Effect of alcohols on gastric and small intestinal apical r

Gut

29, 1648-1655

DOI: 10.1136/gut.29.12.1648

Citation Report

#	Article	IF	CITATIONS
1	Acute and chronic exposure to ethanol and the electrophysiology of the brush border membrane of rat small intestine Gut, 1989, 30, 1698-1703.	12.1	3
2	Bile salt-induced increases in duodenal brush-border membrane proton permeability, fluidity, and fragility. Digestive Diseases and Sciences, 1990, 35, 589-595.	2.3	20
3	Ethanol stimulates pepsinogen release by opening a Ca2+ channel of guinea pig gastric chief cells. Gastroenterology, 1991, 100, 17-24.	1.3	26
4	Prostaglandin protects against bile salt induced increases in proton permeation of duodenal brush border membrane Gut, 1991, 32, 645-648.	12.1	6
5	Alcohol and the Digestive Tract. , 1992, , 307-340.		6
6	Amiloride sensitivity of proton-conductive pathways in gastric and intestinal apical membrane vesicles. Journal of Membrane Biology, 1992, 126, 115-22.	2.1	5
7	Effect of ethanol on rat gastric surfactant: A fluorescence polarization study. Gastroenterology, 1993, 104, 179-184.	1.3	20
8	AGE-RELATED EFFECTS OF CHRONIC ETHANOL INTAKE ON PHYSICAL PROPERTIES, LIPID COMPOSITION AND GALACTOSYLTRANSFERASE ACTIVITY OF RAT SMALL INTESTINE M1CROSOMES. Alcohol and Alcoholism, 1996, 31, 183-189.	1.6	8
9	Impairment of H ⁺ -K ⁺ -ATPase-dependent proton transport and inhibition of gastric acid secretion by ethanol. American Journal of Physiology - Renal Physiology, 2001, 280, G1331-G1340.	3.4	8
10	Effect of luminal ethanol on epithelial resistances and cell volume in isolated Necturus gastric mucosa. Digestive Diseases and Sciences, 2003, 48, 2037-2044.	2.3	8
11	Calcium Signaling Is Involved in EthanolInduced Volume Decrease and Gap Junction Closure in Cultured Rat Gastric Mucosal Cells. Digestive Diseases and Sciences, 2005, 50, 103-110.	2.3	16
12	Benzyl alcohol increases voluntary ethanol drinking in rats. Pharmacology Biochemistry and Behavior, 2014, 124, 81-85.	2.9	2
13	Gastrointestinal Epithelial Barrier to Acid: Studies with Isolated Membrane Vesicles and Cultured Epithelial Cells., 1990,, 5-27.		2