activity. Journal of Neuroscience, 2003, 23, 4345-4354.	3.6	45
105	Decreased Hypothalamic and Adrenal Angiotensin II Receptor Expression and Adrenomedullary Catecholamines in Transgenic Mice with Impaired Glucocorticoid Receptor Function. Neuroendocrinology, 2004, 80, 171-180.	2.5	8
106	The glucocorticoid receptor antagonist mifepristone reduces ethanol intake in rats under limited access conditions. Psychoneuroendocrinology, 2004, 29, 999-1003.	2.7	78
107	RU486 blocks fasting-induced decrease of neuronal nitric oxide synthase in the rat paraventricular nucleus. Brain Research, 2004, 1018, 221-226.	2.2	22
108	Tissue-specific expression of tryptophan hydroxylase mRNAs in the rat midbrain: anatomical evidence and daily profiles. European Journal of Neuroscience, 2005, 22, 895-901.	2.6	98
109	Glucocorticoid regulation of peptide genes in neuroendocrine CRH neurons: A complexity beyond negative feedback. Frontiers in Neuroendocrinology, 2005, 26, 109-130.	5.2	176

#	Article	IF	CITATIONS
110	Hypothalamic–Pituitary–Adrenocortical Axis Regulation. Endocrinology and Metabolism Clinics of North America, 2005, 34, 271-292.	3.2	195
111	Seizure-induced changes of mineralocorticoid and glucocorticoid receptors in the hippocampus in seizure sensitive gerbils. Neuroscience Research, 2005, 53, 14-24.	1.9	15
112	Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2005, 29, 1201-1213.	4.8	1,079
113	Ventromedial Arcuate Nucleus Communicates Peripheral Metabolic Information to the Suprachiasmatic Nucleus. Endocrinology, 2006, 147, 283-294.	2.8	154
114	Corticosteroids and the Control of Function in the Hypothalamoâ€Pituitaryâ€Adrenal (HPA) Axisa. Annals of the New York Academy of Sciences, 1994, 746, 22-31.	3.8	166
115	Glial and Neuronal Glucocorticoid Receptor Immunoreactive Cell Populations in Developing, Adult, and Aging Braina. Annals of the New York Academy of Sciences, 1994, 746, 42-61.	3.8	57
116	Dexamethasone Reverses Adrenalectomyâ€Induced Neuronal Deâ€differentiation in Midbrain Rapheâ€Hippocampus Axisa. Annals of the New York Academy of Sciences, 1994, 746, 180-193.	3.8	18
117	Mineralocorticoid and glucocorticoid receptor expressions in astrocytes and microglia in the gerbil hippocampal CA1 region after ischemic insult. Neuroscience Research, 2006, 54, 319-327.	1.9	41
118	Gender, Neuroendocrineâ€Immune Interactions and Neuronâ€Glial Plasticity: Role of Luteinizing Hormoneâ€Releasing Hormone (LHRH). Annals of the New York Academy of Sciences, 2000, 917, 678-709.	3.8	30
119	Spatial ability is impaired and hippocampal mineralocorticoid receptor mRNA expression reduced in zebra finches (Taeniopygia guttata) selected for acute high corticosterone response to stress. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 239-245.	2.6	77
120	Behavioral inhibition and impaired spatial learning and memory in hypothyroid mice lacking thyroid hormone receptor \hat{l}_{\pm} . Behavioural Brain Research, 2007, 177, 109-116.	2.2	98
121	Presence of Corticotrophinâ€Releasing Factor and /or Tyrosine Hydroxylase in Cells of a Neural Brainâ€Testicular Pathway That are Labelled by a Transganglionic Tracer. Journal of Neuroendocrinology, 2008, 20, 173-181.	2.6	17
122	Effects of chronic unpredictable stress and methamphetamine on hippocampal glutamate function. Brain Research, 2007, 1135, 129-135.	2.2	57
123	The relation of cortisol levels with hippocampus volumes under baseline and challenge conditions. Brain Research, 2007, 1179, 70-78.	2.2	46
124	Growth Factors and Steroid Mediated Regulation of Cytoskeletal Protein Expression in Serum-Deprived Primary Astrocyte Cultures. Neurochemical Research, 2008, 33, 2593-2600.	3.3	16
125	Waterâ€deprivationâ€induced expression of neuronal nitric oxide synthase in the hypothalamic paraventricular nucleus of rat. Journal of Neuroscience Research, 2008, 86, 1371-1379.	2.9	5
126	CRF1 Not Glucocorticoid Receptors Mediate Prepulse Inhibition Deficits in Mice Overexpressing CRF. Biological Psychiatry, 2008, 63, 360-368.	1.3	30
127	Effects of single or repeated amphetamine treatment and withdrawal on lung allergic inflammation in rats. International Immunopharmacology, 2008, 8, 1164-1171.	3.8	24

#	Article	IF	CITATIONS
128	Variation in Mouse Basolateral Amygdala Volume is Associated With Differences in Stress Reactivity and Fear Learning. Neuropsychopharmacology, 2008, 33, 2595-2604.	5.4	123
129	Hormonal Influences on Brain Aging and Age-Related Cognitive Decline. , 2009, , 1-31.		0
130	Role of testosterone in mediating prenatal ethanol effects on hypothalamic–pituitary–adrenal activity in male rats. Psychoneuroendocrinology, 2009, 34, 1314-1328.	2.7	23
131	Glucocorticoid status affects antidepressant regulation of locus coeruleus tyrosine hydroxylase and dorsal raphé tryptophan hydroxylase gene expression. Brain Research, 2009, 1288, 69-78.	2.2	33
132	Sex Differences in HPA-Axis Regulation: The Role of Gonadal Hormones. , 2009, , 2291-2308.		2
133	Effects of Adrenalectomy on Neuronal Substrate Fuel Transporter and Energy Transducer Gene Expression in Hypothalamic and Hindbrain Metabolic Monitoring Sites. Neuroendocrinology, 2010, 91, 56-63.	2.5	9
134	Differential immunoreactivity of glucocorticoid receptors and vasopressin in neurons of the anterior and medial parvocellular subdvisions of the hypothalamic paraventricular nucleus. Brain Research Bulletin, 2010, 82, 271-278.	3.0	5
135	Modeling psychotic and cognitive symptoms of affective disorders: Disrupted latent inhibition and reversal learning deficits in highly stress reactive mice. Neurobiology of Learning and Memory, 2010, 94, 145-152.	1.9	32
136	Corticotrophin-releasing factor mediates hypophagia after adrenalectomy, increasing meal-related satiety responses. Hormones and Behavior, 2010, 58, 714-719.	2.1	12
137	Epigenetics and psychoneuroimmunology: Mechanisms and models. Brain, Behavior, and Immunity, 2011, 25, 25-39.	4.1	54
138	Corticosterone microinjected into nucleus pontis oralis increases tonic immobility in rats. Hormones and Behavior, 2011, 60, 448-456.	2.1	13
139	Age- and sex-related differences of hypothalamic neuroendocrine center response to \hat{l} ±-tocopherol acetate and thymalin preparation. Advances in Gerontology, 2011, 1, 76-80.	0.4	1
140	Glucocorticoid Signaling in the Arcuate Nucleus Modulates Hepatic Insulin Sensitivity. Diabetes, 2012, 61, 339-345.	0.6	59
141	Neonatal dexamethasone exposure down-regulates GnRH expression through the GnIH pathway in female mice. Neuroscience, 2012, 218, 56-64.	2.3	45
142	Glucocorticoid receptor antagonism blocks ethanol-induced place preference learning in mice and attenuates dopamine D2 receptor adaptation in the frontal cortex. Brain Research Bulletin, 2012, 88, 519-524.	3.0	20
143	Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. Journal of Neuroinflammation, 2012, 9, 71.	7.2	188
144	Intact Catecholamine Inputs to the Forebrain are Required for Appropriate Regulation of <scp>Corticotrophinâ€Releasing Hormone</scp> and Vasopressin Gene Expression by Corticosterone in the Rat Paraventricular Nucleus. Journal of Neuroendocrinology, 2012, 24, 1517-1526.	2.6	21
145	Morphofunctional changes of the astrocyte in rat hippocampus under different corticosteroid conditions. Medical Molecular Morphology, 2012, 45, 206-213.	1.0	3

#	Article	IF	Citations
146	The Hypothalamic–Pituitary–Adrenal Axis and Neuroendocrine Responses to Stress. , 2012, , 175-196.		10
147	Neuroendocrine Regulation of Food Intake. , 2012, , 331-354.		2
148	Novel Aspects of Glucocorticoids Actions on Energy Homeostasis and Hydromineral Balance. , 2012, , .		0
149	Chronic Stress Decreases Availability of Heat Shock Proteins to Glucocorticoid Receptor in Response to Novel Acute Stress in Wistar Rat Hypothalamus. Cellular and Molecular Neurobiology, 2012, 32, 625-632.	3.3	4
150	Glucocorticoids in the dorsomedial striatum modulate the consolidation of spatial but not procedural memory. Neurobiology of Learning and Memory, 2013, 101, 55-64.	1.9	21
151	Stress, seizures, and hypothalamic–pituitary–adrenal axis targets for the treatment of epilepsy. Epilepsy and Behavior, 2013, 26, 352-362.	1.7	131
152	Expression of $11\hat{l}^2\hat{a}\in Hydroxysteroid$ Dehydrogenase Type 1 in the Human Hypothalamus. Journal of Neuroendocrinology, 2013, 25, 425-432.	2.6	24
153	The Role of the Glucocorticoids in Developing Resilience to Stress and Addiction. Frontiers in Psychiatry, 2013, 4, 68.	2.6	44
154	Contribution of Glucocorticoids and Glucocorticoid Receptors to the Regulation of Neurodegenerative Processes. CNS and Neurological Disorders - Drug Targets, 2013, 999, 19-20.	1.4	9
155	Hypothalamus as an Endocrine Organ. , 2014, 5, 217-253.		58
156	Glucocorticoids attenuate the central sympathoexcitatory actions of insulin. Journal of Neurophysiology, 2014, 112, 2597-2604.	1.8	19
157	Lose dose genistein inhibits glucocorticoid receptor and ischemic brain injury in female rats. Neurochemistry International, 2014, 65, 14-22.	3.8	13
158	Corticosteroid–endocannabinoid loop supports decrease of fear-conditioned response in rats. European Neuropsychopharmacology, 2014, 24, 1091-1102.	0.7	21
159	Gonadal steroid hormones and the hypothalamo–pituitary–adrenal axis. Frontiers in Neuroendocrinology, 2014, 35, 197-220.	5.2	308
160	Novel Aspects of Glucocorticoid Actions. Journal of Neuroendocrinology, 2014, 26, 557-572.	2.6	113
161	Neuromodulators, stress and plasticity: a role for endocannabinoid signalling. Journal of Experimental Biology, 2014, 217, 102-108.	1.7	14
162	The hypothalamic neural–glial network and the metabolic syndrome. Best Practice and Research in Clinical Endocrinology and Metabolism, 2014, 28, 661-671.	4.7	15
163	Localisation and stress-induced plasticity of GABAA receptor subunits within the cellular networks of the mouse dorsal raphe nucleus. Brain Structure and Function, 2015, 220, 2739-2763.	2.3	15

#	Article	IF	CITATIONS
164	Psychiatric Disorders and the RAS. , 2015, , 227-254.		0
165	Effects of adverse childhood experiences on the association between intranasal oxytocin and social stress reactivity among individuals with cocaine dependence. Psychiatry Research, 2015, 229, 94-100.	3.3	52
166	Synergistic effects of diet and exercise on hippocampal function in chronically stressed mice. Neuroscience, 2015, 308, 180-193.	2.3	29
167	Coupling of the HPA and HPG axes in the context of early life adversity in incarcerated male adolescents. Developmental Psychobiology, 2015, 57, 705-718.	1.6	47
168	Effects of adrenalectomy on daily gene expression rhythms in the rat suprachiasmatic and paraventricular hypothalamic nuclei and in white adipose tissue. Chronobiology International, 2015, 32, 211-224.	2.0	29
169	Steroid Hormone Signaling Pathways and Sex Differences in Neuroendocrine and Behavioral Responses to Stress., 2016,, 325-364.		3
170	Neuroinflammatory and autonomic mechanisms in diabetes and hypertension. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E32-E41.	3.5	47
171	Ewes With Divergent Cortisol Responses to ACTH Exhibit Functional Differences in the Hypothalamo-Pituitary-Adrenal (HPA) Axis. Endocrinology, 2016, 157, 3540-3549.	2.8	12
172	Membrane-bound glucocorticoid receptors on distinct nociceptive neurons as potential targets for pain control through rapid non-genomic effects. Neuropharmacology, 2016, 111, 1-13.	4.1	44
173	Ontogenetic Change in the Regional Distribution of Dehydroepiandrosterone-Synthesizing Enzyme and the Glucocorticoid Receptor in the Brain of the Spiny Mouse (Acomys cahirinus). Developmental Neuroscience, 2016, 38, 54-73.	2.0	11
174	Corticosterone enhances N-methyl-d-aspartate receptor signaling to promote isolated ventral tegmental area activity in a reconstituted mesolimbic dopamine pathway. Brain Research Bulletin, 2016, 120, 159-165.	3.0	5
175	Parity modifies the effects of fluoxetine and corticosterone on behavior, stress reactivity, and hippocampal neurogenesis. Neuropharmacology, 2016, 105, 443-453.	4.1	71
176	Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology, 2016, 233, 1637-1650.	3.1	476
177	Effects of formaldehyde exposure on anxiety-like and depression-like behavior, cognition, central levels of glucocorticoid receptor and tyrosine hydroxylase in mice. Chemosphere, 2016, 144, 2004-2012.	8.2	35
178	Interhemispheric connections between the infralimbic and entorhinal cortices: The endopiriform nucleus has limbic connections that parallel the sensory and motor connections of the claustrum. Journal of Comparative Neurology, 2017, 525, 1363-1380.	1.6	29
179	The habenula as a critical node in chronic stress-related anxiety. Experimental Neurology, 2017, 289, 46-54.	4.1	42
180	Formaldehyde Exposure and Neuropsychiatric Disorders. , 2017, , 191-207.		0
181	Footshockâ€induced plasticity of GABA _B signalling in the lateral habenula requires dopamine and glucocorticoid receptors. Synapse, 2017, 71, e21948.	1.2	14

#	Article	IF	CITATIONS
183	Interactions between psychosocial stress and the circadian endogenous clock. PsyCh Journal, 2017, 6, 277-289.	1.1	23
184	The Synergistic Role of Light-Feeding Phase Relations on Entraining Robust Circadian Rhythms in the Periphery. Gene Regulation and Systems Biology, 2017, 11, 117762501770239.	2.3	22
185	The Arcuate Nucleus: A Site of Fast Negative Feedback for Corticosterone Secretion in Male Rats. ENeuro, 2017, 4, ENEURO.0350-16.2017.	1.9	27
186	NPY1 Receptor Agonist Modulates Development of Depressive-Like Behavior and Gene Expression in Hypothalamus in SPS Rodent PTSD Model. Frontiers in Neuroscience, 2017, 11, 203.	2.8	19
187	Social Context, Stress, Neuropsychiatric Disorders, and the Vasopressin 1b Receptor. Frontiers in Neuroscience, 2017, 11, 567.	2.8	32
188	Ventromedial Hypothalamus and the Generation of Aggression. Frontiers in Systems Neuroscience, 2017, 11, 94.	2.5	91
189	Sex differences in hippocampal mineralocorticoid and glucocorticoid receptor mRNA expression in response to acute mate pair separation in zebra finches (<i>Taeniopygia guttata)</i> . Hippocampus, 2018, 28, 698-706.	1.9	15
190	Serotonin-specific lesions of the dorsal raphe disrupt maternal aggression and caregiving in postpartum rats. Behavioural Brain Research, 2018, 348, 53-64.	2.2	16
191	Obesity and Stress: The Melanocortin Connection. , 2018, , 271-319.		0
192	Adrenalectomy impairs vasoactive intestinal peptide-induced changes in food intake and plasma parameters. Endocrine, 2019, 65, 675-682.	2.3	2
193	Global transcriptomic analysis of the arcuate nucleus following chronic glucocorticoid treatment. Molecular Metabolism, 2019, 26, 5-17.	6.5	14
194	A Tilted Axis: Maladaptive Inflammation and HPA Axis Dysfunction Contribute to Consequences of TBI. Frontiers in Neurology, 2019, 10, 345.	2.4	75
195	Links Between Glucocorticoid Responsiveness and Obesity. , 2019, , 309-323.		0
196	Posttraumatic stress and anxiety, the role of arousal. , 2019, , 67-81.		1
197	The relationship between the claustrum and endopiriform nucleus: A perspective towards consensus on crossâ€species homology. Journal of Comparative Neurology, 2019, 527, 476-499.	1.6	77
198	Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology, 2019, 44, 200-213.	5.4	215
199	Evidence for a sensitive period in the effects of early life stress on hippocampal volume. Developmental Science, 2019, 22, e12775.	2.4	72
200	Rhythmic Release of Corticosterone Induces Circadian Clock Gene Expression in the Cerebellum. Neuroendocrinology, 2020, 110, 604-615.	2.5	15

#	Article	IF	CITATIONS
201	In search of optimal resilience ratios: Differential influences of neurobehavioral factors contributing to stress-resilience spectra. Frontiers in Neuroendocrinology, 2020, 56, 100802.	5.2	16
202	Interplay between hormones and exercise on hippocampal plasticity across the lifespan. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165821.	3.8	10
203	Bed nuclei of the stria terminalis modulate memory consolidation via glucocorticoid-dependent and -independent circuits. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8104-8114.	7.1	15
204	Acute social defeat stress upregulates gonadotrophin inhibitory hormone and its receptor but not corticotropin-releasing hormone and ACTH in the Male Nile Tilapia (Oreochromis niloticus). Peptides, 2021, 138, 170504.	2.4	9
205	Single neonatal dexamethasone administration has long-lasting outcome on depressive-like behaviour, Bdnf, Nt-3, p75ngfr and sorting receptors (SorCS1-3) stress reactive expression. Scientific Reports, 2021, 11, 8092.	3.3	3
206	MECHANISMS IN ENDOCRINOLOGY: Local and systemic effects of glucocorticoids on metabolism: new lessons from animal models. European Journal of Endocrinology, 2021, 185, R113-R129.	3.7	28
207	Prospective association of maternal psychosocial stress in pregnancy with newborn hippocampal volume and implications for infant social-emotional development. Neurobiology of Stress, 2021, 15, 100368.	4.0	22
208	Neurochemical Systems Regulating the Hypothalamo-Pituitary-Adrenocortical Axis., 2007,, 513-569.		2
209	The Hippocampus: A Site for Modulatory Interactions Between Steroid Hormones, Neurotransmitters and Neuropeptides. Neuroendocrine Perspectives, 1990, , 93-131.	0.6	22
210	Central Action of Adrenal Steroids During Stress and Adaptation. Advances in Experimental Medicine and Biology, 1990, 274, 243-256.	1.6	37
211	Regulation of the Hypothalmic-Pituitary-Adrenal Axis and Vasopressin Secretion. Advances in Experimental Medicine and Biology, 1996, 396, 105-112.	1.6	16
213	Steroid Receptors in the Central Nervous System. Methods in Neurosciences, 1993, 11, 1-15.	0.5	5
214	Ultrastructural Aspects of Steroid Receptor Localization: Immunocytochemical Perspective. Methods in Neurosciences, 1994, , 175-188.	0.5	1
215	Transcriptional Regulation of the Parathyroid Hormone-related Peptide Gene by Glucocorticoids and Vitamin D in a Human C-cell Line. Journal of Biological Chemistry, 1989, 264, 15743-15746.	3.4	108
216	How Stress Gets Under the Skin: Early Life Adversity and Glucocorticoid Receptor Epigenetic Regulation. Current Genomics, 2018, 19, 653-664.	1.6	63
217	Neuroendocrine Control of Energy Stores. , 2011, , 1581-1604.		0
218	GABAergic Control of the Hypothalamic–Pituitary–Adrenal (HPA) Axis: Role of Extrasynaptic GABAA Receptors. , 2014, , 239-270.		0
219	Cellular Localization of Glucocorticoid Receptor mRNAs in Human CNS Tumors by In Situ Hybridization. , 1991, , 77-80.		0

#	Article	IF	CITATIONS
220	Diabetes Mellitus Type 2 Induces Brain Aging and Memory Impairment in Mice: Neuroprotective Effects of Bacopa monnieri Extract., 2017,, 335-355.		1
221	Chronic Restraint Stress Decreases the Excitability of Hypothalamic POMC Neuron and Increases Food Intake. Experimental Neurobiology, 2021, 30, 375-386.	1.6	6
222	Mutual Shaping of Circadian Body-Wide Synchronization by the Suprachias matic Nucleus and Circulating Steroids. Frontiers in Behavioral Neuroscience, $0,16,.$	2.0	6
223	Lactation overnutrition-induced obesity impairs effects of exogenous corticosterone on energy homeostasis and hypothalamic-pituitary-adrenal axis in male rats. Life Sciences, 2022, 304, 120721.	4.3	1
224	Gene Dysregulation in the Adult Rat Paraventricular Nucleus and Amygdala by Prenatal Exposure to Dexamethasone. Life, 2022, 12, 1077.	2.4	3
225	Disrupted development from head to tail: Pervasive effects of postnatal restricted resources on neurobiological, behavioral, and morphometric outcomes. Frontiers in Behavioral Neuroscience, 0, 16, .	2.0	1
227	Prenatal Stress and the Developing Brain: Postnatal Environments Promoting Resilience. Biological Psychiatry, 2023, 93, 942-952.	1.3	12
228	Chronic stress induced loudness hyperacusis, sound avoidance and auditory cortex hyperactivity. Hearing Research, 2023, 431, 108726.	2.0	1
229	Neuronal and Astroglial Localization of Glucocorticoid Receptor GRα in Adult Zebrafish Brain (Danio) Tj ETQq0 () 0 rgBT /(Overlock 10 Tf
230	Sex, sepsis and the brain: defining the role of sexual dimorphism on neurocognitive outcomes after infection. Clinical Science, 2023, 137, 963-978.	4.3	4
231	Vasopressin Expressed in Hypothalamic CRF Neurons Causes Impaired Water Diuresis in Secondary Adrenal Insufficiency. Endocrinology, 2023, 164, .	2.8	1
232	Circadian Clock Genes Are Regulated by Rhythmic Corticosterone at Physiological Levels in the Rat Hippocampus. Neuroendocrinology, 2023, 113, 1076-1090.	2.5	1