Linearized augmented plane wave electronic structure

Journal of Geophysical Research 93, 8009-8022 DOI: 10.1029/jb093ib07p08009

Citation Report

#	Article	IF	CITATIONS
1	Static compression and equation of state of CaO to 1.35 Mbar. Journal of Geophysical Research, 1988, 93, 15279-15288.	3.3	128
2	Measured elastic moduli of single-crystal MgO up to 1800 K. Physics and Chemistry of Minerals, 1989, 16, 704.	0.8	245
3	Thermodynamic and elastic properties of a many-body model for simple oxides. Physical Review B, 1990, 41, 7755-7766.	3.2	41
4	Accurate forces in a local-orbital approach to the local-density approximation. Physical Review B, 1990, 42, 3276-3281.	3.2	348
5	Relating double wells to phase transitions from <i>AB INITIO</i> model calculations. Ferroelectrics, 1990, 111, 63-69.	0.6	9
6	Calculated elastic and thermal properties of MGO at high pressures and temperatures. Journal of Geophysical Research, 1990, 95, 7055-7067.	3.3	154
7	Elastic constants and electronic structure of fluorite (CaF2): an ab initio Hartree-Fock study. Journal of Physics Condensed Matter, 1991, 3, 4151-4164.	1.8	100
8	Quantum-mechanical Hartree-Fock self-consistent-field study of the elastic constants and chemical bonding ofMgF2(sellaite). Physical Review B, 1991, 44, 3509-3517.	3.2	70
9	The highâ€pressure electronic structure of magnesiowustite (Mg, Fe)O: Applications to the physics and chemistry of the lower mantle. Journal of Geophysical Research, 1991, 96, 14299-14312.	3.3	52
10	Mantle Discontinuities. Reviews of Geophysics, 1991, 29, 783-793.	23.0	36
11	Mineral and Melt Physics. Reviews of Geophysics, 1991, 29, 844-863.	23.0	3
12	Calculation of the equation of state and elastic moduli of MgO using molecular orbital theory. Physics and Chemistry of Minerals, 1991, 17, 622.	0.8	2
13	First-principles calculations of defect-induced lattice relaxation in ionic systems. Physical Review B, 1991, 43, 2364-2371.	3.2	18
14	First principles analysis of vibrational modes in KNbO3. Ferroelectrics, 1992, 136, 95-103.	0.6	121
15	Stability of (Mg,Fe)SiO ₃ perovskite and the structure of the lowermost mantle. Geophysical Research Letters, 1992, 19, 1057-1060.	4.0	15
16	Periodic Hartree-Fock study of B1 ⇌ B2 reactions: phase transition in CaO. Physics of the Earth and Planetary Interiors, 1992, 72, 286-298.	1.9	9
17	Stability of orthorhombic MgSiO3 perovskite in the Earth's lower mantle. Nature, 1993, 364, 613-616.	27.8	127
18	A study of ionic solids by means of new density-functional theory techniques. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1993, 15, 243-251	0.4	5

ARTICLE IF CITATIONS # Static lattice and electron properties of MgCO3 (magnesite) calculated by ab initioperiodic Hartree-Fock 19 3.2 96 methods. Physical Review B, 1993, 47, 9189-9198. A self consistent atomic deformation model for total energy calculations: Application to ferroelectrics. Ferroelectrics, 1993, 150, 13-24. Phase stability of wÃ1/4 stite at high pressure from first-principles linearized augmented plane-wave 21 3.2 56 calculations. Physical Review B, 1993, 47, 7720-7731. Ab initiolattice dynamics and charge fluctuations in alkaline-earth oxides. Physical Review B, 1994, 50, 3746-3753. Melting and melt structure of MgO at high pressures. Physical Review B, 1994, 50, 12301-12311. 23 3.2 56 Self-consistent calculations of total energies and charge densities of solids without solving the band-structure problem. International Journal of Quantum Chemistry, 1994, 52, 987-992. Calculations of pressure-induced phase transitions in mantle minerals. Physics and Chemistry of 25 0.8 5 Minerals, 1995, 22, 145. Copper adsorption potentials of MgO(001). Physical Review B, 1995, 52, 6067-6080. 3.2 26 60 27 Modeling theO2â[°]-O2â[°]interaction for atomistic simulations. Physical Review B, 1995, 51, 11289-11295. 3.2 7 Band theory of linear and nonlinear susceptibilities of some binary ionic insulators. Physical Review 3.2 B, 1995, 52, 1596-1611. Electronic and structural properties of alkaline-earth oxides under high pressure. Physical Review B, 29 3.2 81 1995, 52, 4-7. Ab initiocalculations of cohesive and structural properties of the alkali-earth oxides. Journal of 1.8 36 Physics Condensed Matter, 1996, 8, 8983-8994. Molecular and lattice dynamics study of the MgO-SiO2 system using a transferable interatomic $\mathbf{31}$ 3.9 43 potential. Geochimica Ét Cosmochimica Acta, 1996, 60, 1645-1656. Comparison of the electronic structures and energetics of ferroelectricLiNbO3andLiTaO3. Physical Review B, 1996, 53, 1193-1204. 3.2 146 Structure and bonding in the deep mantle and core. Philosophical Transactions Series A, 33 12 3.4 Mathematical, Physical, and Engineering Sciences, 1996, 354, 1461-1479. A Model to Compute Phase Diagrams in Oxides with Empirical or First-Principles Energy Methods and Application to the Solubility Limits in the CaO-MgO System. Journal of the American Čeramic Society, 1996, 79, 2033-2040. Tight-binding calculation of formation energies in multicomponent oxides: Application to the MgO-CaO phase diagram. Physical Review B, 1996, 54, 805-811. 35 3.224 Gaussian basis density functional theory for systems periodic in two or three dimensions: Energy and forces. Journal of Chemical Physics, 1996, 105, 10983-10998.

~			-	
(``		ON	REPC	NDT
\sim	$\Pi \cap \Pi$		ILLI C	

#	Article	IF	CITATIONS
37	Theoretical and experimental investigation of the equations of state and phase stabilities of MgS and CaS. Journal of Physics Condensed Matter, 1996, 8, 8251-8265.	1.8	33
38	A theory of the relative stabilities of the cubic phases of magnesium and calcium oxides. Journal of Physics Condensed Matter, 1996, 8, 5509-5525.	1.8	11
39	Charge Density of MgO: Implications of Precise New Measurements for Theory. Physical Review Letters, 1997, 78, 4777-4780.	7.8	95
40	Effects of Pressure on Diffusion and Vacancy Formation in MgO from Nonempirical Free-Energy Integrations. Physical Review Letters, 1997, 79, 3198-3201.	7.8	62
41	Surface structure of MgO (001): Ab initio versus shell model. Physical Review B, 1997, 55, 16456-16465.	3.2	18
42	Calculated elastic constants and anisotropy of Mg2SiO4spinel at high pressure. Geophysical Research Letters, 1997, 24, 2841-2844.	4.0	80
43	Pressure induced structural phase transition in MgS and CaS. Journal of Physics and Chemistry of Solids, 1998, 59, 599-603.	4.0	16
44	Structure and elasticity of CaO at high pressure. Journal of Geophysical Research, 1998, 103, 12405-12411.	3.3	46
45	Elastic constants and anisotropy of MgSiO3 perovskite, periclase, and SiO2 at high pressure. Geodynamic Series, 1998, , 83-96.	0.1	30
46	The phase transition in alkaline-earth oxides: a comparison ofab initioHartree-Fock and density functional calculations. Journal of Physics Condensed Matter, 1998, 10, 6897-6909.	1.8	91
47	Electron distribution in MgO probed by x-ray emission. Physical Review B, 1998, 57, 12111-12118.	3.2	20
48	Band structures of CsCl-structured BaS and CaSe at high pressure: Implications for metallization pressures of the alkaline earth chalcogenides. Physical Review B, 1998, 58, 9793-9800.	3.2	37
49	The melting curve and premelting of MgO. Geophysical Monograph Series, 1998, , 185-196.	0.1	12
50	Seismic velocities of major silicate and oxide phases of the lower mantle. Journal of Geophysical Research, 1999, 104, 13025-13033.	3.3	33
51	Single-crystal elasticity of MgO at high pressure. Physical Review B, 1999, 59, R14141-R14144.	3.2	87
52	Phase diagram of MgO from density-functional theory and molecular-dynamics simulations. Physical Review B, 1999, 60, 15084-15093.	3.2	77
53	The ab initio study of the stability of low temperature Al/Si ordered albite, NaAlSi ₃ O ₈ . American Mineralogist, 2000, 85, 1681-1685.	1.9	4
54	Comparison of Semi-Empirical and Ab Initio Calculations of the Mixing Properties of MO–Mâ€2O Solid Solutions. Journal of Solid State Chemistry, 2000, 153, 357-364.	2.9	9

		CITATION REPORT		
#	Article		IF	CITATIONS
55	The valence band structures of BeO, MgO, and CaO. Journal of Chemical Physics, 2000	, 113, 8175-8182.	3.0	26
56	High-pressure lattice dynamics and thermoelasticity of MgO. Physical Review B, 2000,	61, 8793-8800.	3.2	278
57	LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO. Physica 2000, 62, 1660-1665.	ıl Review B,	3.2	402
58	P-V-T equation of state of periclase from synchrotron radiation measurements. Journal Geophysical Research, 2000, 105, 2869-2877.	of	3.3	116
59	Quasi-hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure-volume-temperature equation of state. Journal of Geophysical Research, 2001	, 106, 515-528.	3.3	391
60	High-pressure elastic properties of major materials of Earth's mantle from first principle Geophysics, 2001, 39, 507-534.	es. Reviews of	23.0	240
61	Systematics of elasticity:Ab initiostudy in B1-type alkaline earth oxides. Journal of Chen 2001, 114, 10086-10093.	nical Physics,	3.0	125
62	Ab-initio studies of pressure induced phase transitions in BaO. Journal of Computer-Aid Design, 2001, 8, 193-202.	ed Materials	0.7	19
63	Full-potential KKR calculations for MgO and divalent impurities in MgO. Physical Review	v B, 2002, 66, .	3.2	22
64	First-principles calculation of the formation energy in MgO-CaO solid solutions. Physica 2002, 65, .	il Review B,	3.2	14
65	B1-B2 transition in CaO and possibility of CaSiO3-perovskite decomposition under high Journal of Mineralogical and Petrological Sciences, 2002, 97, 144-152.	ı pressure	0.9	12
66	All-electron and pseudopotential study of MgO: Equation of state, anharmonicity, and Physical Review B, 2003, 67, .	stability.	3.2	151
67	Ab initio lattice dynamics and structural stability of MgO. Journal of Chemical Physics, 2 10174-10182.	2003, 118,	3.0	144
68	Vibrational and quasiharmonic thermal properties of CaO under pressure. Physical Revi ·	ew B, 2003, 68,	3.2	73
69	RobustAb InitioCalculation of Condensed Matter: Transparent Convergence through Se Multiresolution Analysis. Physical Review Letters, 2003, 90, 216402.	emicardinal	7.8	11
70	Measurements of electron densities in solids: a real-space view of electronic structure a in inorganic crystals. Reports on Progress in Physics, 2004, 67, 2053-2103.	and bonding	20.1	54
71	Chapter 15 Transport properties in deep depths and related condensed-matter phenon Developments in Geochemistry, 2004, 9, 1041-1203.	1ena.	0.1	0
72	Ab-initio study of the structural phase transition of SrSe and SrTe under pressure. Inter Journal of Quantum Chemistry, 2004, 99, 828-832.	national	2.0	22

#	Article	IF	CITATIONS
73	The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. Journal of Computational Chemistry, 2004, 25, 888-897.	3.3	796
74	Full potential calculation of structural, electronic and elastic properties of alkaline earth oxides MgO, CaO and SrO. Physica B: Condensed Matter, 2004, 344, 334-342.	2.7	115
75	Electronic band structure of calcium oxide. Journal of Electron Spectroscopy and Related Phenomena, 2004, 141, 27-38.	1.7	27
76	Structural and magnetic phase transitions in simple oxides using hybrid functionals. Molecular Simulation, 2005, 31, 367-377.	2.0	28
77	Quantum Monte Carlo calculations of the structural properties and the B1-B2 phase transition of MgO. Physical Review B, 2005, 72, .	3.2	57
78	Ab initio theory of planetary materials. Zeitschrift Fur Kristallographie - Crystalline Materials, 2005, 220, .	0.8	37
79	Pressure-induced phase transition in ZnO andZnOâ^'MgOpseudobinary system: A first-principles lattice dynamics study. Physical Review B, 2005, 72, .	3.2	98
80	The role of theoretical mineral physics in modeling the Earth's interior. Geophysical Monograph Series, 2005, , 137-163.	0.1	Ο
81	New high-pressure phase relations in CaSnO3. American Mineralogist, 2006, 91, 1879-1887.	1.9	21
82	High-pressure elasticity of calcium oxide: A comparison between Brillouin spectroscopy and radial X-ray diffraction. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	37
83	First-principles calculations of the structural, dynamical, and electronic properties of liquid MgO. Physical Review B, 2006, 73, .	3.2	68
84	First-principles modelling of Earth and planetary materials at high pressures and temperatures. Reports on Progress in Physics, 2006, 69, 2365-2441.	20.1	152
85	First-principles calculation of elastic and thermodynamic properties of MgO and SrO under high pressure. Physica B: Condensed Matter, 2006, 373, 334-340.	2.7	32
86	First principles study of structural, electronic and optical properties of KCl crystal. Chemical Physics, 2006, 330, 1-8.	1.9	10
87	Theory and Practice $\hat{a} \in $ Measuring High-Pressure Electronic and Magnetic Properties. , 2007, , 293-337.		1
88	Theory and Practice – The Ab Initio Treatment of High-Pressure and -Temperature Mineral Properties and Behavior. , 2007, , 359-387.		1
89	Thermoelasticity of MgO at High Pressures. Chinese Journal of Chemical Physics, 2007, 20, 65-70.	1.3	8
90	Thermoelasticity of CaO from first principles. Chinese Physics B, 2007, 16, 499-505.	1.3	14

#	ARTICLE	IF	CITATIONS
91	Comparative investigations of the P–V–T relationship of MgO with shell and breathing shell model molecular dynamics simulations. Physica B: Condensed Matter, 2007, 399, 9-16.	2.7	6
92	Elastic properties of alkaline earth oxides under high pressure. Physica B: Condensed Matter, 2007, 391, 307-311.	2.7	16
93	Phase transition and elastic constants of CaO from first-principle calculations. Physica B: Condensed Matter, 2007, 392, 229-232.	2.7	41
94	Structural and elastic properties of MgS via first-principle calculations. Physica B: Condensed Matter, 2008, 403, 2367-2371.	2.7	21
95	Entropy of MgO based on the Stacey equation of state. Journal of Physics and Chemistry of Solids, 2008, 69, 1029-1032.	4.0	5
96	Pressureâ€volumeâ€temperature relations in MgO: An ultrahigh pressureâ€temperature scale for planetary sciences applications. Journal of Geophysical Research, 2008, 113, .	3.3	84
97	The phase transition, and elastic and thermodynamic properties of CaS derived from first-principles calculations. Journal of Physics Condensed Matter, 2008, 20, 115203.	1.8	33
98	Elasticity of the B2 phase and the effect of the B1–B2 phase transition on the elasticity of MgO. Phase Transitions, 2009, 82, 87-97.	1.3	6
99	Pressure dependence of harmonic and anharmonic lattice dynamics in MgO: A first-principles calculation and implications for lattice thermal conductivity. Physics of the Earth and Planetary Interiors, 2009, 174, 33-38.	1.9	33
100	Phonon and elastic instabilities in rocksalt calcium oxide under pressure: a first-principles study. Journal of Physics Condensed Matter, 2009, 21, 015402.	1.8	13
101	Role of temperature in the numerical analysis of CaO under high pressure. Open Chemistry, 2010, 8, 126-133.	1.9	8
102	Elastic properties of alkaline earth oxides under high pressure. Phase Transitions, 2010, 83, 1059-1071.	1.3	5
103	Multi-Mbar Phase Transitions in Minerals. Reviews in Mineralogy and Geochemistry, 2010, 71, 299-314.	4.8	10
104	MgO phase diagram from first principles in a wide pressure-temperature range. Physical Review B, 2010, 81, .	3.2	85
105	Two-stage dissociation in MgSiO3 post-perovskite. Earth and Planetary Science Letters, 2011, 311, 225-229.	4.4	58
106	High pressure phase transitions in Mg _{1–<i>x</i>} Ca _{<i>x</i>} O: Theory. Physica Status Solidi (B): Basic Research, 2011, 248, 1901-1907.	1.5	11
107	Effects of pressure and temperature on the isothermal bulk modulus of CaO. Physica B: Condensed Matter, 2011, 406, 293-296.	2.7	10
108	Thermodynamic properties of magnesium oxide: a comparison ofab initioand empirical models. Physica Scripta, 2012, 85, 045702.	2.5	4

#	Article	IF	Citations
109	Ab initio quantum-mechanical study of the effects of the inclusion of iron on thermoelastic and thermodynamic properties of periclase (MgO). Physics and Chemistry of Minerals, 2012, 39, 649-663.	0.8	16
110	Raman spectroscopy and lattice dynamics of MgSiO ₃ -perovskite at high pressure. Geophysical Monograph Series, 0, , 35-44.	0.1	26
111	Electronic Structure and Total Energy Calculations for Oxide Perovskites and Superconductors. Geophysical Monograph Series, 0, , 55-66.	0.1	11
112	High pressure equation of state and ideal compressive and tensile strength of MgO single crystal: Ab-initio calculations. Journal of Applied Physics, 2013, 113, 233504.	2.5	5
113	Lattice dynamics and thermal properties of CaxMg1â^'xS ternary alloys. Computational Materials Science, 2013, 69, 148-152.	3.0	3
114	Novel stable compounds in the Mg–O system under high pressure. Physical Chemistry Chemical Physics, 2013, 15, 7696.	2.8	102
115	Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures. Nature Geoscience, 2013, 6, 926-929.	12.9	170
116	Thermodynamic Analysis of the System MgO-FeO-SiO ₂ at High Pressure and the Structure of the Lowermost Mantle. Geophysical Monograph Series, 0, , 131-141.	0.1	12
117	An adaptive genetic algorithm for crystal structure prediction. Journal of Physics Condensed Matter, 2014, 26, 035402.	1.8	120
118	Theoretical investigation of high-pressure phase transitions in Mg1-xSrxO. Phase Transitions, 2014, 87, 126-135.	1.3	2
119	Crystal Structure Prediction and Its Application in Earth and Materials Sciences. Topics in Current Chemistry, 2014, 345, 223-256.	4.0	12
120	First-principles computation of mantle materials in crystalline and amorphous phases. Physics of the Earth and Planetary Interiors, 2015, 240, 43-69.	1.9	25
121	Mineralogy of Super-Earth Planets. , 2015, , 149-178.		38
122	Measuring High-Pressure Electronic and Magnetic Properties. , 2015, , 313-349.		2
123	The Ab Initio Treatment of High-Pressure and High-Temperature Mineral Properties and Behavior. , 2015, , 369-392.		2
124	Mechanical and electronic properties of Ca1â^'Mg O alloys. Materials Science in Semiconductor Processing, 2015, 40, 676-684.	4.0	18
125	Structural, electronic and mechanical properties of alkaline earth metal oxides MO (M=Be, Mg, Ca, Sr,) Tj ETQqO	0 0 rgBT /0 4.0	Dverlock 10 T

126	Optical Properties and Electronic Structure of Ca	. Journal of Applied Spectroscopy, 2016, 83, 567-572.	0.7 4	
-----	---	---	-------	--

#	Article	IF	CITATIONS
127	Phase stability and electronic behavior of MgS, MgSe and MgTe compounds. Phase Transitions, 2017, 90, 929-941.	1.3	26
128	Phase transitions in MgSiO3 post-perovskite in super-Earth mantles. Earth and Planetary Science Letters, 2017, 478, 40-45.	4.4	45
129	Ferromagnetism in amorphous MgO. Philosophical Magazine, 2017, 97, 2129-2141.	1.6	1
130	The melting points of MgO up to 4 TPa predicted based on ab initio thermodynamic integration molecular dynamics. Journal of Physics Condensed Matter, 2018, 30, 114003.	1.8	23
131	Theoretical study of CaO, CaS and CaSe via first-principles calculations. Results in Physics, 2018, 10, 934-945.	4.1	29
132	Fundamental properties and phase stability of B1 and B2 phases of MgO over a wide range of pressures and temperatures: A first-principles study. Computational Materials Science, 2018, 154, 159-168.	3.0	3
133	Theoretical analysis of the structural phase transition in alkaline earth oxides. AIP Conference Proceedings, 2019, , .	0.4	0
134	High-Pressure Third-Order Elastic Constants of MgO Single Crystal: First-Principles Investigation. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2019, 74, 447-456.	1.5	3
135	Structural, electronic, and optical properties of inhomogeneous Ca1â^'x Mg x O alloys. Journal of Applied Physics, 2019, 125, 155102.	2.5	5
136	<i>Ab initio</i> calculations of the B1-B2 phase transition in MgO. Physical Review B, 2019, 99, .	3.2	30
137	Nitrogen induced half metallic ferromagnetism in oxides of calcium and cadmium: A DFT perspective. Materials Chemistry and Physics, 2020, 243, 122336.	4.0	2
138	Dominant effect of anharmonicity on the equation of state and thermal conductivity of MgO under extreme conditions. Physical Review B, 2020, 102, .	3.2	7
139	Electrostatic Properties of Minerals from X-Ray Diffraction Data: A Guide for Accurate Atomistic Models. , 1991, , 91-119.		7
140	Bonding and Electronic Structure of Minerals. , 1999, , 201-264.		3
141	Ab initio molecular dynamics simulations of low energy recoil events in MgO. Journal of Nuclear Materials, 2017, 486, 122-128.	2.7	11
142	<i>Ab initio</i> exploration of post-PPV transitions in low-pressure analogs of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MgSiO</mml:mi><mml:mn>3Physical Review Materials, 2019, 3, .</mml:mn></mml:msub></mml:math 	ml :201 40> <td>nmlomsub><</td>	nm lo msub><
143	Ab initiotheory of phase transitions and thermoelasticity of minerals. , 0, , 83-170.		23
144	Theory of Minerals at High and Ultrahigh Pressures : Structure, Properties, Dynamics, and Phase Transitions. , 2004, , 199-215.		1

#	Article	IF	CITATIONS
145	Advances in Electron-gas Potential Models: Applications to Some Candidate Lower Mantle Minerals. Topics in Molecular Organization and Engineering, 1997, , 81-112.	0.1	1
146	Calculation of Mineral Properties with the Electron Gas Model. Topics in Molecular Organization and Engineering, 1997, , 63-79.	0.1	0
148	Theory of minerals at extreme conditions. , 0, , 441-457.		0
149	Critical point and supercritical regime of MgO. Physical Review B, 2022, 105, .	3.2	6
150	Crystal orientation of epitaxial oxide film on silicon substrate. Applied Surface Science, 2022, 586, 152776.	6.1	2
151	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>B</mml:mi><mml:mn>1</mml:mn> phase transition of ferropericlase at planetary interior conditions. Physical Review B, 2022, 105, .</mml:mrow></mml:math 	ana ml:mt	e x t>â^'
152	First principles study of the lattice thermal conductivity of alkaline earth oxides. Computational Materials Science, 2022, 210, 111446.	3.0	4
153	Structural transition and re-emergence of iron's total electron spin in (Mg,Fe)O at ultrahigh pressure. Nature Communications, 2022, 13, 2780.	12.8	2
154	High temperature non-harmonic evaluation and bonding in CaO. Physica B: Condensed Matter, 2022, 645, 414250.	2.7	2
155	First-principles study of thermoelasticity and structural phase diagram of CaO. Physical Review B, 2023, 107, .	3.2	1
	High-pressure order-disorder transition in <mml:math< td=""><td></td><td></td></mml:math<>		

156 xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Mg </mml:mi> <mml:mn> </mml mathvariant="normal">O </mml:mi> <mml:mn> </mml:msub> </mml:mrow> </mml:math> : Implications for super-Earth mineralogy. Physical Review B, 2023, 107, .