Cotranslational processing and protein turnover in euk

Biochemistry 27, 7979-7984 DOI: 10.1021/bi00421a001

Citation Report

#	Article	IF	CITATIONS
1	The presence of ATP + ubiquitin-dependent proteinase and multicatalytic proteinase complex in bovine brain. Neurochemical Research, 1989, 14, 995-1001.	1.6	16
2	High-Level Expression and In Vivo Processing of Chimeric Ubiquitin Fusion Proteins in Saccharomyces Cerevisiae. Nature Biotechnology, 1989, 7, 705-709.	9.4	34
3	Signal peptidases in protein biosynthesis and intracellular transport. Current Opinion in Cell Biology, 1989, 1, 1188-1193.	2.6	7
4	Regulation of protein degradation rates in eukaryotes. Current Opinion in Cell Biology, 1989, 1, 1194-1200.	2.6	35
5	How are substrates recognized by the ubiquitin-mediated proteolytic system. Trends in Biochemical Sciences, 1989, 14, 483-488.	3.7	127
6	New expression vectors for the fission yeastSchizosaccharomyces pombe. FEBS Letters, 1989, 248, 105-110.	1.3	29
7	The degradation signal in a short-lived protein. Cell, 1989, 56, 1019-1032.	13.5	430
8	Protein translocation and turnover in eukaryotic cells. Trends in Biochemical Sciences, 1989, 14, 276-279.	3.7	61
9	Mutational analysis of HIV-1 Tat minimal domain peptides: Identification of trans-dominant mutants that suppress HIV-LTR-driven gene expression. Cell, 1989, 58, 215-223.	13.5	264
10	Nitric oxide: biosynthesis and biological significance. Trends in Biochemical Sciences, 1989, 14, 488-492.	3.7	366
11	Post-translational arginylation of ornithine decarboxylase from rat hepatocytes. Biochemical Journal, 1990, 267, 343-348.	1.7	39
12	The degradation sequence of adenovirus E1A consists of the amino-terminal tetrapeptide Met-Arg-His-Ile Molecular and Cellular Biology, 1990, 10, 5609-5615.	1.1	9
13	[33] Contranslational amino-terminal processing. Methods in Enzymology, 1990, 185, 398-407.	0.4	59
14	Characterization of Recombinant Factor XIIIa Produced in Saccharomyces cerevisiae. Nature Biotechnology, 1990, 8, 543-546.	9.4	7
15	Eighth international conference on methods in protein sequence analysis (Short communications). The Protein Journal, 1990, 9, 247-368.	1.1	1
16	In situ chemical cleavage of proteins immobilized to glass-fiber and polyvinylidenedifluoride membranes: Cleavage at tryptophan residues with 2-(2′-nitrophenylsulfenyl)-3-methyl-3′-bromoindolenine to obtain internal amino acid sequence. Analytical Biochemistry, 1990, 187, 27-38.	1.1	80
17	Expression and amplification of cloned rat liver tyrosine aminotransferase in nonhepatic cells. Journal of Cellular Physiology, 1990, 142, 194-200.	2.0	5
18	CONFORMATIONAL STABILITY OF GLOBULAR PROTEINS. , 1990, , 117-123.		2

	CITATION	Report	
#	Article	IF	CITATIONS
19	The recognition component of the N-end rule pathway EMBO Journal, 1990, 9, 3179-3189.	3.5	352
20	Point mutations in the yeast histone H4 gene prevent silencing of the silent mating type locus HML Molecular and Cellular Biology, 1990, 10, 4932-4934.	1.1	188
21	Molecular cloning and protein structure of a human blood group Rh polypeptide Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 6243-6247.	3.3	305
22	Isolation and characterization of human cDNA clones encoding the .alpha. and the .alpha.' subunits of casein kinase II. Biochemistry, 1990, 29, 8436-8447.	1.2	167
23	lsolation and structural characterization of three isoforms of recombinant consensus α interferon. Archives of Biochemistry and Biophysics, 1990, 276, 531-537.	1.4	18
24	Conformational stability of globular proteins. Trends in Biochemical Sciences, 1990, 15, 14-17.	3.7	402
25	Structure and time-dependent behavior of acetylated and non-acetylated forms of a molluscan metallothionein. Biochimica Et Biophysica Acta - General Subjects, 1991, 1074, 230-236.	1,1	31
26	Rat liver polysome N.alphaacetyltransferase: substrate specificity. Biochemistry, 1991, 30, 1017-1021.	1.2	26
27	Rat liver polysome N.alphaacetyltransferase: isolation and characterization. Biochemistry, 1991, 30, 1010-1016.	1.2	23
28	Crystallization and preliminary x-ray analysis of the cAMP-dependent protein kinase catalytic subunit from Saccharomyces cerevisiae. Biochemistry, 1991, 30, 10595-10600.	1.2	8
29	Construction of a synthetic gene for an R-plasmid-encoded dihydrofolate reductase and studies on the role of the N-terminus in the protein. Biochemistry, 1991, 30, 10895-10904.	1.2	70
30	Primary structure of molluscan metallothioneins deduced from PCR-amplified cDNA and mass spectrometry of purified proteins. Biochimica Et Biophysica Acta - General Subjects, 1991, 1074, 371-377.	1.1	48
31	The N-end rule in bacteria. Science, 1991, 254, 1374-1377.	6.0	500
32	Ubiquitin Fusion Approach to Heterologous Gene Expression in Yeast. ACS Symposium Series, 1991, , 51-64.	0.5	3
33	Ribonuclease T1: Structure, Function, and Stability. Angewandte Chemie International Edition in English, 1991, 30, 343-360.	4.4	144
34	Ribonuclease T1: Struktur, Funktion und StabilitÃष Angewandte Chemie, 1991, 103, 351-369.	1.6	22
35	Development of hydrophobicity parameters to analyze proteins which bear post- or cotranslational modifications. Analytical Biochemistry, 1991, 193, 72-82.	1.1	327
36	N-terminal sequence analysis of Nα-acetylated proteins after unblocking with N-acylaminoacyl-peptide hydrolase. Analytical Biochemistry, 1991, 199, 45-50.	1.1	35

#	Article	IF	CITATIONS
37	Methionyl aminopeptidase from rat liver: distribution of the membrane-bound subcellular enzyme. Molecular and Cellular Biochemistry, 1991, 102, 101-113.	1.4	6
38	[30] Purification of invertebrate metallothioneins. Methods in Enzymology, 1991, 205, 263-273.	0.4	27
39	Synthesis of Wild Type and Mutant Human Hemoglobins in Saccharomyces cerevisiae. Nature Biotechnology, 1991, 9, 57-61.	9.4	99
40	Ornithine decarboxylase gene of Neurospora crassa: isolation, sequence, and polyamine-mediated regulation of its mRNA Molecular and Cellular Biology, 1992, 12, 347-359.	1.1	60
41	Two genes in Saccharomyces cerevisiae encode a membrane-bound form of casein kinase-1 Molecular Biology of the Cell, 1992, 3, 275-286.	0.9	100
42	Posttranslational Modifications in the Amino- Terminal Region of the Large Subunit of Ribulose- 1,5-Bisphosphate Carboxylase/Oxygenase from Several Plant Species. Plant Physiology, 1992, 98, 1170-1174.	2.3	64
43	A strategy for the generation of conditional mutations by protein destabilization Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 1249-1252.	3.3	71
44	Structure and expression of a calcium-binding protein gene contained within a calmodulin-regulated protein kinase gene Molecular and Cellular Biology, 1992, 12, 2359-2371.	1.1	51
45	The N-end rule. Cell, 1992, 69, 725-735.	13.5	489
46	Dipeptide inhibitors of uniquitin-mediated protein turnover prevent growth factor-induced neurite outgrowth in rat pheochromocytoma PC12 cells. Biochemical and Biophysical Research Communications, 1992, 189, 280-288.	1.0	31
46 47	outgrowth in rat pheochromocytoma PC12 cells. Biochemical and Biophysical Research	1.0 1.3	31 19
	outgrowth in rat pheochromocytoma PC12 cells. Biochemical and Biophysical Research Communications, 1992, 189, 280-288.		
47	outgrowth in rat pheochromocytoma PC12 cells. Biochemical and Biophysical Research Communications, 1992, 189, 280-288. Binding of RNA by the alfalfa mosaic virus movement protein is biphasic. FEBS Letters, 1992, 308, 231-234. The †second-codon rule' and autophosphorylation govern the stability and activity of Mos during the	1.3	19
47 48	outgrowth in rat pheochromocytoma PC12 cells. Biochemical and Biophysical Research Communications, 1992, 189, 280-288. Binding of RNA by the alfalfa mosaic virus movement protein is biphasic. FEBS Letters, 1992, 308, 231-234. The †second-codon rule' and autophosphorylation govern the stability and activity of Mos during the meiotic cell cycle in Xenopus oocytes EMBO Journal, 1992, 11, 2433-2446.	1.3 3.5	19 135
47 48 49	outgrowth in rat pheochromocytoma PC12 cells. Biochemical and Biophysical Research Communications, 1992, 189, 280-288. Binding of RNA by the alfalfa mosaic virus movement protein is biphasic. FEBS Letters, 1992, 308, 231-234. The †second-codon rule†m and autophosphorylation govern the stability and activity of Mos during the meiotic cell cycle in Xenopus oocytes EMBO Journal, 1992, 11, 2433-2446. Specificity determinants of acylaminoacylâ€peptide hydrolase. Protein Science, 1992, 1, 582-589. Determination of free N-acetylamino acids in biological samples and N-terminal acetylamino acids of	1.3 3.5 3.1	19 135 14
47 48 49 50	outgrowth in rat pheochromocytoma PC12 cells. Biochemical and Biophysical Research Communications, 1992, 189, 280-288. Binding of RNA by the alfalfa mosaic virus movement protein is biphasic. FEBS Letters, 1992, 308, 231-234. The †second-codon rule' and autophosphorylation govern the stability and activity of Mos during the meiotic cell cycle in Xenopus oocytes EMBO Journal, 1992, 11, 2433-2446. Specificity determinants of acylaminoacylâ€peptide hydrolase. Protein Science, 1992, 1, 582-589. Determination of free N-acetylamino acids in biological samples and N-terminal acetylamino acids of proteins. Biomedical Applications, 1992, 576, 63-70. The protein of Mr 21 000 constituting the prosome-like particle of duck erythroblasts is homologous	1.3 3.5 3.1 1.7	19 135 14 5
47 48 49 50 51	outgrowth in rat pheochromocytoma PC12 cells. Biochemical and Biophysical Research Communications, 1992, 189, 280-288. Binding of RNA by the alfalfa mosaic virus movement protein is biphasic. FEBS Letters, 1992, 308, 231-234. The †second-codon rule†M and autophosphorylation govern the stability and activity of Mos during the meiotic cell cycle in Xenopus oocytes EMBO Journal, 1992, 11, 2433-2446. Specificity determinants of acylaminoacylâ€peptide hydrolase. Protein Science, 1992, 1, 582-589. Determination of free N-acetylamino acids in biological samples and N-terminal acetylamino acids of proteins. Biomedical Applications, 1992, 576, 63-70. The protein of Mr 21 000 constituting the prosome-like particle of duck erythroblasts is homologous to apoferritin. FEBS Journal, 1992, 207, 823-832. Detection and quantitation of recombinant granulocyte colony-stimulating factor charge isoforms: Comparative analysis by cationic-exchange chromatography, isoelectric focusing gel electrophoresis,	1.3 3.5 3.1 1.7 0.2	19 135 14 5 7

#	Article	IF	CITATIONS
56	Purification and properties of the apple fruit ethylene-forming enzyme. Biochemistry, 1993, 32, 7445-7450.	1.2	52
57	Structure of the cobalt-dependent methionine aminopeptidase from Escherichia coli: a new type of proteolytic enzyme. Biochemistry, 1993, 32, 3907-3912.	1.2	356
58	Protein Degradation in Plants. Annual Review of Plant Biology, 1993, 44, 385-410.	14.2	223
59	Four proteolytic processes of myocardium, one insensitive to thiol reactive agents and thiol protease inhibitor. American Journal of Physiology - Endocrinology and Metabolism, 1993, 265, E10-E19.	1.8	2
60	Analysis of protein modifications: recent advances in detection, characterization and mapping. Current Opinion in Biotechnology, 1994, 5, 85-93.	3.3	10
61	Behavior of metallothionein-bound metals in a natural population of an estuarine mollusc. Marine Environmental Research, 1994, 38, 147-168.	1.1	69
62	Increased thermal stability of proteins in the presence of amino acids. Biochemical Journal, 1994, 303, 147-153.	1.7	160
63	The proteolytic processing site of the precursor of lysyl oxidase. Biochemical Journal, 1995, 306, 279-284.	1.7	84
64	Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7714-7718.	3.3	238
65	Cloning and sequencing of two d-xylose reductase genes (xyrA and xyrB) from Candida tropicalis. Journal of Bioscience and Bioengineering, 1995, 80, 603-605.	0.9	24
66	The Sequence of Porcine Protein NH2-terminal Asparagine Amidohydrolase. Journal of Biological Chemistry, 1995, 270, 25-28.	1.6	30
67	The CUG codon is decodedin vivoas serine and not leucine inCandida albicans. Nucleic Acids Research, 1995, 23, 1481-1486.	6.5	244
68	Chromosomal Localization and Catalytic Properties of the Recombinant α Subunit of Human Lymphocyte Methionine Adenosyltransferase. Journal of Biological Chemistry, 1995, 270, 21860-21868.	1.6	43
69	Structural Characterization of Folded and Unfolded States of an SH3 Domain in Equilibrium in Aqueous Buffer. Biochemistry, 1995, 34, 6784-6794.	1.2	186
70	The amino acid sequence of eukaryotic translation initiation factor 1 and its similarity to yeast initiation factor SUI1. FEBS Letters, 1995, 365, 47-50.	1.3	26
71	Removal of Nâ€Terminal Blocking Groups from Proteins. Current Protocols in Protein Science, 1996, 3, Unit 11.7.	2.8	2
72	Evidence That the Human Homologue of a Rat Initiation Factor-2 Associated Protein (p67) Is a Methionine Aminopeptidase. Biochemical and Biophysical Research Communications, 1996, 227, 152-159.	1.0	58
73	Using ubiquitin to follow the metabolic fate of a protein Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4907-4912.	3.3	94

#	Article	IF	CITATIONS
74	The N-end rule: functions, mysteries, uses Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 12142-12149.	3.3	802
75	Chapter 10 ATP-Ubiquitin-mediated protein degradation. Principles of Medical Biology, 1996, , 275-284.	0.1	0
76	Production of the R2 subunit of ribonucleotide reductase from herpes simplex virus with prokaryotic and eukaryotic expression systems: higher activity of R2 produced by eukaryotic cells related to higher iron-binding capacity. Biochemical Journal, 1996, 320, 129-135.	1.7	20
77	Proteolysis in plants: mechanisms and functions. Plant Molecular Biology, 1996, 32, 275-302.	2.0	328
78	Mass Spectrometric Analysis of 40 S Ribosomal Proteins from Rat-1 Fibroblasts. Journal of Biological Chemistry, 1996, 271, 28189-28198.	1.6	55
79	A Mouse Amidase Specific for N-terminal Asparagine. Journal of Biological Chemistry, 1996, 271, 28521-28532.	1.6	74
80	The Listeria monocytogenes-secreted p60 Protein Is an N-end Rule Substrate in the Cytosol of Infected Cells. Journal of Biological Chemistry, 1997, 272, 19261-19268.	1.6	50
81	Human N-Myristoyltransferase Amino-terminal Domain Involved in Targeting the Enzyme to the Ribosomal Subcellular Fraction. Journal of Biological Chemistry, 1997, 272, 28680-28689.	1.6	84
82	Production of human normal adult and fetal hemoglobins in Escherichia coli. Protein Engineering, Design and Selection, 1997, 10, 1085-1097.	1.0	81
83	Pathways of ubiquitin conjugation. FASEB Journal, 1997, 11, 1257-1268.	0.2	293
84	A Nα-acetyltransferase selectively transfers an acetyl group to NH2-terminal methionine residues: purification and partial characterization. BBA - Proteins and Proteomics, 1997, 1338, 244-252.	2.1	6
85	Identification and structural influence of a differentially modified Nâ€ŧerminal methionine in human S 100b. Protein Science, 1997, 6, 1110-1113.	3.1	23
86	The N-end rule pathway of protein degradation. Genes To Cells, 1997, 2, 13-28.	0.5	328
87	Modulation of the intracellular stability and toxicity of diphtheria toxin through degradation by the N-end rule pathway. EMBO Journal, 1998, 17, 615-625.	3.5	35
88	N-Terminal processing: the methionine aminopeptidase and Nα-acetyl transferase families. Trends in Biochemical Sciences, 1998, 23, 263-267.	3.7	449
89	Sequence elements that contribute to the degradation of yeast Gα. Genes To Cells, 1998, 3, 307-319.	0.5	20
90	The human DENN gene: genomic organization, alternative splicing, and localization to chromosome 11p11.21-p11.22. Genome, 1998, 41, 543-552.	0.9	20
92	The Microheterogeneity of the Mammalian H10Histone. Journal of Biological Chemistry, 1998, 273, 13324-13330.	1.6	55

#	Article	IF	CITATIONS
93	Cloning of an intracellular protein that binds selectively to mitogenic acidic fibroblast growth factor. Biochemical Journal, 1998, 336, 213-222.	1.7	54
94	CLASSIFICATION OF BIOLOGICAL STRUCTURES. , 1999, , 1-56.		Ο
95	The catalytic sites of 20S proteasomes and their role in subunit maturation: A mutational and crystallographic study. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10976-10983.	3.3	279
96	Size and Charge Requirements for Kinetic Modulation and Actin Binding by Alkali 1-type Myosin Essential Light Chains. Journal of Biological Chemistry, 1999, 274, 18271-18277.	1.6	42
97	Structural investigations on human erythrocyte acylpeptide hydrolase by mass spectrometric procedures. The Protein Journal, 1999, 18, 349-360.	1.1	10
98	The Methionyl Aminopeptidase fromEscherichia coliCan Function as an Iron(II) Enzymeâ€. Biochemistry, 1999, 38, 11079-11085.	1.2	152
99	Insights into the Mechanism ofEscherichia coliMethionine Aminopeptidase from the Structural Analysis of Reaction Products and Phosphorus-Based Transition-State Analoguesâ€,‡. Biochemistry, 1999, 38, 14810-14819.	1.2	113
100	Proteasome β-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function. Journal of Molecular Biology, 1999, 291, 997-1013.	2.0	123
101	Co-expression of glutathione S-transferase with methionine aminopeptidase: a system of producing enriched N-terminal processed proteins in Escherichia coli. Biochemical Journal, 1999, 338, 335-342.	1.7	13
102	Co-expression of glutathione S-transferase with methionine aminopeptidase: a system of producing enriched N-terminal processed proteins in Escherichia coli. Biochemical Journal, 1999, 338, 335.	1.7	2
103	Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms. EMBO Journal, 2000, 19, 5916-5929.	3.5	192
104	MAPs and POEP of the roads from prokaryotic to eukaryotic kingdoms. Biochimie, 2000, 82, 95-107.	1.3	47
105	Divalent Metal Binding Properties of the Methionyl Aminopeptidase from Escherichia coli. Biochemistry, 2000, 39, 3817-3826.	1.2	110
106	Circular Dichroic Investigation of the Native and Non-native Conformational States of the Growth Factor Receptor-Binding Protein 2 N-TerminalsrcHomology Domain 3:Â Effect of Binding to a Proline-rich Peptide from Guanine Nucleotide Exchange Factorâ€. Biochemistry, 2000, 39, 7722-7735.	1.2	15
107	Structural Evidence That the Methionyl Aminopeptidase fromEscherichia coliIs a Mononuclear Metalloproteaseâ€. Biochemistry, 2001, 40, 13302-13309.	1.2	50
108	PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8. EMBO Journal, 2001, 20, 4088-4098.	3.5	154
109	N-end Rule Specificity within the Ubiquitin/Proteasome Pathway Is Not an Affinity Effect. Journal of Biological Chemistry, 2001, 276, 39428-39437.	1.6	24
110	The Human Immunodeficiency Virus Type 1gag Gene Encodes an Internal Ribosome Entry Site. Journal of Virology, 2001, 75, 181-191.	1.5	145

0	 	n	
		REPC	IDT
\sim		NLFU	

#	Article	IF	CITATIONS
111	Overexpression and Divalent Metal Binding Properties of the Methionyl Aminopeptidase fromPyrococcus furiosusâ€. Biochemistry, 2002, 41, 7199-7208.	1.2	48
112	Kinetic and Structural Characterization of Manganese(II)-Loaded Methionyl Aminopeptidases. Biochemistry, 2002, 41, 13096-13105.	1.2	42
113	Co- and Posttranslational Processing: The Removal of Methionine. The Enzymes, 2002, , 387-420.	0.7	7
114	Manipulation of Temperature To Improve Solubility of Hydrophobic Proteins and Cocrystallization with Matrix for Analysis by MALDI-TOF Mass Spectrometry. Analytical Chemistry, 2002, 74, 219-225.	3.2	17
115	N-terminal acetylation of ectopic recombinant proteins inEscherichia coli. FEBS Letters, 2002, 529, 341-345.	1.3	32
116	A novel Nα-acetyl alanine aminopeptidase from Allomyces arbuscula. Biochimie, 2002, 84, 309-319.	1.3	0
117	MALDI-TOF mass spectrometry characterization of recombinant hydrophobic mutants containing the GCN4 basic region/leucine zipper motif. BBA - Proteins and Proteomics, 2002, 1597, 252-259.	2.1	11
118	Kinetic and Spectroscopic Characterization of the H178A Methionyl Aminopeptidase fromEscherichia coliâ€. Biochemistry, 2003, 42, 6283-6292.	1.2	43
119	Substrate access and processing by the 20S proteasome core particle. International Journal of Biochemistry and Cell Biology, 2003, 35, 606-616.	1.2	169
120	Minimalist proteins: Design of new molecular recognition scaffolds. Pure and Applied Chemistry, 2004, 76, 1579-1590.	0.9	1
121	Protein N-terminal methionine excision. Cellular and Molecular Life Sciences, 2004, 61, 1455-74.	2.4	275
122	Characterization of the active site and insight into the binding mode of the anti-angiogenesis agent fumagillin to the manganese(II)-loaded methionyl aminopeptidase from Escherichia coli. Journal of Biological Inorganic Chemistry, 2005, 10, 41-50.	1.1	11
123	Posttranslational Protein Modification in Archaea. Microbiology and Molecular Biology Reviews, 2005, 69, 393-425.	2.9	189
124	Characterization of a Novel Zinc-Containing, Lysine-Specific Aminopeptidase from the Hyperthermophilic Archaeon Pyrococcus furiosus. Journal of Bacteriology, 2005, 187, 2077-2083.	1.0	23
125	EPR and X-ray Crystallographic Characterization of the Product-Bound Form of the MnII-Loaded Methionyl Aminopeptidase fromPyrococcus furiosusâ€,‡. Biochemistry, 2005, 44, 121-129.	1.2	27
126	Both Nucleophile and Substrate Bind to the Catalytic Fe(II)-Center in the Type-II Methionyl Aminopeptidase fromPyrococcusfuriosus. Inorganic Chemistry, 2005, 44, 1160-1162.	1.9	21
127	Identification of N-terminal acetylation of recombinant human prothymosin α in Escherichia coli. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1241-1247.	1.1	18
128	Peptide deformylase as an antibacterial target: a critical assessment. Current Opinion in Pharmacology, 2006, 6, 445-452.	1.7	67

#	Article	IF	CITATIONS
129	Archaeal N-terminal Protein Maturation Commonly Involves N-terminal Acetylation: A Large-scale Proteomics Survey. Journal of Molecular Biology, 2006, 362, 915-924.	2.0	80
130	MAP1D, a novel methionine aminopeptidase family member is overexpressed in colon cancer. Oncogene, 2006, 25, 3471-3478.	2.6	25
131	A new colorimetric assay for methionyl aminopeptidases: Examination of the binding of a new class of pseudopeptide analog inhibitors. Analytical Biochemistry, 2006, 357, 43-49.	1.1	13
132	Post-Translational Modification of Proteins. Advances in Enzymology and Related Areas of Molecular Biology, 2006, 67, 265-298.	1.3	110
133	Assembly of protein complexes in plastids. Topics in Current Genetics, 2007, , 283-313.	0.7	6
134	Experimental evidence for a metallohydrolase mechanism in which the nucleophile is not delivered by a metal ion: EPR spectrokinetic and structural studies of aminopeptidase from Vibrio proteolyticus. Biochemical Journal, 2007, 403, 527-536.	1.7	14
135	Sequence specificity and efficiency of protein N-terminal methionine elimination in wheat-embryo cell-free system. Protein Expression and Purification, 2007, 52, 59-65.	0.6	16
136	Cell and Molecular Biology of Plastids. Topics in Current Genetics, 2007, , .	0.7	25
137	Targeting of mitochondrial Saccharomyces cerevisiae Ilv5p to the cytosol and its effect on vicinal diketone formation in brewing. Applied Microbiology and Biotechnology, 2008, 78, 503-513.	1.7	30
138	Tools for analyzing and predicting Nâ€ŧerminal protein modifications. Proteomics, 2008, 8, 626-649.	1.3	74
139	The loss in hydrophobic surface area resulting from a Leu to Val mutation at the Nâ€ŧerminus of the aldehyde dehydrogenase presequence prevents import of the protein into mitochondria. Protein Science, 1999, 8, 890-896.	3.1	6
140	Analyzing the catalytic role of Asp97 in the methionine aminopeptidase from <i>Escherichia coli</i> . FEBS Journal, 2008, 275, 6248-6259.	2.2	8
141	Predicting N-terminal acetylation based on feature selection method. Biochemical and Biophysical Research Communications, 2008, 372, 862-865.	1.0	30
142	Kinetic and Spectroscopic Analysis of the Catalytic Role of H79 in the Methionine Aminopeptidase from Escherichia coli. Biochemistry, 2008, 47, 11885-11893.	1.2	13
143	Analyzing the binding of Co(II)-specific inhibitors to the methionyl aminopeptidases from Escherichia coli and Pyrococcus furiosus. Journal of Biological Inorganic Chemistry, 2009, 14, 573-585.	1.1	9
144	Mutation of H63 and its catalytic affect on the methionine aminopeptidase from Escherichia coli. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 137-143.	1.1	0
145	Heterologous expression and purification of Vibrio proteolyticus (Aeromonas proteolytica) aminopeptidase: A rapid protocol. Protein Expression and Purification, 2009, 66, 91-101.	0.6	12
146	High-level expression and purification of rat monoamine oxidase A (MAO A) in Pichia pastoris: Comparison with human MAO A. Protein Expression and Purification, 2010, 70, 211-217.	0.6	18

#	ARTICLE	IF	CITATIONS
147	Removal of Nâ€Terminal Blocking Groups from Proteins. Current Protocols in Protein Science, 2011, 63, Unit11.7.	2.8	3
148	The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nature Reviews Molecular Cell Biology, 2011, 12, 735-747.	16.1	175
149	Targeted largeâ \in scale analysis of protein acetylation. Proteomics, 2011, 11, 571-589.	1.3	70
150	Dynamics of postâ€ŧranslational modifications and protein stability in the stroma of <i>Chlamydomonas reinhardtii</i> chloroplasts. Proteomics, 2011, 11, 1734-1750.	1.3	51
151	Interplay Between N-Terminal Methionine Excision and FtsH Protease Is Essential for Normal Chloroplast Development and Function in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 3745-3760.	3.1	46
152	N-Terminal Acetylation Inhibits Protein Targeting to the Endoplasmic Reticulum. PLoS Biology, 2011, 9, e1001073.	2.6	167
153	Back down to Earth. EMBO Reports, 2012, 13, 408-411.	2.0	1
154	The N-end rule and retroviral infection: no effect on integrase. Virology Journal, 2013, 10, 233.	1.4	6
155	N-terminal Protein Processing: A Comparative Proteogenomic Analysis. Molecular and Cellular Proteomics, 2013, 12, 14-28.	2.5	80
156	Purification of phosphinothricin acetyltransferase using Reactive brown 10 affinity in a single chromatography step. Protein Expression and Purification, 2013, 90, 129-134.	0.6	4
157	Methionyl Aminopeptidase Type 1. , 2013, , 1495-1500.		2
158	Timing Is Everything: Unifying Codon Translation Rates and Nascent Proteome Behavior. Journal of the American Chemical Society, 2014, 136, 17892-17898.	6.6	46
159	A Saccharomyces cerevisiae Model Reveals In Vivo Functional Impairment of the Ogden Syndrome N-Terminal Acetyltransferase NAA10 Ser37Pro Mutant. Molecular and Cellular Proteomics, 2014, 13, 2031-2041.	2.5	49
160	Proteogenomic Analysis of the <i>Venturia pirina</i> (Pear Scab Fungus) Secretome Reveals Potential Effectors. Journal of Proteome Research, 2014, 13, 3635-3644.	1.8	23
161	Nâ€ŧerminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between Nâ€ŧerminal acetyltransferases and methionine aminopeptidases. Proteomics, 2015, 15, 2436-2446.	1.3	49
162	Nâ€ŧerminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects. Proteomics, 2015, 15, 2385-2401.	1.3	163
163	Purification, characterization and safety assessment of the introduced cold shock protein B in DroughtGardâ,,¢ maize. Regulatory Toxicology and Pharmacology, 2015, 71, 164-173.	1.3	16
164	Quality Control of a Cytoplasmic Protein Complex. Journal of Biological Chemistry, 2015, 290, 4677-4687.	1.6	22

	Сітл	ation Report	
#	Article	IF	CITATIONS
165	N-terminal protein modifications: Bringing back into play the ribosome. Biochimie, 2015, 114, 134-146.	. 1.3	150
166	Physiological functions and clinical implications of the N-end rule pathway. Frontiers of Medicine, 2016, 10, 258-270.	1.5	9
167	Oxidative stress-mediated N-terminal protein modifications and MS-based approaches for N-terminal proteomics. Drug Metabolism and Pharmacokinetics, 2016, 31, 27-34.	1.1	8
168	Prediction of protein N-formylation using the composition of k-spaced amino acid pairs. Analytical Biochemistry, 2017, 534, 40-45.	1.1	23
169	Omics Assisted N-terminal Proteoform and Protein Expression Profiling On Methionine Aminopeptidase 1 (MetAP1) Deletion. Molecular and Cellular Proteomics, 2018, 17, 694-708.	2.5	21
170	Biochemical and in silico evaluation of recombinant E. coli aminopeptidase and in vitro processed human interferon α-2b. Turkish Journal of Biology, 2018, 42, 240-249.	2.1	1
171	Safety of the Bacillus thuringiensis-derived Cry1A.105 protein: Evidence that domain exchange preserves mode of action and safety. Regulatory Toxicology and Pharmacology, 2018, 99, 50-60.	1.3	15
172	N-terminal methionine excision of proteins creates tertiary destabilizing N-degrons of the Arg/N-end rule pathway. Journal of Biological Chemistry, 2019, 294, 4464-4476.	1.6	29
173	The N-End Rule Pathway. , 1998, , 223-278.		7
174	N-Terminal Acetylated Mitochondrial Aldehyde Dehydrogenase is Found in Fresh but not Frozen Liver Tissue. , 1991, , 161-167.		2
175	Co-translational Modification, Stability and Turnover of Eukaryotic Proteins. , 1994, , 155-167.		1
176	Structure and Function of Bovine Lens Aminopeptidase and Comparison with Homologous Aminopeptidases. Molecular Biology Intelligence Unit, 1996, , 21-67.	0.2	6
177	Methionine Aminopeptidase: Structure and Function. Molecular Biology Intelligence Unit, 1996, , 91-106.	0.2	5
178	Proteolysis in plants: mechanisms and functions. , 1996, , 275-302.		12
179	Posttranslational Modifications. , 1998, , 121-206.		18
180	Purification and characterization of a methionine aminopeptidase from Saccharomyces cerevisiae Journal of Biological Chemistry, 1990, 265, 19892-19897.	1.6	89
181	Cardiac fatty acid-binding proteins. Isolation and characterization of the mitochondrial fatty acid-binding protein and its structural relationship with the cytosolic isoforms Journal of Biological Chemistry, 1990, 265, 16255-16261.	1.6	58
182	Involvement of sequences near both amino and carboxyl termini in the rapid intracellular degradation of tyrosine aminotransferase Journal of Biological Chemistry, 1992, 267, 23713-23721.	1.6	12

#	ARTICLE	IF	CITATIONS
183	Analysis of the compartmentalization of myristoyl-CoA:protein N-myristoyltransferase in Saccharomyces cerevisiae Journal of Biological Chemistry, 1992, 267, 5366-5373.	1.6	39
184	Phenylalanine hydroxylase-stimulating protein/pterin-4 alpha-carbinolamine dehydratase from rat and human liver. Purification, characterization, and complete amino acid sequence Journal of Biological Chemistry, 1993, 268, 4828-4831.	1.6	62
185	The carboxyl terminus of the smooth muscle myosin light chain kinase is expressed as an independent protein, telokin Journal of Biological Chemistry, 1991, 266, 23945-23952.	1.6	115
186	The cloning and expression of a gene encoding Old Yellow Enzyme from Saccharomyces carlsbergensis Journal of Biological Chemistry, 1991, 266, 20720-20724.	1.6	90
187	Stabilization of the shikimate pathway enzyme dehydroquinase by covalently bound ligand. Journal of Biological Chemistry, 1991, 266, 10893-10898.	1.6	26
188	Isolation and characterization of the methionine aminopeptidase from porcine liver responsible for the co-translational processing of proteins Journal of Biological Chemistry, 1992, 267, 20667-20673.	1.6	88
189	Model peptides reveal specificity of N alpha-acetyltransferase from Saccharomyces cerevisiae Journal of Biological Chemistry, 1990, 265, 11576-11580.	1.6	19
190	Identification of methionine Nalpha-acetyltransferase from Saccharomyces cerevisiae Journal of Biological Chemistry, 1990, 265, 3603-3606.	1.6	18
191	Acylpeptide hydrolase: inhibitors and some active site residues of the human enzyme Journal of Biological Chemistry, 1992, 267, 3811-3818.	1.6	58
192	Universality and Structure of the N-end Rule. Journal of Biological Chemistry, 1989, 264, 16700-16712.	1.6	410
193	Methionine aminopeptidases and angiogenesis. Essays in Biochemistry, 2002, 38, 65-78.	2.1	48
194	Amino Acid Residues Involved in the Functional Integrity of Escherichia coli Methionine Aminopeptidase. Journal of Bacteriology, 1999, 181, 4686-4689.	1.0	18
195	A papillomavirus E2 phosphorylation mutant exhibits normal transient replication and transcription but is defective in transformation and plasmid retention. Journal of Virology, 1997, 71, 3652-3665.	1.5	30
196	Notes: Point Mutations in the Yeast Histone H4 Gene Prevent Silencing of the Silent Mating Type Locus <i>HML</i> . Molecular and Cellular Biology, 1990, 10, 4932-4934.	1.1	137
197	Ornithine decarboxylase gene of Neurospora crassa: isolation, sequence, and polyamine-mediated regulation of its mRNA. Molecular and Cellular Biology, 1992, 12, 347-359.	1.1	36
198	Structure and macromolecular assembly of two isoforms of the major sperm protein (MSP) from the amoeboid sperm of the nematode, <i>Ascaris suum</i> . Journal of Cell Science, 1992, 101, 847-857.	1.2	52
199	MetAP1 and MetAP2 drive cell selectivity for a potent anti-cancer agent in synergy, by controlling glutathione redox state. Oncotarget, 2016, 7, 63306-63323.	0.8	32
200	The Purification and Characterization of a Bacillus stearothermophilus Methionine Aminopeptidase (MetAP). BMB Reports, 2002, 35, 228-235.	1.1	7

#	Article	IF	CITATIONS
201	An Introduction to Metabolism. , 2001, , 505-533.		0
202	Ribosomes and the Synthesis of Proteins. , 2001, , 1669-1739.		0
203	Methionyl aminopeptidase type 1. , 2004, , 911-917.		2
204	PROTEIN TRANSLOCATION AND TURNOVER IN EUKARYOTIC CELLS. , 1990, , 183-190.		0
205	The Degradation Sequence of Adenovirus E1A Consists of the Amino-Terminal Tetrapeptide Met-Arg-His-Ile. Molecular and Cellular Biology, 1990, 10, 5609-5615.	1.1	5
206	Structure and Expression of a Calcium-Binding Protein Gene Contained within a Calmodulin-Regulated Protein Kinase Gene. Molecular and Cellular Biology, 1992, 12, 2359-2371.	1.1	16
209	The recognition component of the N-end rule pathway. EMBO Journal, 1990, 9, 3179-89.	3.5	166
210	The 'second-codon rule' and autophosphorylation govern the stability and activity of Mos during the meiotic cell cycle in Xenopus oocytes. EMBO Journal, 1992, 11, 2433-46.	3.5	49
211	Co-expression of glutathione S-transferase with methionine aminopeptidase: a system of producing enriched N-terminal processed proteins in Escherichia coli. Biochemical Journal, 1999, 338 (Pt 2), 335-42.	1.7	4
213	The carboxyl terminus of the smooth muscle myosin light chain kinase is expressed as an independent protein, telokin. Journal of Biological Chemistry, 1991, 266, 23945-52.	1.6	107
215	Zn-regulated GTPase metalloprotein activator 1 modulates vertebrate zinc homeostasis. Cell, 2022, 185, 2148-2163.e27.	13.5	39
216	Safety assessment of Mpp75Aa1.1, a new ETX_MTX2 protein from Brevibacillus laterosporus that controls western corn rootworm. PLoS ONE, 2022, 17, e0274204.	1.1	0
217	Protein N-terminal acylation: An emerging field in bacterial cell physiology. Current Trends in Microbiology, 0, 16, 1-18.	0.0	1
218	Methionine aminopeptidases. , 2024, , 343-373.		0