Glucose stimulates proinsulin biosynthesis by a dose-dobeta cells.

Proceedings of the National Academy of Sciences of the Unite 85, 3865-3869

DOI: 10.1073/pnas.85.11.3865

Citation Report

#	Article	IF	CITATIONS
1	Interaction of \hat{l}^2 -Cell Activity and IL-1 Concentration and Exposure Time in Isolated Rat Islets of Langerhans. Diabetes, 1989, 38, 1211-1216.	0.3	137
2	Morphology of the pars intermedia and the melanophore-stimulating cells in Xenopus laevis in relation to background adaptation. General and Comparative Endocrinology, 1990, 79, 74-82.	0.8	69
3	Functional and morphological effects of interleukin-1? on the perfused rat pancreas. Diabetologia, 1990, 33, 15-23.	2.9	45
4	Direct effect of insulin and insulin-like growth factor-I on the secretory activity of rat pancreatic beta cells. Diabetologia, 1990, 33, 649-653.	2.9	78
5	Single islet beta-cell stimulation by nutrients: relationship between pyridine nucleotides, cytosolic Ca2+ and secretion EMBO Journal, 1990, 9, 53-60.	3.5	234
6	Modulation of Glucose-Induced Insulin Secretion from a Rat Clonal β-Cell Line*. Endocrinology, 1990, 127, 2779-2788.	1.4	96
7	Islet Mass and Function in Diabetes and Transplantation. Diabetes, 1990, 39, 401-405.	0.3	128
8	The Crown Odontoblasts of Rat Molars from Primary Dentinogenesis to Complete Eruption. Journal of Dental Research, 1990, 69, 1857-1862.	2.5	20
9	Biophysical properties of gap junctions between freshly dispersed pairs of mouse pancreatic beta cells. Biophysical Journal, 1991, 59, 76-92.	0.2	157
10	Actively Synthesizing $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Cells Secrete Preferentially after Glucose Stimulation*. Endocrinology, 1991, 129, 3157-3166.	1.4	79
11	Molecular and cellular aspects of renin during kidney ontogeny. Pediatric Nephrology, 1991, 5, 80-87.	0.9	61
12	Transplantation of purified islet cells in diabetic BB rats. Diabetologia, 1991, 34, 390-396.	2.9	12
13	Transplantation of Purified Islet Cells in Diabetic Rats: I. Standardization of Islet Cell Grafts. Diabetes, 1991, 40, 908-919.	0.3	64
14	Ion Channels of Glucose-Responsive and -Unresponsive \hat{I}^2 -cells. Diabetes, 1991, 40, 1069-1078.	0.3	29
15	Correlations of In Vivo \hat{I}^2 -Cell Function Tests With \hat{I}^2 -Cell Mass and Pancreatic Insulin Content in Streptozocin-Administered Baboons. Diabetes, 1991, 40, 673-679.	0.3	111
16	Functional Subpopulations of Individual Pancreatic B-Cells in Culture. Endocrinology, 1991, 128, 3193-3198.	1.4	76
17	Islet Amyloid Polypeptide/Amylin in Pancreatic Â-Cell Line Derived From Transgenic Mouse Insulinoma. Diabetes, 1992, 41, 1409-1414.	0.3	13
18	Heterogeneity in Pancreatic \hat{I}^2 -cell Population. Diabetes, 1992, 41, 777-781.	0.3	160

#	ARTICLE	IF	CITATIONS
19	Heterogeneous expression of glucokinase among pancreatic beta cells Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 2619-2623.	3.3	108
20	Cellular and molecular biology of the Beta cell. Diabetologia, 1992, 35, S41-S48.	2.9	58
21	Immunocytochemical localization of muscarinic acetylcholine receptors in the rat endocrine pancreas. Cell and Tissue Research, 1992, 269, 99-106.	1.5	38
22	Pancreatic beta cells in insulinâ€dependent diabetes. Diabetes/metabolism Reviews, 1992, 8, 209-227.	0.2	127
23	Effect of streptozotocin and nicotinamide upon FAD-glycerophosphate dehydrogenase activity and insulin release in purified pancreatic B-cells. Molecular and Cellular Biochemistry, 1993, 120, 135-140.	1.4	15
24	Islet Amyloid Polypeptide: A Review of Its Biology and Potential Roles in the Pathogenesis of Diabetes Mellitus. Veterinary Pathology, 1993, 30, 317-332.	0.8	100
25	Mammalian Glucokinase. Annual Review of Nutrition, 1993, 13, 463-496.	4.3	170
26	Fluorescence Digital Image Analysis of Glucose-Induced [Ca2+]i Oscillations in Mouse Pancreatic Islets of Langerhans. Diabetes, 1993, 42, 1210-1214.	0.3	61
27	Interaction of Interleukin-1 With Islet \hat{l}^2 -Cells: Distinction Between Indirect, Aspecific Cytotoxicity and Direct, Specific Functional Suppression. Diabetes, 1993, 42, 56-65.	0.3	48
28	Threshold for Glucose-Stimulated Insulin Secretion in Pancreatic Islets of Genetically Obese (ob/ob) Mice is Abnormally Low. Journal of Nutrition, 1993, 123, 1567-1574.	1.3	30
29	Heterogeneity in glucose sensitivity among pancreatic beta-cells is correlated to differences in glucose phosphorylation rather than glucose transport EMBO Journal, 1993, 12, 2873-2879.	3.5	153
30	Nutrient regulation of insulin gene expression. FASEB Journal, 1994, 8, 20-27.	0.2	131
31	Amylin Compared with Calcitonin Gene-Related Peptide: Structure, Biology, and Relevance to Metabolic Disease. Endocrine Reviews, 1994, 15, 163-201.	8.9	280
32	Immunocytochemical and ultrastructural heterogeneities of normal and glibenclamide stimulated pancreatic beta cells in the rat. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 1994, 425, 305-13.	1.4	23
33	Physiologic relevance of heterogeneity in the pancreatic beta-cell population. Diabetologia, 1994, 37, S57-S64.	2.9	145
34	Effect of nutrients, hormones and serum on survival of rat islet beta cells in culture. Diabetologia, 1994, 37, 15-21.	2.9	110
35	Stimulatory Effect of a Sulfonylurea Analog and Its Polymer Conjugate on Insulin Secretion from Rat Islets. Biotechnology Progress, 1994, 10, 630-635.	1.3	11
36	Proinsulin mRNA and peptide are present in \hat{l}^2 -cells of diabetic BB rats. Canadian Journal of Physiology and Pharmacology, 1995, 73, 92-97.	0.7	O

3

#	Article	IF	CITATIONS
37	Adequate connexin-mediated coupling is required for proper insulin production Journal of Cell Biology, 1995, 131, 1561-1572.	2.3	117
38	Aging and Insulin Secretion. Experimental Biology and Medicine, 1995, 209, 213-222.	1.1	28
39	Sulfonylurea-Grafted Polymers for Langerhans Islet Stimulation. ACS Symposium Series, 1996, , 42-57.	0.5	0
40	In vivo synchronous membrane potential oscillations in mouse pancreatic beta ells: lack of coâ€ordination between islets Journal of Physiology, 1996, 493, 9-18.	1.3	65
41	The role of gap junction membrane channels in secretion and hormonal action. Journal of Bioenergetics and Biomembranes, 1996, 28, 369-377.	1.0	71
42	GAP JUNCTION INVOLVEMENT IN SECRETION: THE PANCREAS EXPERIENCE. Clinical and Experimental Pharmacology and Physiology, 1996, 23, 1053-1057.	0.9	30
43	Expression and Functional Activity of Glucagon, Glucagon-Like Peptide I, and Glucose-Dependent Insulinotropic Peptide Receptors in Rat Pancreatic Islet Cells. Diabetes, 1996, 45, 257-261.	0.3	222
44	Effects of Chronically Elevated Glucose Levels on the Functional Properties of Rat Pancreatic \hat{l}^2 -Cells. Diabetes, 1996, 45, 1774-1782.	0.3	96
45	Altered Cellular Heterogeneity as a Possible Mechanism for the Maintenance of Organ Function in Senescent Animals. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 1997, 52A, B53-B58.	1.7	4
46	Glucose homeostasis with infinite gain: further lessons from the Daisyworld parable?. Journal of Endocrinology, 1997, 154, 187-192.	1.2	16
47	Transcription factor abnormalities as a cause of beta cell dysfunction in diabetes: a hypothesis. Acta Diabetologica, 1997, 34, 177-184.	1.2	35
48	Is GLUT2 required for glucose sensing?. Diabetologia, 1997, 40, 104-111.	2.9	40
49	Is there a role for nitric oxide in \hat{I}^2 -cell dysfunction and damage in IDDM?. , 1997, 13, 293-307.		84
50	Integral Rein Control in Physiology. Journal of Theoretical Biology, 1998, 194, 163-173.	0.8	64
51	Ultrastructural and secretory heterogeneity of fa/fa (Zucker) rat islets. Molecular and Cellular Endocrinology, 1998, 136, 119-129.	1.6	16
52	Ultrastructural evaluation of B-cell recruitment in virgin and pregnant offspring of diabetic mothers. Diabetes Research and Clinical Practice, 1998, 41, 9-14.	1.1	17
53	Pancreatic cancer cells selectively stimulate islet \hat{l}^2 cells to secrete amylin. Gastroenterology, 1998, 114, 130-138.	0.6	64
54	Sorting human beta-cells consequent to targeted expression of green fluorescent protein. Diabetes, 1998, 47, 1974-1977.	0.3	41

#	ARTICLE	IF	Citations
55	A distinct difference in the metabolic stimulus–response coupling pathways for regulating proinsulin biosynthesis and insulin secretion that lies at the level of a requirement for fatty acyl moieties. Biochemical Journal, 1998, 331, 553-561.	1.7	61
56	Expression and Regulation of Glucokinase in Rat Islet \hat{I}^2 - and $$	1.4	20
57	Homeostasis in Mice with Genetically Decreased Angiotensinogen Is Primarily by an Increased Number of Renin-producing Cells. Journal of Biological Chemistry, 1999, 274, 14210-14217.	1.6	60
58	The chromogranins and the counter-regulatory hormones: do they make homeostatic sense?. Journal of Physiology, 1999, 517, 643-649.	1.3	35
59	Prolonged exposure of pancreatic beta cells to raised glucose concentrations results in increased cellular content of islet amyloid polypeptide precursors. Diabetologia, 1999, 42, 188-194.	2.9	53
60	Insulin Gene Expression. Advances in Molecular and Cell Biology, 1999, 29, 103-123.	0.1	3
61	Altered cAMP and Ca2+ signaling in mouse pancreatic islets with glucagon-like peptide-1 receptor null phenotype. Diabetes, 1999, 48, 1979-1986.	0.3	60
62	A Model of \hat{l}^2 -Cell Mass, Insulin, and Glucose Kinetics: Pathways to Diabetes. Journal of Theoretical Biology, 2000, 206, 605-619.	0.8	245
63	Glucagon receptors on human islet cells contribute to glucose competence of insulin release. Diabetologia, 2000, 43, 1012-1019.	2.9	197
64	Emergent global oscillations in heterogeneous excitable media: The example of pancreatic \hat{l}^2 cells. Physical Review E, 2000, 62, 1149-1154.	0.8	50
65	Glucose uptake, utilization, and signaling in GLUT2-null islets. Diabetes, 2000, 49, 1485-1491.	0.3	141
66	Glucose-mediated Ca2+ signalling in single clonal insulin-secreting cells: evidence for a mixed model of cellular activation. International Journal of Biochemistry and Cell Biology, 2000, 32, 557-569.	1.2	13
67	mRNA profiling of pancreatic beta-cells: investigating mechanisms of diabetes. , 2001, , 187-211.		2
70	Tolbutamide stimulation of pancreatic \hat{l}^2 -cells involves both cell recruitment and increase in the individual Ca2+ response. British Journal of Pharmacology, 2001, 133, 575-585.	2.7	20
71	Nerve Growth Factor Increases Insulin Secretion and Barium Current in Pancreatic Â-Cells. Diabetes, 2001, 50, 1755-1762.	0.3	66
72	Measurements of Cytoplasmic Ca2+ in Islet Cell Clusters Show That Glucose Rapidly Recruits Â-Cells and Gradually Increases the Individual Cell Response. Diabetes, 2001, 50, 540-550.	0.3	98
73	Interleukin- $1\hat{1}^2$ Inhibits Proinsulin Conversion in Rat $\hat{1}^2$ -Cells Via a Nitric Oxide-Dependent Pathway. Hormone and Metabolic Research, 2001, 33, 639-644.	0.7	3
74	Glucose-Regulated Gene Expression Maintaining the Glucose-Responsive State of Â-Cells. Diabetes, 2002, 51, S326-S332.	0.3	106

#	Article	IF	CITATIONS
75	Correlation between GABA release from rat islet \hat{l}^2 -cells and their metabolic state. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E937-E942.	1.8	50
76	Co-ordinated Ca2+-signalling within pancreatic islets: does \hat{l}^2 -cell entrainment require a secreted messenger. Cell Calcium, 2002, 31, 209-219.	1.1	26
77	Constitutive nitric oxide synthases in rat pancreatic islets: direct imaging of glucose-induced nitric oxide production in ?-cells. Pflugers Archiv European Journal of Physiology, 2003, 447, 305-311.	1.3	26
78	Function of a genetically modified human liver cell line that stores, processes and secretes insulin. Gene Therapy, 2003, 10, 490-503.	2.3	52
79	A Reappraisal of the Blood Glucose Homeostat which Comprehensively Explains the Type 2 Diabetes Mellitus–Syndrome X Complex. Journal of Physiology, 2003, 549, 333-346.	1.3	40
80	Autocrine Regulation of Single Pancreatic Â-Cell Survival. Diabetes, 2004, 53, 2018-2023.	0.3	64
81	Synchronization and entrainment of cytoplasmic Ca2+oscillations in cell clusters prepared from single or multiple mouse pancreatic islets. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E340-E347.	1.8	27
82	Expression of genes participating in regulation of fatty acid and glucose utilization and energy metabolism in developing rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2035-H2042.	1.5	28
83	Plasticity of the \hat{l}^2 cell insulin secretory competence: preparing the pancreatic \hat{l}^2 cell for the next meal. Journal of Physiology, 2004, 558, 369-380.	1.3	61
84	Metformin-induced stimulation of AMP-activated protein kinase in \hat{I}^2 -cells impairs their glucose responsiveness and can lead to apoptosis. Biochemical Pharmacology, 2004, 68, 409-416.	2.0	131
85	Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nature Medicine, 2005, 11, 757-764.	15.2	369
86	Proteasome Inhibition Alters Glucose-stimulated (Pro)insulin Secretion and Turnover in Pancreatic β-Cells. Journal of Biological Chemistry, 2005, 280, 15727-15734.	1.6	64
87	Preservation of glucose responsiveness in human islets maintained in a rotational cell culture system. Molecular and Cellular Endocrinology, 2005, 238, 39-49.	1.6	36
89	Insulin granule trafficking in \hat{l}^2 -cells: mathematical model of glucose-induced insulin secretion. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E396-E409.	1.8	43
90	Glucose Activates a Protein Phosphatase-1-Mediated Signaling Pathway to Enhance Overall Translation in Pancreatic \hat{l}^2 -Cells. Endocrinology, 2007, 148, 609-617.	1.4	75
91	Pancreatic islet cell therapy for type I diabetes: understanding the effects of glucose stimulation on islets in order to produce better islets for transplantation. Journal of Translational Medicine, 2007, $5, 1.$	1.8	63
92	Loss of Sugar Detection by GLUT2 Affects Glucose Homeostasis in Mice. PLoS ONE, 2007, 2, e1288.	1.1	33
93	Increased oxygen radical formation and mitochondrial dysfunction mediate beta cell apoptosis under conditions of AMP-activated protein kinase stimulation. Free Radical Biology and Medicine, 2007, 42, 64-78.	1.3	91

#	ARTICLE	IF	Citations
94	Global profiling of genes modified by endoplasmic reticulum stress in pancreatic beta cells reveals the early degradation of insulin mRNAs. Diabetologia, 2007, 50, 1006-1014.	2.9	109
95	Acute nutrient regulation of the unfolded protein response and integrated stress response in cultured rat pancreatic islets. Diabetologia, 2007, 50, 1442-1452.	2.9	132
96	Insulin secretion from human beta cells is heterogeneous and dependent on cell-to-cell contacts. Diabetologia, 2008, 51, 1843-1852.	2.9	115
97	The Unfolded Protein Response: A Pathway That Links Insulin Demand with \hat{I}^2 -Cell Failure and Diabetes. Endocrine Reviews, 2008, 29, 317-333.	8.9	479
98	The Role for Endoplasmic Reticulum Stress in Diabetes Mellitus. Endocrine Reviews, 2008, 29, 42-61.	8.9	990
99	Proteins in the insulinâ€secreting cell line MIN6 bind the imidazoline compound BL11282. FEBS Letters, 2008, 582, 1613-1617.	1.3	2
100	A Role for the Extracellular Calcium-Sensing Receptor in Cell-Cell Communication in Pancreatic Islets of Langerhans. Cellular Physiology and Biochemistry, 2008, 22, 557-566.	1.1	33
101	Initiation and execution of lipotoxic ER stress in pancreatic \hat{l}^2 -cells. Journal of Cell Science, 2008, 121, 2308-2318.	1.2	512
102	Pancreas islets in metabolic signaling - focus on the beta-cell. Frontiers in Bioscience - Landmark, 2008, Volume, 7156.	3.0	75
103	Exploring Functional \hat{I}^2 -Cell Heterogeneity In Vivo Using PSA-NCAM as a Specific Marker. PLoS ONE, 2009, 4, e5555.	1.1	39
104	Age-Dependent Decline in \hat{I}^2 -Cell Proliferation Restricts the Capacity of \hat{I}^2 -Cell Regeneration in Mice. Diabetes, 2009, 58, 1312-1320.	0.3	301
105	A Model of the Unfolded Protein Response: Pancreatic β-Cell as a Case Study. Cellular Physiology and Biochemistry, 2009, 23, 233-244.	1.1	22
106	Adhesion of pancreatic beta cells to biopolymer films. Biopolymers, 2009, 91, 676-685.	1.2	44
107	Kisspeptin stimulation of insulin secretion: mechanisms of action in mouse islets and rats. Diabetologia, 2009, 52, 855-862.	2.9	70
108	FEM-based oxygen consumption and cell viability models for avascular pancreatic islets. Theoretical Biology and Medical Modelling, 2009, 6, 5.	2.1	140
109	Dilation of the endoplasmic reticulum in beta cells due to molecular overcrowding?. Biophysical Chemistry, 2009, 140, 115-121.	1.5	17
110	Pancreas Modeling from IVGTT Data Using a Deterministic Optimal Search Method., 2009,,.		1
111	Translation Attenuation through eIF2 \hat{l} ± Phosphorylation Prevents Oxidative Stress and Maintains the Differentiated State in \hat{l}^2 Cells. Cell Metabolism, 2009, 10, 13-26.	7.2	314

#	Article	IF	Citations
112	Proteomics in diabetes research. Molecular and Cellular Endocrinology, 2009, 297, 93-103.	1.6	69
113	Emerging roles for the ubiquitin-proteasome system and autophagy in pancreatic \hat{l}^2 -cells. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E1-E10.	1.8	51
114	The Comparative Anatomy of Islets. Advances in Experimental Medicine and Biology, 2010, 654, 21-37.	0.8	24
115	Single pancreatic beta cells co-express multiple islet hormone genes in mice. Diabetologia, 2010, 53, 128-138.	2.9	58
116	Sustained production of spliced X-box binding protein 1 (XBP1) induces pancreatic beta cell dysfunction and apoptosis. Diabetologia, 2010, 53, 1120-1130.	2.9	103
117	Placental lactogens induce serotonin biosynthesis in a subset of mouse beta cells during pregnancy. Diabetologia, 2010, 53, 2589-2599.	2.9	129
118	Realâ€time detection of singleâ€living pancreatic βâ€cell by laser tweezers Raman spectroscopy: High glucose stimulation. Biopolymers, 2010, 93, 587-594.	1.2	11
119	Microscopic Anatomy of the Human Islet of Langerhans. Advances in Experimental Medicine and Biology, 2010, 654, 1-19.	0.8	84
120	\hat{l}^2 -Cell Dysfunction under Hyperglycemic Stress: A Molecular Model. Journal of Diabetes Science and Technology, 2010, 4, 1447-1456.	1.3	4
121	ER Stress in Pancreatic \hat{l}^2 Cells: The Thin Red Line Between Adaptation and Failure. Science Signaling, 2010, 3, pe7.	1.6	138
122	Stress hypERactivation in the \hat{I}^2 -cell. Islets, 2010, 2, 1-9.	0.9	57
123	Endoplasmic Reticulum Overcrowding as a Mechanism of \hat{l}^2 -Cell Dysfunction in Diabetes. Biophysical Journal, 2010, 98, 1641-1648.	0.2	15
124	The insulin secretory granule as a signaling hub. Trends in Endocrinology and Metabolism, 2010, 21, 599-609.	3.1	163
125	Connexins: Key Mediators of Endocrine Function. Physiological Reviews, 2011, 91, 1393-1445.	13.1	145
126	Endoplasmic reticulum stress and pancreatic \hat{l}^2 -cell death. Trends in Endocrinology and Metabolism, 2011, 22, 266-74.	3.1	310
127	Pancreas modelling by a deterministic optimisation method. International Journal of Data Mining and Bioinformatics, 2011, 5, 308.	0.1	0
128	Interaction of glibenclamide and metformin at the level of translation in pancreatic \hat{A} cells. Journal of Endocrinology, 2011, 208, 161-169.	1,2	5
129	In Vivo Misfolding of Proinsulin Below the Threshold of Frank Diabetes. Diabetes, 2011, 60, 2092-2101.	0.3	35

#	ARTICLE	IF	CITATIONS
130	Binding of activating transcription factor 6 to the A5/Core of the rat insulin II gene promoter does not mediate its transcriptional repression. Journal of Molecular Endocrinology, 2011, 47, 273-283.	1.1	7
131	A Low-Oxygenated Subpopulation of Pancreatic Islets Constitutes a Functional Reserve of Endocrine Cells. Diabetes, 2011, 60, 2068-2075.	0.3	68
132	The double-edged effect of autophagy in pancreatic beta cells and diabetes. Autophagy, 2011, 7, 12-16.	4.3	81
133	Subpopulations of GFP-Marked Mouse Pancreatic \hat{I}^2 -Cells Differ in Size, Granularity, and Insulin Secretion. Endocrinology, 2012, 153, 5180-5187.	1.4	47
134	Endoplasmic Reticulum Stress in the $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Cell Pathogenesis of Type 2 Diabetes. Experimental Diabetes Research, 2012, 2012, 1-11.	3.8	56
135	CDK5 Regulatory Subunit-associated Protein 1-Like 1 (CDKAL1) Is a Tail-anchored Protein in the Endoplasmic Reticulum (ER) of Insulinoma Cells. Journal of Biological Chemistry, 2012, 287, 41808-41819.	1.6	31
136	The Delicate Balance Between Secreted Protein Folding and Endoplasmic Reticulum-Associated Degradation in Human Physiology. Physiological Reviews, 2012, 92, 537-576.	13.1	339
137	Physiological ER Stress: The Model of Insulin-Secreting Pancreatic b-Cells. , 2012, , 185-211.		1
138	Pathological ER Stress in Î ² Cells. , 2012, , 215-230.		0
139	The molecular mechanisms of pancreatic \hat{l}^2 -cell glucotoxicity: Recent findings and future research directions. Molecular and Cellular Endocrinology, 2012, 364, 1-27.	1.6	229
140	Optimal homeostasis necessitates bistable control. Journal of the Royal Society Interface, 2012, 9, 2723-2734.	1.5	14
141	Connexin-dependent signaling in neuro-hormonal systems. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1919-1936.	1.4	21
142	β-Cell–Specific Gene Repression: A Mechanism to Protect Against Inappropriate or Maladjusted Insulin Secretion?. Diabetes, 2012, 61, 969-975.	0.3	66
143	Unanchoring integrins in focal adhesions. Nature Cell Biology, 2012, 14, 981-983.	4.6	26
144	Integrating insulin secretion and ER stress in pancreatic \hat{l}^2 -cells. Nature Cell Biology, 2012, 14, 979-981.	4.6	24
145	Endoplasmic Reticulum Stress and Type 2 Diabetes. Annual Review of Biochemistry, 2012, 81, 767-793.	5.0	476
146	Mitochondrial signals drive insulin secretion in the pancreatic \hat{l}^2 -cell. Molecular and Cellular Endocrinology, 2012, 353, 128-137.	1.6	122
147	Connexins and \hat{l}^2 -cell functions. Diabetes Research and Clinical Practice, 2013, 99, 250-259.	1.1	44

#	ARTICLE	IF	CITATIONS
148	Glucose-stimulated insulin secretion: the hierarchy of its multiple cellular and subcellular mechanisms. Diabetologia, 2013, 56, 2552-2555.	2.9	13
149	Glucose principally regulates insulin secretion in mouse islets by controlling the numbers of granule fusion events per cell. Diabetologia, 2013, 56, 2629-2637.	2.9	40
150	Connexin 36, a key element in pancreatic beta cell function. Neuropharmacology, 2013, 75, 557-566.	2.0	28
151	Stimulation of Autophagy Improves Endoplasmic Reticulum Stress–Induced Diabetes. Diabetes, 2013, 62, 1227-1237.	0.3	173
152	Role of Adaptor Proteins in Secretory Granule Biogenesis and Maturation. Frontiers in Endocrinology, 2013, 4, 101.	1.5	42
153	Protein-Mediated Interactions of Pancreatic Islet Cells. Scientifica, 2013, 2013, 1-22.	0.6	31
154	Cellular Mechanisms of Endoplasmic Reticulum Stress Signaling in Health and Disease. 2. Protein misfolding and ER stress. American Journal of Physiology - Cell Physiology, 2014, 307, C657-C670.	2.1	68
155	Identification of Small Molecules That Protect Pancreatic \hat{l}^2 Cells against Endoplasmic Reticulum Stress-Induced Cell Death. ACS Chemical Biology, 2014, 9, 2796-2806.	1.6	17
156	Purinergic P2Y1 receptors take centre stage in autocrine stimulation of human beta cells. Diabetologia, 2014, 57, 2436-2439.	2.9	8
157	Role of MicroRNAs in Islet Beta-Cell Compensation and Failure during Diabetes. Journal of Diabetes Research, 2014, 2014, 1-12.	1.0	50
158	Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology. Nature Protocols, 2014, 9, 2809-2822.	5.5	94
159	Increased expression of ERp57/GRP58 is protective against pancreatic beta cell death caused by autophagic failure. Biochemical and Biophysical Research Communications, 2014, 453, 19-24.	1.0	13
160	Inefficient Translocation of Preproinsulin Contributes to Pancreatic \hat{l}^2 Cell Failure and Late-onset Diabetes. Journal of Biological Chemistry, 2014, 289, 16290-16302.	1.6	55
161	Constitutive role of <scp>GADD</scp> 34 and <scp>CR</scp> eP in cancellation of phosphoâ€ <scp>eIF</scp> 2αâ€dependent translational attenuation and insulin biosynthesis in pancreatic β cells. Genes To Cells, 2015, 20, 871-886.	0.5	7
162	Embryonic stem cell-derived pancreatic endoderm transplant with MCT1-suppressing miR-495 attenuates type II diabetes in mice. Endocrine Journal, 2015, 62, 907-920.	0.7	24
163	Progressive glucose stimulation of islet beta cells reveals a transition from segregated to integrated modular functional connectivity patterns. Scientific Reports, 2015, 5, 7845.	1.6	73
164	Role of Connexins and Pannexins in the Pancreas. Pancreas, 2015, 44, 1234-1244.	0.5	21
165	Both Fasting and Glucose-Stimulated Proinsulin Levels Predict Hyperglycemia and Incident Type 2 Diabetes: A Population-Based Study of 9,396 Finnish Men. PLoS ONE, 2015, 10, e0124028.	1.1	34

#	Article	IF	CITATIONS
166	A Combination of Human Embryonic Stem Cell-Derived Pancreatic Endoderm Transplant with LDHA-Repressing miRNA Can Attenuate High-Fat Diet Induced Type II Diabetes in Mice. Journal of Diabetes Research, 2015, 2015, 1-11.	1.0	15
167	Differences in insulin biosynthesis pathway between small and large islets do not correspond to insulin secretion. Islets, 2015, 7, e1129097.	0.9	2
168	Insulin secretion from beta cells within intact islets: Location matters. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 406-414.	0.9	36
169	Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetesâ~†. Molecular Aspects of Medicine, 2015, 42, 105-118.	2.7	143
170	Vascular heterogeneity between native rat pancreatic islets is responsible for differences in survival and revascularisation post transplantation. Diabetologia, 2015, 58, 132-139.	2.9	25
171	Microscopic Anatomy of the Human Islet of Langerhans. , 2015, , 19-38.		4
172	Unraveling the contribution of pancreatic beta-cell suicide in autoimmune type 1 diabetes. Journal of Theoretical Biology, 2015, 375, 77-87.	0.8	22
173	High-Fat Diets and \hat{I}^2 -Cell Dysfunction. , 2016, , 115-130.		2
174	Pancreatic \hat{I}^2 -cell heterogeneity revisited. Nature, 2016, 535, 365-366.	13.7	18
175	ER stress and the decline and fall of pancreatic beta cells in type 1 diabetes. Upsala Journal of Medical Sciences, 2016, 121, 133-139.	0.4	77
176	Disallowed and Allowed Gene Expression: Two Faces of Mature Islet Beta Cells. Annual Review of Nutrition, 2016, 36, 45-71.	4.3	74
177	Serotonin competence of mouse beta cells during pregnancy. Diabetologia, 2016, 59, 1356-1363.	2.9	29
178	Single-Cell Mass Cytometry Analysis of the Human Endocrine Pancreas. Cell Metabolism, 2016, 24, 616-626.	7.2	126
179	Discovery, Synthesis, and Evaluation of 2,4-Diaminoquinazolines as a Novel Class of Pancreatic \hat{l}^2 -Cell-Protective Agents against Endoplasmic Reticulum (ER) Stress. Journal of Medicinal Chemistry, 2016, 59, 7783-7800.	2.9	15
180	Impact of islet architecture on \hat{l}^2 -cell heterogeneity, plasticity and function. Nature Reviews Endocrinology, 2016, 12, 695-709.	4.3	150
181	Cocaine- and amphetamine-regulated transcript: a novel regulator of energy homeostasis expressed in a subpopulation of pancreatic islet cells. Diabetologia, 2016, 59, 1855-1859.	2.9	8
182	Pancreatic Islet Adaptation and Failure in Obesity and Diabetes. , 2016, , 461-478.		0
183	Autophagy is a major regulator of beta cell insulin homeostasis. Diabetologia, 2016, 59, 1480-1491.	2.9	117

#	Article	IF	CITATIONS
184	Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Experimental and Molecular Medicine, 2017, 49, e291-e291.	3.2	248
185	Fate of Renin Cells During Development and Disease. Hypertension, 2017, 69, 387-395.	1.3	17
186	Polluted Pathways: Mechanisms of Metabolic Disruption by Endocrine Disrupting Chemicals. Current Environmental Health Reports, 2017, 4, 208-222.	3.2	62
187	Discovery of a Benzamide Derivative That Protects Pancreatic β-Cells against Endoplasmic Reticulum Stress. Journal of Medicinal Chemistry, 2017, 60, 6191-6204.	2.9	8
188	\hat{l}^2 Cell Aging Markers Have Heterogeneous Distribution and Are Induced by Insulin Resistance. Cell Metabolism, 2017, 25, 898-910.e5.	7.2	149
189	Heterogeneity in the Beta-Cell Population: a Guided Search Into Its Significance in Pancreas and in Implants. Current Diabetes Reports, 2017, 17, 86.	1.7	26
190	ER-resident antioxidative GPx7 and GPx8 enzyme isoforms protect insulin-secreting INS-1E \hat{l}^2 -cells against lipotoxicity by improving the ER antioxidative capacity. Free Radical Biology and Medicine, 2017, 112, 121-130.	1.3	45
191	$4\hat{l}\frac{1}{4}$ 8C Inhibits Insulin Secretion Independent of IRE1 \hat{l} ± RNase Activity. Cell Structure and Function, 2017, 42, 61-70.	0.5	14
192	Critical and Supercritical Spatiotemporal Calcium Dynamics in Beta Cells. Frontiers in Physiology, 2017, 8, 1106.	1.3	41
193	The role of beta cell heterogeneity in islet function and insulin release. Journal of Molecular Endocrinology, 2018, 61, R43-R60.	1.1	54
194	Insulin secretion kinetics from single islets reveals distinct subpopulations. Biotechnology Progress, 2018, 34, 1059-1068.	1.3	5
195	A role for Glucagon-Like Peptide-1 in the regulation of \hat{l}^2 -cell autophagy. Peptides, 2018, 100, 85-93.	1.2	20
196	Renin cells in homeostasis, regeneration and immune defence mechanisms. Nature Reviews Nephrology, 2018, 14, 231-245.	4.1	50
197	Control of insulin granule formation and function by the ABC transporters ABCG1 and ABCA1 and by oxysterol binding protein OSBP. Molecular Biology of the Cell, 2018, 29, 1238-1257.	0.9	28
198	3D-Models of Insulin-Producing \hat{l}^2 -Cells: from Primary Islet Cells to Stem Cell-Derived Islets. Stem Cell Reviews and Reports, 2018, 14, 177-188.	5.6	15
199	Toxicity to the Insulin-Secreting \hat{I}^2 -Cell. , 2018, , 205-229.		1
200	Pseudotime Ordering of Single Human \hat{l}^2 -Cells Reveals States of Insulin Production and Unfolded Protein Response. Diabetes, 2018, 67, 1783-1794.	0.3	132
201	Regulation of Cytokine Production by the Unfolded Protein Response; Implications for Infection and Autoimmunity. Frontiers in Immunology, 2018, 9, 422.	2.2	127

#	Article	IF	CITATIONS
202	Effects of Dietary Fatty Acids in Pancreatic Beta Cell Metabolism, Implications in Homeostasis. Nutrients, 2018, 10, 393.	1.7	90
203	The machineries, regulation and cellular functions of mitochondrial calcium. Nature Reviews Molecular Cell Biology, 2018, 19, 713-730.	16.1	516
204	Fatty Acid and Lipopolysaccharide Effect on Beta Cells Proteostasis and its Impact on Insulin Secretion. Cells, 2019, 8, 884.	1.8	33
205	Lysosomal degradation of newly formed insulin granules contributes to \hat{I}^2 cell failure in diabetes. Nature Communications, 2019, 10, 3312.	5.8	53
206	Intact pancreatic islets and dispersed beta-cells both generate intracellular calcium oscillations but differ in their responsiveness to glucose. Cell Calcium, 2019, 83, 102081.	1.1	35
207	Down-regulation of the islet-specific zinc transporter-8 (ZnT8) protects human insulinoma cells against inflammatory stress. Journal of Biological Chemistry, 2019, 294, 16992-17006.	1.6	16
208	ER Stress, Secretory Granule Biogenesis, and Insulin. , 2019, , .		2
209	Heterogeneity of human pancreatic β-cells. Molecular Metabolism, 2019, 27, S7-S14.	3.0	38
210	Information processing by endoplasmic reticulum stress sensors. Journal of the Royal Society Interface, 2019, 16, 20190288.	1.5	4
211	Modulation of Autophagy Influences the Function and Survival of Human Pancreatic Beta Cells Under Endoplasmic Reticulum Stress Conditions and in Type 2 Diabetes. Frontiers in Endocrinology, 2019, 10, 52.	1.5	67
212	Contributions of Mitochondrial Dysfunction to \hat{l}^2 Cell Failure in Diabetes Mellitus. , 2019, , 217-243.		2
213	Mathematical modeling informs the impact of changes in circadian rhythms and meal patterns on insulin secretion. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R98-R107.	0.9	9
214	Heterogeneity of the Human Pancreatic Islet. Diabetes, 2019, 68, 1230-1239.	0.3	65
215	Glucose-dependent phosphorylation signaling pathways and crosstalk to mitochondrial respiration in insulin secreting cells. Cell Communication and Signaling, 2019, 17, 14.	2.7	13
216	Metabolic and Functional Heterogeneity in Pancreatic \hat{l}^2 Cells. Journal of Molecular Biology, 2020, 432, 1395-1406.	2.0	24
217	Biological behaviors of mutant proinsulin contribute to the phenotypic spectrum of diabetes associated with insulin gene mutations. Molecular and Cellular Endocrinology, 2020, 518, 111025.	1.6	11
218	Modeling Type 1 Diabetes InÂVitro Using Human Pluripotent Stem Cells. Cell Reports, 2020, 32, 107894.	2.9	55
219	Insight on Transcriptional Regulation of the Energy Sensing AMPK and Biosynthetic mTOR Pathway Genes. Frontiers in Cell and Developmental Biology, 2020, 8, 671.	1.8	25

#	Article	IF	CITATIONS
220	A genetic screen identifies Crat as a regulator of pancreatic beta-cell insulin secretion. Molecular Metabolism, 2020, 37, 100993.	3.0	4
221	Role of mitochondria-associated endoplasmic reticulum membrane (MAMs) interactions and calcium exchange in the development of type 2 diabetes. International Review of Cell and Molecular Biology, 2021, 363, 169-202.	1.6	15
222	Type I interferons as key players in pancreatic \hat{l}^2 -cell dysfunction in type 1 diabetes. International Review of Cell and Molecular Biology, 2021, 359, 1-80.	1.6	19
223	The Role of \hat{l}^2 Cell Stress and Neo-Epitopes in the Immunopathology of Type 1 Diabetes. Frontiers in Endocrinology, 2020, 11, 624590.	1.5	21
224	Human Pluripotent Stem Cells to Model Islet Defects in Diabetes. Frontiers in Endocrinology, 2021, 12, 642152.	1.5	24
225	Making Insulin and Staying Out of Autoimmune Trouble: The Beta-Cell Conundrum. Frontiers in Immunology, 2021, 12, 639682.	2.2	16
226	Deficient endoplasmic reticulum transloconâ€essociated protein complex limits the biosynthesis of proinsulin and insulin. FASEB Journal, 2021, 35, e21515.	0.2	11
227	Isolation and Proteomics of the Insulin Secretory Granule. Metabolites, 2021, 11, 288.	1.3	13
228	Pancreatic \hat{i}^2 -cell heterogeneity in health and diabetes: classes, sources, and subtypes. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E716-E731.	1.8	21
229	Citrullination and PAD Enzyme Biology in Type 1 Diabetes – Regulators of Inflammation, Autoimmunity, and Pathology. Frontiers in Immunology, 2021, 12, 678953.	2.2	24
230	Therapeutic opportunities for pancreatic \hat{l}^2 -cell ER stress in diabetes mellitus. Nature Reviews Endocrinology, 2021, 17, 455-467.	4.3	106
232	Defective insulin maturation in patients with type 2 diabetes. European Journal of Endocrinology, 2021, 185, 565-576.	1.9	7
233	Predisposition to Proinsulin Misfolding as a Genetic Risk to Diet-Induced Diabetes. Diabetes, 2021, 70, 2580-2594.	0.3	6
234	Effects of growth hormone-releasing hormone agonistic analog MR-409 on insulin-secreting cells under cyclopiazonic acid-induced endoplasmic reticulum stress. Molecular and Cellular Endocrinology, 2021, 535, 111379.	1.6	1
235	Zinc transporters and their functional integration in mammalian cells. Journal of Biological Chemistry, 2021, 296, 100320.	1.6	125
236	The pancreatic B-cell as a voltage-controlled oscillator. Lecture Notes in Computer Science, 1993, , 37-42.	1.0	2
237	Molecular Biology of Gap Junction Proteins. , 1994, , 333-356.		4
238	Heterogeneity of \hat{I}^2 -Cell Secretion. Advances in Experimental Medicine and Biology, 1997, , 247-252.	0.8	2

#	ARTICLE	IF	CITATIONS
239	Glucose-Induced B-Cell Recruitment and the Expression of Hexokinase Isoenzymes. Advances in Experimental Medicine and Biology, 1997, 426, 259-266.	0.8	6
240	Physiological Behavior of Functional Subpopulations of Single Pancreatic \hat{l}^2 -Cells. Advances in Experimental Medicine and Biology, 1997, 426, 267-274.	0.8	3
241	Reconstructing Islet Function In Vitro. Advances in Experimental Medicine and Biology, 1997, 426, 285-298.	0.8	20
242	Intercellular Communication and Insulin Secretion. , 1997, , 24-42.		6
243	Insulin Release and Islet Cell Junctions. , 1988, , 233-248.		2
244	Cellular Endogenous Fluorescence: A Basis for Preparing Subpopulations of Functionally Homogeneous Cells. , 1989, , 391-404.		5
245	Pancreatic beta cell heterogeneity in glucose-induced insulin secretion Journal of Biological Chemistry, 1992, 267, 21344-21348.	1.6	136
246	Video imaging of cytosolic Ca2+ in pancreatic beta-cells stimulated by glucose, carbachol, and ATP Journal of Biological Chemistry, 1992, 267, 18110-18117.	1.6	108
247	Effects of sodium butyrate on proliferation-dependent insulin gene expression and insulin release in glucose-sensitive RIN-5AH cells Journal of Biological Chemistry, 1991, 266, 7542-7548.	1.6	19
248	Glucose and glucoincretin peptides synergize to induce câ€∢i>fos, câ€∢i>jun, <i>junB</i> , <i>zif</i> ê268, and nurâ€∢i>77gene expression in pancreatic β(INSâ€1) cells. FA Journal, 1998, 12, 1173-1182.	SEB2	97
249	GCN2 regulates pancreatic \hat{l}^2 cell mass by sensing intracellular amino acid levels. JCI Insight, 2020, 5, .	2.3	13
250	Islets of Langerhans: the puzzle of intraislet interactions and their relevance to diabetes Journal of Clinical Investigation, 1990, 85, 983-987.	3.9	130
251	Renin release and gene expression in intact rat kidney microvessels and single cells Journal of Clinical Investigation, 1990, 86, 169-175.	3.9	64
252	Repeated glucose stimulation reveals distinct and lasting secretion patterns of individual rat pancreatic B cells Journal of Clinical Investigation, 1991, 87, 2178-2185.	3.9	50
253	Differences in glucose recognition by individual rat pancreatic B cells are associated with intercellular differences in glucose-induced biosynthetic activity Journal of Clinical Investigation, 1992, 89, 117-125.	3.9	151
254	GLUT-2 function in glucose-unresponsive beta cells of dexamethasone-induced diabetes in rats Journal of Clinical Investigation, 1993, 92, 1950-1956.	3.9	41
255	Glucose promotes survival of rat pancreatic beta cells by activating synthesis of proteins which suppress a constitutive apoptotic program Journal of Clinical Investigation, 1996, 98, 1568-1574.	3.9	255
256	Prolonged exposure of human beta cells to elevated glucose levels results in sustained cellular activation leading to a loss of glucose regulation Journal of Clinical Investigation, 1996, 98, 2805-2812.	3.9	163

#	ARTICLE	IF	CITATIONS
257	Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids Journal of Clinical Investigation, 1997, 100, 2094-2098.	3.9	284
258	Deficit of tRNALys modification by Cdkal1 causes the development of type 2 diabetes in mice. Journal of Clinical Investigation, 2011, 121, 3598-3608.	3.9	212
259	Dominant protein interactions that influence the pathogenesis of conformational diseases. Journal of Clinical Investigation, 2013, 123, 3124-3134.	3.9	21
260	Glucose Amplifies Fatty Acid-Induced Endoplasmic Reticulum Stress in Pancreatic \hat{l}^2 -Cells via Activation of mTORC1. PLoS ONE, 2009, 4, e4954.	1.1	116
261	A Unifying Organ Model of Pancreatic Insulin Secretion. PLoS ONE, 2015, 10, e0142344.	1.1	12
262	How stable is repression of disallowed genes in pancreatic islets in response to metabolic stress?. PLoS ONE, 2017, 12, e0181651.	1.1	16
263	Semi-automated digital measurement as the method of choice for beta cell mass analysis. PLoS ONE, 2018, 13, e0191249.	1.1	3
264	Mechanisms of \hat{l}^2 -cell dedifferentiation in diabetes: recent findings and future research directions. Journal of Endocrinology, 2018, 236, R109-R143.	1.2	168
265	Subgroup analysis of proinsulin and insulin levels reveals novel correlations to metabolic indicators of type 2 diabetes. Aging, 2020, 12, 10715-10735.	1.4	5
266	Partners in Crime: Beta-Cells and Autoimmune Responses Complicit in Type 1 Diabetes Pathogenesis. Frontiers in Immunology, 2021, 12, 756548.	2.2	33
267	The physiological role of \hat{l}^2 -cell heterogeneity in pancreatic islet function. Nature Reviews Endocrinology, 2022, 18, 9-22.	4.3	61
268	Gene Expression Profiling by Microarrays. , 2001, , .		2
269	Microscopic Anatomy of the Human Islet of Langerhans. , 2014, , 1-18.		0
270	Glucokinase Gene Expression and Regulation. , 1994, , 155-174.		5
271	Probing of Connexin Channels., 1996,, 149-156.		0
272	Oscillations of Cytosolic Ca2+ in Pancreatic Islets of Langerhans. Advances in Experimental Medicine and Biology, 1997, 426, 195-202.	0.8	1
273	Pancreatic Islet Adaptation and Failure in Obesity and Diabetes. , 2015, , 1-21.		0
274	Pancreatic Islet Adaptation and Failure in Obesity and Diabetes. , 2017, , 1-21.		0

#	Article	IF	CITATIONS
276	An accomplice more than a mere victim: The impact of \hat{I}^2 -cell ER stress on type 1 diabetes pathogenesis. Molecular Metabolism, 2021, 54, 101365.	3.0	31
277	Heterogeneity in glucose sensitivity among pancreatic beta-cells is correlated to differences in glucose phosphorylation rather than glucose transport. EMBO Journal, 1993, 12, 2873-9.	3.5	53
278	Single islet beta-cell stimulation by nutrients: relationship between pyridine nucleotides, cytosolic Ca2+ and secretion. EMBO Journal, 1990, 9, 53-60.	3.5	70
279	Docosahexaenoic Acid Reduces Palmitic Acid-Induced Endoplasmic Reticulum Stress in Pancreatic Î' Cells. Kobe Journal of Medical Sciences, 2018, 64, E43-E55.	0.2	7
280	The Role of TRAPÎ ³ /SSR3 in Preproinsulin Translocation Into the Endoplasmic Reticulum. Diabetes, 2022, 71, 440-452.	0.3	3
281	Role of selenoprotein P expression in the function of pancreatic \hat{l}^2 cells: Prevention of ferroptosis-like cell death and stress-induced nascent granule degradation. Free Radical Biology and Medicine, 2022, 183, 89-103.	1.3	12
283	Quercetin protects against palmitate-induced pancreatic \hat{l}^2 -cell apoptosis by restoring lysosomal function and autophagic flux. Journal of Nutritional Biochemistry, 2022, 107, 109060.	1.9	6
284	Posttranslational modifications in diabetes: Mechanisms and functions. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 1011-1033.	2.6	4
286	Normal Pregnancy-Induced Islet Beta Cell Proliferation in Mouse Models That Are Deficient in Serotonin-Signaling. International Journal of Molecular Sciences, 2022, 23, 15816.	1.8	4
287	Pancreatic Islet Cells Response to IFN \hat{I}^3 Relies on Their Spatial Location within an Islet. Cells, 2023, 12, 113.	1.8	0
288	A beta cell subset with enhanced insulin secretion and glucose metabolism is reduced in type 2 diabetes. Nature Cell Biology, 2023, 25, 565-578.	4.6	11
289	Synchronized proinsulin trafficking reveals delayed Golgi export accompanies \hat{l}^2 -cell secretory dysfunction in rodent models of hyperglycemia. Scientific Reports, 2023, 13, .	1.6	2
290	Why does the immune system destroy pancreatic \hat{l}^2 -cells but not \hat{l}_{\pm} -cells in type 1 diabetes?. Nature Reviews Endocrinology, 2023, 19, 425-434.	4.3	10
291	Pancreatic beta cell ER export in health and diabetes. Frontiers in Endocrinology, 0, 14, .	1.5	2
293	Pancreatic \hat{I}^2 -cell heterogeneity in adult human islets and stem cell-derived islets. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	1
296	Beta cell stress and type 1 diabetes. , 2024, , 223-230.		0
300	Insulin biosynthesis and release in health and disease. , 2023, , 3-24.		O