Lowâ€temperature preparation of superconducting YB SrTiO3by thermal coevaporation

Applied Physics Letters 53, 925-926 DOI: 10.1063/1.100647

Citation Report

#	Article	IF	CITATIONS
1	Thickness and annealing dependence of the superconducting transition temperature of YBa2Cu3O7â^'xthin films on oxidized silicon and polycrystalline alumina substrates. Applied Physics Letters, 1988, 53, 2566-2568.	3.3	43
2	Crystallography of YBa ₂ Cu ₃ O _{6+<i>x</i>} thin film-substrate interfaces. Journal of Materials Research, 1989, 4, 1072-1081.	2.6	147
3	Y-Ba-Cu-O Film Growth by OMCVD Using N2O. Japanese Journal of Applied Physics, 1989, 28, L1800-L1802.	1.5	57
4	Asâ€deposited Yâ€Ba uâ€O superconducting films on silicon at 400 °C. Applied Physics Letters, 1989, 5 578-580.	54 3.3	88
5	Effect of buffer layers on lowâ€ŧemperature growth of mirrorâ€like superconducting thin films on sapphire. Applied Physics Letters, 1989, 55, 295-297.	3.3	46
6	câ€∎xis oriented YBa2Cu3O7â~'xsuperconducting films by metalorganic chemical vapor deposition. Applied Physics Letters, 1989, 54, 380-382.	3.3	52
7	Nature ofinsitusuperconducting film formation. Applied Physics Letters, 1989, 55, 1041-1043.	3.3	58
8	Superconducting films growninsituby the activated reactive evaporation process. Applied Physics Letters, 1989, 55, 504-506.	3.3	17
9	Bridge Type Josephson Junctions in MO-CVD Thin Films. Japanese Journal of Applied Physics, 1989, 28, L1581-L1584.	1.5	24
10	Dependence of Superconducting Properties on Substrate Temperature in Y-Ba-Cu-O Thin Films Prepared by Magnetron Sputtering. Japanese Journal of Applied Physics, 1989, 28, L448-L451.	1.5	25
11	In SituGrowth of Superconducting Y-Ba-Cu-O Films on Si, SiO2, GaAs and Cu/Ag by the High-Pressure DC Sputtering Process. Japanese Journal of Applied Physics, 1989, 28, L2200-L2203.	1.5	11
12	In SituGrowth of Bi-Sr-Ca-Cu-O Thin Films by Molecular Beam Epitaxy Technique with Pure Ozone. Japanese Journal of Applied Physics, 1989, 28, L1217-L1219.	1.5	67
13	Superconducting and structural properties of YBaCuO thin films deposited by inverted cylindrical magnetron sputtering. European Physical Journal B, 1989, 74, 13-19.	1.5	160
14	TEA CO2 laser ablation studies of Y-Ba-Cu-O. Applied Surface Science, 1989, 43, 387-392.	6.1	15
15	Patterning of high T c Y Ba Cu O thin films deposited on bare silicon. Physica C: Superconductivity and Its Applications, 1989, 162-164, 601-602.	1.2	8
16	In-situ superconducting YBa2Cu3O7 thin films grown by ion beam co-deposition. Applied Surface Science, 1989, 43, 393-397.	6.1	16
17	Far infrared transmission of YBCO films deposited on Si substrate. Solid State Communications, 1989, 72, 681-684.	1.9	2
18	Reactions of YBa2Cu3O7â^'x thin films on silicon substrates. Thin Solid Films, 1989, 174, 5-9.	1.8	8

#	Article	IF	CITATIONS
19	Production of YBa2Cu3O7?x superconducting thin films by pulsed pseudospark electron beam evaporation. Applied Physics A: Solids and Surfaces, 1989, 48, 397-400.	1.4	24
20	Epitaxial growth and properties of YBaCuO thin films. Materials Science and Engineering Reports, 1989, 4, 193-260.	5.8	177
21	High-temperature superconductive thin films. Proceedings of the IEEE, 1989, 77, 1155-1163.	21.3	36
22	Far infrared measurements on YBCO films. , 0, , .		1
23	Raman scattering as an analytical tool for high Tc superconductors. Journal of the Less Common Metals, 1989, 150, 33-37.	0.8	10
24	Direct production and properties of sputtered epitaxial YBa2Cu3O7 thin and ultrathin films on (100) and (110) SrTiO3. Journal of the Less Common Metals, 1989, 151, 277-285.	0.8	22
25	Preparation and characterization of YBCO thin films on silicon. Journal of the Less Common Metals, 1989, 151, 311-316.	0.8	15
26	Co-evaporated Yî—,Baî—,Cuî—,O thin films on sapphire substrates. Journal of the Less Common Metals, 1989, 151, 317-323.	0.8	7
27	High critical currents in epitaxial YBa2Cu3O7â^'xthin films on silicon with buffer layers. Applied Physics Letters, 1989, 54, 754-756.	3.3	102
28	Low Temperature Preparation of yâ€bA Uâ€0 Films by Omcvd. Materials Research Society Symposia Proceedings, 1989, 169, 569.	0.1	0
29	Xps Analysis of Y-Ba-Cu-O and Zr-O Thin Films and Interfaces with Silicon Substrates. Materials Research Society Symposia Proceedings, 1989, 169, 1005.	0.1	3
30	In Situ Preparation of Yâ€Baâ€Cuâ€O Thin Films on Silicon Single Crystals. Materials Research Society Symposia Proceedings, 1989, 169, 477.	0.1	1
31	Ybco Films and Bufferâ€Layers Grown Inâ€Situ by Pulsed Laser Deposition. Materials Research Society Symposia Proceedings, 1989, 169, 485.	0.1	2
32	Asâ€Deposited Superconducting Yâ€Baâ€Cuâ€0 Films on GaAs Substrate by High Pressure Dc Sputtering Process. Materials Research Society Symposia Proceedings, 1989, 169, 631.	0.1	Ο
33	Influence of rapid thermal annealing parameters on properties of YBaCuO thin films sputtered on silicon-based substrates. , 1990, , .		0
34	High Rate Growth of YBa2Cu3O7-x Thin Films using Pulsed Excimer Laser Deposition. Materials Research Society Symposia Proceedings, 1990, 191, 177.	0.1	0
35	Preparation of YBaCuO thin films with excellent crystallinity on amorphous substrates prepared by facing targets sputtering. IEEE Transactions on Magnetics, 1990, 26, 1430-1432.	2.1	2
36	Photoemission study of the Ba core levels in YBa2Cu3O7-x. European Physical Journal B, 1990, 81, 349-353.	1.5	13

#	Article	IF	CITATIONS
37	Investigation of the epitaxy of thin YBa2Cu3O7â^δfilms. Physica C: Superconductivity and Its Applications, 1990, 168, 359-362.	1.2	12
38	Buffer layers for superconducting Yĩ—,Baĩ—,Cuĩ—,O thin films on silicon and SiO2. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1990, 7, 135-147.	3.5	15
39	In situ preparation of superconducting Yî—,Baî—,Cuî—,O thin films on bare silicon. Vacuum, 1990, 41, 859-861.	3.5	7
40	In situ production of sputtered epitaxial HoBa2Cu3O7-x thin films. Solid State Communications, 1990, 76, 697-700.	1.9	16
41	Working with ceramic superconducting materials: processes and problems. Measurement Science and Technology, 1990, 1, 710-715.	2.6	0
42	Resputtering Effect on Y1Ba2Cu3O7-dThin Films Prepared by RF-Magnetron Sputtering. Japanese Journal of Applied Physics, 1990, 29, L782-L784.	1.5	10
43	Superconducting films prepared by electron cyclotron resonance plasma ions deposition. Chinese Physics Letters, 1990, 7, 473-476.	3.3	0
44	A review of high-temperature superconducting films on silicon. Superconductor Science and Technology, 1990, 3, 155-158.	3.5	53
45	Grain boundaries and interfaces in Y-Ba-Cu-O films laser deposited on single-crystal MgO. Physical Review B, 1990, 42, 10141-10151.	3.2	51
46	Sputter deposition of YBa2Cu3O7â^'xfilms on Si at 500 °C with conducting metallic oxide as a buffer layer. Applied Physics Letters, 1990, 57, 304-306.	3.3	68
47	Epitaxial relations betweeninsitusuperconducting YBa2Cu3O7â^'xthin films and BaTiO3/MgAl2O4/Si substrates. Journal of Applied Physics, 1990, 68, 1772-1776.	2.5	18
48	Insitugrowth of superconducting YBa2Cu3O7â~îîthin films on Si with conducting indiumâ€ŧinâ€oxide buffer layers. Applied Physics Letters, 1990, 57, 1146-1148.	3.3	33
49	Oxidation of the Si(100) surface promoted by Sr overlayer: An xâ€ray photoemission study. Journal of Applied Physics, 1990, 68, 3609-3613.	2.5	24
50	Effect of sputtering current on the growth of Yâ€Baâ€Cuâ€O films. Applied Physics Letters, 1990, 56, 2451-2453.	3.3	4
51	Deposition of superconducting YBaCuO thin films by pseudospark ablation. Applied Physics Letters, 1990, 56, 973-975.	3.3	46
52	Diode sputtering of high Tcsuperconductors. Ferroelectrics, 1990, 105, 99-104.	0.6	0
53	Structure and superconducting properties of YBa2Cu3O7â^²xfilms prepared by nitrogen laser evaporation and CO2laser annealing in oxygen. Journal of Applied Physics, 1990, 67, 6953-6957.	2.5	9
54	Rheed studies of epitaxial growth of YBCO-films prepared by thermal co-evaporation. Journal of the Less Common Metals, 1990, 164-165, 269-278.	0.8	28

#	Article	IF	CITATIONS
55	Rapid thermal annealing of YBaCuO thin films sputtered on substrates. Journal of the Less Common Metals, 1990, 164-165, 359-365.	0.8	4
56	Optimization of the in situ process for YBa2Cu3Ox films prepared by laser ablation. Journal of the Less Common Metals, 1990, 164-165, 400-406.	0.8	5
57	Surface impedance measurements on coevaporated in situ grown YBa2Cu3O7 â^' δ thin films at 87 GHz. Journal of the Less Common Metals, 1990, 164-165, 1261-1268.	0.8	3
58	Measurements of the thickness dependence of the surface resistance of laser ablated high-T/sub c/ superconducting thin films. IEEE Transactions on Magnetics, 1991, 27, 872-875.	2.1	13
59	Reactions at the interfaces of thin films of Yâ€Baâ€Cu―and Zrâ€oxides with Si substrates. Journal of Applied Physics, 1991, 69, 2176-2182.	2.5	85
60	Growth of YBa2Cu3O7â^'xthin films on Si with a CoSi2buffer layer. Applied Physics Letters, 1991, 58, 419-421.	3.3	23
61	High critical currents in Y-Ba-Cu-O films on silicon using YSZ buffer layers. IEEE Transactions on Magnetics, 1991, 27, 958-965.	2.1	17
62	Interface Properties of Thin YBa ₂ Cu ₃ O _{7–x} Films. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1991, 95, 1404-1409.	0.9	1
63	Thin films of YBaCuO for electronic applications. , 1991, 1362, 117.		1
64	Optical transition studies of YBa2Cu3O7â^δ superconducting films in 1.5–3.0 eV spectral range: Temperature evolution and photoinduced changes of the absorption spectra. Solid State Communications, 1991, 80, 201-206.	1.9	24
65	YBaCuO thin films on Si substrate. Physica C: Superconductivity and Its Applications, 1991, 185-189, 2097-2098.	1.2	7
66	Extremely smooth YBCO-films on MgO with high critical current densities. Physica C: Superconductivity and Its Applications, 1991, 185-189, 2177-2178.	1.2	18
67	Deposition of yttria-stabilized zirconia buffer layer on Si and its suitability for Y-Ba-Cu-O thin films. Bulletin of Materials Science, 1991, 14, 423-427.	1.7	0
68	Interface analysis of the system Si/YBa2Cu3O7?x. Fresenius' Journal of Analytical Chemistry, 1991, 341, 308-313.	1.5	8
69	Computer-controlled system for surface resistance measurements of HT/sub c/ superconducting films. IEEE Transactions on Instrumentation and Measurement, 1991, 40, 539-543.	4.7	8
70	Fourier transform Raman spectroscopy of superconducting YBa2Cu3O7-δ films on strontium titanate and magnesium oxide substrates. Journal of Raman Spectroscopy, 1991, 22, 639-643.	2.5	1
71	Natural buffer layer in DyBa2Cu3O7â^'xfilms grown on Si by molecular beam epitaxy. Journal of Applied Physics, 1991, 70, 5697-5699.	2.5	3
72	In situformation of Yâ€Ba uâ€O epitaxial films by 40.68â€MHz rf magnetron sputtering. Journal of Applied Physics, 1991, 69, 2731-2733.	2.5	1

#	Article	IF	CITATIONS
73	Y1Ba2Cu3O6+l´growth on thin Yâ€enhanced SiO2buffer layers on silicon. Applied Physics Letters, 1991, 59, 2323-2325.	3.3	17
74	Surface composition of clean, epitaxial thin films ofYBa2Cu3O7â^'xfrom quantitative x-ray photoemission spectroscopy analysis. Physical Review B, 1991, 43, 2828-2834.	3.2	58
75	YBa/sub 2/Cu/sub 3/O/sub x/-microstructures on semiconductor substrates. IEEE Transactions on Magnetics, 1991, 27, 1630-1633.	2.1	1
76	Successive growth of Baâ€ferrite magnetic layers oncâ€axis oriented YBaCuO superconductive layers. Journal of Applied Physics, 1991, 70, 6489-6491.	2.5	3
77	Far IR transmission spectra of an YBa2Cu3O7â~δ thin film. Phase Transitions, 1991, 30, 173-188.	1.3	6
78	Farâ€infrared Fabry–Perot resonator with highTcYBa2Cu3O7â^Ìſilms on silicon plates. Applied Physics Letters, 1992, 61, 1980-1982.	3.3	16
79	Two-beam laser deposition process for Y1Ba2Cu3O7â^'x films on silicon. Physica Status Solidi A, 1992, 131, 179-189.	1.7	12
80	Deposition methods of high-Tc superconductors. Vacuum, 1992, 43, 403-411.	3.5	6
81	Deposition of YBa2Cu3O7â^'x films on Si with conductive indium oxide as a buffer layer. Vacuum, 1992, 43, 1033-1034.	3.5	5
82	Structure and growth of YBa2Cu3O7â^Î^ thin films on Mg2TiO4 (001). Physica C: Superconductivity and Its Applications, 1992, 202, 289-297.	1.2	18
83	The resistive transition of superconducting Nd2â^'xCexCuO4â^'δ films. Physica C: Superconductivity and Its Applications, 1992, 193, 207-211.	1.2	6
84	Correlations between the critical current density and microwave surface impedance of epitaxial YBa2Cu3O7-δfilms. Cryogenics, 1992, 32, 1071-1075.	1.7	9
85	Magnetic-field-induced damage in a superconducting YBa2Cu3O7â^'x film. Annalen Der Physik, 1992, 504, 243-247.	2.4	19
86	Far-infrared spectra of imperfect YBaCuO films on Si substrates. Infrared Physics, 1993, 34, 269-279.	0.5	15
87	Interaction of Y overlayers with the GaAs(100) surface and oxidation of the Y/GaAs interface. Surface Science, 1993, 282, 371-379.	1.9	11
88	Formation of thick YBa2Cu3O7- deltaand YBa2Cu3O7- delta-Ag films on Y2BaCuO5and BaZrO3substrates. Superconductor Science and Technology, 1993, 6, 469-475.	3.5	14
89	Incorporation of hyperfine probes into the thinâ€film superconductor YBa2Cu3O7â^îÎ′during deposition. Applied Physics Letters, 1993, 63, 3224-3226.	3.3	6
90	Thin YBa2Cu3O7â~îî films by electronâ€beam coevaporation— Growth andin situcharacterization. Journal of Applied Physics, 1993, 73, 2032-2034.	2.5	4

#	ARTICLE	IF	CITATIONS
91	Materials for electrolyte: Thin-films. Kluwer International Series in Engineering and Computer Science, 1994, , 285-346.	0.2	0
92	Scaling of voltage-current characteristics of thin-film Y-Ba-Cu-O at low magnetic fields. Physical Review B, 1994, 49, 6890-6894.	3.2	57
93	High-quality YBa2Cu3O7 films on 4-in. Wafers of sapphire, gallium arsenide, and silicon. Journal of Superconductivity and Novel Magnetism, 1994, 7, 231-233.	0.5	5
94	Field dependence of the current-voltage characteristics of thin-film YBaCuO at low magnetic fields. Physica B: Condensed Matter, 1994, 194-196, 1889-1890.	2.7	0
95	Hydrothermal Strontium Titanate Films on Titanium: An XPS and AES Depth-Profiling Study. Journal of the American Ceramic Society, 1994, 77, 1601-1604.	3.8	48
96	Development of Oxidation Sources in Preparation of High-TcOxide Superconductor Thin Films Using the Molecular Beam Epitaxy Method. Critical Reviews in Solid State and Materials Sciences, 1995, 20, 285-338.	12.3	9
97	MBE Growth of High Tc Superconductors. , 1995, , 505-622.		21
98	Ba/sub 1-x/K/sub x/BiO/sub 3/ epitaxy on various substrate materials. IEEE Transactions on Applied Superconductivity, 1995, 5, 1351-1354.	1.7	7
99	Double sided YBCO films on 4" substrates by thermal reactive evaporation. IEEE Transactions on Applied Superconductivity, 1995, 5, 1575-1580.	1.7	65
101	YBCO film deposition on very large areas up to 20×20 cm2. Physica C: Superconductivity and Its Applications, 1997, 282-287, 107-110.	1.2	80
102	Full Wafer In Situ Deposition of Thallium Lead Superconductors. Journal of Superconductivity and Novel Magnetism, 1998, 11, 129-132.	0.5	4
103	Technology of high-temperature superconducting films and devices. , 1999, , 239-281.		Ο
104	Methods of HTS Deposition: Thermal Evaporation. , 2005, , 81-96.		2
105	Investigation of the strain relaxation and ageing effect of YBa2Cu3O7â^î thin films grown on silicon-on-insulator substrates with yttria-stabilized zirconia buffer layers. Superconductor Science and Technology, 2006, 19, 51-56.	3.5	10
106	High-speed preparation of c-axis-oriented YBa2Cu3O7-δfilm by laser chemical vapor deposition. Materials Letters, 2010, 64, 102-104.	2.6	20
107	Ternary Phase Relation on Preparation of YBa ₂ Cu ₃ O _{7-δ} Films by Laser CVD. Key Engineering Materials, 2011, 484, 183-187.	0.4	2
108	Investigation on influence of deposition rate of YBa2Cu3O7â^îî´ superconducting film prepared on Hastelloy C276 substrate by spray atomizing and coprecipitating laser chemical vapor deposition. Thin Solid Films, 2016, 599, 179-186.	1.8	4
109	Infinite-layer phase formation in the Ca1– <i>x</i> Sr <i>x</i> CuO2 system by reactive molecular beam epitaxy. Journal of Applied Physics, 2018, 124, .	2.5	11

#	Article	IF	CITATIONS
110	Growth characteristics and film properties of plasma-enhanced and thermal atomic-layer-deposited magnesium oxide thin films prepared using bis(ethylcyclopentadienyl)magnesium precursor. Ceramics International, 2020, 46, 10115-10120.	4.8	13
111	High-Temperature Superconducting Films Prepared by Low-Pressure RF-Plasma Deposition. , 1990, , 279-287.		1
112	Metalorganic Chemical Vapor Deposition of Highly Textured Superconducting YBa2Cu3O7-x Films. , 1989, , 271-279.		2
113	High-Tc Superconducting Thin Films. Physics of Thin Films, 1992, 16, 1-143.	1.1	6
114	Progress in the co-evaporation technologies developed for high performance REBa ₂ Cu ₃ O ₇₋ <isub>îfilms and coated conductors. Progress in Superconductivity and Cryogenics (PSAC), 2012, 14, 5-11.</isub>	0.3	3
115	CO-EVAPORATED Y–Ba–Cu–O THIN FILMS ON SAPPHIRE SUBSTRATES. , 1989, , 317-323.		0
116	Superconducting Films of YBCO on Bare Silicon. , 1989, , 347-352.		0
117	Materials and Production Methods. Graduate Texts in Contemporary Physics, 1989, , 105-127.	0.2	0
118	DIRECT PRODUCTION AND PROPERTIES OF SPUTTERED EPITAXIAL YBa2Cu3O7 THIN AND ULTRATHIN FILMS ON (100) AND (110) SrTiO3. , 1989, , 277-285.		0
119	PREPARATION AND CHARACTERIZATION OF YBCO THIN FILMS ON SILICON. , 1989, , 311-316.		0
120	RAPID THERMAL ANNEALING OF YBaCuO THIN FILMS SPUTTERED ON SiO2/Si3N4/Si SUBSTRATES. , 1990, , 359-365.		0
122	OPTIMIZATION OF THE IN SITU PROCESS FOR YBa2Cu3Ox FILMS PREPARED BY LASER ABLATION. , 1990, , 400-406.		0
123	RHEED STUDIES OF EPITAXIAL GROWTH OF YBCO-FILMS PREPARED BY THERMAL CO-EVAPORATION. , 1990, , 269-278.		0
124	Study on Doping Properties of BSCCO/GaAs Films. , 1991, , 1089-1092.		0
125	Deposition and patterning of epitaxial Y-Ba-Cu-O thin films on silicon with ZrO2 buffer layers. , 1992, , 641-646.		1
126	Temperature Effect in Optical Absorption of Superconducting YBa2Cu3O7-δFilms. Research Reports in Physics, 1992, , 115-125.	0.0	0
127	Epitaxial YBCO Films on MgO, SrTiO3, Si, and GaAs by Thermal Coevaporation. Springer Series in Solid-state Sciences, 1993, , 45-49.	0.3	0