CITATION REPORT List of articles citing

Continuing worldwide increase in tropospheric methane, 1978 to 1987

DOI: 10.1126/science.239.4844.1129 Science, 1988, 239, 1129-31.

Source: https://exaly.com/paper-pdf/19959008/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
387	Climatic and CH4 cycle implications of glacialInterglacial CH4 change in the Vostok ice core. 1988 , 333, 655-657		153
386	Methane linked to warming. 1988 , 334, 198-198		13
385	The dam busters. 1988 , 334, 295-295		2
384	Biogeochemical aspects of atmospheric methane. 1988 , 2, 299-327		1124
383	A methane flux time series for tundra environments. 1988 , 2, 399-409		174
382	Atmospheric methane. 1988 , 71, 11-21		43
381	Does the Antarctic ozone hole have a future?. 1988 , 69, 1588		1
380	Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian Mountains, United States. 1988 , 2, 253-268		94
379	Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. 1988 , 2, 279-7	288	269
378	Methane flux and stable hydrogen and carbon isotope composition of sedimentary methane from the Florida Everglades. 1988 , 2, 329-340		72
377	Diffusive flux of methane from warm wetlands. 1988 , 2, 411-425		59
376	The greenhouse theory of climate change: a test by an inadvertent global experiment. <i>Science</i> , 1988 , 240, 293-9	33.3	280
375	The isotopic composition of methane in polar ice cores. <i>Science</i> , 1988 , 242, 1535-9	33.3	95
374	Chlorofluorocarbons, Stratospheric Ozone, and the Antarctic Dzone Hole□1988, 15, 101-115		20
373	Changing composition of the global stratosphere. <i>Science</i> , 1989 , 243, 763-70	33.3	135
372	Carbon-14 in methane sources and in atmospheric methane: the contribution from fossil carbon. <i>Science</i> , 1989 , 245, 286-90	33.3	229
371	Microbiological preparation of 3H-labelled methane. 1989 , 27, 1285-1291		6

(1990-1989)

370	Present-day biogeochemical activities of anaerobic bacteria and their relevance to future exobiological investigations. <i>Advances in Space Research</i> , 1989 , 9, 127-136	21
369	Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. 1989 , 8, 307-358	582
368	Soil scientists as members of the scientific community*. 1989 , 40, 209-221	15
367	Relation between increasing methane and the presence of ice clouds at the mesopause. 1989 , 338, 490-492	184
366	Influence of nitrogen fertilization on methane uptake in temperate forest soils. 1989, 341, 314-316	651
365	An ombrotrophic bog as a methane reservoir. 1989 , 3, 205-213	43
364	A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. 1989 , 94, 16405	416
363	Heterogeneous physicochemistry of the polar ozone hole. 1989 , 94, 16493	245
362	The G reenhouseleffect and climate change. 1989 , 27, 115	338
361	Atmospheric methane measurement instrument using a Zeeman-split He-Ne laser. 1989 , 28, 5016-23	23
360	Diffusion and consumption of methane in an unsaturated zone in north-central Illinois, U.S.A 1989 , 111, 133-143	20
359	Termites, soil fertility and carbon cycling in dry tropical Africa: a hypothesis. 1990 , 6, 291-305	108
358	Global Energy and The Greenhouse Issue. 1990 , 1, 74-91	3
357	A methane flux transect along the trans-Alaska pipeline haul road. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 1990 , 42, 237-249	39
356	Greenhouse cooling up high. 1990 , 344, 104-105	17
355	Consumption of atmospheric methane by tundra soils. 1990 , 346, 160-162	294
354	Recent increase in nitrate concentration of Antarctic snow. 1990 , 346, 258-260	130
353	Progress towards a quantitative understanding of Antarctic ozone depletion. 1990 , 347, 347-354	653

352	Methane in cities. 1990 , 347, 432-433	13
351	Potential coastal impacts of contemporary changing climate on South Asian seas states. 1990 , 14, 33-46	8
350	An interim reference model for the variability of the middle atmosphere water vapor distribution. Advances in Space Research, 1990, 10, 51-64	12
349	Quantifying and comparing fuel-cycle greenhouse-gas emissions. 1990 , 18, 550-562	12
348	Mechanism of Methane Transport from the Rhizosphere to the Atmosphere through Rice Plants. 1990 , 94, 59-66	310
347	Consumption of atmospheric methane in soils of central Panama: Effects of agricultural development. 1990 , 4, 21-27	148
346	Methane production and emission in a Texas rice field. 1990 , 4, 47-68	241
345	Radiative forcing of climate by changes in the vertical distribution of ozone. 1990 , 95, 9971-9981	403
344	In situ measurement of water vapor in the stratosphere with a cryogenically cooled Lyman-alpha hygrometer. 1990 , 95, 13781	9
343	Methane and carbon monoxide emissions from asphalt pavement: Measurements and estimates of their importance to global budgets. 1990 , 95, 14007	8
342	Seasonal dynamics in methane emissions from the Amazon River floodplain to the troposphere. 1990 , 95, 16417	128
341	Methane flux from the Amazon River floodplain: Emissions during rising water. 1990 , 95, 16773	116
340	Carbon kinetic isotope effect in the oxidation of methane by the hydroxyl radical. 1990 , 95, 22455	149
339	Methane fluxes in wetland and forest soils, beaver ponds, and low-order streams of a temperate forest ecosystem. 1990 , 95, 22463	51
338	Effect of organic matter application on methane emission from some Japanese paddy fields. 1990 , 36, 599-610	431
337	A geochemial perspective of natural gas and atmospheric methane. 1990 , 16, 531-547	144
336	References. 1990 , 609-679	3
335	Black Sea methane geochemistry. 1991 , 38, S1189-S1210	185

334	Methane in flooded soil water and the emission through rice plants to the atmosphere. 1991 , 31, 343-350	50
333	A study of the sources and sinks of methane and methyl chloroform using a global three-dimensional Lagrangian tropospheric tracer transport model. 1991 , 96, 3013	73
332	Carbon isotopic composition of atmospheric CH4: Fossil and biomass burning source strengths. 1991 , 5, 25-47	200
331	Methane consumption and emission by Taiga. 1991 , 5, 261-273	114
330	Variation of the stable isotopes of water with altitude in the Saint Elias Mountains of Canada. 1991 , 96, 7483	57
329	Determination of the isotopic composition of atmospheric methane and its application in the Antarctic. 1991 , 96, 15455	84
328	Three-dimensional model synthesis of the global methane cycle. 1991 , 96, 13033	716
327	Relationships between CH4 emission, biomass, and CO2 exchange in a subtropical grassland. 1991 , 96, 13067	91
326	Atmospheric methane: A global three-dimensional model study. 1991 , 96, 17339	13
325	Mesospheric clouds and the physics of the mesopause region. 1991 , 29, 553	217
324	Role of Plants in Regulating the Methane Flux to the Atmosphere. 1991 , 29-63	105
323	Effects of Vegetation on Methane Flux, Reservoirs, and Carbon Isotopic Composition. 1991 , 65-92	94
322	The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. <i>Science</i> , 1991 , 251, 46-52	241
321	Stratospheric Chemistry. 1991 , 29, 12-24	5
320	Tropospheric Chemistry: 4 Years of U.S. Research, 1987¶990. 1991 , 29, 2-11	3
319	Global environmental change issues in the Western Indian Ocean region. 1991 , 22, 401-419	6
318	New measurement of the rate coefficient for the reaction of OH with methane. 1991 , 350, 406-409	195
317	Methane on the greenhouse agenda. 1991 , 354, 181-182	81

316	Effect of urea fertilizer and environmental factors on CH4 emissions from a Louisiana, USA rice field. 1991 , 136, 195-203	156
315	Nitrogen Dynamics And Management In Rice-Legume Cropping Systems. 1991 , 45, 1-59	102
314	11 The Global Carbon Cycle. 1992 , 239-262	18
313	16 Human Modification of Global Biogeochemical Cycles. 1992 , 353-361	5
312	Kinetic Isotope Effects and Their Use in Studying Atmospheric Trace Species. 1992 , 390-408	6
311	Chemical-dynamical Modelling of the Atmosphere with Emphasis on the Methane Oxidation. 1992 , 96, 241-251	8
310	Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. <i>Science</i> , 1992 , 257, 1384-7	191
309	Glacial-interglacial evolution of greenhouse gases as inferred from ice core analysis: A review of recent results. 1992 , 11, 381-386	10
308	Estimates of methane emission from large stationary combustion sources. 1992 , 18, 271-282	1
307	A source inventory for atmospheric methane in New Zealand and its global perspective. 1992 , 97, 3751	7
306	Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra. 1992 , 97, 16627	116
305	Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978¶990. 1992 , 97, 2445	237
304	Interannual variations in tundra methane emission: A 4-year time series at fixed sites. 1992 , 6, 139-159	170
303	Methane emissions from California rice paddies with varied treatments. 1992 , 6, 233-248	87
302	Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment. 1992 , 6, 271-291	78
301	Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies. 1992 , 6, 323-338	72
300	Future CH4 emissions from rice production. 1992 , 97, 7521	56
299	Variations in atmospheric methane at Mauna Loa Observatory related to long-range transport. 1992 , 97, 6003	56

298 Tropospheric Chemical Reactivity and Its Consequences for Clean and Polluted Air. 1992, 64-116

297	Global Significance of Biomethanogenesis. 1992 , 338-351	3
296	Methane production from anaerobic soil amended with rice straw and nitrogen fertilizers. 1992 , 33, 115-121	107
295	Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. 1992 , 356, 421-423	157
294	Consumption of atmospheric methane by desert soils. 1992 , 357, 145-147	193
293	Slowing down of the global accumulation of atmospheric methane during the 1980s. 1992 , 358, 313-316	271
292	Biotechnology and global climate change. 1992 , 3, 286-290	1
291	Methane: A greenhouse gas in the Earth's atmosphere. 1992 , 41, 95-113	27
290	Sinks for atmospheric methane. 1992 , 41, 137-147	9
289	Regional forest migrations and potential economic effects. 1992 , 11, 1129-1136	8
288	Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors. 1993 , 25, 1-17	193
287	Methane emission and entrapment in flooded rice soils as affected by soil properties. 1993 , 16, 163-168	70
286	Methane mitigation in flooded Louisiana rice fields. 1993 , 15, 174-178	63
285	Pools and fluxes of biogenic carbon in the Former Soviet Union. 1993 , 70, 223-237	8
284	Modeling methane emissions from rice soils. 1993 , 8, 197-207	1
283	Stratospheric CIO and ozone from the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. 1993 , 362, 597-602	240
282	Climate warming and the carbon cycle in the permafrost zone of the former Soviet Union. 1993 , 4, 149-163	5
281	Long-term effects of nitrogen fertilization on methane oxidation in soil of the broadbalk wheat experiment. 1993 , 25, 1307-1315	176

280	Methanogenic degradation of organic matter by anaerobic bacteria at low temperature. 1993 , 27, 1745-1761	60
279	Northern hemisphere concentrations of methane and nitrous oxide since 1800: Results from the Mt. Logan and 20D ice cores. 1993 , 27, 2413-2423	8
278	Atmospheric methane and its carbon isotopes in the southern hemisphere: Their time series and an instructive model. 1993 , 26, 95-109	32
277	Stable isotopic signature of methane from major sources in Germany. 1993 , 26, 161-177	83
276	Review and assessment of methane emissions from wetlands. 1993 , 26, 261-320	527
275	The effect of soil moisture and thaw depth on CH4 flux from wet coastal tundra ecosystems on the north slope of Alaska. 1993 , 26, 329-337	31
274	Environmental and biotic controls over methane flux from Arctic tundra. 1993 , 26, 357-368	84
273	Climate effects of atmospheric methane. 1993 , 26, 739-768	115
272	Atmospheric methane, record from a Greenland Ice Core over the last 1000 year. 1993 , 20, 2219-2222	71
271	Chemical constituents in the air and snow at Dye 3, Greenland Seasonal variations. 1993, 27, 2709-2722	71
270	The relationship between the methane seasonal cycle and regional sources and sinks at Tae-ahn Peninsula, Korea. 1993 , 27, 2115-2120	20
269	Methane flux measurements from paddy fields in the tropical Indian region. 1993 , 27, 1691-1694	7
268	Factors affecting methane production under rice. 1993 , 7, 143-155	48
267	Oxidation of atmospheric methane in soil: Measurements in the field, in soil cores and in soil samples. 1993 , 7, 109-121	133
266	The age of the air in the firn and the ice at Summit, Greenland. 1993, 98, 2831-2838	218
265	Feasibility of determining surface emissions of trace gases using an inverse method in a three-dimensional chemical transport model. 1993 , 98, 5183-5197	93
264	Evidence for winter/spring denitrification of the stratosphere in the nitrate record of Antarctic firn cores. 1993 , 98, 5213-5220	55
263	Fate of methane in the Hudson River and Estuary. 1993 , 7, 509-523	92

[1994-1993]

Methane consumption and carbon dioxide emission in tallgrass prairie: Effects of biomass burning and conversion to agriculture. 1993 , 7, 735-748		28
Latitudinal distributions of methane in the upper troposphere and marine boundary air over the Pacific in 1990. 1993 , 20, 695-698		15
Differences of the atmospheric CH4 concentration between the Arctic and Antarctic regions in pre-industrial/pre-agricultural era. 1993 , 20, 943-946		55
Estimation of methane discharge from a plume: A case of landfill. 1993 , 20, 2067-2070		9
Carbon isotopic composition of bacterial methane in a soil incubation experiment: Contributions of acetate and. 1993 , 57, 4015-4027		159
Mechanism of Methane Transport by Rice Plants. 1993 , 336-352		24
Spatial and Temporal Variations of Methane Flux from a Rice Paddy Field. 1993 , 353-368		17
The atmospheric CH4 increase since the Last Glacial Maximum. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 1993 , 45, 228-241	3.3	64
Tropospheric Hydroxyl Radical. 1993 , 323-371		6
Measurements of CO2 and CH4 concentrations in air in a polar ice core. 1993 , 39, 209-215		2
Measurements of CO2 and CH4 concentrations in air in a polar ice core. 1993 , 39, 209-215		24
Monoterpenes: Their effects on ecosystem nutrient cycling. 1994 , 20, 1381-406		152
Methane emissions associated with a green manure amendment to flooded rice in California. 1994 , 24, 53-65		33
Seasonal variation in methane flux from rice paddies associated with methane concentration in soil water, rice biomass and temperature, and its modelling. 1994 , 161, 195-208		112
Methane from rice production. 1994 , 37, 167-179		47
Rice paddies as a methane source. 1994 , 27, 13-26		73
An improved head-space analysis method for methane in seawater. 1994 , 47, 115-125		42
Peatlands and global climate change: Insights from comparative studies of sites situated along a latitudinal gradient. 1994 , 14, 229-238		46
	and conversion to agriculture. 1993, 7, 735-748 Latitudinal distributions of methane in the upper troposphere and marine boundary air over the Pacific in 1990. 1993, 20, 695-698 Differences of the atmospheric CH4 concentration between the Arctic and Antarctic regions in pre-industrial/pre-agricultural era. 1993, 20, 943-946 Estimation of methane discharge from a plume: A case of landfill. 1993, 20, 2067-2070 Carbon isotopic composition of bacterial methane in a soil incubation experiment: Contributions of acetate and. 1993, 57, 4015-4027 Mechanism of Methane Transport by Rice Plants. 1993, 336-352 Spatial and Temporal Variations of Methane Flux from a Rice Paddy Field. 1993, 353-368 The atmospheric CH4 increase since the Last Glacial Maximum. Tellus, Series B: Chemical and Physical Meteorology, 1993, 45, 228-241 Tropospheric Hydroxyl Radical. 1993, 323-371 Measurements of CO2 and CH4 concentrations in air in a polar ice core. 1993, 39, 209-215 Measurements of CO2 and CH4 concentrations in air in a polar ice core. 1993, 39, 209-215 Menoterpenes: Their effects on ecosystem nutrient cycling. 1994, 20, 1381-406 Methane emissions associated with a green manure amendment to flooded rice in California. 1994, 24, 53-65 Seasonal variation in methane flux from rice paddies associated with methane concentration in soil water, rice biomass and temperature, and its modelling. 1994, 161, 195-208 Methane from rice production. 1994, 37, 167-179 Rice paddies as a methane source. 1994, 27, 13-26 An improved head-space analysis method for methane in seawater. 1994, 47, 115-125 Peatlands and global climate change: Insights from comparative studies of sites situated along a	and conversion to agriculture. 1993, 7, 735-748 Latitudinal distributions of methane in the upper troposphere and marine boundary air over the Pacific in 1990, 1993, 20, 695-698 Differences of the atmospheric CH4 concentration between the Arctic and Antarctic regions in pre-industrial/pre-agricultural era. 1993, 20, 943-946 Estimation of methane discharge from a plume: A case of landfill. 1993, 20, 2067-2070 Carbon isotopic composition of bacterial methane in a soil incubation experiment: Contributions of acetate and. 1993, 57, 4015-4027 Mechanism of Methane Transport by Rice Plants. 1993, 336-352 Spatial and Temporal Variations of Methane Flux from a Rice Paddy Field. 1993, 353-368 The atmospheric CH4 increase since the Last Glacial Maximum. Tellus, Series B: Chemical and Physical Meteorology, 1993, 45, 228-241 Tropospheric Hydroxyl Radical. 1993, 323-371 Measurements of CO2 and CH4 concentrations in air in a polar ice core. 1993, 39, 209-215 Measurements of CO2 and CH4 concentrations in air in a polar ice core. 1993, 39, 209-215 Menoterpenes: Their effects on ecosystem nutrient cycling. 1994, 20, 1381-406 Methane emissions associated with a green manure amendment to flooded rice in California. 1994, 24, 53-65 Seasonal variation in methane flux from rice paddies associated with methane concentration in soil water, rice biomass and temperature, and its modelling. 1994, 161, 195-208 Methane from rice production. 1994, 37, 167-179 Rice paddies as a methane source. 1994, 27, 13-26 An improved head-space analysis method for methane in seawater. 1994, 47, 115-125 Peatlands and global climate change: Insights from comparative studies of sites situated along a

244	The 27 day solar UV response of stratospheric ozone: solar cycle 21 vs. solar cycle 22. 1994 , 56, 1057-1065	12
243	Methane emission by bubbling from Gatun Lake, Panama. 1994 , 99, 8307	149
242	Modeling the Global Carbon Cycle: Nitrogen fertilization of the terrestrial biosphere and the hissing ICO2 sink. 1994 , 8, 307-333	83
241	Temporal patterns of methane emissions from wetland rice fields treated by different modes of N application. 1994 , 99, 16457	63
240	Methane oxidation activity in various soils and freshwater sediments: Occurrence, characteristics, vertical profiles, and distribution on grain size fractions. 1994 , 99, 16531	113
239	Concentration and 13C records of atmospheric methane in New Zealand and Antarctica: Evidence for changes in methane sources. 1994 , 99, 16913	109
238	The growth rate and distribution of atmospheric methane. 1994 , 99, 17021	407
237	High-precision direct measurements of (13)CH(4)/(12)CH(4) and (12)CH(3)D/(12)CH(4) ratios in atmospheric methane sources by means of a long-path tunable diode laser absorption spectrometer. 1994 , 33, 7704-16	102
236	Methane oxidation in soil as affected by land use, soil pH and N fertilization. 1994 , 26, 1613-1622	220
235	Methane-bearing shallow gas-charged sediments in the eastern Arabian Sea: a probable source for greenhouse gas. 1994 , 14, 1361-1370	20
234	Development of a continuous measurement system and areal distribution of methane in some source areas. 1994 , 9, 141-146	8
233	Continuous Monitoring of the Methane Concentration in the Urban Atmosphere of Nagoya, 1990-1993 1995 , 11, 349-356	4
232	The effect of nitrogen fertilizer use and other practices on methane emission from flooded rice. 1995 , 40, 71-84	41
231	Greenhouse effect and related problems. 1995 , 70, 75-78	
230	Methane emission from a wetland rice field as affected by salinity. 1995 , 170, 307-313	40
229	A large methane plume east of Bear Island (Barents Sea): implications for the marine methane cycle. 1995 , 84, 59	57
228	Increase in lower-stratospheric water vapour at a mid-latitude Northern Hemisphere site from 1981 to 1994. 1995 , 374, 146-149	201
227	Methanogenesis and methanotrophy within a Sphagnum peatland. 1995 , 18, 215-224	40

226	Methane consumption in (hyper) saline habitats of Crimea (Ukraine). 1995 , 18, 299-303	26
225	Methane emissions from China's paddyland. 1995 , 55, 129-137	27
224	Factors affecting methane emission from rice paddies. 1995 , 14, 60-67	1
223	Migration and Atmospheric Emission of Landfill Gas. 1995 , 12, 309-327	8
222	Influence of nitrate on methane production and oxidation in flooded soil. 1995 , 26, 2449-2459	14
221	Methane uptake by unflooded paddy soils. 1995 , 41, 371-375	10
220	Methane oxidation in temperate soils: Effects of land use and the chemical form of nitrogen fertilizer. 1995 , 30, 539-546	90
219	Inversion of the global methane cycle using chance constrained programming: Methodology and results. 1995 , 30, 1151-1170	4
218	Influence of organic matter incorporation on the methane emission from a wetland rice field. 1995 , 9, 11-22	140
217	Modeling methane emissions from rice paddies. 1995 , 9, 183-195	91
216	Variations of atmospheric methane supply from the Sea of Okhotsk induced by the seasonal ice cover. 1995 , 9, 351-358	14
215	Production of the greenhouse gases CH4 and CO2 by hydroelectric reservoirs of the boreal region. 1995 , 9, 529-540	116
214	REFERENCES. 1995 , 469-541	
213	Methane oxidation in soils of two long-term fertilization experiments in Germany. 1996 , 28, 773-782	62
212	The isotopic characterization of methane, non-methane hydrocarbons and formaldehyde in the troposphere. 1996 , 30, 621-638	49
211	Effect of land use on the rate of methane uptake by surface soils in Northern Europe. 1996 , 30, 1005-1011	98
210	The helium and carbon isotope systematics of a continental geothermal system: results from monitoring studies at Long Valley caldera (California, U.S.A.). 1996 , 127, 269-295	124
209	A reevaluation of the open ocean source of methane to the atmosphere. 1996 , 101, 6953-6961	113

208	Effect of water management on methane emission from a Japanese rice paddy field: Automated methane monitoring. 1996 , 10, 255-267	226
207	Modeling atmospheric II3CH4 and the causes of recent changes in atmospheric CH4 amounts. 1996 , 101, 22923-22932	79
206	Methane concentration profiles in a lake with a permanently anoxic hypolimnion (Lake Lugano, Switzerland-Italy). 1996 , 133, 201-209	21
205	Comparison of CH4 oxidation rates in woodland, arable and set aside soils. 1996 , 28, 1357-1365	132
204	Free tropospheric ozone production after deep convection of dispersing tropical urban plumes. 1996 , 30, 4263-4274	4
203	Controls of methane oxidation in sediments. 1996 , 25, 25-38	2
202	Comparative respiration and methane production rates in Nearctic termites. 1996, 42, 799-806	29
201	Stable isotope geochemistry of coals, humic kerogens and related natural gases. 1996 , 32, 191-215	244
200	Environmental impact of biomethanogenesis. 1996 , 42, 3-18	29
199	CH4 oxidation in two temperate arable soils as affected by nitrate and ammonium application. 1996 , 23, 86-92	29
198	Methane emission measurements in urban areas in Eastern Germany. 1996 , 24, 121-140	32
197	Spatial and temporal variations of dissolved gases (CH4, CO 2, and O 2) in peat cores. 1996 , 31, 57-66	28
196	A Preliminary Comparative Study of Three Manure Composting Systems and their Influence on Process Parameters and Methane Emissions. 1996 , 4, 71-82	42
195	Determination of soil-entrapped methane. 1996 , 27, 1561-1570	5
194	Reports and Reviews: International Report: Comparison of Landfill Gases From Two Landfill Sites in China and Hong Kong. 1997 , 15, 547-552	
193	Untersuchungen zur Isotopensignatur von Methan und Kohlendioxid aus biogenen Gasen unterschiedlicher Quellen. 1997 , 33, 251-259	3
192	Behavior of trace gas mixing ratios on a very tall tower in North Carolina. 1997 , 102, 8825-8835	35
191	Micrometeorological measurements of methane and nitrous oxide exchange above a boreal aspen forest. 1997 , 102, 29331-29341	55

(2000-1997)

190	Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition. 1997 , 29, 1625-1632		64	
189	Methane emission from rice: Stable isotopes, diurnal variations, and CO2 exchange. 1997 , 11, 15-27		117	
188	Methane flux from Missippi River deltaic plain wetlands. 1997 , 37, 227-236		30	
187	Measured and estimated methane and carbon dioxide emissions from sawdust waste in the Tennessee Valley under alternative management strategies. 1997 , 61, 213-220		12	
186	Micro-ecology of peat: minimally invasive analysis using confocal laser scanning microscopy, membrane inlet mass spectrometry and PCR amplification of methanogen-specific gene sequences. 1998 , 25, 179-188		17	
185	Effect of the organic horizon on methane oxidation and uptake in soil of a boreal Scots pine forest. 1998 , 26, 245-255		49	
184	Preliminary studies on methane fluxes in Hainan mangrove communities. 1998, 16, 64-71		3	
183	Geochemistry of coalbed gas [A review. 1998 , 35, 159-173		121	
182	Atmospheric methane consumption in adjacent arable and forest soil systems. 1998 , 30, 1187-1193		21	
181	Diurnal Oscillations of Gas Production and Effluxes (CO2 and CH4) in Cores from a Peat Bog. 1998 , 29, 247-259		16	
180	Atmospheric methane measurements in central New England: An analysis of the long-term trend and the seasonal and diurnal cycles. 1998 , 103, 10621-10630		16	
179	Changing concentration, lifetime and climate forcing of atmospheric methane. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 1998 , 50, 128-150	.3	204	
178	Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. <i>Applied and Environmental Microbiology</i> , 1999 , 65, 3312-8	8	221	
177	Controls on the stable carbon isotopic composition of biogenic methane produced in a tidal freshwater estaurine sediment. 1999 , 63, 1075-1082		29	
176	The isotopic composition of atmospheric methane. 1999 , 13, 445-461		250	
175	A history of 🛮 3C in atmospheric CH4 from the Cape Grim Air Archive and Antarctic firn air. 1999 , 104, 23631-23643		53	
174	Methane Emissions at Nine Landfill Sites in the Northeastern United States. 1999 , 33, 2088-2094		94	
173	Seasonal dynamics of methane emission from wetlands. 2000 , 2, 39-46		56	

172	Economics of mitigating greenhouse gas emissions from solid waste in Lebanon. 2000, 18, 329-340	9
171	Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. 2000 , 6, 205-26	587
170	Global Tropospheric Chemistry and Climate Change. 2000 , 762-843	3
169	Economics of mitigating greenhouse gas emissions from solid waste in Lebanon. 2000 , 18, 329-340	3
168	The Ice Core Record of Atmospheric Methane. 2000 , 9-24	
167	Methane exchange between coal-bearing basins and the atmosphere: the Ruhr Basin and the Lower Rhine Embayment, Germany. 2000 , 31, 1387-1408	31
166	A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. 2000 , 105, 17751-17792	563
165	The Global Carbon Cycle. 2000 , 72, 282-321	10
164	Relationships between methane production and emission to lacunal methane concentrations in rice. 2000 , 14, 73-83	5
163	Ozone trends: A review. 2001 , 39, 231-290	250
163 162	Ozone trends: A review. 2001 , 39, 231-290 Cloud Detection and Clearing for the Earth Observing System Terra Satellite Measurements of Pollution in the Troposphere (MOPITT) Experiment. 2001 , 40, 1269-84	250
	Cloud Detection and Clearing for the Earth Observing System Terra Satellite Measurements of	
162	Cloud Detection and Clearing for the Earth Observing System Terra Satellite Measurements of Pollution in the Troposphere (MOPITT) Experiment. 2001 , 40, 1269-84	29
162 161	Cloud Detection and Clearing for the Earth Observing System Terra Satellite Measurements of Pollution in the Troposphere (MOPITT) Experiment. 2001 , 40, 1269-84 Production, oxidation, emission and consumption of methane by soils: A review. 2001 , 37, 25-50 Response of soil methanotrophic activity to carbon dioxide enrichment in a North Carolina	29 1234
162 161 160	Cloud Detection and Clearing for the Earth Observing System Terra Satellite Measurements of Pollution in the Troposphere (MOPITT) Experiment. 2001, 40, 1269-84 Production, oxidation, emission and consumption of methane by soils: A review. 2001, 37, 25-50 Response of soil methanotrophic activity to carbon dioxide enrichment in a North Carolina coniferous forest. 2001, 33, 793-800 Effects of land-use on the activity and diversity of methane oxidizing bacteria in forest soils. 2001,	29 1234 20
162 161 160	Cloud Detection and Clearing for the Earth Observing System Terra Satellite Measurements of Pollution in the Troposphere (MOPITT) Experiment. 2001, 40, 1269-84 Production, oxidation, emission and consumption of methane by soils: A review. 2001, 37, 25-50 Response of soil methanotrophic activity to carbon dioxide enrichment in a North Carolina coniferous forest. 2001, 33, 793-800 Effects of land-use on the activity and diversity of methane oxidizing bacteria in forest soils. 2001, 33, 1613-1623	29 1234 20 51
162 161 160 159	Cloud Detection and Clearing for the Earth Observing System Terra Satellite Measurements of Pollution in the Troposphere (MOPITT) Experiment. 2001, 40, 1269-84 Production, oxidation, emission and consumption of methane by soils: A review. 2001, 37, 25-50 Response of soil methanotrophic activity to carbon dioxide enrichment in a North Carolina coniferous forest. 2001, 33, 793-800 Effects of land-use on the activity and diversity of methane oxidizing bacteria in forest soils. 2001, 33, 1613-1623 Dasuopu ice core record of atmospheric methane over the past 2000 years. 2001, 44, 689-695 Construction of a low-cost automated chromatographic system for the measurement of ambient	29 1234 20 51

154	The global methane cycle: isotopes and mixing ratios, sources and sinks. 2001, 37, 257-379	68
153	Methane emissions from rice fieldsquantification, mechanisms, role of management, and mitigation options. 2001 , 70, 193-260	89
152	Trace gas measurements along the Trans-Siberian railroad: The TROICA 5 expedition. 2002 , 107, ACH 13-1	24
151	In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985\(\textit{0}\)000 and resulting source inferences. 2002, 107, ACH 20-1	116
150	Microbial respiration and diffusive transport of O2, 16O2, and 18O16O in unsaturated soils: a mesocosm experiment. 2002 , 66, 3367-3374	24
149	Implications of the recent fluctuations in the growth rate of tropospheric methane. 2002 , 29, 117-1-117-4	55
148	Long-term effects of mineral versus organic fertilizers on activity and structure of the methanotrophic community in agricultural soils. 2003 , 5, 867-77	53
147	Seasonal variability and trends of volatile organic compounds in the lower polar troposphere. 2003 , 108, n/a-n/a	27
146	Carbon and hydrogen isotopic compositions of stratospheric methane: 1. High-precision observations from the NASA ER-2 aircraft. 2003 , 108,	36
145	Large-scale distribution of CH4 in the western North Pacific: Sources and transport from the Asian continent. 2003 , 108,	18
144	Methane and nitrous oxide emissions from an irrigated rice of North India. 2003, 51, 181-95	90
143	Seasonal methane emissions by diffusion and ebullition from oligohaline marsh environments in coastal Louisiana. 2004 , 389-408	4
142	Trends in methane and sulfur hexafluoride at a tropical coastal site, Thumba (8.6LN, 77.LE), in India. 2004 , 38, 1145-1151	8
141	Investigation on temporal variation in methane emission from different rice cultivars under the influence of weeds. 2004 , 93, 91-101	4
140	Methanotrophic bacteria in boreal forest soil after fire. 2004 , 50, 195-202	47
139	Long-term and seasonal variations in the levels of hydrogen peroxide, methylhydroperoxide, and selected compounds over the Pacific Ocean. 2004 , 109,	15
138	Estimation of methane emission from whole waste landfill site using correlation between flux and ground temperature. 2005 , 48, 845-853	45
137	Methane-oxidizing bacteria in a California upland grassland soil: diversity and response to simulated global change. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 2642-52	131

136	Source evaluation of atmospheric methane over western Siberia using double stable isotopic signatures. 2005 , 36, 717-726	26
135	Biogeochemistry of Methane Exchange between Natural Wetlands and the Atmosphere. 2005 , 22, 73-94	456
134	Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane RecoveryA Review 2005, 19, 659-724	715
133	Long-term changes of methane and hydrogen in the stratosphere in the period 1978\(\mathbb{Q}\)003 and their impact on the abundance of stratospheric water vapor. 2006, 111,	52
132	Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane. 2006 , 33,	88
131	Methanogen flora of paddy soils in Japan. 2006 , 22, 39-48	92
130	Long-term trend of at northern mid-latitudes: Comparison between ground-based infrared solar and surface sampling measurements. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2.1 2006 , 97, 457-466	9
129	Long-term changes of hydrogen-containing species in the stratosphere. 2006 , 68, 1973-1979	11
128	Stratospheric ozone depletion. 2006 , 361, 769-90	115
127	Stable isotope ratios in atmospheric CH4: Implications for seasonal sources and sinks. 2007 , 112,	53
126	Enhanced net formations of nitrous oxide and methane underneath the frozen soil in Sanjiang wetland, northeastern China. 2007 , 112,	21
125	Methane: signs of progress along the road. 2007 , 27, 459-60	
124	Atmospheric methane in the Mediterranean: Analysis of measurements at the island of Lampedusa during 1995\(\textbf{Q} 005. \) 2007, 41, 3877-3888	19
123	A gas chromatography/combustion/isotope ratio mass spectrometry system for high-precision delta13C measurements of atmospheric methane extracted from ice core samples. 2008 , 22, 3261-9	25
122	Phanerozoic evolution of atmospheric methane. 2008 , 22, n/a-n/a	15
121	Diffusional and microbial isotope fractionation of methane during gas push pull tests. 2008, 72, 2115-2124	10
120	Methane in the Atmosphere. 2008, 2325-2328	O
119	A High-precision Measurement System for Carbon and Hydrogen Isotopic Ratios of Atmospheric Methane and Its Application to Air Samples Collected in the Western Pacific Region. 2009 , 87, 365-379	22

118	On the variation of the tropospheric ozone over Indian region in relation to the meteorological parameters. 2009 , 30, 2813-2826	6
117	Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals. 2009 , 114,	233
116	Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C ₂ 10 volatile organic compounds (VOCs), 6.8 CO ₂ , CH ₄ , CO, NO, NO ₂ , NO _y , Co, NO, NO ₂ , NO	172
115	Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review. 2010 , 48,	157
114	Recent changes in methane mixing ratio and its 13C content observed in the southwest Pacific region. 2010 , 7, 109-117	7
113	Air toxic emissions from snowmobiles in Yellowstone National Park. 2010 , 44, 222-8	15
112	Ecology of Aerobic Methanotrophs and their Role in Methane Cycling. 2010, 3067-3076	3
111	Estimation of microbial methane generation and oxidation rates in the municipal solid waste landfill of Kaluga city, Russia. 2010 , 46, 78-90	5
110	Quantifying methane emissions from rice paddies in Northeast China by integrating remote sensing mapping with a biogeochemical model. 2011 , 8, 1225-1235	37
109	Carbon and Sulfur Stable Isotopic Systems and Their Application in Paleoenvironmental Analysis. 2011 , 403-450	1
108	Community Shift of Methane-oxidizing Bacteria in Cover Soil of Waste Landfills Due to Methane Emission. 2011 , 1,	
107	Quantification of seep-related methane gas emissions at Tommeliten, North Sea. 2011 , 31, 867-878	91
106	Flux measurements of benzene and toluene from landfill cover soils. 2011 , 29, 50-8	11
105	Anthropogenic effects on the distribution of minor chemical constituents in the mesosphere/lower thermosphere 🖪 model study. <i>Advances in Space Research</i> , 2012 , 50, 598-618	8
104	86 Biochemistry of Methyl-CoM Reductase and Coenzyme430. 2012 , 1-44	
103	Ground level volume mixing ratio of methane in a tropical coastal city. 2012 , 184, 1857-63	5
102	Contribution of some ozone depleting substances (ODS) and greenhouse gases (GHGs) on total column ozone growth at Srinagar (34LN, 74.8LE), India. <i>Journal of Earth System Science</i> , 2013 , 122, 239-2528	1
101	Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. 2013 , 115, 15-30	130

100	Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. 2013 , 118, 7350-7369	191
99	Perspectives on our planet in the Anthropocene. 2013 , 10, 269	23
98	Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion. 2014 , 5, 114	23
97	Validation of XCH₄ derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data. 2014 , 7, 2987-3005	26
96	Global annual methane emission rate derived from its current atmospheric mixing ratio and estimated lifetime. 2014 , 32, 277-283	11
95	The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. 2014,	2
94	Hydroxyl layer: Mean state and trends at midlatitudes. 2014 , 119, 12,391-12,419	31
93	Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane. 2014 , 14, 125-45	23
92	Enhanced methane emissions from oil and gas exploration areas to the atmospherethe central Bohai Sea. 2014 , 81, 157-65	15
91	CH4 retrieval from hyperspectral satellite measurements in short-wave infrared: sensitivity study and preliminary test with GOSAT data. 2014 , 59, 1499-1507	2
90	Comparison of the HadGEM2 climate-chemistry model against in situ and SCIAMACHY atmospheric methane data. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 13257-13280	26
89	Factors Affecting Methane Production in Flooded Rice Soils. <i>ASA Special Publication</i> , 2015 , 157-165 1.1	4
88	3 Evidence for Organometallic Intermediates in Bacterial Methane Formation Involving the Nickel Coenzyme F430. 2015 , 71-110	
87	Methane Emissions from Flooded Rice Amended with a Green Manure. <i>ASA Special Publication</i> , 2015 , 183-192	1
86	Temperature dependences for N 2 - and air-broadened Lorentz half-width coefficients of methane transitions around 3.38 μ m. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016 , 171, 50-56 ^{2.1}	3
85	Emission of methane and nitrous oxides from agricultural soils and related global warming potentials of Murshidabad District, West Bengal. <i>Singapore Journal of Tropical Geography</i> , 2017 , 38, 313-331	1
84	Modulation of midtropospheric methane by El Ni₩. <i>Earth and Space Science</i> , 2017 , 4, 590-596 3.1	4
83	Inverse modelling of European CH₄ emissions during 2006\(\mathbb{Q}\)012 using different inverse models and reassessed atmospheric observations. <i>Atmospheric Chemistry and</i> 6.8 Physics, 2018, 18, 901-920	51

82 References. **2018**, 429-474

81	A review of four decades of atmospheric trace gas measurements at Cape Point, South Africa. Transactions of the Royal Society of South Africa, 2018, 73, 113-132	1	8
80	Experimental assessment of the combustion performance of an oven burner operated on pipeline natural gas mixed with hydrogen. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 26049-26062	6.7	11
79	Satellite based trend analysis of few atmospheric parameters over the Indian region. <i>Advances in Space Research</i> , 2019 , 64, 2245-2268	2.4	4
78	100 Years of Progress in Gas-Phase Atmospheric Chemistry Research. <i>Meteorological Monographs</i> , 2019 , 59, 10.1-10.52	5.7	8
77	Climate Change TimeLine: An Ontology to Tell the Story so Far. <i>IEEE Access</i> , 2020 , 8, 65294-65312	3.5	9
76	Trend analysis of atmospheric temperature, water vapour, ozone, methane and carbon-monoxide over few major cities of India using satellite data. <i>Journal of Earth System Science</i> , 2020 , 129, 1	1.8	3
75	Nuclear Magnetic Resonance to Detect Rumen Metabolites Associated with Enteric Methane Emissions from Beef Cattle. <i>Scientific Reports</i> , 2020 , 10, 5578	4.9	8
74	Nickel-Sulfonate Mode of Substrate Binding for Forward and Reverse Reactions of Methyl-SCoM Reductase Suggest a Radical Mechanism Involving Long Range Electron Transfer.		
73	Nickel-Sulfonate Mode of Substrate Binding for Forward and Reverse Reactions of Methyl-SCoM Reductase Suggest a Radical Mechanism Involving Long-Range Electron Transfer. <i>Journal of the American Chemical Society</i> , 2021 , 143, 5481-5496	16.4	8
72	Novel methanotrophic and methanogenic bacterial communities from diverse ecosystems and their impact on environment. <i>Biocatalysis and Agricultural Biotechnology</i> , 2021 , 33, 102005	4.2	4
71	The Role of Northern Ecosystems in the Global Methane Budget. <i>Ecological Studies</i> , 1997 , 266-289	1.1	10
70	Global Atmospheric-Biospheric Chemistry. 1994 , 1-18		22
69	The Carbon Isotope Biogeochemistry of Methane Production in Anoxic Sediments: 1. Field Observations. 1993 , 574-593		13
68	Aspects of the Biogeochemistry of Methane in Mono Lake and the Mono Basin of California. 1993 , 704-	741	27
67	Ecological Aspects of Methane Oxidation, a Key Determinant of Global Methane Dynamics. <i>Advances in Microbial Ecology</i> , 1992 , 431-468		145
66	Nitrate in Polar Ice. 1995 , 195-224		92
65	Physiological Limitations of Methanotrophic Activity in situ. 1996 , 17-32		4

64	C, N, P, S Global Biogeochemical Cycles and Modeling of Global Change. 1993 , 1-61	37
63	The Stratosphere: An Introduction. 1993 , 1-27	2
62	Responses in tropospheric chemistry to changes in UV fluxes, temperatures and water vapour densities. 1995 , 145-162	14
61	Ozone Chemistry Changes in the Troposphere and Consequent Radiative Forcing of Climate. 1995 , 227-258	29
60	The Record of Atmospheric Methane. 1993 , 38-61	9
59	Isotopic Abundances in the Atmosphere and Sources. 1993 , 62-88	17
58	Control of Tundra Methane Emission by Microbial Oxidation. <i>Ecological Studies</i> , 1996 , 257-274 1.1	18
57	Wetlands. 2000 , 202-233	33
56	Methane in the Global Environment. 2000 , 304-341	2
55	Stratospheric Ozone Depletion. 2009 , 23-66	3
54	Atmospheric Chemistry-Climate Interactions. 1989 , 279-302	7
53	Global Biogeochemical Cycles and Climate. 1989 , 453-473	27
52	Methane transport capacity of rice plants. I. Influence of methane concentration and growth stage analyzed with an automated measuring system. 2000 , 357-366	1
51	Physical Determinants of Methane Oxidation Capacity in a Temperate Soil. 2001 , 401-414	1
50	Pools and Fluxes of Biogenic Carbon in the Former Soviet Union. 1993 , 223-237	2
49	Rice Paddies as a Methane Source. 1994 , 13-26	2
48	Atmospheric Methane: Trends and Impacts. 2000 , 1-44	5
47	Carbon Monoxide and Methane in Surface Seawater of the Tropical Pacific Ocean. <i>Ocean Sciences Research</i> , 2000 , 485-508	2

46	Global Impact of Termites on the Carbon Cycle and Atmospheric Trace Gases. 2000, 409-435		69
45	Methanogenic Archaea in Paddy Agricultural Fields. 2018 , 51-68		1
44	3:Evidence for Organometallic Intermediates in Bacterial Methane Formation Involving the Nickel Coenzyme F430. <i>Metal Ions in Life Sciences</i> , 2010 , 71-110		6
43	Rapid methane oxidation in a landfill cover soil. Applied and Environmental Microbiology, 1990, 56, 3405	-141 8	377
42	Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. <i>Applied and Environmental Microbiology</i> , 1995 , 61, 592-601	4.8	254
41	Methanotrophic bacteria. <i>Microbiological Reviews</i> , 1996 , 60, 439-71		1742
40	A primary study of the methane flux on the water-air interface of eight lakes in winter, China. <i>Hupo Kexue/Journal of Lake Sciences</i> , 2007 , 19, 11-17	0.5	9
39	Intercalibration experiment of methane standard gas scale between NOAA/CMDL and MRI/GRL <i>Papers in Meteorology and Geophysics</i> , 1993 , 44, 45-56	0	8
38	Methane standard gases for atmospheric measurements at the MRI and JMA and intercomparison experiments. <i>Papers in Meteorology and Geophysics</i> , 2004 , 54, 91-109	0	13
37	Constraints on the global sources of methane and an analysis of recent budgets. <i>Tellus, Series B:</i> Chemical and Physical Meteorology, 1990 , 42, 229-236	3.3	31
36	Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 1992 , 44, 282-294	3.3	69
35	Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C ₂ 10 volatile organic compounds (VOCs), CO ₂ 4, CO, NO, NO ₂ ,		4
34	Comparison of the HadGEM2 climate-chemistry model against in-situ and SCIAMACHY atmospheric methane data.		2
33	Quantifying methane emissions from rice paddies in Northeast China by integrating remote sensing mapping with a biogeochemical model.		2
32	Responses of CH ₄ uptake to the experimental N and P additions in an old-growth tropical forest, Southern China.		1
31	Effect of Gypsum Application on Reducing Methane (CH4) Emission in a Reclaimed Coastal Paddy Soil. <i>Korean Journal of Environmental Agriculture</i> , 2011 , 30, 243-251	0.6	6
30	CH4 Emission and Oxidation in Rice Paddies. 2000 , 181-195		
29	Environmental Parameters Influencing the Methane Emissions in the Pantanal Floodplain, Brazil. <i>Environmental Science and Engineering</i> , 2009 , 133-146	0.2	

28	Stratospheric Ozone Depletion and Greenhouse Gases since the International Geophysical Year: F. Sherwood Rowland and the Evolution of Earth Science. 2010 , 355-371
27	Community structure of methanotrophs under wetland evolution of WuLiangSuHailake by T-RFLP analysis. 2012 , 783-787
26	Effect of Salt Concentration on Methane Emission in a Coastal Reclaimed Paddy Soil Condition: Pot Test. <i>Korean Journal of Environmental Agriculture</i> , 2013 , 32, 252-259
25	Climate Change: Effects on Biological Systems. 1989 , 667-679
24	BIBLIOGRAPHY. 1989 , 351-399
23	Possible Heterogeneous Reaction Processes Inducing Depletion of the Ozone Layer in the Stratospheric Antarctica. 1990 , 210-214
22	The Greenhouse Effect, Stratospheric Ozone, Marine Productivity, and Global Hydrology: Feedbacks in the Global Climate System. 1990 , 3-20
21	Overview of Global Atmospheric Change. 1990 , 1-21
20	Atmospheric Methane: Estimates of Its Past, Present and Future and Its Role in Effecting Changes in Atmospheric Chemistry. <i>Geospatial Technology and the Role of Location in Science</i> , 1991 , 99-126
19	References. 1991 , 353-423
18	References. 1991 , 353-423
17	The Atmosphere as an International Common Property Resource. 1991 , 188-220
16	Literaturnachweis. 1991 , 323-333
15	Some Considerations on the Greenhouse Effect and Related Problems. 1992 , 413-416
14	Modeling Methane Emissions from Rice Soils. 1992 , 161-176
13	Atmospheric Methane Concentrations. 1993 , 89-101
12	A Time-Dependent Two-Dimensional-Model Study of the Trend in Atmospheric Methane. 1993 , 98-112
11	Chemical Changes of the Atmosphere on Geological and Recent Time Scales. 1993 , 1-52

CITATION REPORT

10

Chemical Changes of the Atmosphere on Geological and Recent Time Scales. 1994, 1-52

Global Climate Change due to Radiatively Active Gases. 1994, 53-92

Review of factors that affect the Earth's ozone depletion. 1994,

Literaturnachweis. 1997, 339-346

Validation of XCH<sub>4<:/sub> derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data.

Evaluation of Methane Oxidation Potentials of Alpine Soils Having Different Forestation Structure in Gajwa mountain. Korean Journal of Environmental Agriculture, 2014, 33, 306-313

Greenhouse Gas Emissions Related to Agriculture and Land-Use Practices. ASA Special Publication, 27-431.1

Limitations of the radon tracer method (RTM) to estimate regional greenhouse gas (GHG) emissions là case study for methane in Heidelberg. Atmospheric Chemistry and Physics, 2021, 21, 17907-17926 4

Residential Fuel Transition and Fuel Interchangeability in Current Self-Aspirating Combustion

Applications: Historical Development and Future Expectations. Energies, 2022, 15, 3547

Global Climate Change due to Radiatively Active Gases. 1993, 53-92

3.1