Gene sequence and primary structure of mitochondrial Saccharomyces cerevisiae

Biochemistry 27, 8393-8400 DOI: 10.1021/bi00422a015

Citation Report

#	Article	IF	CITATIONS
1	Archaebacterial malate dehydrogenase: The amino-terminal sequence of the enzyme from Sulfolobus acidocaldarius is homologous to the eubacterial and eukaryotic malate dehydrogenases. FEBS Letters, 1989, 247, 259-262.	2.8	8
2	Properties and primary structure of the L-malate dehydrogenase from the extremely thermophilic archaebacterium Methanothermus fervidus. FEBS Journal, 1990, 188, 623-632.	0.2	88
3	Primary structure of sorghum malate dehydrogenase (NADP) deduced from cDNA sequence. Homology with malate dehydrogenase (NAD). FEBS Journal, 1990, 192, 299-303.	0.2	59
4	Mitochondrial malate dehydrogenase from watermelon: sequence of cDNA clones and primary structure of the higher-plant precursor protein. Plant Molecular Biology, 1990, 14, 1019-1030.	3.9	37
5	Caldesmon, calmodulin and tropomyosin interactions. Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1054, 103-113.	4.1	20
6	Structural and functional effects of mutations altering the subunit interface of mitochondrial malate dehydrogenase. Archives of Biochemistry and Biophysics, 1991, 287, 276-282.	3.0	21
7	Purification and crystallization of recombinant Escherichia coli malate dehydrogenase. Journal of Molecular Biology, 1991, 220, 551-553.	4.2	9
8	Isolation, nucleotide sequence analysis, and disruption of the MDH2 gene from Saccharomyces cerevisiae: evidence for three isozymes of yeast malate dehydrogenase Molecular and Cellular Biology, 1991, 11, 370-380.	2.3	110
9	Malate dehydrogenase isoenzymes: Cellular locations and role in the flow of metabolites between the cytoplasm and cell organelles. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1100, 217-234.	1.0	166
10	Expression and function of heterologous forms of malate dehydrogenase in yeast. Archives of Biochemistry and Biophysics, 1992, 293, 93-102.	3.0	11
11	Crystal structure of Escherichia coli malate dehydrogenase. Journal of Molecular Biology, 1992, 226, 867-882.	4.2	102
12	Expression of Schistosoma mansoni genes involved in anaerobic and oxidative glucose metabolism during the cercaria to adult transformation. Molecular and Biochemical Parasitology, 1993, 60, 93-104.	1.1	53
13	Kinetic mechanism of Escherichia coli isocitrate dehydrogenase. Biochemistry, 1993, 32, 9302-9309.	2.5	78
14	Preparation and kinetic characterization of a fusion protein of yeast mitochondrial citrate synthase and malate dehydrogenase. Biochemistry, 1994, 33, 11692-11698.	2.5	76
15	Metabolic studies on Saccharomyces cerevisiae containing fused citrate synthase/malate dehydrogenase. Biochemistry, 1994, 33, 11684-11691.	2.5	21
16	Refined Crystal Structure of Mitochondrial Malate Dehydrogenase from Porcine Heart and the Consensus Structure for Dicarboxylic Acid Oxidoreductases. Biochemistry, 1994, 33, 2078-2088.	2.5	75
17	Nucleotide Sequence of a cDNA Encoding Mitochondrial Malate Dehydrogenase from Eucalyptus. Plant Physiology, 1995, 107, 1455-1456.	4.8	13
18	Expression and Function of a Mislocalized Form of Peroxisomal Malate Dehydrogenase (MDH3) in Yeast. Journal of Biological Chemistry, 1995, 270, 21220-21225.	3.4	28

#	Article	IF	CITATIONS
19	Prediction and Identification of New Natural Substrates of the Yeast Mitochondrial Intermediate Peptidase. Journal of Biological Chemistry, 1995, 270, 27366-27373.	3.4	98
20	RTG Genes in Yeast That Function in Communication between Mitochondria and the Nucleus Are Also Required for Expression of Genes Encoding Peroxisomal Proteins. Journal of Biological Chemistry, 1995, 270, 18141-18146.	3.4	121
21	Molecular Genetics of Yeast TCA Cycle Isozymes. Progress in Molecular Biology and Translational Science, 1997, 57, 317-339.	1.9	29
22	Metabolic Effects of Altering Redundant Targeting Signals for Yeast Mitochondrial Malate Dehydrogenase. Archives of Biochemistry and Biophysics, 1997, 344, 53-60.	3.0	18
23	Cloning, sequencing and overexpression of the gene encoding malate dehydrogenase from the deep-sea bacterium Photobacterium species strain SS9. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1350, 41-46.	2.4	12
24	Bicarbonate-mediated social communication stimulates meiosis and sporulation ofSaccharomyces cerevisiae. , 1998, 14, 623-631.		50
25	Alfalfa malate dehydrogenase (MDH): molecular cloning and characterization of five different forms reveals a unique nodule-enhanced MDH. Plant Journal, 1998, 15, 173-184.	5.7	152
26	Twoâ€dimensional electrophoresis of <i>Malassezia</i> allergens for atopic dermatitis and isolation of Malâ€ffâ€f4 homologs with mitochondrial malate dehydrogenase. FEBS Journal, 1999, 261, 148-154.	0.2	58
27	The Mitochondrial Alcohol Dehydrogenase Adh3p Is Involved in a Redox Shuttle in <i>Saccharomyces cerevisiae</i> . Journal of Bacteriology, 2000, 182, 4730-4737.	2.2	150
28	Stoichiometry and compartmentation of NADH metabolism inSaccharomyces cerevisiae. FEMS Microbiology Reviews, 2001, 25, 15-37.	8.6	410
29	Isolation of high-malate-producing sake yeasts from low-maltose-assimilating mutants. Journal of Bioscience and Bioengineering, 2001, 92, 429-433.	2.2	31
30	Physical and Genetic Interactions of Cytosolic Malate Dehydrogenase with Other Gluconeogenic Enzymes. Journal of Biological Chemistry, 2003, 278, 25628-25636.	3.4	21
31	Low virulent strains ofCandida albicans: Unravelling the antigens for a future vaccine. Proteomics, 2004, 4, 3007-3020.	2.2	62
32	Differences in malate dehydrogenases from the obligately piezophilic deep-sea bacteriumMoritellasp. strain 2D2 and the psychrophilic bacteriumMoritellasp. strain 5710. FEMS Microbiology Letters, 2004, 233, 165-172.	1.8	11
33	Amino acid substitutions in malate dehydrogenases of piezophilic bacteria isolated from intestinal contents of deep-sea fishes retrieved from the abyssal zone. Journal of General and Applied Microbiology, 2006, 52, 9-19.	0.7	6
35	Low virulent strains of Candida albicans: Unravelling the antigens for a future vaccine. , 0, , 181-201.		0
36	The malate–aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast. Genes and Development, 2008, 22, 931-944.	5.9	130
37	Disulfide Bond Formation in Yeast NAD ⁺ -Specific Isocitrate Dehydrogenase. Biochemistry, 2009, 48, 8869-8878.	2.5	10

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
38	Redox responses in yeast to acetate as the carbon source. Archives of Biochemistry and Biophysics, 2009, 483, 136-143.	3.0	10
39	Mitochondrial protein turnover: role of the precursor intermediate peptidase Oct1 in protein stabilization. Molecular Biology of the Cell, 2011, 22, 2135-2143.	2.1	107
40	Effects of Excess Succinate and Retrograde Control of Metabolite Accumulation in Yeast Tricarboxylic Cycle Mutants. Journal of Biological Chemistry, 2011, 286, 33737-33746.	3.4	21
41	Alternative Splicing Regulates Targeting of Malate Dehydrogenase in Yarrowia lipolytica. DNA Research, 2012, 19, 231-244.	3.4	48
42	The use of lactic acid-producing, malic acid-producing, or malic acid-degrading yeast strains for acidity adjustment in the wine industry. Applied Microbiology and Biotechnology, 2014, 98, 2395-2413.	3.6	45
43	NAD+ Metabolism and Regulation: Lessons From Yeast. Biomolecules, 2020, 10, 330.	4.0	25
44	Transcriptome analysis reveals the mechanisms involved in the enhanced antagonistic efficacy of Rhodotorula mucilaginosa induced by chitosan. LWT - Food Science and Technology, 2021, 142, 110992.	5.2	7
45	Isolation and characterization of the yeast gene encoding the MDH3 isozyme of malate dehydrogenase Journal of Biological Chemistry, 1992, 267, 24708-24715.	3.4	87
46	Glucose-induced degradation of the MDH2 isozyme of malate dehydrogenase in yeast Journal of Biological Chemistry, 1992, 267, 17458-17464.	3.4	42
47	Isolation, nucleotide sequence, and disruption of the Saccharomyces cerevisiae gene encoding mitochondrial NADP(H)-specific isocitrate dehydrogenase. Journal of Biological Chemistry, 1991, 266, 2339-2345.	3.4	83
48	NAD(+)-dependent isocitrate dehydrogenase. Cloning, nucleotide sequence, and disruption of the IDH2 gene from Saccharomyces cerevisiae Journal of Biological Chemistry, 1991, 266, 22199-22205.	3.4	123
49	Chemical Modification of Chalcone Isomerase by Mercurials and Tetrathionate. Journal of Biological Chemistry, 1989, 264, 14272-14276.	3.4	20
50	Dispensable presequence for cellular localization and function of mitochondrial malate dehydrogenase from Saccharomyces cerevisiae. Journal of Biological Chemistry, 1989, 264, 12091-12096.	3.4	32
51	Evidence that an ATPase functions in the maintenance of the acidic pH of the hamster sperm acrosome Journal of Biological Chemistry, 1981, 256, 4708-4711.	3.4	26
52	lsolation, Nucleotide Sequence Analysis, and Disruption of the <i>MDH2</i> Gene from <i>Saccharomyces cerevisiae:</i> Evidence for Three Isozymes of Yeast Malate Dehydrogenase. Molecular and Cellular Biology, 1991, 11, 370-380.	2.3	38
53	PET genes of Saccharomyces cerevisiae. Microbiological Reviews, 1990, 54, 211-225.	10.1	494
54	Proteomic Differences between Azole-Susceptible and -Resistant <i>Aspergillus fumigatus</i> Strains. Advances in Microbiology, 2018, 08, 77-99.	0.6	5