Aldol Addition of Acetone, Catalyzed by Solid Base Cata Oxide, Strontium Oxide, Barium Oxide, Lanthanum (III)

Applied Catalysis 36, 189-197

DOI: 10.1016/s0166-9834(00)80114-1

Citation Report

#	Article	IF	CITATIONS
1	Aldol condensation of acetone/acetone d6 over magnesium oxide and lanthanum oxide. Applied Catalysis, 1988, 40, 183-190.	0.8	44
3	2 Determination of Acidic and Basic Properties on Solid Surfaces. Studies in Surface Science and Catalysis, 1989, 51, 5-25.	1.5	26
4	Addition of metal cations to magnesium oxide catalyst for the aldol condensation of acetone. Applied Catalysis, 1989, 48, 63-69.	0.8	32
5	3 Acid and Base Centers: Structure and Acid-Base Property. Studies in Surface Science and Catalysis, 1989, 51, 27-213.	1.5	12
6	4 Catalytic Activity and Selectivity. Studies in Surface Science and Catalysis, 1989, 51, 215-337.	1.5	10
7	Aldol Addition of Butyraldehyde over Solid Base Catalysts. Bulletin of the Chemical Society of Japan, 1989, 62, 2070-2072.	3.2	38
8	Dehydrocyclodimerization of conjugated dienes catalyzed by solid bases. Journal of Molecular Catalysis, 1990, 63, 371-385.	1.2	12
9	The Catalysis of Maghemite and Hematite on the Aldol and the Retro-Aldol Condensation of Acetone. Bulletin of the Chemical Society of Japan, 1991, 64, 2411-2415.	3.2	18
10	Chemoselective Reduction of Enones to Allylic Alcohols. Studies in Surface Science and Catalysis, 1991, 59, 253-261.	1.5	18
11	Adsorption structures and mechanisms of hydrogen/deuterium exchange reactions of alcohols over oxidic catalysts. Journal of Molecular Catalysis, 1991, 68, 33-43.	1.2	2
12	Adsorption structures and mechanisms of hydrogenâ€"deuterium exchange reactions of compounds with acidic protons. Journal of Molecular Catalysis, 1991, 69, 117-127.	1.2	2
13	Secondary reactions of the base-catalyzed aldol condensation of acetone. Journal of Molecular Catalysis, 1991, 69, 199-214.	1.2	68
14	Catalytic cracking of organic amides. Applied Catalysis, 1991, 78, 45-64.	0.8	5
15	Kinetics of desorption, adsorption, and surface diffusion of CO2 on MgO(100). Surface Science, 1992, 261, 141-154.	1.9	85
16	Influence of basicity on the catalytic activity for oxidative coupling of methane. Applied Catalysis A: General, 1992, 85, 27-46.	4.3	70
17	Isomerization and hydrogenation of butene-1 on a zirconia aerogel catalyst. Reaction Kinetics and Catalysis Letters, $1992, 47, 167-175$.	0.6	27
18	Chemistry of zirconia and its use in chromatography. Journal of Chromatography A, 1993, 657, 229-282.	3.7	384
19	Highly selective one-step formation of methyl isobutyl ketone from acetone with a magnesia supported nickel catalyst. Applied Catalysis A: General, 1993, 101, L1-L6.	4.3	54

#	ARTICLE	IF	CITATIONS
20	Critical performance evaluation of catalysts and mechanistic implications for oxidative coupling of methane. Applied Catalysis A: General, 1993, 104, 11-59.	4.3	184
21	Characterization of basicity in alkaline cesium-exchanged X zeolites post-synthetically modified by impregnation: A TPD study using carbon dioxide as a probe molecule. Microporous Materials, 1993, 1, 343-351.	1.6	51
22	Basic catalysts and fine chemicals. Studies in Surface Science and Catalysis, 1993, 78, 35-49.	1.5	39
23	Catalytic and physicochemical characterizations of novel oxide-supported copper catalysts. Part 1.âe "Hydrosol-prepared Cu/TiO2and effects of prereduction on hydrogenation and oligomerization of acetone. Journal of Materials Chemistry, 1993, 3, 743-750.	6.7	8
24	Characterization of Basic Sites on Fine Particles of Alkali and Alkaline Earth Metal Oxides in Zeolites. Studies in Surface Science and Catalysis, 1993, 75, 1171-1183.	1.5	27
25	Correlation of the Surface Basicity of Alkali Metal-Modified MgO Evaluated by the Two Parameters. Bulletin of the Chemical Society of Japan, 1993, 66, 3806-3807.	3.2	5
26	Solid Acid and Base-Catalyzed Cyanosilylation of Carbonyl Compounds with Cyanotrimethylsilane. Bulletin of the Chemical Society of Japan, 1993, 66, 2016-2032.	3.2	100
27	Physicochemical and catalytic characterizations of materials prepared from copper malonate by thermal decomposition or chemical reduction. Journal of Thermal Analysis, 1994, 41, 651-669.	0.6	3
28	Study of the Meerweinâ€"Pondorffâ€"Verley reaction between ethanol and acetone on various metal oxides. Journal of Molecular Catalysis, 1994, 91, 45-59.	1.2	132
29	Decomposition of 2-propanol on an intermetallic compound for hydrogen storage. Reaction Kinetics and Catalysis Letters, 1994, 53, 429-440.	0.6	4
30	Adsorption and decomposition of methanol on TiO2, SrTiO3 and SrO. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1015.	1.7	44
31	Oxygen exchange between magnesium oxide surface and carbon dioxide. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 803.	1.7	41
32	2.14 Evaluation of Basicity of Alkali Metal-doped MgO in the Scope of Change of Carbonate Species. Studies in Surface Science and Catalysis, 1994, 90, 207-212.	1.5	6
33	2.11 UV-Vis Study of the Condensation Reaction of Carbonylic Compounds on MgO and Hydrotalcites. Studies in Surface Science and Catalysis, 1994, , 183-193.	1.5	3
34	Zirconia aerogels and xerogels: Influence of solvent and acid on structural properties. Journal of Porous Materials, 1995, 2, 171-183.	2.6	24
35	Aldol condensation of acetaldehyde using calcined layered double hydroxides. Applied Clay Science, 1995, 10, 95-102.	5. 2	31
36	Mobility of Surface Species on Oxides. 1. Isotopic Exchange of 18O2 with 16O of SiO2, Al2O3, ZrO2, MgO, CeO2, and CeO2-Al2O3. Activation by Noble Metals. Correlation with Oxide Basicity. The Journal of Physical Chemistry, 1996, 100, 9429-9438.	2.9	369
37	Synthesis and characterization of various MgO and related systems. Journal of Materials Chemistry, 1996, 6, 1943-1949.	6.7	36

3

#	Article	IF	CITATIONS
38	Organic Reactions at Well-Defined Oxide Surfaces. Chemical Reviews, 1996, 96, 1413-1430.	47.7	331
39	Basic Zeolites: Characterization and Uses in Adsorption and Catalysis. Catalysis Reviews - Science and Engineering, 1996, 38, 521-612.	12.9	460
40	Dehydration of 4-methylpentan-2-ol over lanthanum and cerium oxides. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2619.	1.7	35
41	Double bond isomerization of 5-vinylbicyclo[2.2.1]hept-2-ene to 5-ethylidenebicyclo[2.2.1]hept-2-ene over alkaline earth oxides. Reaction Kinetics and Catalysis Letters, 1996, 58, 255-259.	0.6	16
42	Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules. Catalysis Today, 1996, 27, 377-401.	4.4	688
43	Catalytic effect of barium ferrite magnetic particles on aldol condensation of acetone. Applied Catalysis A: General, 1996, 134, 217-224.	4.3	6
44	Base catalysis for the synthesis of $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones from the vapor-phase aldol condensation of acetone. Applied Catalysis A: General, 1996, 137, 149-166.	4.3	174
45	Kinetics and Mechanism of CO-N2O Reaction over Two MgO Catalysts Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1997, 1997, 242-248.	0.1	0
46	Determination of the Surface Heterogeneity of MgOâ^'SiO2 Solâ^'Gel Mixed Oxides by Means of CO2 and Ammonia Thermodesorption. Langmuir, 1997, 13, 974-978.	3.5	23
47	Zirconia/Silica Solâ^'Gel Catalysts:  Effect of the Surface Heterogeneity on the Selectivity of 2-Propanol Decomposition. Langmuir, 1997, 13, 970-973.	3.5	33
48	An ab initio study of the CH2O adsorption on the MgO (100) surface. Effects of replacing the active Mg2+ ion by different metallic cations. Computational and Theoretical Chemistry, 1997, 390, 177-181.	1.5	2
49	One step synthesis of mibk (methyl isobutyl ketone) from acetone over CaO-supported Ni catalyst. Korean Journal of Chemical Engineering, 1997, 14, 464-468.	2.7	10
50	Vapor phase aldol condensation of acetaldehyde on metal oxide catalysts. Applied Catalysis A: General, 1997, 161, 93-104.	4.3	42
51	Hydrotalcites as base catalysts. Kinetics of Claisen-Schmidt condensation, intramolecular condensation of acetonylacetone and synthesis of chalcone. Applied Catalysis A: General, 1997, 164, 251-264.	4.3	197
52	Michael addition of methyl crotonate over solid base catalysts. Applied Catalysis A: General, 1997, 165, 319-325.	4.3	44
53	Evaluation of the acid-base surface properties of several oxides and supported metal catalysts by means of model reactions. Journal of Molecular Catalysis A, 1997, 118, 113-128.	4.8	138
54	A kinetic study of the aldol condensation of acetone using an anion exchange resin catalyst. Chemical Engineering Science, 1997, 52, 2991-3002.	3.8	87
55	Application of catalytic distillation for the aldol condensation of acetone. Chemical Engineering Science, 1998, 53, 3489-3499.	3.8	21

#	ARTICLE	lF	Citations
56	Evidence for Lewis and BrÃ,nsted Acid Sites on MgO Obtained by Sol-Gel. Journal of Sol-Gel Science and Technology, 1998, 13, 1043-1047.	2.4	35
57	One-step synthesis of methyl isobutyl ketone from acetone with calcined Mg/Al hydrotalcite-supported palladium or nickel catalysts. Applied Catalysis A: General, 1998, 169, 207-214.	4.3	110
58	Cyanoethylation of alcohols over solid base catalysts. Catalysis Today, 1998, 44, 277-283.	4.4	47
59	Basicities of alumina-supported alkaline earth metal oxides. Reaction Kinetics and Catalysis Letters, 1998, 65, 83-86.	0.6	19
60	Direct catalytic asymmetric aldol reactions promoted by a novel barium complex. Tetrahedron Letters, 1998, 39, 5561-5564.	1.4	93
61	Study of the catalyst deactivation in the base-catalyzed oligomerization of acetone. Journal of Molecular Catalysis A, 1998, 130, 177-185.	4.8	67
62	Catalytic transformation of ethanol into acetone using copper–pyrochlore catalysts. Applied Catalysis A: General, 1998, 172, 117-129.	4.3	44
63	Aldol condensation of acetone over layered double hydroxides of the meixnerite type. Applied Clay Science, 1998, 13, 401-415.	5.2	155
64	Ab initio study of the adsorption of acetone and keto-enol equilibrium on the MgO(100) surface. Surface Science, 1998, 397, 23-33.	1.9	12
65	Probing the surface acidity of lithium aluminium and magnesium aluminium layered double hydroxides. Journal of Materials Chemistry, 1998, 8, 1917-1925.	6.7	20
66	Microcalorimetric Study of CO2and NH3Adsorption on Rb- and Sr-Modified Catalyst Supports. Langmuir, 1998, 14, 1734-1738.	3.5	29
67	Interaction of Carbon Dioxide with the Surface of Zirconia Polymorphs. Langmuir, 1998, 14, 3556-3564.	3.5	286
68	Comparative study of Mg/Al and Mg/Ga layered double hydroxides. Microporous and Mesoporous Materials, 1999, 29, 319-328.	4.4	77
69	Characterisation of the basicity of modified MgO-catalysts. Applied Catalysis A: General, 1999, 181, 181-188.	4.3	53
70	Ortho-Selective Alkylation of Phenol with 1-Propanol Catalyzed by CeO2–MgO. Journal of Catalysis, 1999, 184, 180-188.	6.2	71
71	Acetone and Acetaldehyde Oligomerization on TiO2 Surfaces. Journal of Catalysis, 1999, 185, 393-407.	6.2	98
73	Adsorption and chemisorption of organic pollutants on solid aerosol surfaces. Studies in Surface Science and Catalysis, 1999, , 571-634.	1.5	7
74	On the surface basic properties of sulfated magnesia–silica sol–gel mixed oxides. Materials Letters, 1999, 39, 51-57.	2.6	11

#	ARTICLE	IF	Citations
75	Thermal Decomposition of Carbonate-Containing Apatites with Various Sr-Ca Compositions and Characterization of Carbonate Ions Journal of the Ceramic Society of Japan, 1999, 107, 517-521.	1.3	2
76	Mediating Effect of CO2 in Base-Catalysis by Zeolites. Studies in Surface Science and Catalysis, 2000, 129, 851-858.	1.5	0
77	Study of relevant properties influencing the catalytic activity of Layered Double Hydroxides in the Meixnerite-like form. Studies in Surface Science and Catalysis, 2000, , 3243-3248.	1.5	1
78	Studies on PO43â^'/ZrO2. Journal of Colloid and Interface Science, 2000, 226, 340-345.	9.4	22
79	Acid–base properties and active site requirements for elimination reactions on alkali-promoted MgO catalysts. Catalysis Today, 2000, 63, 53-62.	4.4	164
80	Michael addition of nitromethane to $\hat{l}\pm,\hat{l}^2$ -unsaturated carbonyl compounds over solid base catalysts. Journal of Molecular Catalysis A, 2000, 155, 23-29.	4.8	51
81	Vapor phase reactions of acetaldehyde over type X zeolites. Applied Catalysis A: General, 2000, 190, 149-155.	4.3	50
82	Surface reactions of acetone, acetylene and methylbutynol on a yttrium-modified magnesium oxide catalyst. Applied Catalysis A: General, 2000, 196, 125-133.	4.3	31
83	IR study of adsorption and reaction of methylbutynol on the surface of pure and modified MgO catalysts: probing the catalyst surface basicity. Applied Catalysis A: General, 2000, 194-195, 213-225.	4.3	38
84	Acetone condensation as a model reaction for the catalytic behavior of acidic molecular sieves: a UV–Vis study. Applied Catalysis A: General, 2000, 192, 317-329.	4.3	22
85	Base-catalyzed condensation of citral and acetone at low temperature using modified hydrotalcite catalysts. Catalysis Today, 2000, 60, 297-303.	4.4	146
86	Mg- and Ni-containing layered double hydroxides as soda substitutes in the aldol condensation of acetone. Catalysis Today, 2000, 55, 103-116.	4.4	104
87	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 17, 219-225.	2.4	10
88	Pd/MgO: Catalyst Characterization and Phenol Hydrogenation Activity. Journal of Catalysis, 2000, 192, 88-97.	6.2	113
89	Surface structures of oxides and halides and their relationships to catalytic properties. Advances in Catalysis, 2001, , 265-397.	0.2	68
90	CO2Adsorption on α-Cr2O3(101Ì,,2) Surfaces. Journal of Physical Chemistry B, 2001, 105, 7755-7761.	2.6	37
91	Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Applied Catalysis A: General, 2001, 219, 259-266.	4.3	346
92	Solid base catalysts: generation of basic sites and application to organic synthesis. Applied Catalysis A: General, 2001, 222, 247-259.	4.3	261

#	Article	IF	Citations
93	Mixed Tishchenko Reaction over Solid Base Catalysts. Journal of Catalysis, 2001, 204, 393-401.	6.2	64
94	Aldol condensation catalyzed by acidic zeolites. Studies in Surface Science and Catalysis, 2002, 142, 667-674.	1.5	13
95	Condensation of aldehydes for environmentally friendly synthesis of 2-methyl-3-phenyl-propanal by heterogeneous catalysis. Catalysis Today, 2002, 75, 197-202.	4.4	55
96	Isomerization of 3-Phenyl-1-Propene (Allylbenzene) over Base Catalysts. Journal of Catalysis, 2002, 211, 556-559.	6.2	6
97	Title is missing!. Topics in Catalysis, 2002, 19, 225-240.	2.8	71
98	Tishchenko Reaction Over Solid Base Catalysts. Catalysis Surveys From Asia, 2003, 7, 145-156.	2.6	23
99	A New Catalytic Transesterification for the Synthesis of Ethyl Methyl Carbonate. Catalysis Letters, 2003, 91, 63-67.	2.6	29
100	Catalysis by Hydrotalcites and Related Materials. Cattech, 2003, 7, 206-217.	2.2	246
101	The aldol condensation of acetaldehyde and heptanal on hydrotalcite-type catalysts. Journal of Catalysis, 2003, 219, 167-175.	6.2	106
102	Nitroaldol reaction over solid base catalysts. Applied Catalysis A: General, 2003, 247, 65-74.	4.3	66
103	Synthesis of polysulfides using diisobutylene, sulfur, and hydrogen sulfide over solid base catalysts. Applied Catalysis A: General, 2003, 253, 15-27.	4.3	7
104	Synthesis of 3-pentanone from 1-propanol over CeO2–Fe2O3 catalysts. Applied Catalysis A: General, 2003, 252, 399-410.	4.3	86
105	Adsorption and reaction of acrolein on titanium oxide single crystal surfaces: coupling versus condensation. Catalysis Today, 2003, 85, 321-331.	4.4	16
106	BF3Adsorption on Stoichiometric and Oxygen-Deficient SnO2(110) Surfaces. Journal of Physical Chemistry B, 2003, 107, 1814-1820.	2.6	10
107	Dynamic Behavior of Carbonate Species on Metal Oxide Surface:Â Oxygen Scrambling between Adsorbed Carbon Dioxide and Oxide Surface. Langmuir, 2003, 19, 8793-8800.	3.5	64
108	Aldol reactions of propanal using MgO catalyst in supercritical CO2. Studies in Surface Science and Catalysis, 2004, , 363-368.	1.5	2
109	Characterisation of Pt/Ceria Catalysts by One-Pass TPD Analysis. Catalysis Letters, 2004, 95, 23-29.	2.6	10
110	Kinetics of self-condensation of acetone over heterogeneous Ba(OH)2and Sr(OH)2catalysts. Reaction Kinetics and Catalysis Letters, 2004, 81, 3-11.	0.6	14

#	Article	IF	CITATIONS
111	Physicochemical Characterization and Catalytic Properties of Titania Gel Doped with Lithium and Rubidium. Journal of Sol-Gel Science and Technology, 2004, 32, 339-343.	2.4	5
112	Magnesium-containing mixed oxides as basic catalysts: base characterization by carbon dioxide TPD–MS and test reactions. Journal of Molecular Catalysis A, 2004, 218, 81-90.	4.8	80
113	Role of acidic and basic sites of Al2O3 in predicting the reaction pathway of isophorone transformation. Journal of Molecular Catalysis A, 2004, 223, 283-288.	4.8	21
115	Solid Base Catalysts: Generation, Characterization, and Catalytic Behavior of Basic Sites. Journal of the Japan Petroleum Institute, 2004, 47, 67-81.	0.6	86
116	Influence of thermal treatment conditions on the activity of hydrotalcite-derived Mg–Al oxides in the aldol condensation of acetone. Microporous and Mesoporous Materials, 2005, 78, 11-22.	4.4	141
117	A spectroscopy and catalysis study of the nature of active sites of MgO catalysts: Thermodynamic BrÂ,nsted basicity versus reactivity of basic sites. Journal of Catalysis, 2005, 235, 413-422.	6.2	127
118	Aldol Condensations Over Reconstructed Mg-Al Hydrotalcites: Structure-Activity Relationships Related to the Rehydration Method. Chemistry - A European Journal, 2005, 11, 728-739.	3.3	215
119	Solid base and their performance in synthesis of propylene glycol methyl ether. Journal of Molecular Catalysis A, 2005, 231, 83-88.	4.8	54
120	The mechanism for the synthesis of 1-methoxy-2-propanol from methanol and propylene oxide over magnesium oxide. Applied Catalysis A: General, 2005, 294, 188-196.	4.3	55
121	Oligomerization of acetone over titania-doped catalysts (Li, Na, K and Cs): Effect of the alkaline metal in activity and selectivity. Catalysis Today, 2005, 107-108, 289-293.	4.4	26
122	NMR and Mössbauer Study of Al2O3–Eu2O3. Hyperfine Interactions, 2005, 161, 11-19.	0.5	4
123	Characterization of Cu/CeO2/ \hat{I}^3 -Al2O3 Thin Film Catalysts by Thermal Desorption Spectroscopy. Catalysis Letters, 2005, 105, 35-40.	2.6	23
124	Ordered Mesoporous Magnesium Oxide with High Thermal Stability Synthesized by Exotemplating Using CMK-3 Carbon. Journal of the American Chemical Society, 2005, 127, 1096-1097.	13.7	222
125	Catalytic oxidation of mercaptans by bifunctional catalysts composed of cobalt phthalocyanine supported on Mg–Al hydrotalcite-derived solid bases: effects of basicity. Green Chemistry, 2006, 8, 657-662.	9.0	48
126	Evaluation of Surface Acidoâ€Basic Properties of Inorganicâ€Based Solids by Model Catalytic Alcohol Reaction Networks. Catalysis Reviews - Science and Engineering, 2006, 48, 315-361.	12.9	72
127	First Principles Density Functional Study of the Adsorption and Dissociation of Carbonyl Compounds on Magnesium Oxide Nanosurfaces. Journal of Physical Chemistry B, 2006, 110, 25941-25949.	2.6	37
128	Optimization of Alkaline Earth Metal Oxide and Hydroxide Catalysts for Base-Catalyzed Reactions. Advances in Catalysis, 2006, 49, 239-302.	0.2	82
129	Revisiting Acido-basicity of the MgO Surface by Periodic Density Functional Theory Calculations:Â Role of Surface Topology and Ion Coordination on Water Dissociation. Journal of Physical Chemistry B, 2006, 110, 15878-15886.	2.6	125

#	Article	IF	CITATIONS
131	Base-Type Catalysis. , 2006, , 171-205.		4
132	Catalytic Reaction of Paraâ€lsopropylbenzaldehyde with Propionaldehyde over Solid Base Catalysts. Journal of the Chinese Chemical Society, 2006, 53, 1539-1545.	1.4	7
133	Dehydrogenation and condensation in catalytic conversion of -propanol over CuO/MgO system doped with LiO and ZrO. Applied Catalysis A: General, 2006, 298, 103-108.	4.3	37
134	Thermodynamic brønsted basicity of clean MgO surfaces determined by their deprotonation ability: Role of Mg2+–O2â~' pairs. Catalysis Today, 2006, 116, 196-205.	4.4	54
135	Studies of the effects of synthetic procedure on base catalysis using hydroxide-intercalated layer double hydroxides. Catalysis Today, 2006, 114, 397-402.	4.4	65
136	Alkaline doped TiO2 sol–gel catalysts: Effect of sintering on catalyst activity and selectivity for acetone condensation. Catalysis Today, 2006, 116, 234-238.	4.4	21
137	A simple solution calcination route to porous MgO nanoplates. Microporous and Mesoporous Materials, 2006, 96, 428-433.	4.4	39
138	1H MAS NMR study of the coordination of hydroxyl groups generated upon adsorption of H2O and CD3OH on clean MgO surfaces. Applied Catalysis A: General, 2006, 307, 239-244.	4.3	16
139	Layered double hydroxides: precursors for multifunctional catalysts. Topics in Catalysis, 2006, 39, 89-96.	2.8	84
140	Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A: General, 2006, 300, 67-74.	4.3	464
141	Facile Route Using Highly Arrayed PMMA Spheres as Hard Template for the Fabrication of 3D Ordered Nanoporous MgO. Chinese Journal of Chemical Physics, 2007, 20, 697-700.	1.3	1
142	Calcium Oxide as a Solid Base Catalyst for Ecofriendly Production of Biodiesel. Journal of the Society of Powder Technology, Japan, 2007, 44, 742-747.	0.1	0
143	Infrared Characterization of Hydroxyl Groups on MgO:  A Periodic and Cluster Density Functional Theory Study. Journal of the American Chemical Society, 2007, 129, 6442-6452.	13.7	125
144	Study of the Structure of OH Groups on MgO by 1D and 2D ¹ H MAS NMR Combined with DFT Cluster Calculations. Journal of Physical Chemistry C, 2007, 111, 18279-18287.	3.1	38
145	Catalytic Properties of Lithium-Doped ZnO Catalysts Used for Biodiesel Preparations. Industrial & Engineering Chemistry Research, 2007, 46, 7942-7949.	3.7	91
146	Modified dolomites as catalysts for palm kernel oil transesterification. Journal of Molecular Catalysis A, 2007, 276, 24-33.	4.8	103
147	Effects of MgO catalyst on depolymerization of poly-l-lactic acid to l,l-lactide. Polymer Degradation and Stability, 2007, 92, 1350-1358.	5.8	74
148	Synthesizing nanocrystal-assembled mesoporous magnesium oxide using cotton fibres as exotemplate. Microporous and Mesoporous Materials, 2008, 111, 314-322.	4.4	47

#	Article	IF	CITATIONS
149	Active phase of calcium oxide used as solid base catalyst for transesterification of soybean oil with refluxing methanol. Applied Catalysis A: General, 2008, 334, 357-365.	4.3	272
150	Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 2008, 87, 216-221.	6.4	697
151	Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol. Fuel, 2008, 87, 1076-1082.	6.4	224
152	P123-Assisted Hydrothermal Synthesis and Characterization of Rectangular Parallelepiped and Hexagonal Prism Single-Crystalline MgO with Three-Dimensional Wormholelike Mesopores. Inorganic Chemistry, 2008, 47, 4015-4022.	4.0	65
153	A New Coated Catalyst for the Production of Diacetone Alcohol via Catalytic Distillation. Industrial & Engineering Chemistry Research, 2008, 47, 9304-9313.	3.7	15
155	Grain boundary control in nanocrystalline MgO as a novel means for significantly enhancing surface basicity and catalytic activity. Journal of Catalysis, 2009, 263, 196-204.	6.2	55
156	Identification of the OH groups responsible for kinetic basicity on MgO surfaces by 1H MAS NMR. Journal of Catalysis, 2009, 268, 175-179.	6.2	36
157	Ethanol adsorption on MgO surface with and without defects from a theoretical point of view. Surface Science, 2009, 603, 1093-1098.	1.9	34
158	Insights into the Geometry, Stability and Vibrational Properties of OH Groups on \hat{I}^3 -Al2O3, TiO2-Anatase and MgO from DFT Calculations. Topics in Catalysis, 2009, 52, 1005-1016.	2.8	34
159	Characterisation of magnesium carboxylates and their catalytic C–C bond formation reactions. Journal of Molecular Catalysis A, 2009, 303, 137-140.	4.8	11
160	The steam reforming of phenol over natural calcite materials. Catalysis Today, 2009, 143, 17-24.	4.4	19
161	Basic properties of rare earth oxides. Applied Catalysis A: General, 2009, 356, 57-63.	4.3	215
162	The phenol steam reforming reaction towards H2 production on natural calcite. Applied Catalysis B: Environmental, 2009, 90, 347-359.	20.2	42
163	Heterogeneous catalysis of calcium oxide used for transesterification of soybean oil with refluxing methanol. Applied Catalysis A: General, 2009, 355, 94-99.	4.3	201
164	Degradation of Sulfur Mustard and Sarin over Hardened Cement Paste. Environmental Science & Emp; Technology, 2009, 43, 1553-1558.	10.0	15
165	Facile Synthesis and Unique Physicochemical Properties of Three-Dimensionally Ordered Macroporous Magnesium Oxide, Gamma-Alumina, and Ceria−Zirconia Solid Solutions with Crystalline Mesoporous Walls. Inorganic Chemistry, 2009, 48, 4421-4434.	4.0	216
167	Surface texture and specific adsorption sites of sol–gel synthesized anatase TiO2 nanoparticles. Materials Research Bulletin, 2010, 45, 1470-1475.	5.2	24
168	A comparative study of the steam reforming of phenol towards H2 production over natural calcite, dolomite and olivine materials. Applied Catalysis B: Environmental, 2010, 95, 255-269.	20.2	77

#	Article	IF	CITATIONS
169	Biodiesel production through transesterification over natural calciums. Fuel Processing Technology, 2010, 91, 1409-1415.	7.2	145
170	Efficient porous carbon-supported MgO catalysts for the transesterification of dimethyl carbonate with diethyl carbonate. Journal of Molecular Catalysis A, 2010, 327, 32-37.	4.8	30
171	Solid base catalysis of calcium glyceroxide for a reaction to convert vegetable oil into its methyl esters. Applied Catalysis A: General, 2010, 390, 11-18.	4.3	67
172	Quantitative determination of acid sites on silica–alumina. Applied Catalysis A: General, 2010, 390, 127-134.	4.3	59
174	Basic reactivity of CaO: investigating active sites under operating conditions. Physical Chemistry Chemical Physics, 2010, 12, 14740.	2.8	27
175	Model Study on Transesterification of Soybean Oil to Biodiesel with Methanol Using Solid Base Catalyst. Journal of Physical Chemistry A, 2010, 114, 3750-3755.	2.5	35
176	Elucidation of the basicity dependence of 1-butene isomerization on MgO/Mg(OH)2 catalysts. Catalysis Communications, 2010, 12, 80-85.	3.3	50
177	Easy and effective synthesis of micrometer-sized rectangular MgO sheets with very high catalytic activity. Catalysis Communications, 2010, 11, 537-541.	3.3	78
178	Bases and Basic Materials in Chemical and Environmental Processes. Liquid versus Solid Basicity. Chemical Reviews, 2010, 110, 2217-2249.	47.7	182
179	How to determine IR molar absorption coefficients of co-adsorbed species? Application to methanol adsorption for quantification of MgO basic sites. Physical Chemistry Chemical Physics, 2011, 13, 10797.	2.8	26
180	Identification and Distribution of Surface Ions in Low Coordination of CaO Powders with Photoluminescence Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 751-756.	3.1	3
181	Nanocrystalline Copper(II) Oxide–Catalyzed One-Pot Synthesis of Imidazo[1,2- <i>a</i>) quinoline and Quinolino[1,2- <i>a</i>) quinazoline Derivatives via a Three-Component Condensation. Synthetic Communications, 2011, 41, 426-435.	2.1	22
182	Controlled Synthesis of Different Morphologies of MgO and Their Use as Solid Base Catalysts. Journal of Physical Chemistry C, 2011, 115, 12308-12316.	3.1	150
183	The synthesis of organic carbonates over nanocrystalline CaO prepared via microemulsion technique. Catalysis Communications, 2011, 13, 87-90.	3.3	6
184	Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures. Journal of Alloys and Compounds, 2011, 509, 9809-9815.	5.5	211
185	Kinetics, Selectivity, and Deactivation in the Aldol Condensation of Acetaldehyde on Anatase Titanium Dioxide. Industrial & Engineering Chemistry Research, 2011, 50, 41-51.	3.7	85
186	Solvo- or hydrothermal fabrication and excellent carbon dioxide adsorption behaviors of magnesium oxides with multiple morphologies and porous structures. Materials Chemistry and Physics, 2011, 128, 348-356.	4.0	78
187	Preparation of MgO nano-rods with strong catalytic activity via hydrated basic magnesium carbonates. Materials Research Bulletin, 2011, 46, 2163-2167.	5.2	52

#	Article	IF	CITATIONS
188	TiO2 nanoparticle size dependence of porosity, adsorption and catalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 385, 195-200.	4.7	9
189	Lanthanum Oxide Supported on Carbon Nanofibers as Solid Base Catalysts. ChemCatChem, 2011, 3, 1193-1199.	3.7	16
190	Surface reactivity of LaCoO3 and Ru/LaCoO3 towards CO, CO2 and C3H8: Effect of H2 and O2 pretreatments. Applied Catalysis B: Environmental, 2011, 102, 291-301.	20.2	28
191	Liquid phase aldol condensation reactions with MgO–ZrO2 and shape-selective nitrogen-substituted NaY. Applied Catalysis A: General, 2011, 392, 57-68.	4.3	149
192	Preparation and Catalytic Properties of Solid Base Catalysts $\hat{a} \in$ I. Metal Oxides. Springer Series in Chemical Physics, 2011, , 69-156.	0.2	0
194	Styrene epoxidation with hydrogen peroxide over calcium oxide catalysts prepared from various precursors. Journal of Natural Gas Chemistry, 2012, 21, 452-458.	1.8	21
195	Modification of the supported Cu/SiO2 catalyst by alkaline earth metals in the selective conversion of 1,4-butanediol to \hat{I}^3 -butyrolactone. Applied Catalysis A: General, 2012, 443-444, 191-201.	4.3	66
196	Heterogeneous catalysis over a barium carboxylate framework compound: Synthesis, X-ray crystal structure and aldol condensation reaction. Polyhedron, 2012, 43, 63-70.	2.2	38
197	Barium Carboxylate Metal-Organic Framework - Synthesis, X-ray Crystal Structure, Photoluminescence and Catalytic Study. European Journal of Inorganic Chemistry, 2012, 2012, 4914-4920.	2.0	43
198	Preparation of CaO Catalyst from Calcined Limestone by Mechanical Grinding for Biodiesel Production. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2012, 91, 495-502.	0.2	5
199	CaO Catalysts Prepared from a Variety of Limestone-deriving Industrial Materials for Transesterification of Soybean Oil with Methanol. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2012, 91, 34-40.	0.2	1
200	Preparation of a novel solid base catalyst of CaO covered with SiO2. Catalysis Today, 2012, 185, 236-240.	4.4	8
201	Transesterification of vegetable oil into biodiesel catalyzed by CaO: A review. Fuel, 2012, 93, 1-12.	6.4	339
202	Vapor phase butanal self-condensation over unsupported and supported alkaline earth metal oxides. Journal of Catalysis, 2012, 286, 248-259.	6.2	86
203	Alkaline Earth Chemistry: Applications in Catalysis. , 2013, , 1189-1216.		25
204	CO ₂ Adsorption on Cu ₂ O(111): A DFT+U and DFT-D Study. Journal of Physical Chemistry C, 2013, 117, 26048-26059.	3.1	161
205	Research on the MgO-supported solid-base catalysts aimed at the sweetening of hydrogenated gasoline. Fuel Processing Technology, 2013, 115, 63-70.	7.2	12
206	Preparation and characterization of Cs/Al/Fe3O4 nanocatalysts for biodiesel production. Energy Conversion and Management, 2013, 71, 62-68.	9.2	116

#	ARTICLE	IF	CITATIONS
207	Acetone Condensation Over Sulfated Zirconia Catalysts. Catalysis Letters, 2013, 143, 705-716.	2.6	10
208	Isotopic transient analysis of the ethanol coupling reaction over magnesia. Journal of Catalysis, 2013, 298, 130-137.	6.2	95
209	Advances in direct transesterification of microalgal biomass for biodiesel production. Reviews in Environmental Science and Biotechnology, 2013, 12, 179-199.	8.1	96
210	Porous cesium impregnated MgO (Cs–MgO) nanoflakes with excellent catalytic activity for highly selective rapid synthesis of flavanone. RSC Advances, 2013, 3, 2802.	3.6	12
211	Heterogeneous Catalysts for the Guerbet Coupling of Alcohols. ACS Catalysis, 2013, 3, 1588-1600.	11.2	312
212	FT-IR Study of Propylene Oxide Adsorption on Metal Oxides. Advanced Materials Research, 0, 781-784, 169-173.	0.3	2
213	Aldol Condensation of Furfural with Acetone Over Anion Exchange Resin Catalysts. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2014, 93, 1236-1243.	0.2	2
214	Examination of acid–base properties of solid catalysts for gas phase dehydration of glycerol: FTIR and adsorption microcalorimetry studies. Catalysis Today, 2014, 226, 167-175.	4.4	36
215	Study on the basic centers and active oxygen species of solid-base catalysts for oxidation of iso-mercaptans. Applied Catalysis A: General, 2014, 473, 125-131.	4.3	8
216	Ecoâ€Friendly Catalytic Systems Based on Carbonâ€Supported Magnesium Oxide Materials for the FriedlÃ ¤ der Condensation. ChemCatChem, 2014, 6, 3440-3447.	3.7	16
217	Catalytic fast pyrolysis of lignocellulosic biomass. Chemical Society Reviews, 2014, 43, 7594-7623.	38.1	864
218	How Surface Hydroxyls Enhance MgO Reactivity in Basic Catalysis: The Case of Methylbutynol Conversion. ACS Catalysis, 2014, 4, 4004-4014.	11.2	34
219	Synthesis, characterization and catalytic evaluation of BiCl 3 -ZrO 2 for the synthesis of novel pyrazolyl chalcones. Journal of Molecular Catalysis A, 2014, 394, 262-273.	4.8	5
220	CO ₂ Adsorption As a Flat-Lying, Tridentate Carbonate on CeO ₂ (100). Journal of Physical Chemistry C, 2014, 118, 9042-9050.	3.1	73
221	Ru–C–ZnO Composite Catalysts for the Synthesis of Methyl Isobutyl Ketone via Single Step Gas Phase Acetone Self-Condensation. Catalysis Letters, 2014, 144, 1278-1288.	2.6	10
222	A method to enhance the CO ₂ storage capacity of pyroxenitic rocks., 2015, 5, 577-591.		12
223	Carbon dioxide storage in olivine basalts: Effect of ball milling process. Powder Technology, 2015, 273, 220-229.	4.2	41
224	Calcium-modified hierarchically porous aluminosilicate geopolymer as a highly efficient regenerable catalyst for biodiesel production. RSC Advances, 2015, 5, 65454-65461.	3.6	67

#	Article	IF	CITATIONS
225	An efficient solid base catalyst from coal combustion fly ash for green synthesis of dibenzylideneacetone. Journal of Industrial and Engineering Chemistry, 2015, 29, 359-365.	5.8	36
226	DRIFTS of Probe Molecules Adsorbed on Magnesia, Zirconia, and Hydroxyapatite Catalysts. Journal of Physical Chemistry C, 2015, 119, 9186-9197.	3.1	68
227	Potassium fluoride-barium oxide catalysis in an easy and efficient synthesis of methysticin from piperonal under microwave irradiation. Russian Journal of General Chemistry, 2015, 85, 1939-1944.	0.8	1
228	Ternary Ag/MgOâ€SiO ₂ Catalysts for the Conversion of Ethanol into Butadiene. ChemSusChem, 2015, 8, 994-1008.	6.8	147
229	Catalytic conversion of cellulose to C ₂ â€"C ₃ glycols by dual association of a homogeneous metallic salt and a perovskite-supported platinum catalyst. Catalysis Science and Technology, 2016, 6, 5534-5542.	4.1	23
230	On the potential use of quarry waste material for CO2 sequestration. Journal of CO2 Utilization, 2016, 16, 361-370.	6.8	15
231	Catalytic deoxygenation during cellulose fast pyrolysis using acid–base bifunctional catalysis. Catalysis Science and Technology, 2016, 6, 7468-7476.	4.1	19
232	Lanthanum and Cesium-Loaded SBA-15 Catalysts for MMA Synthesis by Aldol Condensation of Methyl Propionate and Formaldehyde. Catalysis Letters, 2016, 146, 1808-1818.	2.6	25
233	A novel approach towards hydrazine sensor development using SrO·CNT nanocomposites. RSC Advances, 2016, 6, 65338-65348.	3.6	74
234	Investigation of the electrosynthetic pathway of the aldol condensation of acetone. Chemical Engineering Journal, 2016, 289, 554-561.	12.7	14
235	Sol–gel Derived Mixed Oxide Zirconia: Titania Green Heterogeneous Catalysts and Their Performance in Acridine Derivatives Synthesis. Catalysis Letters, 2016, 146, 645-655.	2.6	14
236	Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives. Renewable and Sustainable Energy Reviews, 2016, 56, 1387-1408.	16.4	262
237	Heteropoly acid coated ZnO nanocatalyst for <i>Madhuca indica</i> biodiesel synthesis. Biofuels, 2016, 7, 13-20.	2.4	35
238	Deoxygenation of bio-oil over solid base catalysts: From model to realistic feeds. Applied Catalysis B: Environmental, 2016, 184, 77-86.	20.2	59
239	Heterogeneous calcium-based bimetallic oxide catalyzed transesterification of Elaeis guineensis derived triglycerides for biodiesel production. Energy Conversion and Management, 2017, 141, 20-27.	9.2	43
240	ABE Condensation over Monometallic Catalysts: Catalyst Characterization and Kinetics. ChemCatChem, 2017, 9, 677-684.	3.7	33
241	Valorization of biodiesel plant-derived products via preparation of solketal fatty esters over calcium-rich natural materials derived oxides. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81, 57-64.	5.3	9
242	A DFT study on the aldol condensation reaction on MgO in the process of ethanol to 1,3-butadiene: understanding the structure–activity relationship. Physical Chemistry Chemical Physics, 2017, 19, 25671-25682.	2.8	26

#	Article	IF	Citations
243	Controlled Synthesis of Different Morphologies of Cu–MgO and Their Application as Catalysts in Synthesis of 1,2,3â€√riazoles Following Different Pathways. ChemistrySelect, 2017, 2, 7340-7352.	1.5	4
244	Acetone condensation over CaO—SnO2 catalyst. Russian Chemical Bulletin, 2017, 66, 488-490.	1.5	8
245	Effect of hydration on the surface basicity and catalytic activity of Mg-rare earth mixed oxides for aldol condensation. Journal of Rare Earths, 2018, 36, 359-366.	4.8	5
246	Identification of the Basic Sites on Nitrogen-Substituted Microporous and Mesoporous Silicate Frameworks Using CO ₂ as a Probe Molecule. Langmuir, 2018, 34, 1376-1385.	3.5	8
247	Characterization of acid-base catalysts through model reactions. Catalysis Reviews - Science and Engineering, 2018, 60, 337-436.	12.9	48
248	Catalysts and catalysis for acid–base reactions. , 2018, , 133-209.		14
249	Enhancement of the 1-butanol productivity in the ethanol condensation catalyzed by noble metal nanoparticles supported on Mg-Al mixed oxide. Applied Catalysis A: General, 2018, 563, 64-72.	4.3	19
250	Aerobic Oxidation of Benzyl Alcohol on a Strontium-Based Gold Material: Remarkable Intrinsic Basicity and Reusable Catalyst. Catalysts, 2018, 8, 83.	3.5	12
251	The mechanism and kinetics of methyl isobutyl ketone synthesis from acetone over ion-exchanged hydroxyapatite. Journal of Catalysis, 2018, 365, 174-183.	6.2	25
252	Copperâ€Basic Sites Synergic Effect on the Ethanol Dehydrogenation and Condensation Reactions. ChemCatChem, 2018, 10, 3583-3592.	3.7	15
253	Ultrasound-Enhanced Catalytic Ozonation Oxidation of Ammonia in Aqueous Solution. International Journal of Environmental Research and Public Health, 2019, 16, 2139.	2.6	10
254	Effects of Basic Promoters on the Catalytic Performance of Cu/SiO2 in the Hydrogenation of Dimethyl Maleate. Catalysts, 2019, 9, 704.	3.5	7
255	Control of the compositions and morphologies of uranium oxide nanocrystals in the solution phase: multi-monomer growth and self-catalysis. Nanoscale Advances, 2019, 1, 1314-1318.	4.6	5
256	Fluorescence spectroscopy studies of crossed aldol reactions: a reactive Nile red dye reveals catalyst-dependent product formation. Catalysis Science and Technology, 2020, 10, 5579-5592.	4.1	1
257	Biogenic-Mediated Synthesis of the Cs ₂ O–MgO/MPC Nanocomposite for Biodiesel Production from Olive Oil. ACS Omega, 2020, 5, 27811-27822.	3.5	17
258	Continuous Catalytic Condensation of Ethanol into 1-Butanol: The Role of Metallic Oxides (M = MgO,) Tj ETQq1 159, 16626-16636.	0.784314 3.7	rgBT /Ove 12
259	Computational and Experimental Mechanistic Insights into the Ethanol-to-Butanol Upgrading Reaction over MgO. ACS Catalysis, 2020, 10, 15162-15177.	11.2	16
260	Transfer Hydrogenation of Cinnamaldehyde Catalyzed by Al ₂ O ₃ Using Ethanol as a Solvent and Hydrogen Donor. ACS Sustainable Chemistry and Engineering, 2020, 8, 8195-8205.	6.7	25

#	Article	IF	CITATIONS
261	State of the Art of Catalysts for Biodiesel Production. Frontiers in Energy Research, 2020, 8, .	2.3	214
262	Synthesis of Solid Base Catalyst of BaO–Al ₂ O ₃ Binary Oxide by Solid-liquid Interface Reaction of Hydrated Barium Hydroxide with Aluminum Alkoxide. Journal of the Japan Petroleum Institute, 2020, 63, 20-27.	0.6	6
263	Y-doped ZnO films for acetic acid sensing down to ppb at high humidity. Sensors and Actuators B: Chemical, 2021, 327, 128843.	7.8	28
264	Thermoelectric properties of strontium oxide under pressure: First-principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 390, 127083.	2.1	9
265	Ethanol conversion over Ga ₂ O ₃ â€"ZrO ₂ solid solution: empirical evidence of the reaction pathway, the surface acidâ€"base properties, and the role of gallium ions. Catalysis Science and Technology, 2021, 11, 2047-2056.	4.1	3
266	Role of H and OH surface species in the reduction of the C O double bond. Molecular Catalysis, 2021, 502, 111338.	2.0	2
267	Synthesis of SrO–Al ₂ O ₃ Solid Base Catalysts from Strontium Hydroxide and Aluminum Alkoxide by a Solid-liquid Interface Reaction. Journal of the Japan Petroleum Institute, 2021, 64, 103-111.	0.6	7
268	CaO catalyst for multi-route conversion of oakwood biomass to value-added chemicals and fuel precursors in fast pyrolysis. Applied Catalysis B: Environmental, 2021, 285, 119858.	20.2	56
269	Tracing the acid-base catalytic properties of MON2O mixed oxides (M = Be, Mg, Ca; N = Li, Na, K) by theoretical calculations. Journal of Molecular Modeling, 2021 , 27 , 210 .	1.8	0
270	Preparation and evaluation of Ni $\hat{\mathbb{N}}^3$ -Al2O3 catalysts promoted by alkaline earth metals in glycerol reforming with carbon dioxide. International Journal of Hydrogen Energy, 2021, 46, 24991-25003.	7.1	16
271	A review on the utilization of calcium oxide as a base catalyst in biodiesel production. Journal of Environmental Chemical Engineering, 2021, 9, 105741.	6.7	50
272	Catalytic activity and water stability of the MgO(111) surface for 2-pentanone condensation. Applied Catalysis B: Environmental, 2021, 294, 120234.	20.2	9
273	Unveiling the coexistence of <i>cis-</i> and <i>trans</i> -isomers in the hydrolysis of ZrO2: A coupled DFT and high-resolution photoelectron spectroscopy study. Journal of Chemical Physics, 2020, 153, 244308.	3.0	3
274	The Production of Dispersible Zirconia Nanocrystals: A Recent Patent Review. Recent Innovations in Chemical Engineering, 2015, 7, 76-95.	0.4	3
275	Eco-Friendly Production of Biodiesel by Utilizing Solid Base Catalysis of Calcium Oxide for Reaction to Convert Vegetable Oil into Its Methyl Esters. Green Energy and Technology, 2010, , 20-28.	0.6	1
276	MgO Supported Al2O3 Oxide: A New, Efficient, and Reusable Catalyst for Synthesis of Chalcones. Chemistry and Chemical Technology, 2020, 14, 169-176.	1.1	1
277	Heterogeneous ketonic decarboxylation of dodecanoic acid: studying reaction parameters. RSC Advances, 2021, 11, 35575-35584.	3.6	1
278	NMR and Mössbauer Study of Al2O3-Eu2O3. , 2005, , 11-19.		0

#	Article	IF	CITATIONS
279	Spatial charge separation induced new mechanism of efficient C–C coupling by forming ion-pair intermediates. Chem Catalysis, 2021, 1, 1449-1465.	6.1	7
280	One-pot synthesis of biomass-derived porous carbon-based composites as an efficient acid–base bifunctional catalyst for self-condensation of ⟨i⟩n⟨/i⟩-butyraldehyde. Reaction Chemistry and Engineering, 0, , .	3.7	0
281	Solid Lewis acid-base pair catalysts constructed by regulations on defects of UiO-66 for the catalytic hydrogenation of cinnamaldehyde. Catalysis Today, 2022, 402, 52-59.	4.4	12
282	A promising strategy for synthesis of valuable chemicals from oxygen-containing compounds. Chem Catalysis, 2021, 1, 1359-1360.	6.1	0
283	Development of an efficient Pt/SiO2 catalyst for the transfer hydrogenation from perhydro-dibenzyltoluene to acetone. Applied Catalysis A: General, 2022, 639, 118644.	4.3	11
284	Influence of the glycerin content in the preparation of calcium diglyceroxide from eggshell applied in the residual oil transesterification. Canadian Journal of Chemical Engineering, 2023, 101, 2431-2443.	1.7	1
285	Thermodynamic stability and leaching behaviour of Ba and Th charge-coupled substituted monazite solid solution (La1-Ba/2Th/2)PO4 ($x\hat{A}=\hat{A}0.1$, 0.2 and 0.3) and its comparison with Sr and Th substituted monazite. Thermochimica Acta, 2023, 719, 179412.	2.7	0
286	Stoichiometric metal nitration based novel green synthesis of mesoporous metal oxides and their enhanced heterogeneity. Microporous and Mesoporous Materials, 2023, 348, 112343.	4.4	1
287	MgO-containing porous carbon spheres derived from magnesium lignosulfonate as sustainable basic catalysts. Journal of Environmental Chemical Engineering, 2023, 11, 109060.	6.7	5
288	Catalytic conversion of concentrated feed of carbohydrates to $5\hat{a}\in h$ ydroxymethylfurfural and its subsequent aldol condensation. ChemCatChem, $0,$,.	3.7	0
289	Solvent Polarity and Framework Hydrophobicity of Hf-BEA Zeolites Influence Aldol Addition Rates in Organic Media. ACS Catalysis, 2023, 13, 6474-6485.	11.2	4
290	ã,«ãƒ«ã,•ã,¦ãƒã®æ°′é…,åŒ−物,ç,é…,塩,ã,•ュã,¦é…,妩ãŠã,°ãªã,®é…,妩ã,'ãã,Œãžã,Œç†±å^†è§£	ã•- @. ∳調è∮	E¹∕ ∕ã• –ãŸé…ु
291	Titanium(<scp>iv</scp>) enolates of cyclic ketones – stereoselective addition of cyclododecanone to aromatic aldehydes. New Journal of Chemistry, 2023, 47, 16505-16517.	2.8	0
292	BaO as a heterogeneous nanoparticle catalyst in oil transesterification for the production of FAME fuel. Inorganic Chemistry Communication, 2023, , 111620.	3.9	1
293	Lanthanide Oxides in Ammonia Synthesis Catalysts: A Comprehensive Review. Catalysts, 2023, 13, 1464.	3.5	1
294	Tandem Reactions in Acetone–Isopropanol System on MgSnO3 Catalyst under Supercritical Conditions. Russian Journal of Physical Chemistry B, 2023, 17, 1499-1506.	1.3	0