Consensus in the presence of partial synchrony

Journal of the ACM 35, 288-323

DOI: 10.1145/42282.42283

Citation Report

#	Article	IF	CITATIONS
1	Achievable cases in an asynchronous environment. , 1987, , .		46
2	Transaction atomicity in the presence of network partitions. , 0, , .		4
3	On the diagnosis of Byzantine faults. , 0, , .		10
4	On achieving consensus using a shared memory. , 1988, , .		95
5	Reasoning about knowledge and time in asynchronous systems. , 1988, , .		12
6	Automatically increasing the fault-tolerance of distributed systems. , 1988, , .		37
8	On the improbability of reaching Byzantine agreements. , 1989, , .		13
9	Initial failures in distributed computations. International Journal of Parallel Programming, 1989, 18, 255-276.	1.1	15
10	The Distributed Firing Squad Problem. SIAM Journal on Computing, 1989, 18, 990-1012.	0.8	23
12	A methodology for implementing highly concurrent data structures. ACM SIGPLAN Notices, 1990, 25, 197-206.	0.2	62
13	Transaction commit in a realistic timing model. Distributed Computing, 1990, 4, 87-103.	0.7	9
14	Automatically increasing the fault-tolerance of distributed algorithms. Journal of Algorithms, 1990, 11, 374-419.	0.9	84
15	Fast randomized consensus using shared memory. Journal of Algorithms, 1990, 11, 441-461.	0.9	213
16	Lower bounds for wait-free computation in message-passing systems. , 1990, , .		13
17	The wakeup problem., 1990,,.		15
18	Renaming in an asynchronous environment. Journal of the ACM, 1990, 37, 524-548.	1.8	270
19	A methodology for implementing highly concurrent data structures. , 1990, , .		96
20	An overview of clock synchronization. , 1990, , 84-96.		60

#	Article	IF	CITATIONS
21	Hardware-assisted software clock synchronization for homogeneous distributed systems. IEEE Transactions on Computers, 1990, 39, 514-524.	2.4	65
22	Randomized wait-free concurrent objects (extended abstract). , 1991, , .		29
23	Using process groups to implement failure detection in asynchronous environments. , 1991, , .		113
24	Consensus in the presence of timing uncertainty. , 1991, , .		13
25	Bounds on the time to reach agreement in the presence of timing uncertainty. , 1991, , .		21
26	Unreliable failure detectors for asynchronous systems (preliminary version)., 1991,,.		88
27	The weakest failure detector for solving consensus. , 1992, , .		51
28	The impact of time on the session problem. , 1992, , .		10
29	Fast information sharing in a complete network. Discrete Applied Mathematics, 1993, 42, 75-86.	0.5	20
30	A partial equivalence between shared-memory and message-passing in an asynchronous fail-stop distributed environment. Mathematical Systems Theory, 1993, 26, 21-39.	0.5	16
31	Necessary and sufficient conditions for broadcast consensus protocols. Distributed Computing, 1993, 7, 75-85.	0.7	2
32	Space-efficient asynchronous consensus without shared memory initialization. Information Processing Letters, 1993, 45, 101-105.	0.4	7
33	A methodology for implementing highly concurrent data objects. ACM Transactions on Programming Languages and Systems, 1993, 15, 745-770.	1.7	288
34	Contention in shared memory algorithms. , 1993, , .		41
35	Unifying self-stabilization and fault-tolerance. , $1993, , .$		30
36	The consensus problem in fault-tolerant computing. ACM Computing Surveys, 1993, 25, 171-220.	16.1	307
37	Synchronization power depends on the register size. , 0, , .		5
38	Time-adaptive algorithms for synchronization. , 1994, , .		9

#	Article	IF	Citations
39	Delimiting the power of bounded size synchronization objects (extended abstract). , 1994, , .		4
40	Bounds on the time to reach agreement in the presence of timing uncertainty. Journal of the ACM, 1994, 41, 122-152.	1.8	48
41	Replica determinism in distributed real-time systems: A brief survey. Real-Time Systems, 1994, 6, 289-316.	1.1	38
42	Impossibility Results in the Presence of Multiple Faulty Processes. Information and Computation, 1994, 113, 173-198.	0.5	9
43	Finitary fairness., 0,,.		7
44	Tight bounds on the round complexity of distributed 1-solvable tasks. Theoretical Computer Science, 1995, 145, 271-290.	0.5	12
45	An adaptive real-time group communication protocol., 0,,.		8
46	Non blocking atomic commitment with an unreliable failure detector. , 0, , .		26
47	Comparing performances and quality of service of group communication protocols., 0,,.		0
48	Unreliable failure detectors for reliable distributed systems. Journal of the ACM, 1996, 43, 225-267.	1.8	1,830
49	The Wakeup Problem. SIAM Journal on Computing, 1996, 25, 1332-1357.	0.8	23
50	Timing failure detection and real-time group communication in quasi-synchronous systems. , 0, , .		21
51	Possibility and impossibility results in a shared memory environment. Acta Informatica, 1996, 33, 1-20.	0.5	26
52	Interactive consistency in quasi-asynchronous systems. , 0, , .		2
53	Fail-awareness in timed asynchronous systems. , 1996, , .		41
54	The weakest failure detector for solving consensus. Journal of the ACM, 1996, 43, 685-722.	1.8	656
55	Contention in shared memory algorithms. Journal of the ACM, 1997, 44, 779-805.	1.8	54
56	Fault-tolerance and self-stabilization: impossibility results and solutions using self-stabilizing failure detectors. International Journal of Systems Science, 1997, 28, 1177-1187.	3.7	37

#	Article	IF	Citations
57	Optimized authenticated self-synchronizing Byzantine agreement protocols. , 0, , .		2
58	Consensus: the big misunderstanding [distributed fault tolerant systems]., 0,,.		21
59	A lightweight solution to uniform atomic broadcast for asynchronous systems. , 0, , .		6
60	Revisiting the Paxos algorithm. Lecture Notes in Computer Science, 1997, , 111-125.	1.0	27
61	Group membership and view synchrony in partitionable asynchronous distributed systems. Operating Systems Review (ACM), 1997, 31, 11-22.	1.5	13
62	A case study of agreement problems in distributed systems: non-blocking atomic commitment. , 0, , .		6
63	Real-time dependable decisions in timed asynchronous distributed systems. , 0, , .		8
64	Time-Adaptive Algorithms for Synchronization. SIAM Journal on Computing, 1997, 26, 539-556.	0.8	18
65	Solving agreement problems with failure detectors: a survey. Annales Des Telecommunications/Annals of Telecommunications, 1997, 52, 447-464.	1.6	1
66	Early consensus in an asynchronous system with a weak failure detector. Distributed Computing, 1997, 10, 149-157.	0.7	124
67	Optimal Time–Space Tradeoff for Shared Memory Leader Election. Journal of Algorithms, 1997, 25, 95-117.	0.9	5
68	Time bounds on synchronization in a periodic distributed system. Information Processing Letters, 1997, 64, 87-93.	0.4	1
69	Increasing the Resilience of Distributed and Replicated Database Systems. Journal of Computer and System Sciences, 1998, 57, 309-324.	0.9	23
70	Failure Detection and Randomization: A Hybrid Approach to Solve Consensus. SIAM Journal on Computing, 1998, 28, 890-903.	0.8	41
71	Scalable atomic multicast., 0,,.		23
72	Using light-weight groups to handle timing failures in quasi-synchronous systems. , 0, , .		9
73	A practical building block for solving agreement problems in asynchronous distributed systems. , 0, , .		2
74	Distributed predicate detection in a faulty environment. , 0, , .		6

#	Article	IF	Citations
75	The timed asynchronous distributed system model. , 0, , .		89
76	The part-time parliament. ACM Transactions on Computer Systems, 1998, 16, 133-169.	0.6	1,881
77	Implementable Failure Detectors in Asynchronous Systems. Lecture Notes in Computer Science, 1998 , , 158 - 169 .	1.0	5
78	Finitary fairness. ACM Transactions on Programming Languages and Systems, 1998, 20, 1171-1194.	1.7	29
79	Predictability in critical systems. Lecture Notes in Computer Science, 1998, , 315-338.	1.0	1
80	On classes of problems in asynchronous distributed systems with process crashes. , 0, , .		9
81	Fast set agreement in the presence of timing uncertainty. , $1999, \ldots$		3
82	Fundamentals of fault-tolerant distributed computing in asynchronous environments. ACM Computing Surveys, 1999, 31, 1-26.	16.1	272
83	Real-time fault-tolerant atomic broadcast. , 0, , .		3
84	A simple and fast asynchronous consensus protocol based on a weak failure detector. Distributed Computing, 1999, 12, 209-223.	0.7	67
85	The timed asynchronous distributed system model. IEEE Transactions on Parallel and Distributed Systems, 1999, 10, 642-657.	4.0	189
86	From Binary Consensus to Multivalued Consensus in asynchronous message-passing systems. Information Processing Letters, 2000, 73, 207-212.	0.4	47
87	Revisiting the paxos algorithm. Theoretical Computer Science, 2000, 243, 35-91.	0.5	79
88	Failure detection and consensus in the crash-recovery model. Distributed Computing, 2000, 13, 99-125.	0.7	126
89	Indulgent algorithms (preliminary version). , 2000, , .		46
90	Fast deterministic consensus in a noisy environment. , 2000, , .		6
91	Optimal implementation of the weakest failure detector for solving consensus. , 0, , .		67
92	Synchronous system and perfect failure detector: Solvability and efficiency issues., 0,,.		18

#	Article	IF	CITATIONS
93	A client-server oriented algorithm for virtually synchronous group membership in WANs. , 0, , .		35
94	The timely computing base: Timely actions in the presence of uncertain timeliness. , 0, , .		31
95	How to build a timely computing base using real-time Linux. , 0, , .		16
96	Mastering agreement problems in distributed systems. IEEE Software, 2001, 18, 40-47.	2.1	8
97	Conditions on input vectors for consensus solvability in asynchronous distributed systems. , 2001, , .		27
98	On the cost of fault-tolerant consensus when there are no faults. ACM SIGACT News, 2001, 32, 45-63.	0.1	51
99	On k-set consensus problems in asynchronous systems. IEEE Transactions on Parallel and Distributed Systems, 2001, 12, 7-21.	4.0	24
100	A group membership algorithm with a practical specification. IEEE Transactions on Parallel and Distributed Systems, 2001, 12, 1190-1200.	4.0	13
101	An adaptive failure detection protocol., 0,,.		72
102	LEADER-BASED CONSENSUS. Parallel Processing Letters, 2001, 11, 95-107.	0.4	101
104	The ABCD's of Paxos., 2001,,.		43
105	A hierarchy of conditions for consensus solvability. , 2001, , .		12
106	Group communication specifications. ACM Computing Surveys, 2001, 33, 427-469.	16.1	463
107	An indulgent uniform total order algorithm with optimistic delivery. , 0, , .		21
108	Formally verified Byzantine agreement in presence of link faults. , 0, , .		14
109	EFFICIENT SOLUTION TO UNIFORM ATOMIC BROADCAST. International Journal of Foundations of Computer Science, 2002, 13, 695-717.	0.8	1
110	Broadcasting messages in fault-tolerant distributed systems: the benefit of handling input-triggered and output-triggered suspicions differently. , 0 , , .		16
111	Moshe. ACM Transactions on Computer Systems, 2002, 20, 191-238.	0.6	49

#	Article	IF	CITATIONS
112	The inherent price of indulgence. , 2002, , .		14
113	Active disk paxos with infinitely many processes. , 2002, , .		43
115	Encapsulating Failure Detection: From Crash to Byzantine Failures. Lecture Notes in Computer Science, 2002, , 24-50.	1.0	48
116	A versatile family of consensus protocols based on Chandra-Toueg's unreliable failure detectors. IEEE Transactions on Computers, 2002, 51, 395-408.	2.4	47
117	Asynchronous active replication in three-tier distributed systems. , 0, , .		7
118	A consensus algorithm for synchronous distributed systems using mobile agent. , 0, , .		1
119	Consensus in synchronous systems: a concise guided tour. , 0, , .		41
120	A versatile and modular consensus protocol. , 0, , .		10
121	Eventually consistent failure detectors., 0,,.		1
122	A realistic look at failure detectors. , 0, , .		28
123	On the impossibility of implementing perpetual failure detectors in partially synchronous systems. , 0,		5
124	The timely computing base model and architecture. IEEE Transactions on Computers, 2002, 51, 916-930.	2.4	80
125	Fast asynchronous uniform consensus in real-time distributed systems. IEEE Transactions on Computers, 2002, 51, 931-944.	2.4	42
126	A Virtually Synchronous Group Multicast Algorithm for WANs: Formal Approach. SIAM Journal on Computing, 2002, 32, 78-130.	0.8	4
127	Fast deterministic consensus in a noisy environment. Journal of Algorithms, 2002, 45, 16-39.	0.9	18
128	Wait-free Byzantine consensus. Information Processing Letters, 2002, 83, 221-227.	0.4	5
129	Real-Time Atomic Multicast Algorithms Implemented on a Shared Memory Multiprocessor. Real-Time Systems, 2003, 24, 55-91.	1.1	0
130	Randomized protocols for asynchronous consensus. Distributed Computing, 2003, 16, 165-175.	0.7	94

#	Article	IF	CITATIONS
131	Hundreds of impossibility results for distributed computing. Distributed Computing, 2003, 16, 121-163.	0.7	112
132	Appraising two decades of distributed computing theory research. Distributed Computing, 2003, 16, 239-247.	0.7	12
133	Evaluating the condition-based approach to solve consensus. , 0, , .		10
134	The Impact of Timing Knowledge on the Session Problem. SIAM Journal on Computing, 2003, 32, 1007-1039.	0.8	2
135	Distributed Computing. Lecture Notes in Computer Science, 2003, , .	1.0	0
136	Asynchronous implementation of failure detectors. , 0, , .		70
137	Randomized asynchronous consensus with imperfect communications. , 0, , .		11
138	Byzantine Fault Detectors for Solving Consensus. Computer Journal, 2003, 46, 16-35.	1.5	74
139	A generic framework for indulgent consensus. , 0, , .		4
140	Asynchrony and real-time dependable computing. , 0, , .		9
142	Conditions on input vectors for consensus solvability in asynchronous distributed systems. Journal of the ACM, 2003, 50, 922-954.	1.8	68
143	Deconstructing paxos. ACM SIGACT News, 2003, 34, 47-67.	0.1	83
144	Performing work with asynchronous processors. , 2003, , .		10
145	On the Cost of Fault-Tolerant Consensus When There Are No Faults – A Tutorial. Lecture Notes in Computer Science, 2003, , 366-368.	1.0	23
146	Tight Bounds on Early Local Decisions in Uniform Consensus. Lecture Notes in Computer Science, 2003, , 264-278.	1.0	3
147	On Failure Detectors and Type Boosters. Lecture Notes in Computer Science, 2003, , 292-305.	1.0	5
148	Overcoming the Majority Barrier in Large-Scale Systems. Lecture Notes in Computer Science, 2003, , 352-366.	1.0	4
150	On implementing omega with weak reliability and synchrony assumptions. , 2003, , .		71

#	Article	IF	CITATIONS
151	Revisiting Liveness Properties in the Context of Secure Systems. Lecture Notes in Computer Science, 2003, , 221-238.	1.0	3
152	Byzantine disk paxos. , 2004, , .		14
153	Communication-efficient leader election and consensus with limited link synchrony. , 2004, , .		94
154	Total order broadcast and multicast algorithms. ACM Computing Surveys, 2004, 36, 372-421.	16.1	381
155	Lock-Free Parallel Algorithms: An Experimental Study. Lecture Notes in Computer Science, 2004, , 516-527.	1.0	11
156	An approach to achieve message efficient early-stopping uniform consensus protocols. , 2004, , .		0
157	Efficient synchronous snapshots. , 2004, , .		5
158	Condition-based consensus solvability: a hierarchy of conditions and efficient protocols. Distributed Computing, 2004, 17, 1-20.	0.7	29
159	Uniform consensus is harder than consensus. Journal of Algorithms, 2004, 51, 15-37.	0.9	63
160	A necessary and sufficient condition for transforming limited accuracy failure detectors. Journal of Computer and System Sciences, 2004, 68, 123-133.	0.9	25
161	Group communication: where are we today and future challenges. , 0, , .		1
162	Cheap Paxos., 2004, , .		54
163	Timed uniform consensus resilient to crash and timing faults. , 2004, , .		3
164	A hybrid approach for building eventually accurate failure detectors. , 0, , .		14
165	Dining philosophers with crash locality 1., 2004,,.		14
166	Crash-resilient time-free eventual leadership. , 2004, , .		29
167	The /spl phi/ accrual failure detector. , 2004, , .		108
168	The information structure of indulgent consensus. IEEE Transactions on Computers, 2004, 53, 453-466.	2.4	94

#	ARTICLE	IF	CITATIONS
169	On the implementation of unreliable failure detectors in partially synchronous systems. IEEE Transactions on Computers, 2004, 53, 815-828.	2.4	43
170	The Synchronous Condition-Based Consensus Hierarchy. Lecture Notes in Computer Science, 2004, , 1-15.	1.0	7
171	The Notion of Veto Number and the Respective Power of \$Diamond {cal P}\$ and \$Diamond {cal S}\$ to Solve One-Shot Agreement Problems. Lecture Notes in Computer Science, 2004, , 41-55.	1.0	2
172	Eventually consistent failure detectors. Journal of Parallel and Distributed Computing, 2005, 65, 361-373.	2.7	26
173	Performing work with asynchronous processors: Message-delay-sensitive bounds. Information and Computation, 2005, 203, 181-210.	0.5	9
174	Low complexity Byzantine-resilient consensus. Distributed Computing, 2005, 17, 237-249.	0.7	32
175	Active Disk Paxos with infinitely many processes. Distributed Computing, 2005, 18, 73-84.	0.7	28
176	The inherent price of indulgence. Distributed Computing, 2005, 18, 85-98.	0.7	20
177	The combined power of conditions and failure detectors to solve asynchronous set agreement. , 2005, , .		12
178	On fairness in simulatability-based cryptographic systems. , 2005, , .		9
180	Evaluation of failure detectors based a cost metric. , 2005, , .		0
181	Experimental Evaluation of the QoS of Failure Detectors on Wide Area Network. , 0, , .		30
182	Reconciling the Theory and Practice of (Un)Reliable Wireless Broadcast. , 0, , .		7
183	Definition and Specification of Accrual Failure Detectors. , 0, , .		27
184	Solving vector consensus with a wormhole. IEEE Transactions on Parallel and Distributed Systems, 2005, 16, 1120-1131.	4.0	27
185	Towards Partially Synchronous Overlays: Issues and Challenges. , 0, , .		0
186	On the Possibility of Consensus in Asynchronous Systems with Finite Average Response Times., 0,,.		34
187	A Replication- and Checkpoint-Based Approach for Anomaly-Based Intrusion Detection and Recovery. , 0, , .		9

#	Article	IF	CITATIONS
188	How Fast Can Eventual Synchrony Lead to Consensus?., 0,,.		18
189	Consensus and collision detectors in wireless Ad Hoc networks. , 2005, , .		47
190	High Performance Computing - HiPC 2004. Lecture Notes in Computer Science, 2005, , .	1.0	1
191	Thema: Byzantine-Fault-Tolerant Middleware forWeb-Service Applications. , 0, , .		63
192	Experimental Comparison of Local and Shared Coin Randomized Consensus Protocols. Proceedings of the IEEE Symposium on Reliable Distributed Systems, 2006, , .	0.0	17
194	Improving Fast Paxos: being optimistic with no overhead. , 2006, , .		16
195	Optimistically Terminating Consensus: All Asynchronous Consensus Protocols in One Framework. , 2006, , .		11
196	Consensus with Byzantine Failures and Little System Synchrony. , 0, , .		15
197	Time-free and timer-based assumptions can be combined to obtain eventual leadership. IEEE Transactions on Parallel and Distributed Systems, 2006, 17, 656-666.	4.0	29
198	Randomized Intrusion-Tolerant Asynchronous Services. , 0, , .		19
199	One-step Consensus with Zero-Degradation. , 0, , .		13
200	Eventual Leader Election with Weak Assumptions on Initial Knowledge, Communication Reliability, and Synchrony., 0,,.		19
201	Fully distributed three-tier active software replication. IEEE Transactions on Parallel and Distributed Systems, 2006, 17, 633-645.	4.0	7
202	From Set Membership to Group Membership: A Separation of Concerns. IEEE Transactions on Dependable and Secure Computing, 2006, 3, 2-12.	3.7	33
203	A Leader Election Protocol for Eventually Synchronous Shared Memory Systems. , 0, , .		8
204	A new fault-tolerance framework for grid computing. Multiagent and Grid Systems, 2006, 2, 115-133.	0.5	8
205	Illustrating the impossibility of crash-tolerant consensus in asynchronous systems. Operating Systems Review (ACM), 2006, 40, 105-109.	1.5	3
206	Travelling through wormholes. ACM SIGACT News, 2006, 37, 66-81.	0.1	76

#	ARTICLE	IF	Citations
207	Designing irregular parallel algorithms with mutual exclusion and lock-free protocols. Journal of Parallel and Distributed Computing, 2006, 66, 854-866.	2.7	10
208	Light-Weight Leases for Storage-Centric Coordination. International Journal of Parallel Programming, 2006, 34, 143-170.	1.1	2
209	Synchronous condition-based consensus. Distributed Computing, 2006, 18, 325-343.	0.7	17
210	Byzantine disk paxos: optimal resilience with byzantine shared memory. Distributed Computing, 2006, 18, 387-408.	0.7	64
211	Lower bounds for asynchronous consensus. Distributed Computing, 2006, 19, 104-125.	0.7	74
212	Timeliness, failure-detectors, and consensus performance., 2006,,.		26
213	Formal verification of concurrent software., 2006,,.		4
214	Consensus on transaction commit. ACM Transactions on Database Systems, 2006, 31, 133-160.	1.5	215
215	BTS., 2006,,.		8
216	The notification based approach to implementing failure detectors in distributed systems. , 2006, , .		1
217	The Alpha of Indulgent Consensus. Computer Journal, 2006, 50, 53-67.	1.5	36
218	Computing in the Presence of Timing Failures. , 0, , .		6
219	On the fly estimation of the processes that are alive/crashed in an asynchronous message-passing system. , 2006, , .		1
220	A Performance Study on the Signal-On-Fail Approach to Imposing Total Order in the Streets of Byzantium. , 0, , .		4
221	The Power and Limit of Adding Synchronization Messages for Synchronous Agreement. , 0, , .		0
223	Towards Timely ACID Transactions in DBMS. , 2006, , .		1
224	A TIME-FREE ASSUMPTION TO IMPLEMENT EVENTUAL LEADERSHIP. Parallel Processing Letters, 2006, 16, 189-207.	0.4	25
225	From Consensus to Atomic Broadcast: Time-Free Byzantine-Resistant Protocols without Signatures. Computer Journal, 2006, 49, 82-96.	1.5	85

#	Article	IF	CITATIONS
226	How to Choose a Timing Model?., 2007,,.		9
227	Systems Architectures for Transactional Network Interface., 2007,,.		3
228	Tolerating corrupted communication., 2007,,.		31
229	Towards the minimal synchrony for byzantine consensus. , 2007, , .		O
230	Zyzzyva., 2007,,.		311
231	On the Respective Power of /spl Lozenge/P and /spl Lozenge/S to Solve One-Shot Agreement Problems. IEEE Transactions on Parallel and Distributed Systems, 2007, 18, 589-597.	4.0	1
232	Refined quorum systems. , 2007, , .		19
233	Electing an Eventual Leader in an Asynchronous Shared Memory System. , 2007, , .		7
234	The Fail-Heterogeneous Architectural Model. , 2007, , .		5
235	Harmful dogmas in fault tolerant distributed computing. ACM SIGACT News, 2007, 38, 53-61.	0.1	7
236	Zyzzyva. Operating Systems Review (ACM), 2007, 41, 45-58.	1.5	125
237	The Eventual Leadership in Dynamic Mobile Networking Environments. , 2007, , .		3
238	The Time-Complexity of Local Decision in Distributed Agreement. SIAM Journal on Computing, 2007, 37, 722-756.	0.8	5
239	Asynchronous Agreement and Its Relation with Error-Correcting Codes. IEEE Transactions on Computers, 2007, 56, 865-875.	2.4	31
241	An evaluation of ring-based algorithms for the Eventually Perfect failure detector class. Parallel, Distributed and Network-based Processing, Proceedings of the Euromicro Workshop on, 2007, , .	0.0	1
242	Synchronous Consensus with Mortal Byzantines. , 2007, , .		11
243	Hierarchical Replication Control in a Global File System. , 2007, , .		7
244	Eventually k-Bounded Wait-Free Distributed Daemons. , 2007, , .		6

#	Article	IF	Citations
245	Lower Bounds for Achieving Synchronous Consensus with Orderly Crash Failure. , 2007, , .		1
246	The Paxos Register., 2007,,.		8
247	Eventual Leader Service in Unreliable Asynchronous Systems: Why? How?., 2007,,.		3
248	A Timing Assumption and a t-Resilient Protocol for Implementing an Eventual Leader Service in Asynchronous Shared Memory Systems. , 2007, , .		1
249	Communication Predicates: A High-Level Abstraction for Coping with Transient and Dynamic Faults. , 2007, , .		19
250	A Measurement Tool of End-User Computing Capability in Competency Perspective. , 2007, , .		1
251	An Automatic Real-Time Analysis of the Time to Reach Consensus. , 2007, , .		2
252	An Adaptive Programming Model for Fault-Tolerant Distributed Computing. IEEE Transactions on Dependable and Secure Computing, 2007, 4, 18-31.	3.7	28
253	Model Checking of Consensus Algorit., 2007,,.		18
254	The Eventual Leadership in Dynamic Mobile Networking Environments. , 2007, , .		7
255	Decoupled Quorum-Based Byzantine-Resilient Coordination in Open Distributed Systems., 2007,,.		2
257	Distributed Diagnosis of Failures in a Three Tier E-Commerce System. , 2007, , .		15
258	On the Respective Power of /spl Lozenge/P and /spl Lozenge/S to Solve One-Shot Agreement Problems. IEEE Transactions on Parallel and Distributed Systems, 2007, 18, 589-597.	4.0	3
259	Adaptive timeliness of consensus in presence of crash and timing faults. Journal of Parallel and Distributed Computing, 2007, 67, 648-658.	2.7	0
260	The overhead of consensus failure recovery. Distributed Computing, 2007, 19, 373-386.	0.7	14
261	Booting clock synchronization in partially synchronous systems with hybrid process and link failures. Distributed Computing, 2007, 20, 115-140.	0.7	22
262	Worm-IT – A wormhole-based intrusion-tolerant group communication system. Journal of Systems and Software, 2007, 80, 178-197.	3.3	21
263	On Byzantine generals with alternative plans. Journal of Parallel and Distributed Computing, 2008, 68, 1291-1296.	2.7	12

#	Article	IF	Citations
264	Failure detectors as type boosters. Distributed Computing, 2008, 20, 343-358.	0.7	14
265	The weakest failure detectors to boost obstruction-freedom. Distributed Computing, 2008, 20, 415-433.	0.7	29
266	Consensus and collision detectors in radio networks. Distributed Computing, 2008, 21, 55-84.	0.7	24
267	On implementing omega in systems with weak reliability and synchrony assumptions. Distributed Computing, 2008, 21, 285-314.	0.7	38
268	A replicated file system for Grid computing. Concurrency Computation Practice and Experience, 2008, 20, 1113-1130.	1.4	10
269	Message and time efficient consensus protocols for synchronous distributed systems. Journal of Parallel and Distributed Computing, 2008, 68, 641-654.	2.7	4
270	On termination detection in crash-prone distributed systems with failure detectors. Journal of Parallel and Distributed Computing, 2008, 68, 855-875.	2.7	5
271	Using asynchrony and zero degradation to speed up indulgent consensus protocols. Journal of Parallel and Distributed Computing, 2008, 68, 984-996.	2.7	6
272	Ad-Hoc Networks. , 2008, , 7-7.		0
273	The Combined Power of Conditions and Information on Failures to Solve Asynchronous Set Agreement. SIAM Journal on Computing, 2008, 38, 1574-1601.	0.8	20
274	Timing Failures Detection in Web Services. , 2008, , .		2
275	HyperBone: A Scalable Overlay Network Based on a Virtual Hypercube. , 2008, , .		7
276	Extending Paxos/LastVoting with an Adequate Communication Layer for Wireless Ad Hoc Networks. , 2008, , .		13
277	An Evaluation of Communication-Optimal P Algorithms. , 2008, , .		0
278	Predicate Detection Modality and Semantics in Three Partially Synchronous Models., 2008,,.		7
279	A Dependable Infrastructure for Cooperative Web Services Coordination., 2008,,.		6
280	Byzantine replication under attack. , 2008, , .		41
281	How to Choose a Timing Model. IEEE Transactions on Parallel and Distributed Systems, 2008, 19, 1367-1380.	4.0	6

#	Article	IF	CITATIONS
282	Stabilization, Safety, and Security of Distributed Systems. Lecture Notes in Computer Science, 2008, , .	1.0	1
283	Synthesizing Byzantine Fault-Tolerant Grid Application Wrapper Services. , 2008, , .		3
284	The CRUTIAL reference critical information infrastructure architecture: a blueprint. International Journal of System of Systems Engineering, 2008, $1,78$.	0.4	17
285	Eventual Leader Election in the Crash-Recovery Failure Model. , 2008, , .		8
286	Language and Tool Support for Model Checking of Fault-Tolerant Distributed Algorithms. , 2008, , .		3
287	A general characterization of indulgence. ACM Transactions on Autonomous and Adaptive Systems, 2008, 3, 1-19.	0.4	12
289	On the complexity of asynchronous gossip. , 2008, , .		29
290	Every problem has a weakest failure detector. , 2008, , .		26
291	Timeliness-based wait-freedom. , 2008, , .		9
292	Defining weakly consistent Byzantine fault-tolerant services. , 2008, , .		2
293	HyperBone: A scalable overlay network based on a virtual hypercube. , 2008, , .		0
294	A scalable monitoring strategy for highly dynamic systems. , 2008, , .		1
295	From Omega to ?P in the Crash-Recovery Failure Model with Unknown Membership. , 2008, , .		0
296	Zyzzyva. Communications of the ACM, 2008, 51, 86-95.	3.3	62
297	DepSpace. Operating Systems Review (ACM), 2008, 42, 163-176.	1.5	12
298	A group membership service for large-scale grids. , 2008, , .		2
299	The Weak Mutual Exclusion problem. , 2009, , .		3
300	Fault-Tolerant Consensus in Unknown and Anonymous Networks. , 2009, , .		14

#	Article	IF	Citations
301	Chasing the Weakest System Model for Implementing $\hat{I} @$ and Consensus. IEEE Transactions on Dependable and Secure Computing, 2009, 6, 269-281.	3.7	28
302	Towards Automated Verification of Distributed Consensus Protocols. , 2009, , .		2
303	Crash fault detection in celerating environments., 2009,,.		4
304	Optimal message-driven implementations of omega with mute processes. ACM Transactions on Autonomous and Adaptive Systems, 2009, 4, 1-22.	0.4	10
305	Zyzzyva. ACM Transactions on Computer Systems, 2009, 27, 1-39.	0.6	153
306	Progress guarantee for parallel programs via bounded lock-freedom. ACM SIGPLAN Notices, 2009, 44, 144-154.	0.2	5
307	Using eventually consistent compasses to gather memory-less mobile robots with limited visibility. ACM Transactions on Autonomous and Adaptive Systems, 2009, 4, 1-27.	0.4	52
308	Progress guarantee for parallel programs via bounded lock-freedom., 2009,,.		7
309	Partial synchrony based on set timeliness. , 2009, , .		3
310	The weakest failure detector for wait-free dining under eventual weak exclusion. , 2009, , .		3
311	On the weakest failure detector ever. Distributed Computing, 2009, 21, 353-366.	0.7	6
312	The Theta-Model: achieving synchrony without clocks. Distributed Computing, 2009, 22, 29-47.	0.7	27
313	The Heard-Of model: computing in distributed systems with benign faults. Distributed Computing, 2009, 22, 49-71.	0.7	155
314	A topological treatment of early-deciding set-agreement. Theoretical Computer Science, 2009, 410, 570-580.	0.5	7
315	Implementing the Omega failure detector in the crash-recovery failure model. Journal of Computer and System Sciences, 2009, 75, 178-189.	0.9	23
316	Distributed Key Generation for the Internet. , 2009, , .		43
317	On the Fly Estimation of the Processes that Are Alive in an Asynchronous Message-Passing System. IEEE Transactions on Parallel and Distributed Systems, 2009, 20, 778-787.	4.0	2
318	Perfect Failure Detection in the Partitioned Synchronous Distributed System Model., 2009,,.		10

#	Article	IF	CITATIONS
319	Streamline: An Architecture for Overlay Multicast., 2009,,.		7
320	Implementing a Register in a Dynamic Distributed System. , 2009, , .		25
321	Quiescent Leader Election in Crash-Recovery Systems. , 2009, , .		2
322	Spin One's Wheels? Byzantine Fault Tolerance with a Spinning Primary. , 2009, , .		79
323	Relaxed Atomic Broadcast: State-Machine Replication Using Bounded Memory. , 2009, , .		2
324	An Efficient Weak Mutual Exclusion Algorithm. , 2009, , .		2
325	Message-efficient omission-tolerant consensus with limited synchrony., 2009,,.		3
326	An Efficient Byzantine-Resilient Tuple Space. IEEE Transactions on Computers, 2009, 58, 1080-1094.	2.4	9
327	Design of the notification system for failure detectors. International Journal of High Performance Computing and Networking, 2009, 6, 25.	0.4	5
328	A Survey of Fault Tolerance in Ad-Hoc Networks and Sensor Networks. , 2010, , 109-142.		0
329	In search of lost time. Information Processing Letters, 2010, 110, 928-933.	0.4	8
330	Refined quorum systems. Distributed Computing, 2010, 23, 1-42.	0.7	21
331	Adaptive progress: a gracefully-degrading liveness property. Distributed Computing, 2010, 22, 303-334.	0.7	3
332	A Timing Assumption and Two t-Resilient Protocols forÂlmplementing an Eventual Leader Service inÂAsynchronous Shared Memory Systems. Algorithmica, 2010, 56, 550-576.	1.0	17
333	Multicoordinated agreement for groups of agents. Journal of the Brazilian Computer Society, 2010, 16, 49-68.	0.8	0
334	Eventual Leader Election with Weak Assumptions on Initial Knowledge, Communication Reliability, and Synchrony. Journal of Computer Science and Technology, 2010, 25, 1267-1281.	0.9	4
335	A simple and communication-efficient Omega algorithm in the crash-recovery model. Information Processing Letters, 2010, 110, 83-87.	0.4	7
336	Emulating shared-memory Do-All algorithms in asynchronous message-passing systems. Journal of Parallel and Distributed Computing, 2010, 70, 699-705.	2.7	3

#	ARTICLE	IF	CITATIONS
337	Ring Paxos: A high-throughput atomic broadcast protocol. , 2010, , .		29
338	Fast Asynchronous Consensus with Optimal Resilience. Lecture Notes in Computer Science, 2010, , 4-19.	1.0	6
339	HP: Hybrid Paxos for WANs. , 2010, , .		5
340	Generic construction of consensus algorithms for benign and Byzantine faults. , 2010, , .		6
341	Efficient eventual consistency in Pahoehoe, an erasure-coded key-blob archive., 2010,,.		7
342	A Weaker Knowledge Connectivity Condition Sufficient for Fault-Tolerant Consensus with Unknown Participants. , 2010, , .		2
343	Asynchronous Byzantine consensus with 2f+1 processes. , 2010, , .		43
344	Proactive obfuscation. ACM Transactions on Computer Systems, 2010, 28, 1-54.	0.6	47
346	On utilizing speed in networks of mobile agents. , 2010, , .		25
348	Architecture and protocol support for providing consensus as a fault-tolerant virtualised service. , 2010, , .		O
349	Communication and Agreement Abstractions for Fault-Tolerant Asynchronous Distributed Systems. Synthesis Lectures on Distributed Computing Theory, 2010, 1, 1-273.	0.1	27
352	Time-Free Authenticated Byzantine Consensus. , 2010, , .		1
354	Swift Algorithms for Repeated Consensus. , 2010, , .		0
355	Zzyzx: Scalable fault tolerance through Byzantine locking. , 2010, , .		20
356	An Improved Knowledge Connectivity Condition for Fault-Tolerant Consensus with Unknown Participants. , $2010, \ldots$		0
357	EBAWA: Efficient Byzantine Agreement for Wide-Area Networks. , 2010, , .		50
358	Enhanced Paxos Commit for Transactions on DHTs. , 2010, , .		6
359	Learning from experience: Better design techniques for an improved consensus protocol. , 2010, , .		0

#	ARTICLE	IF	CITATIONS
360	Byzantine Fault-Tolerant Transaction Processing for Replicated Databases. , 2011, , .		7
361	High performance state-machine replication., 2011,,.		29
362	Fast Genuine Generalized Consensus. , 2011, , .		14
363	Timing Analysis of Leader-Based and Decentralized Byzantine Consensus Algorithms. , 2011, , .		1
364	Distributed Computing and Networking. Lecture Notes in Computer Science, 2011, , .	1.0	0
365	RITAS: Services for Randomized Intrusion Tolerance. IEEE Transactions on Dependable and Secure Computing, 2011, 8, 122-136.	3.7	25
366	Introduction to Reliable and Secure Distributed Programming. , 2011, , .		186
367	Byzantine consensus in asynchronous message-passing systems: a survey. International Journal of Critical Computer-Based Systems, 2011, 2, 141.	0.1	37
368	TIMELY AND DEPENDABLE QoS ADAPTATION IN QUASI-SYNCHRONOUS SYSTEMS. International Journal of Computers and Applications, $2011, 33, \ldots$	0.8	0
369	The Asynchronous Bounded-Cycle model. Theoretical Computer Science, 2011, 412, 5580-5601.	0.5	4
370	Communication-efficient leader election in crash–recovery systems. Journal of Systems and Software, 2011, 84, 2186-2195.	3.3	10
371	Verification of consensus algorithms using satisfiability solving. Distributed Computing, 2011, 23, 341-358.	0.7	31
372	Communication-efficient failure detection and consensus in omission environments. Information Processing Letters, 2011, 111, 262-268.	0.4	10
373	Consensus when all processes may be Byzantine for some time. Theoretical Computer Science, 2011, 412, 4260-4272.	0.5	5
374	ZZ and the art of practical BFT execution. , 2011, , .		54
375	Byzantine agreement with homonyms. , 2011, , .		22
376	Easy impossibility proofs for k-set agreement in message passing systems. , 2011, , .		0
377	Detecting failures in distributed systems with the Falcon spy network. , 2011, , .		59

#	Article	IF	CITATIONS
378	Prime: Byzantine Replication under Attack. IEEE Transactions on Dependable and Secure Computing, 2011, 8, 564-577.	3.7	111
379	Building a Fault Tolerant MPI Application: A Ring Communication Example. , 2011, , .		12
381	On the Reduction of Atomic Broadcast to Consensus with Byzantine Faults. , 2011, , .		10
382	Solving k-Set Agreement with Stable Skeleton Graphs. , 2011, , .		2
383	Preserving Collective Performance across Process Failure for a Fault Tolerant MPI., 2011,,.		9
384	The failure detector abstraction. ACM Computing Surveys, 2011, 43, 1-40.	16.1	32
385	Less restrictive knowledge connectivity condition for achieving consensus with unknown participants. IET Communications, 2012, 6, 2688-2694.	1.5	0
386	SecondSite., 2012, , .		32
387	On the price of equivocation in byzantine agreement. , 2012, , .		18
388	SecondSite. ACM SIGPLAN Notices, 2012, 47, 97-108.	0.2	14
389	Quorum Systems: With Applications to Storage and Consensus. Synthesis Lectures on Distributed Computing Theory, 2012, 3, 1-146.	0.1	15
391	RAM-DUR: In-Memory Deferred Update Replication. , 2012, , .		9
393	Exploiting partitioned synchrony to implement accurate failure detectors. International Journal of Critical Computer-Based Systems, 2012, 3, 168.	0.1	2
394	Generating Fast Indulgent Algorithms. Theory of Computing Systems, 2012, 51, 404-424.	0.7	1
395	Multi-Ring Paxos. , 2012, , .		43
396	Combining Partial Redundancy and Checkpointing for HPC. , 2012, , .		95
397	Spotcast – A Communication Abstraction for Proximity-Based Mobile Applications. , 2012, , .		5
398	From Byzantine Consensus to BFT State Machine Replication: A Latency-Optimal Transformation. , 2012,		48

#	Article	IF	CITATIONS
399	An Infrastructure Based in Virtualization for Intrusion Tolerant Services., 2012,,.		10
400	A diversified and correct-by-construction broadcast service. , 2012, , .		4
401	Safety Verification of Asynchronous Consensus Algorithms with Model Checking. , 2012, , .		2
402	Intrusion-Tolerant Shared Memory through a P2P Overlay Segmentation. , 2012, , .		2
403	Implementing a Regular Register in an Eventually Synchronous Distributed System Prone to Continuous Churn. IEEE Transactions on Parallel and Distributed Systems, 2012, 23, 102-109.	4.0	9
404	Towards Byzantine Resilient Directories., 2012,,.		3
405	Towards an opportunistic grid scheduling infrastructure based on tuple spaces. Journal of Internet Services and Applications, 2012, 3, 159-172.	1.6	0
406	Request Batching Self-Configuration in Byzantine Fault-Tolerant Replication. , 2012, , .		2
407	Secure Failure Detection and Consensus in TrustedPals. IEEE Transactions on Dependable and Secure Computing, 2012, 9, 610-625.	3.7	10
410	Timing analysis of leader-based and decentralized Byzantine consensus algorithms. Journal of the Brazilian Computer Society, 2012, 18, 29-42.	0.8	1
411	Partial synchrony based on set timeliness. Distributed Computing, 2012, 25, 249-260.	0.7	8
412	Failure detectors encapsulate fairness. Distributed Computing, 2012, 25, 313-333.	0.7	2
413	Predictable service overlay networks: Predictability through adaptive monitoring and efficient overlay construction and management. Journal of Parallel and Distributed Computing, 2012, 72, 70-82.	2.7	3
414	Perspectives on the CAP Theorem. Computer, 2012, 45, 30-36.	1.2	141
415	Quantitative Analysis of Consensus Algorithms. IEEE Transactions on Dependable and Secure Computing, 2012, 9, 236-249.	3.7	7
416	An implementation of a replicated file server supporting the crash-recovery failure model. Journal of Supercomputing, 2012, 59, 156-202.	2.4	0
417	Consensus in the presence of mortal Byzantine faulty processes. Distributed Computing, 2012, 24, 299-321.	0.7	6
418	Of Choices, Failures and Asynchrony: The Many Faces of Set Agreement. Algorithmica, 2012, 62, 595-629.	1.0	7

#	Article	IF	Citations
419	Byzantine agreement with homonyms. Distributed Computing, 2013, 26, 321-340.	0.7	6
420	Distributed Computing and Networking. Lecture Notes in Computer Science, 2013, , .	1.0	2
421	Adaptive request batching for byzantine replication. Operating Systems Review (ACM), 2013, 47, 35-42.	1. 5	10
422	Parameterized model checking of fault-tolerant distributed algorithms by abstraction. , 2013, , .		41
424	Asynchronous message-passing binary consensus over non-complete graphs. , 2013, , .		1
425	Automatically Tolerating Arbitrary Faults in Non-malicious Settings. , 2013, , .		9
426	Efficient Byzantine Fault-Tolerance. IEEE Transactions on Computers, 2013, 62, 16-30.	2.4	208
427	Byzantine agreement with homonyms in synchronous systems. Theoretical Computer Science, 2013, 496, 34-49.	0.5	2
428	On the performance of a retransmission-based synchronizer. Theoretical Computer Science, 2013, 509, 25-39.	0.5	3
429	Tight complexity analysis of population protocols with cover times — The ZebraNet example. Theoretical Computer Science, 2013, 512, 15-27.	0.5	7
430	An Evaluation of Efficient Leader Election Algorithms for Crash-Recovery Systems. , 2013, , .		4
431	Fault-Tolerant Leader Election in Mobile Dynamic Distributed Systems. , 2013, , .		22
432	Asynchronous gossip. Journal of the ACM, 2013, 60, 1-42.	1.8	15
433	Improving Independence of Failures in BFT. , 2013, , .		1
434	Using Paxos to Build a Lightweight, Highly Available Key-Value Data Store. , 2013, , .		0
435	Model Checking Software. Lecture Notes in Computer Science, 2013, , .	1.0	1
436	Implementing the weakest failure detector for solving the consensus problem. International Journal of Parallel, Emergent and Distributed Systems, 2013, 28, 537-555.	0.7	4
437	BFT-TO: Intrusion Tolerance with Less Replicas. Computer Journal, 2013, 56, 693-715.	1.5	11

#	Article	IF	CITATIONS
438	The Network is Reliable. Queue, 2014, 12, 20-32.	0.8	23
439	Building global and scalable systems with atomic multicast. , 2014, , .		9
440	ByzID: Byzantine Fault Tolerance from Intrusion Detection. , 2014, , .		14
441	HardPaxos: Replication Hardened against Hardware Errors. , 2014, , .		5
442	The network is reliable. Communications of the ACM, 2014, 57, 48-55.	3.3	21
443	Randomized Binary Consensus with Faulty Agents. Entropy, 2014, 16, 2820-2838.	1.1	4
444	Non-blocking Atomic Commitment with Byzantine Faults. , 2014, , .		0
445	Modular Quorum Systems Reconfigurations. , 2014, , .		0
446	On the impact of link faults on Byzantine agreement. Information and Computation, 2014, 239, 170-181.	0.5	1
447	Ubiquitous Computing and Ambient Intelligence. Personalisation and User Adapted Services. Lecture Notes in Computer Science, 2014, , .	1.0	1
449	Dealing with Interactive Transactions in a Byzantine Fault Tolerant STM. , 2014, , .		0
450	On the Design of Practical Fault-Tolerant SDN Controllers. , 2014, , .		61
451	Hybris., 2014,,.		43
452	On the Practicality to Implement Byzantine Fault Tolerant Services Based on Tuple Space. , 2014, , .		4
453	Reconciling fault-tolerant distributed algorithms and real-time computing. Distributed Computing, 2014, 27, 203-230.	0.7	3
455	Developing Correctly Replicated Databases Using Formal Tools. , 2014, , .		25
456	A Performance Study of Consensus Algorithms in Omission and Crash-Recovery Scenarios. , 2014, , .		1
457	Fault tolerance management in distributed systems: A new leader-based consensus algorithm. , 2014, , .		1

#	Article	IF	CITATIONS
458	Density Classification in Asynchronous Random Networks with Faulty Nodes. , 2014, , .		2
459	Fault tolerance management in collaborative systems: Performance comparison of consensus algorithms. , 2014, , .		0
460	Boosting Dependable Ubiquitous Computing: A Case Study. IEEE Latin America Transactions, 2014, 12, 442-448.	1.2	1
461	The Generalized Loneliness Detector and Weak System Models for k-Set Agreement. IEEE Transactions on Parallel and Distributed Systems, 2014, 25, 1078-1088.	4.0	3
462	Signature-free asynchronous byzantine consensus with t < n/3 and o(n $<\!$ sup $>\!$ 2 $<\!$ /sup $>\!$) messages. , 2014, , .		49
463	Tolerating permanent and transient value faults. Distributed Computing, 2014, 27, 55-77.	0.7	2
464	2.2.2 Maintaining Emergence in Systems of Systems Integration: a Contractual Approach using SysML. Incose International Symposium, 2014, 24, 166-181.	0.2	10
465	Formal Modeling and Analysis of Time-and Resource-Sensitive Simple Business Processes., 2015, , .		0
466	Turtle Consensus., 2015,,.		4
467	The Next 700 BFT Protocols. ACM Transactions on Computer Systems, 2015, 32, 1-45.	0.6	86
468	Eventual Leader Election Despite Crash-Recovery and Omission Failures. , 2015, , .		2
469	A Failure Detector for k-Set Agreement in Dynamic Systems. , 2015, , .		1
470	Probabilistic Byzantine Tolerance for Cloud Computing. , 2015, , .		1
471	Consensus Refined., 2015,,.		8
472	Ridge: High-Throughput, Low-Latency Atomic Multicast. , 2015, , .		8
473	Minimal Synchrony for Byzantine Consensus. , 2015, , .		8
474	Time hybrid total order broadcast: Exploiting the inherent synchrony of broadcast networks. Journal of Parallel and Distributed Computing, 2015, 77, 26-40.	2.7	2
475	Distributed Binary Consensus in Networks with Disturbances. ACM Transactions on Autonomous and Adaptive Systems, 2015, 10, 1-17.	0.4	7

#	Article	IF	CITATIONS
476	Visigoth fault tolerance. , 2015, , .		11
477	A Simple Predicate to Expedite the Termination of a Randomized Consensus Algorithm. , 2015, , .		0
478	Approximate Synchrony: An Abstraction for Distributed Almost-Synchronous Systems. Lecture Notes in Computer Science, 2015, , 429-448.	1.0	11
479	Communication-optimal eventually perfect failure detection in partially synchronous systems. Journal of Computer and System Sciences, 2015, 81, 383-397.	0.9	7
480	hBFT: Speculative Byzantine Fault Tolerance with Minimum Cost. IEEE Transactions on Dependable and Secure Computing, 2015, 12, 58-70.	3.7	31
481	Failure Detector of Perfect P Class for Synchronous Hierarchical Distributed Systems. International Journal of Distributed Systems and Technologies, 2016, 7, 57-74.	0.6	8
482	Approximate Regular Expression Matching. , 2016, , 99-102.		0
483	Trust as Important Factor for Building Robust Self-x Systems. , 2016, , 153-183.		1
484	A communication-efficient leader election algorithm in partially synchronous systems prone to crash-recovery and omission failures. , 2016, , .		3
485	Cost sensitive moving target consensus. , 2016, , .		2
486	The Blockchain Anomaly. , 2016, , .		71
487	Byzantine Set-Union Consensus Using Efficient Set Reconciliation. , 2016, , .		2
488	GlobalFS: A Strongly Consistent Multi-site File System. , 2016, , .		8
489	Failure Detectors. , 2016, , 724-728.		0
490	Cache-Oblivious B-Tree. , 2016, , 261-264.		0
491	Approximate Matching., 2016,, 97-99.		0
492	The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication. Lecture Notes in Computer Science, 2016, , 112-125.	1.0	388
493	On Choosing Server- or Client-Side Solutions for BFT. ACM Computing Surveys, 2016, 48, 1-30.	16.1	16

#	Article	IF	CITATIONS
494	Abstract Voronoi Diagrams. , 2016, , 5-8.		0
495	Open Problems in Network Security. Lecture Notes in Computer Science, 2016, , .	1.0	5
496	Algorithms for Combining Rooted Triplets into a Galled Phylogenetic Network., 2016,, 48-52.		27
497	Formal modeling and analysis of time- and resource-sensitive simple business processes. Journal of Information Security and Applications, 2016, 31, 23-40.	1.8	1
498	Never Say Never Probabilistic and Temporal Failure Detectors. , 2016, , .		8
499	Algorithmic Mechanism Design. , 2016, , 37-48.		0
500	The Honey Badger of BFT Protocols. , 2016, , .		365
501	Active Self-Assembly and Molecular Robotics with Nubots. , 2016, , 13-18.		0
502	Compressing Integer Sequences. , 2016, , 407-412.		0
503	Active Learning – Modern Learning Theory. , 2016, , 8-13.		2
504	Approximation Schemes for Planar Graph Problems. , 2016, , 133-137.		0
505	All-Distances Sketches. , 2016, , 59-64.		0
506	A Look at Basics of Distributed Computing. , 2016, , .		3
507	Soundness of the quasi-synchronous abstraction. , 2016, , .		3
508	All Pairs Shortest Paths in Sparse Graphs. , 2016, , 52-55.		1
509	Priority-Based State Machine Replication with PRaxos. , 2016, , .		0
510	Abelian Hidden Subgroup Problem. , 2016, , 1-5.		1
511	Compressing and Indexing Structured Text. , 2016, , 401-407.		0

#	Article	IF	CITATIONS
512	Approximate Distance Oracles with Improved Query Time. , 2016, , 94-97.		1
513	Intrusion-Tolerant Broadcast and Agreement Abstractions in the Presence of Byzantine Processes. IEEE Transactions on Parallel and Distributed Systems, 2016, 27, 1085-1098.	4.0	19
514	Signature-free asynchronous Byzantine systems: from multivalued to binary consensus with $t_n/3$ t < n / 3 , $t_n/3$ 0 (n 2) messages, and constant time. Acta Informatica, 2017, 54, 501-520.	0.5	10
515	Probabilistic Byzantine Tolerance Scheduling in Hybrid Cloud Environments., 2017,,.		4
516	Best Effort Broadcast under Cascading Failures in Interdependent Networks. , 2017, , .		1
517	Analysis of the Blockchain Protocol in Asynchronous Networks. Lecture Notes in Computer Science, 2017, , 643-673.	1.0	313
518	DecReg., 2017,,.		15
519	Toward a Faster Fault Tolerant Consensus to Maintain Data Consistency in Collaborative Environments. International Journal of Cooperative Information Systems, 2017, 26, 1750002.	0.6	1
520	Blocks and Chains: Introduction to Bitcoin, Cryptocurrencies, and Their Consensus Mechanisms. Synthesis Lectures on Information Security Privacy and Trust, 2017, 9, 1-123.	0.3	23
521	Elastic State Machine Replication. IEEE Transactions on Parallel and Distributed Systems, 2017, 28, 2486-2499.	4.0	10
522	State machine replication in containers managed by Kubernetes. Journal of Systems Architecture, 2017, 73, 53-59.	2.5	67
523	Hybris. ACM Transactions on Storage, 2017, 13, 1-32.	1.4	8
524	On Federated and Proof Of Validation Based Consensus Algorithms In Blockchain. IOP Conference Series: Materials Science and Engineering, 2017, 225, 012198.	0.3	16
525	The Balance Attack or Why Forkable Blockchains are Ill-Suited for Consortium. , 2017, , .		49
526	Securing IoT-Based Cyber-Physical Human Systems against Collaborative Attacks. , 2017, , .		13
527	Fast Log Replication in Highly Available Data Store. Lecture Notes in Computer Science, 2017, , 245-259.	1.0	1
528	The Bitcoin Backbone Protocol with Chains of Variable Difficulty. Lecture Notes in Computer Science, 2017, , 291-323.	1.0	102
529	Ring Paxos: High-Throughput Atomic Broadcastâ€. Computer Journal, 2017, 60, 866-882.	1.5	3

#	Article	IF	CITATIONS
530	The Sleepy Model of Consensus. Lecture Notes in Computer Science, 2017, , 380-409.	1.0	73
531	How Fast can a Distributed Transaction Commit?., 2017,,.		13
532	On Making Generalized Paxos Practical. , 2017, , .		1
533	A distributed leader election algorithm in crash-recovery and omissive systems. Information Processing Letters, 2017, 118, 100-104.	0.4	11
534	Elastic Paxos: A Dynamic Atomic Multicast Protocol. , 2017, , .		3
535	Rethinking Large-Scale Consensus. , 2017, , .		34
536	Power-Aware Population Protocols. , 2017, , .		2
537	Agreement in Epidemic Data Aggregation. , 2017, , .		1
538	Impact of communication delay on asynchronous distributed optimal power flow using ADMM. , 2017, , .		14
539	Byzantine set-union consensus using efficient set reconciliation. Eurasip Journal on Information Security, 2017, 2017, .	2.4	2
540	Dependable Cloud Resources with Guardian. , 2017, , .		3
541	Decentralized Consensus for Edge-Centric Internet of Things: A Review, Taxonomy, and Research Issues. IEEE Access, 2018, 6, 1513-1524.	2.6	169
542	Best effort broadcast under cascading failures in interdependent critical infrastructure networks. Pervasive and Mobile Computing, 2018, 43, 114-130.	2.1	4
543	Thunderella: Blockchains with Optimistic Instant Confirmation. Lecture Notes in Computer Science, 2018, , 3-33.	1.0	97
544	Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake Blockchain. Lecture Notes in Computer Science, 2018, , 66-98.	1.0	203
545	Analysis of Bounds on Hybrid Vector Clocks. IEEE Transactions on Parallel and Distributed Systems, 2018, 29, 1947-1960.	4.0	2
546	Knowledge Connectivity Requirements for Solving Byzantine Consensus with Unknown Participants. IEEE Transactions on Dependable and Secure Computing, 2018, 15, 246-259.	3.7	8
547	Randomized k -set agreement in crash-prone and Byzantine asynchronous systems. Theoretical Computer Science, 2018, 709, 80-97.	0.5	7

#	ARTICLE	IF	CITATIONS
548	A Cyber-Physical Systems-Based Checkpoint Model for Structural Controllability. IEEE Systems Journal, 2018, 12, 3543-3554.	2.9	8
549	Blockchain – From Public to Private. , 2018, , 145-177.		45
550	Communication-efficient randomized consensus. Distributed Computing, 2018, 31, 489-501.	0.7	11
551	A traceability chain algorithm for artificial neural networks using T–S fuzzy cognitive maps in blockchain. Future Generation Computer Systems, 2018, 80, 198-210.	4.9	71
552	DMap: A Fault-Tolerant and Scalable Distributed Data Structure. , 2018, , .		1
553	METRIC., 2018,,.		3
554	Study on Integrity and Privacy Requirements of Distributed Ledger Technologies. , 2018, , .		5
555	Window Based BFT Blockchain Consensus. , 2018, , .		14
556	RATCHETA: Memory-Bounded Hybrid Byzantine Consensus for Cooperative Embedded Systems., 2018,,.		2
557	A Formal Treatment of Efficient Byzantine Routing Against Fully Byzantine Adversary. , 2018, , .		0
558	Byzantine Fault Tolerance in the Partitioned Synchronous System Model., 2018,,.		0
559	Sycomore: A Permissionless Distributed Ledger that Self-Adapts to Transactions Demand. , 2018, , .		9
560	On synchrony in dynamic distributed systems. Open Computer Science, 2018, 8, 154-164.	1.3	3
561	Blockchain-Based Supply Chain for Postage Stamps. Informatics, 2018, 5, 42.	2.4	24
562	Koordinator: A Service Approach for Replicating Docker Containers in Kubernetes. , 2018, , .		21
563	FTRP: a new fault tolerance framework using process replication and prefetching for high-performance computing. Frontiers of Information Technology and Electronic Engineering, 2018, 19, 1273-1290.	1.5	0
564	DBFT: Efficient Leaderless Byzantine Consensus and its Application to Blockchains. , 2018, , .		80
565	On the Strongest Message Adversary for Consensus in Directed Dynamic Networks. Lecture Notes in Computer Science, 2018, , 102-120.	1.0	0

#	Article	IF	CITATIONS
566	BEAT., 2018,,.		87
567	On the Security Properties of e-Voting Bulletin Boards. Lecture Notes in Computer Science, 2018, , 505-523.	1.0	10
568	The Tortoise and the Hare: Characterizing Synchrony in Distributed Environments (Practical) Tj ETQq0 0 0 rgBT /	Overlock 1	0 Тf 50 662 Т
569	Federated Byzantine Agreement to Ensure Trustworthiness of Digital Manufacturing Platforms. , 2018, , .		14
570	Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget, 2018, 9, 5665-5690.	0.8	315
571	Transparent speculation in geo-replicated transactional data stores. , 2018, , .		2
572	A Pleasant Stroll Through the Land of Distributed Machines, Computation, and Universality. Lecture Notes in Computer Science, 2018, , 34-50.	1.0	1
573	COMBFT., 2019, , .		1
574	Blockchain Abstract Data Type., 2019,,.		8
575	Byzantine Collision-Fast Consensus Protocols. Lecture Notes in Computer Science, 2019, , 103-127.	1.0	0
576	A Vademecum on Blockchain Technologies: When, Which, and How. IEEE Communications Surveys and Tutorials, 2019, 21, 3796-3838.	24.8	262
577	Communication-Closed Asynchronous Protocols. Lecture Notes in Computer Science, 2019, , 344-363.	1.0	16
578	Hierarchical Byzantine fault-tolerance protocol for permissioned blockchain systems. Journal of Supercomputing, 2019, 75, 7337-7365.	2.4	14
579	Death by Babble: Security and Fault Tolerance of Distributed Consensus in High-Availability Softwarized Networks. , 2019, , .		6
580	Unfair Scheduling Patterns in NUMA Architectures. , 2019, , .		0
581	Efficient Verifiable Secret Sharing with Share Recovery in BFT Protocols. , 2019, , .		11
582	SoK., 2019,,.		112
583	Dye removal using hydrophobic polyvinylidene fluoride hollow fibre composite membrane by vacuum membrane distillation. Coloration Technology, 2019, 135, 451-466.	0.7	8

#	Article	IF	CITATIONS
584	Sparkle: Speculative Deterministic Concurrency Control for Partially Replicated Transactional Stores., 2019,,.		3
585	An Eventually Perfect Failure Detector for Networks of Arbitrary Topology Connected with ADD Channels Using Time-To-Live Values. , 2019, , .		2
586	Process Mining for Decentralized Applications. , 2019, , .		4
587	Proof of Reputation., 2019,,.		48
588	Choosing a Consensus Protocol for Uses Cases in Distributed Ledger Technologies. , 2019, , .		6
589	Networked Systems. Lecture Notes in Computer Science, 2019, , .	1.0	2
590	SBFT: A Scalable and Decentralized Trust Infrastructure. , 2019, , .		112
591	Transactions on Computational Collective Intelligence XXXIII. Lecture Notes in Computer Science, 2019, , .	1.0	0
592	A Paxos based algorithm to minimize the overhead of process recovery in consensus. Acta Informatica, 2019, 56, 433-446.	0.5	5
593	The Synchronous Data Center., 2019,,.		8
594	On the hardness of the strongly dependent decision problem. , 2019, , .		1
595	Redundancy as a Measure of Fault-Tolerance for the Internet of Things: A Review. Lecture Notes in Computer Science, 2019, , 202-226.	1.0	6
596	A Parallel Proof of Work to Improve Transaction Speed and Scalability in Blockchain Systems. , 2019, , .		50
597	Applicability and Appropriateness of Distributed Ledgers Consensus Protocols in Public and Private Sectors: A Systematic Review. IEEE Access, 2019, 7, 43622-43636.	2.6	55
598	Towards a Blockchain Architecture for Cultural Heritage Tokens. Communications in Computer and Information Science, 2019, , 541-551.	0.4	6
599	RepuCoin: Your Reputation Is Your Power. IEEE Transactions on Computers, 2019, 68, 1225-1237.	2.4	98
600	Scalable distributed collaborative editing for 3D models using conflict-free data structure. International Journal of Space-Based and Situated Computing, 2019, 9, 11.	0.2	1
601	Randition: Random Blockchain Partitioning for Write Throughput. , 2019, , .		1

#	Article	IF	Citations
602	A New Insight into Local Coin-Based Randomized Consensus. , 2019, , .		0
603	DBFT: A Byzantine Fault Tolerant Protocol with Graceful Performance Degradation. , 2019, , .		4
604	One for All and All for One: Scalable Consensus in a Hybrid Communication Model., 2019,,.		1
605	Blockchain-Based Solution to Prevent Postage Stamps Fraud. , 2019, , .		10
606	A Dual Digraph Approach for Leaderless Atomic Broadcast. , 2019, , .		2
607	The Notion of Universality in Crash-Prone Asynchronous Message-Passing Systems: A Tutorial. , 2019, , .		1
608	Design and Evaluation of Decentralized Scaling Mechanisms for Stream Processing. , 2019, , .		1
609	Platypus: Offchain Protocol Without Synchrony. , 2019, , .		2
610	A Secure and Practical Blockchain Scheme for IoT. , 2019, , .		3
611	Building Cryptotokens Based on Permissioned Blockchain Framework. , 2019, , .		4
612	Fast and secure global payments with Stellar. , 2019, , .		49
613	White-Box Atomic Multicast., 2019, , .		4
614	DynaStar: Optimized Dynamic Partitioning for Scalable State Machine Replication., 2019,,.		6
615	Flexible Byzantine Fault Tolerance. , 2019, , .		48
616	You Don't Need a Ledger. , 2019, , .		5
617	IBFT Liveness Analysis. , 2019, , .		5
618	Failure detectors for crash faults in cloud. Journal of Ambient Intelligence and Humanized Computing, 2019, 10, 4407-4415.	3.3	3
619	ADMM-Based Distributed OPF Problem Meets Stochastic Communication Delay. IEEE Transactions on Smart Grid, 2019, 10, 5046-5056.	6.2	28

#	Article	IF	CITATIONS
620	Transparent State Machine Replication for Kubernetes. Advances in Intelligent Systems and Computing, 2020, , 859-871.	0.5	2
621	Incorporating the Raft consensus protocol in containers managed by Kubernetes: an evaluation. International Journal of Parallel, Emergent and Distributed Systems, 2020, 35, 433-453.	0.7	12
622	PALE: Time Bounded Practical Agile Leader Election. IEEE Transactions on Parallel and Distributed Systems, 2020, 31, 470-485.	4.0	2
623	Blockchain-based database in an IoT environment: challenges, opportunities, and analysis. Cluster Computing, 2020, 23, 2151-2165.	3.5	76
624	TontineCoin: Murder-Based Proof-of-Stake. , 2020, , .		3
625	EPIC: Efficient Asynchronous BFT with Adaptive Security. , 2020, , .		10
626	Performance and Fault Tolerance Trade-offs in Sharded Permissioned Blockchains. , 2020, , .		1
627	A Blockchain Based Architecture for IoT Data Sharing Systems. , 2020, , .		9
628	ZyConChain: A Scalable Blockchain for General Applications. IEEE Access, 2020, 8, 158893-158910.	2.6	11
629	The Hashgraph Protocol: Efficient Asynchronous BFT for High-Throughput Distributed Ledgers. , 2020,		19
630	From Byzantine Replication to Blockchain: Consensus is Only the Beginning. , 2020, , .		21
631	HydRand: Efficient Continuous Distributed Randomness., 2020,,.		30
632	Improving Transaction Speed and Scalability of Blockchain Systems via Parallel Proof of Work. Future Internet, 2020, 12, 125.	2.4	28
633	No-Dealer: Byzantine Fault-Tolerant Random Number Generator. , 2020, , .		5
634	Sync HotStuff: Simple and Practical Synchronous State Machine Replication. , 2020, , .		58
635	Developing Complex Data Structures over Partitioned State Machine Replication., 2020,,.		0
636	RandChain: Practical Scalable Decentralized Randomness Attested by Blockchain. , 2020, , .		15
637	AWARE: Adaptive Wide-Area Replication for Fast and Resilient Byzantine Consensus. IEEE Transactions on Dependable and Secure Computing, 2022, 19, 1605-1620.	3.7	18

#	Article	IF	Citations
638	Blockchain Properties for Near-Planetary, Interplanetary, and Metaplanetary Space Domains. Journal of Aerospace Information Systems, 2020, 17, 554-561.	1.0	3
639	A Hybrid Protocol to Solve Authenticated Byzantine Consensus. Fundamenta Informaticae, 2020, 173, 73-89.	0.3	1
640	Transparent speculation in geo-replicated transactional data stores. Journal of Parallel and Distributed Computing, 2020, 143, 129-147.	2.7	0
641	BFT-Store: Storage Partition for Permissioned Blockchain via Erasure Coding. , 2020, , .		36
642	Formal Techniques for Distributed Objects, Components, and Systems. Lecture Notes in Computer Science, 2020, , .	1.0	0
643	Buterin's Scalability Trilemma viewed through a State-change-based Classification for Common Consensus Algorithms. , 2020, , .		17
644	Incentives in Ethereum's hybrid Casper protocol. International Journal of Network Management, 2020, 30, e2098.	1.4	10
645	A Survey of Distributed Consensus Protocols for Blockchain Networks. IEEE Communications Surveys and Tutorials, 2020, 22, 1432-1465.	24.8	470
646	Blockchain-Based Traceability and Visibility for Agricultural Products: A Decentralized Way of Ensuring Food Safety in India. Sustainability, 2020, 12, 3497.	1.6	90
647	Byzantine Fault Tolerance Based Multi-Block Consensus Algorithm for Throughput Scalability. , 2020, ,		3
648	A survey of blockchain consensus algorithms performance evaluation criteria. Expert Systems With Applications, 2020, 154, 113385.	4.4	230
649	A taxonomy of blockchain consensus protocols: A survey and classification framework. Expert Systems With Applications, 2021, 168, 114384.	4.4	80
650	A Checkpoint Enabled Scalable Blockchain Architecture for Industrial Internet of Things. IEEE Transactions on Industrial Informatics, 2021, 17, 7679-7687.	7.2	19
651	DBFT: A Byzantine Fault Tolerance Protocol With Graceful Performance Degradation. IEEE Transactions on Dependable and Secure Computing, 2022, 19, 3387-3400.	3.7	7
652	The Golden Snitch: A Byzantine Fault Tolerant Protocol with Activity. Lecture Notes in Computer Science, 2021, , 3-21.	1.0	0
653	A Study on Distributed Consensus Protocols and Algorithms: The Backbone of Blockchain Networks. , 2021, , .		10
654	Multi-Framework Reliability Approach. IEEE Transactions on Cloud Computing, 2021, , 1-1.	3.1	0
656	A Reliable Storage Partition for Permissioned Blockchain. IEEE Transactions on Knowledge and Data Engineering, 2021, 33, 14-27.	4.0	29

#	Article	IF	CITATIONS
657	Blockchain-Based Solution for Detecting and Preventing Fake Check Scams. IEEE Transactions on Engineering Management, 2022, 69, 3710-3725.	2.4	12
658	Spire: A Cooperative, Phase-Symmetric Solution to Distributed Consensus. IEEE Access, 2021, 9, 101702-101717.	2.6	2
659	A Comprehensive Review of Blockchain Consensus Mechanisms. IEEE Access, 2021, 9, 43620-43652.	2.6	126
660	Failure Detectors of Strong S and Perfect P Classes for Time Synchronous Hierarchical Distributed Systems., 2021,, 1317-1343.		0
661	A Case Study on Parametric Verification of Failure Detectors. Lecture Notes in Computer Science, 2021, , 138-156.	1.0	0
662	Multi-shot distributed transaction commit. Distributed Computing, 2021, 34, 301-318.	0.7	0
663	Byzantine Agreement with Less Communication. ACM SIGACT News, 2021, 52, 71-80.	0.1	4
664	Byzantine Fault-tolerant State-machine Replication from a Systems Perspective. ACM Computing Surveys, 2022, 54, 1-38.	16.1	19
665	Zeus., 2021,,.		8
666	loT Micro-Blockchain Fundamentals. Sensors, 2021, 21, 2784.	2.1	12
667	Do Not Overpay for Fault Tolerance!. , 2021, , .		1
668	AlphaBlock: An Evaluation Framework for Blockchain Consensus Algorithms. , 2021, , .		2
669	Leveraging Public-Private Blockchain Interoperability for Closed Consortium Interfacing. , 2021, , .		24
670	Byzantine Agreement with Unknown Participants and Failures. , 2021, , .		3
671	Refresh When You Wake Up: Proactive Threshold Wallets with Offline Devices. , 2021, , .		10
672	Lifesaving with RescueChain: Energy-Efficient and Partition-Tolerant Blockchain Based Secure Information Sharing for UAV-Aided Disaster Rescue., 2021,,.		24
673	Ebb-and-Flow Protocols: A Resolution of the Availability-Finality Dilemma. , 2021, , .		19
674	Red Belly: A Secure, Fair and Scalable Open Blockchain. , 2021, , .		47

#	Article	IF	CITATIONS
675	An Optimization Strategy for PBFT Consensus Mechanism Based On Consortium Blockchain., 2021,,.		6
676	On the Performance of Pipelined HotStuff. , 2021, , .		5
677	A differential privacy protection query language for medical data: a proof-of-concept system validation. Journal of Bio-X Research, 2021, 4, 103-113.	0.3	0
678	Distributed Computability. ACM SIGACT News, 2021, 52, 92-110.	0.1	0
679	Formalizing Nakamoto-Style Proof of Stake. , 2021, , .		4
680	Brief Announcement: Classifying Trusted Hardware via Unidirectional Communication. , 2021, , .		2
681	Good-case Latency of Byzantine Broadcast. , 2021, , .		22
683	Proof-of-Reputation: An Alternative Consensus Mechanism for Blockchain Systems. International Journal of Network Security and Its Applications, 2021, 13, 23-40.	0.4	4
684	Embedding a Deterministic BFT Protocol in a Block DAG. , 2021, , .		3
685	Revisiting Optimal Resilience of Fast Byzantine Consensus. , 2021, , .		8
687	䏿œ¬è³å…±è¯†å®‰å…¨æ€§èˆç"ç©¶æ−¹æ³•. Scientia Sinica Informationis, 2021, , .	0.2	0
688	Cross-chain deals and adversarial commerce. VLDB Journal, 2022, 31, 1291-1309.	2.7	16
689	Principles of Blockchain Systems. Synthesis Lectures on Computer Science, 2021, 9, 1-213.	0.3	0
690	Bottlenecks in Blockchain Consensus Protocols. , 2021, , .		16
691	Bernoulli Meets PBFT: Modeling BFT Protocols in the Presence of Dynamic Failures. , 0, , .		2
692	Probabilistic and temporal failure detectors for solving distributed problems. Journal of Parallel and Distributed Computing, 2021, 158, 1-15.	2.7	0
693	Cutoffs for Symmetric Point-to-Point Distributed Algorithms. Lecture Notes in Computer Science, 2021, , 329-346.	1.0	1
694	The Hermes BFT for Blockchains. IEEE Transactions on Dependable and Secure Computing, 2022, 19, 3971-3986.	3.7	2

#	Article	IF	CITATIONS
696	Failure Detection with Booting in Partially Synchronous Systems. Lecture Notes in Computer Science, 2005, , 20-37.	1.0	16
699	On Conspiracies and Hyperfairness in Distributed Computing. Lecture Notes in Computer Science, 2005, , 33-47.	1.0	8
700	Obstruction-Free Algorithms Can Be Practically Wait-Free. Lecture Notes in Computer Science, 2005, , 78-92.	1.0	43
701	Efficient Reduction for Wait-Free Termination Detection in a Crash-Prone Distributed System. Lecture Notes in Computer Science, 2005, , 93-107.	1.0	16
702	On the Possibility and the Impossibility of Message-Driven Self-stabilizing FailureÂDetection. Lecture Notes in Computer Science, 2005, , 153-170.	1.0	8
704	Optimal and Practical WAB-Based Consensus Algorithms. Lecture Notes in Computer Science, 2006, , 549-558.	1.0	4
706	Solving Agreement Problems with Weak Ordering Oracles. Lecture Notes in Computer Science, 2002, , 44-61.	1.0	18
707	RAMBO: A Reconfigurable Atomic Memory Service for Dynamic Networks. Lecture Notes in Computer Science, 2002, , 173-190.	1.0	71
708	Failure Detection Lower Bounds on Registers and Consensus. Lecture Notes in Computer Science, 2002, , 237-251.	1.0	12
709	Condition-Based Protocols for Set Agreement Problems. Lecture Notes in Computer Science, 2002, , 48-62.	1.0	14
710	Distributed Agreement and Its Relation with Error-Correcting Codes. Lecture Notes in Computer Science, 2002, , 63-87.	1.0	17
711	Uncertainty and Predictability: Can They Be Reconciled?. Lecture Notes in Computer Science, 2003, , 108-113.	1.0	26
712	Lower Bounds for Asynchronous Consensus. Lecture Notes in Computer Science, 2003, , 22-23.	1.0	28
713	Open Questions on Consensus Performance in Well-Behaved Runs. Lecture Notes in Computer Science, 2003, , 35-39.	1.0	5
714	Revisiting Safety and Liveness in the Context of Failures. Lecture Notes in Computer Science, 2000, , 552-565.	1.0	3
715	Failure Detection vs Group Membership in Fault-Tolerant Distributed Systems: Hidden Trade-Offs. Lecture Notes in Computer Science, 2002, , 1-15.	1.0	8
716	Agreement Problems in Fault-Tolerant Distributed Systems. Lecture Notes in Computer Science, 2001, , 10-32.	1.0	7
717	Consensus in Asynchronous Distributed Systems: A Concise Guided Tour. Lecture Notes in Computer Science, 2000, , 33-47.	1.0	37

#	Article	IF	CITATIONS
718	Efficient Algorithms to Implement Unreliable Failure Detectors in Partially Synchronous Systems. Lecture Notes in Computer Science, 1999, , 34-49.	1.0	44
719	Muteness Failure Detectors: Specification and Implementation. Lecture Notes in Computer Science, 1999, , 71-87.	1.0	44
720	Possibility and impossibility results in a shared memory environment. Lecture Notes in Computer Science, 1989, , 254-267.	1.0	12
721	Impossibility results in the presence of multiple faulty processes. Lecture Notes in Computer Science, 1989, , 109-120.	1.0	10
722	Semisynchrony and real time. Lecture Notes in Computer Science, 1992, , 120-135.	1.0	9
723	Randomization and failure detection: A hybrid approach to solve Consensus. Lecture Notes in Computer Science, 1996, , 29-39.	1.0	12
724	Failure Detectors. , 2008, , 304-308.		4
725	Asynchronous Consensus Impossibility. , 2008, , 70-73.		1
726	Totally Ordered Broadcast in the Face of Network Partitions. , 2000, , 51-75.		15
727	Synchronous, with a Chance of Partition Tolerance. Lecture Notes in Computer Science, 2019, , 499-529.	1.0	24
728	Dissecting Tendermint. Lecture Notes in Computer Science, 2019, , 166-182.	1.0	29
729	Synchronous Byzantine Agreement with Expected O(1) Rounds, Expected \$\$O(n^2)\$\$ Communication, and Optimal Resilience. Lecture Notes in Computer Science, 2019, , 320-334.	1.0	46
730	SoK: A Consensus Taxonomy in the Blockchain Era. Lecture Notes in Computer Science, 2020, , 284-318.	1.0	34
731	Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era. Lecture Notes in Computer Science, 2020, , 129-158.	1.0	10
732	Security Analysis on dBFT Protocol of NEO. Lecture Notes in Computer Science, 2020, , 20-31.	1.0	17
733	Order-Fairness for Byzantine Consensus. Lecture Notes in Computer Science, 2020, , 451-480.	1.0	57
734	Afgjort: A Partially Synchronous Finality Layer for Blockchains. Lecture Notes in Computer Science, 2020, , 24-44.	1.0	10
735	Tutorial on Parameterized Model Checking of Fault-Tolerant Distributed Algorithms. Lecture Notes in Computer Science, 2014, , 122-171.	1.0	14

#	Article	IF	CITATIONS
736	Separating Data and Control: Asynchronous BFT Storage with 2t + 1 Data Replicas. Lecture Notes in Computer Science, 2014, , 1-17.	1.0	8
737	BChain: Byzantine Replication with High Throughput and Embedded Reconfiguration. Lecture Notes in Computer Science, 2014, , 91-106.	1.0	36
738	Checkpointing in Parallel State-Machine Replication. Lecture Notes in Computer Science, 2014, , 123-138.	1.0	8
739	Signature-Free Asynchronous Byzantine Systems: From Multivalued to Binary Consensus with t < n/3, O(n 2) Messages, and Constant Time. Lecture Notes in Computer Science, 2015, , 194-208.	1.0	5
740	What You Always Wanted to Know About Model Checking of Fault-Tolerant Distributed Algorithms. Lecture Notes in Computer Science, 2016, , 6-21.	1.0	10
741	Agreement in Epidemic Information Dissemination. Lecture Notes in Computer Science, 2016, , 95-106.	1.0	4
742	Recent Results on Fault-Tolerant Consensus in Message-Passing Networks. Lecture Notes in Computer Science, 2016, , 92-108.	1.0	15
743	Validity Conditions in Agreement Problems and Time Complexity. Lecture Notes in Computer Science, 2004, , 196-207.	1.0	5
744	Emulating Shared-Memory Do-All Algorithms in Asynchronous Message-Passing Systems. Lecture Notes in Computer Science, 2004, , 210-222.	1.0	2
745	Consensus with Unknown Participants or Fundamental Self-Organization. Lecture Notes in Computer Science, 2004, , 135-148.	1.0	30
747	Optimal Message-Driven Implementation of Omega with Mute Processes. Lecture Notes in Computer Science, 2006, , 110-121.	1.0	4
748	Skip Ring Topology in FAST Failure Detection Service. , 2007, , 29-38.		2
749	The Iterated Restricted Immediate Snapshot Model. Lecture Notes in Computer Science, 2008, , 487-497.	1.0	25
750	Eventually Perfect Failure Detectors Using ADD Channels. Lecture Notes in Computer Science, 2007, , 483-496.	1.0	15
751	Efficient Transformations of Obstruction-Free Algorithms into Non-blocking Algorithms. Lecture Notes in Computer Science, 2007, , 450-464.	1.0	5
752	Relating Stabilizing Timing Assumptions to Stabilizing Failure Detectors Regarding Solvability and Efficiency., 2007,, 4-20.		6
753	Byzantine Consensus with Few Synchronous Links. , 2007, , 76-89.		4
754	Wait-Free Dining Under Eventual Weak Exclusion. , 2008, , 135-146.		10

#	Article	IF	Citations
755	Cryptographic Complexity of Multi-Party Computation Problems: Classifications and Separations. Lecture Notes in Computer Science, 2008, , 262-279.	1.0	24
756	Convergence Verification: From Shared Memory to Partially Synchronous Systems. Lecture Notes in Computer Science, 2008, , 218-232.	1.0	8
757	How to Solve Consensus in the Smallest Window of Synchrony. Lecture Notes in Computer Science, 2008, , 32-46.	1.0	9
758	Using Bounded Model Checking to Verify Consensus Algorithms. Lecture Notes in Computer Science, 2008, , 466-480.	1.0	27
759	The Asynchronous Bounded-Cycle Model. Lecture Notes in Computer Science, 2008, , 246-262.	1.0	6
760	Byzantine Consensus with Unknown Participants. Lecture Notes in Computer Science, 2008, , 22-40.	1.0	28
761	With Finite Memory Consensus Is Easier Than Reliable Broadcast. Lecture Notes in Computer Science, 2008, , 41-57.	1.0	4
763	Weak Synchrony Models and Failure Detectors for Message Passing (k-)Set Agreement. Lecture Notes in Computer Science, 2009, , 285-299.	1.0	8
764	Unifying Byzantine Consensus Algorithms with Weak Interactive Consistency. Lecture Notes in Computer Science, 2009, , 300-314.	1.0	12
765	Stumbling over Consensus Research: Misunderstandings and Issues. Lecture Notes in Computer Science, 2010, , 59-72.	1.0	5
766	A Leader-Free Byzantine Consensus Algorithm. Lecture Notes in Computer Science, 2010, , 67-78.	1.0	24
767	Algorithms for Extracting Timeliness Graphs. Lecture Notes in Computer Science, 2010, , 127-141.	1.0	4
768	Failure Detectors Encapsulate Fairness. Lecture Notes in Computer Science, 2010, , 173-188.	1.0	2
769	Brief Announcement: Leaderless Byzantine Paxos. Lecture Notes in Computer Science, 2011, , 141-142.	1.0	9
770	Structured Derivation of Semi-Synchronous Algorithms. Lecture Notes in Computer Science, 2011, , 374-388.	1.0	3
771	Formal Verification of Consensus Algorithms Tolerating Malicious Faults. Lecture Notes in Computer Science, 2011, , 120-134.	1.0	18
772	Anonymous Agreement: The Janus Algorithm. Lecture Notes in Computer Science, 2011, , 175-190.	1.0	4
774	Towards Modeling and Model Checking Fault-Tolerant Distributed Algorithms. Lecture Notes in Computer Science, 2013, , 209-226.	1.0	29

#	Article	IF	CITATIONS
775	Automatically Adjusting Concurrency to the Level of Synchrony. Lecture Notes in Computer Science, 2014, , 1-15.	1.0	2
776	Communication-Efficient Randomized Consensus. Lecture Notes in Computer Science, 2014, , 61-75.	1.0	4
778	Practical State Machine Replication with Confidentiality. , 2016, , .		10
779	DepSpace., 2008,,.		48
780	Signature-Free Asynchronous Binary Byzantine Consensus with t < $n/3$, $O(n2)$ Messages, and $O(1)$ Expected Time. Journal of the ACM, 2015, 62, 1-21.	1.8	43
781	Fast consensus under eventually stabilizing message adversaries. , 2016, , .		4
782	PSync: a partially synchronous language for fault-tolerant distributed algorithms. , 2016, , .		29
783	PSync: a partially synchronous language for fault-tolerant distributed algorithms. ACM SIGPLAN Notices, 2016, 51, 400-415.	0.2	30
784	An Algorithm for Replicated Objects with Efficient Reads. , 2016, , .		4
785	Passing Messages while Sharing Memory. , 2018, , .		10
788	HotStuff., 2019,,.		398
789	The Impact of RDMA on Agreement. , 2019, , .		16
790	Asymptotically Optimal Validated Asynchronous Byzantine Agreement. , 2019, , .		69
791	Communication Complexity of Byzantine Agreement, Revisited. , 2019, , .		42
792	Feasibility of Cross-Chain Payment with Success Guarantees., 2020,,.		8
793	Pando., 2019,,.		8
794	Hermes: A Fast, Fault-Tolerant and Linearizable Replication Protocol. , 2020, , .		24
795	On the Subject of Non-Equivocation: Defining Non-Equivocation in Synchronous Agreement Systems. , 2020, , .		4

#	Article	IF	Citations
796	FastPay., 2020,,.		15
797	Wendy, the Good Little Fairness Widget. , 2020, , .		24
798	Blockchains for Government. Digital Government Research and Practice (DGOV), 2020, 1, 1-21.	1.2	34
799	Programming at the edge of synchrony. , 2020, 4, 1-30.		3
800	A hundred impossibility proofs for distributed computing. , 1989, , .		63
802	Decentralized Transaction Clearing Beyond Blockchains. SSRN Electronic Journal, 0, , .	0.4	3
803	Failure Detectors of Strong S and Perfect P Classes for Time Synchronous Hierarchical Distributed Systems. Advances in Computer and Electrical Engineering Book Series, 2019, , 246-280.	0.2	3
804	Designing Efficient Algorithms for the Eventually Perfect Failure Detector Class. Journal of Software, 2007, 2, .	0.6	5
806	Learning-Aided Asynchronous ADMM for Optimal Power Flow. IEEE Transactions on Power Systems, 2022, 37, 1671-1681.	4.6	5
807	Consensus in Blockchain Systems with Low Network Throughput: A Systematic Mapping Study. , 2021, , .		3
808	Strengthened Fault Tolerance in Byzantine Fault Tolerant Replication., 2021,,.		9
809	Leaderless Consensus., 2021, , .		10
810	Blockchain Extension for PostgreSQL Data Storage., 2021,,.		0
811	Machine Learning View on Blockchain Parameter Adjustment. , 2021, , .		2
812	DisCO: Peer-to-Peer Random Number Generator in Partial Synchronous Systems., 2021,,.		0
813	Performance and Fault Tolerance Trade-offs in Sharded Permissioned Blockchains. , 2021, , .		1
814	Rapid Blockchain Scaling with Efficient Transaction Assignment. , 2021, , .		1
815	Blockchainification in the 4IR Gig Labor Market. , 2021, , .		0

#	Article	IF	Citations
816	Kauri., 2021,,.		21
817	Efficient topology control of blockchain peer to peer network based on SDN paradigm. Peer-to-Peer Networking and Applications, 2022, 15, 267-289.	2.6	8
818	An Efficient Solution to the k-Set Agreement Problem. Lecture Notes in Computer Science, 2002, , 62-78.	1.0	2
819	An Associative Broadcast Based Coordination Model for Distributed Processes. Lecture Notes in Computer Science, 2002, , 96-110.	1.0	4
820	DisCusS and FuSe: Considering Modularity, Genericness, and Adaptation in the Development of Consensus and Fault Detection Services. Lecture Notes in Computer Science, 2003, , 234-253.	1.0	0
821	Dissecting Distributed Computations. Lecture Notes in Computer Science, 2003, , 68-72.	1.0	O
822	Comparing the Atomic Commitment and Consensus Problems. Lecture Notes in Computer Science, 2003, , 29-34.	1.0	2
823	Practical Impact of Group Communication Theory. Lecture Notes in Computer Science, 2003, , 1-10.	1.0	2
828	Timed Uniform Atomic Broadcast in Presence of Crash and Timing Faults. IEICE Transactions on Information and Systems, 2005, E88-D, 72-81.	0.4	0
829	Adapting Failure Detectors to Communication Network Load Fluctuations Using SNMP and Artificial Neural Nets. Lecture Notes in Computer Science, 2005, , 191-205.	1.0	3
830	Group Communication: From Practice to Theory. Lecture Notes in Computer Science, 2006, , 117-136.	1.0	5
831	A General Characterization of Indulgence. Lecture Notes in Computer Science, 2006, , 16-34.	1.0	O
832	Brief Announcement: Communication-Optimal Implementation of Failure Detector Class \$diamond{mathcal P}\$. Lecture Notes in Computer Science, 2006, , 569-571.	1.0	2
833	Dependable Systems. Lecture Notes in Computer Science, 2006, , 34-54.	1.0	3
836	Towards Timely ACID Transactions in DBMS. Lecture Notes in Computer Science, 2007, , 262-274.	1.0	1
837	On the Message Complexity of Indulgent Consensus. Lecture Notes in Computer Science, 2007, , 283-297.	1.0	3
838	Consensus with Partial Synchrony. , 2008, , 198-202.		1
839	Quorums., 2008,, 715-719.		0

#	Article	IF	Citations
840	On Replication of Software Transactional Memories. Lecture Notes in Computer Science, 2008, , 2-4.	1.0	0
841	Modularity. ACM SIGACT News, 2008, 39, 91-110.	0.1	3
842	Predicting Timing Failures in Web Services. Lecture Notes in Computer Science, 2009, , 182-196.	1.0	0
843	Crash-Quiescent Failure Detection. Lecture Notes in Computer Science, 2009, , 326-340.	1.0	3
844	Brief Announcement: A Leader-free Byzantine Consensus Algorithm. Lecture Notes in Computer Science, 2009, , 479-480.	1.0	5
845	On the Number of Synchronous Rounds Sufficient for Authenticated Byzantine Agreement. Lecture Notes in Computer Science, 2009, , 449-463.	1.0	14
846	HOW TO DEAL WITH REPLICATION AND RECOVERY IN A DISTRIBUTED FILE SERVER. , 2009, , .		0
847	Consensus When All Processes May Be Byzantine for Some Time. Lecture Notes in Computer Science, 2009, , 120-132.	1.0	5
848	Iterated Shared Memory Models. Lecture Notes in Computer Science, 2010, , 407-416.	1.0	11
850	Signature-Free Broadcast-Based Intrusion Tolerance: Never Decide a Byzantine Value. Lecture Notes in Computer Science, 2010, , 143-158.	1.0	8
851	Modular Approach to Replication forÂAvailability. Lecture Notes in Computer Science, 2010, , 41-57.	1.0	1
852	Mobile Agents and Eventually Perfect Predicate Detection: An Intelligent General Approach to Monitoring Distributed Systems. Studies in Computational Intelligence, 2010, , 257-274.	0.7	1
853	An Adaptive Technique for Constructing Robust and High-Throughput Shared Objects. Lecture Notes in Computer Science, 2010, , 318-332.	1.0	2
854	Brief Announcement: New Bounds for Partially Synchronous Set Agreement. Lecture Notes in Computer Science, 2010, , 404-405.	1.0	3
855	A Dependable Infrastructure for Cooperative Web Services Coordination. International Journal of Web Services Research, 2010, 7, 43-64.	0.5	1
857	k-bounded set objects in eventually synchronous distributed systems with churn and continuous accesses. , $2011, , .$		0
859	On the Performance of a Retransmission-Based Synchronizer. Lecture Notes in Computer Science, 2011, , 234-245.	1.0	1
860	Efficient fault tolerant consensus using preemptive token. , 2011, , .		0

#	Article	IF	CITATIONS
861	Computing Time Complexity of Population Protocols with Cover Times - The ZebraNet Example. Lecture Notes in Computer Science, 2011, , 47-61.	1.0	1
862	Byzantine Fault-Tolerance with Commutative Commands. Lecture Notes in Computer Science, 2011, , 329-342.	1.0	6
863	N-party BAR Transfer. Lecture Notes in Computer Science, 2011, , 392-408.	1.0	3
864	Self-stabilizing Mutual Exclusion and Group Mutual Exclusion for Population Protocols with Covering. Lecture Notes in Computer Science, 2011, , 235-250.	1.0	4
865	Byzantine Agreement with Homonyms in Synchronous Systems. Lecture Notes in Computer Science, 2012, , 76-90.	1.0	5
866	Simple and Efficient Signature-based Consensus Protocol in the Asynchronous Distributed System. Information Technology and Control, 2012, 41, .	1.1	1
867	Uniform Consensus with Homonyms and Omission Failures. Lecture Notes in Computer Science, 2013, , $161-175$.	1.0	2
868	Hybrid Distributed Consensus. Lecture Notes in Computer Science, 2013, , 145-159.	1.0	2
870	A Leader Election Service for Crash-Recovery and Omission Environments. Lecture Notes in Computer Science, 2014, , 320-323.	1.0	0
871	Theory of Real-Time Systems — Project Survey. Kluwer International Series in Engineering and Computer Science, 1991, , 111-138.	0.2	0
874	Collective consistency. Lecture Notes in Computer Science, 1996, , 234-250.	1.0	1
875	Fairness of shared objects. Lecture Notes in Computer Science, 1998, , 303-317.	1.0	2
876	Main Paradigms as a Basis for Current Fieldbus Concepts. , 1999, , 2-15.		14
877	Distributed Algorithms. , 2014, , 1-16.		0
878	Communication Patterns and Input Patterns in Distributed Computing. Lecture Notes in Computer Science, 2015, , 1-15.	1.0	1
879	Towards a Self-Adaptive Middleware for Building Reliable Publish/Subscribe Systems. Lecture Notes in Computer Science, 2015, , 157-168.	1.0	0
880	Consensus with Partial Synchrony. , 2016, , 436-441.		0
881	Quorums. , 2016, , 1719-1724.		0

#	Article	IF	CITATIONS
882	Asynchronous Consensus Impossibility. , 2016, , 152-155.		0
883	On Composition and Implementation of Sequential Consistency. Lecture Notes in Computer Science, 2016, , 284-297.	1.0	5
884	Stretching multi-ring Paxos. , 2016, , .		4
885	Analysis of checkpointing overhead in parallel state machine replication. , 2016, , .		4
886	On Liveness of Dynamic Storage. Lecture Notes in Computer Science, 2017, , 356-376.	1.0	2
887	Handling bitcoin conflicts through a glimpse of structure. , 2017, , .		3
888	Streamlined Blockchains: A Simple and Elegant Approach (A Tutorial and Survey). Lecture Notes in Computer Science, 2019, , 3-17.	1.0	3
889	A Failure Detector for Crash Recovery Systems in Cloud. International Journal of Information Technology and Computer Science, 2019, 11, 9-16.	0.8	0
890	Coded State Machine Scaling State Machine Execution under Byzantine Faults. , 2019, , .		2
891	HoneyBadgerMPC and AsynchroMix. , 2019, , .		26
892	Building Own Blockchain. , 2019, , .		0
893	Tendermint Blockchain Synchronization: Formal Specification and Model Checking. Lecture Notes in Computer Science, 2020, , 471-488.	1.0	2
894	60 Years of Mastering Concurrent Computing through Sequential Thinking. ACM SIGACT News, 2020, 51, 59-88.	0.1	4
895	An Eventually Perfect Failure Detector for Networks of Arbitrary Topology Connected with ADD Channels Using Time-To-Live Values. Parallel Processing Letters, 2020, 30, 2050006.	0.4	2
896	A drop-in middleware for serializable DB clustering across geo-distributed sites. Proceedings of the VLDB Endowment, 2020, 13, 3340-3353.	2.1	0
897	TLC: temporal logic of distributed components. , 2020, 4, 1-30.		5
898	Demystifying Properties of Distributed Systems. , 2021, , .		3
899	Cloud-Scale Runtime Verification of Serverless Applications. , 2021, , .		9

#	Article	IF	Citations
900	Modernizing Healthcare by Using Blockchain. Studies in Big Data, 2021, , 29-67.	0.8	2
901	Distributed Random Number Generator on Hedera Hashgraph. , 2020, , .		2
902	Consensus from Signatures of Work. Lecture Notes in Computer Science, 2020, , 319-344.	1.0	3
903	Anonymity Preserving Byzantine Vector Consensus. Lecture Notes in Computer Science, 2020, , 133-152.	1.0	1
904	Tutorial: Parameterized Verification with Byzantine Model Checker. Lecture Notes in Computer Science, 2020, , 189-207.	1.0	1
905	An Efficient Blockchain Authentication Scheme for Vehicular Ad-Hoc Networks. IFIP Advances in Information and Communication Technology, 2020, , 87-109.	0.5	0
906	A Fully Decentralized Autoscaling Algorithm for Stream Processing Applications. Lecture Notes in Computer Science, 2020, , 42-53.	1.0	1
907	Expected Constant Round Byzantine Broadcast Under Dishonest Majority. Lecture Notes in Computer Science, 2020, , 381-411.	1.0	17
908	Deterministic Arbitration. Computer Communications and Networks, 2020, , 125-148.	0.8	0
909	A Comprehensive Study on Failure Detectors of Distributed Systems. Journal of Scientific Research, 2020, 64, 250-260.	0.1	2
910	On the Power of an Honest Majority in Three-Party Computation Without Broadcast. Lecture Notes in Computer Science, 2020, , 621-651.	1.0	3
911	Streamlining Classical Consensus. International Journal of Blockchains and Cryptocurrencies, 2020, 1, 1.	0.2	0
912	A Secure Cross-Shard View-Change Protocol for Sharding Blockchains. Lecture Notes in Computer Science, 2021, , 372-390.	1.0	4
913	Low-latency geo-replicated state machines with guaranteed writes. , 2020, , .		3
914	Cogsworth: Byzantine View Synchronization., 0,,.		4
915	Fast Byzantine Agreement for Permissioned Distributed Ledgers. , 2020, , .		6
916	ByzGame. , 2020, , .		1
917	A Dependable Infrastructure for Cooperative Web Services Coordination., 0,, 27-49.		0

#	ARTICLE	IF	CITATIONS
918	Fault Tolerance. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 0, , 168-193.	0.5	0
920	Bootstrapping the Blockchain, with Applications to Consensus and Fast PKI Setup. Lecture Notes in Computer Science, 2018, , 465-495.	1.0	19
921	Assumptions: The Trojan Horses of Secure Protocols. , 2007, , 34-41.		0
922	On the Implementation of Communication-Optimal Failure Detectors. Lecture Notes in Computer Science, 2007, , 25-37.	1.0	5
923	Secure Failure Detection in TrustedPals. , 2007, , 173-188.		2
924	Gosig., 2020,,.		17
925	Streamlet. , 2020, , .		32
926	Testing consensus implementations using communication closure. , 2020, 4, 1-29.		6
928	The design, architecture and performance of the Tendermint Blockchain Network., 2021,,.		14
929	Making Reads in BFT State Machine Replication Fast, Linearizable, and Live. , 2021, , .		7
930	Achieving state machine replication without honest players. , 2021, , .		3
931	Multi-Threshold Byzantine Fault Tolerance. , 2021, , .		17
932	BFT Protocol Forensics. , 2021, , .		19
933	How Does Blockchain Security Dictate Blockchain Implementation?., 2021,,.		5
934	RamCast. , 2021, , .		5
935	Lodestone: An Efficient Byzantine Fault-Tolerant Protocol in Consortium Blockchains. Security and Communication Networks, 2021, 2021, 1-10.	1.0	0
936	Gossip consensus., 2021,,.		3
937	Three-Dimensional Tradeoffs for Consensus Algorithms: A Review. IEEE Transactions on Network and Service Management, 2022, 19, 1216-1228.	3.2	5

#	Article	IF	CITATIONS
938	The Adversary Capabilities inÂPractical Byzantine Fault Tolerance. Lecture Notes in Computer Science, 2021, , 20-39.	1.0	2
940	Tardigrade: An Atomic Broadcast Protocol for Arbitrary Network Conditions. Lecture Notes in Computer Science, 2021, , 547-572.	1.0	7
941	ZERMIA - A Fault Injector Framework for Testing Byzantine Fault Tolerant Protocols. Lecture Notes in Computer Science, 2021, , 38-60.	1.0	4
942	Asycome: A JointCloud Data Asynchronous Collaboration Mechanism Based on Blockchain. Communications in Computer and Information Science, 2021, , 530-544.	0.4	0
943	BigFooT: A robust optimal-latency BFT blockchain consensus protocol with dynamic validator membership. Computer Networks, 2022, 204, 108632.	3.2	5
945	Consensus Beyond Thresholds: Generalized Byzantine Quorums Made Live. , 2020, , .		3
946	Efficient Two-Layered Monitor for Partially Synchronous Distributed Systems. , 2020, , .		0
947	The Security Ingredients for Correct and Byzantine Fault-tolerant Blockchain Consensus Algorithms. , 2020, , .		6
948	The Performance of Byzantine Fault Tolerant Blockchains. , 2020, , .		6
949	MUSIC: Multi-Site Critical Sections over Geo-Distributed State. , 2020, , .		0
950	Towards Smart Blockchain-Based System for Privacy and Security in a Smart City environment. , 2020, , .		16
951	BigBFT: A Multileader Byzantine Fault Tolerance Protocol for High Throughput. , 2021, , .		6
952	Optimal Byzantine Fault Tolerance Consensus Algorithm for permissioned systems., 2021,,.		0
953	A Byzantine Fault Tolerant Protocol for Realizing the Blockchain. Lecture Notes on Data Engineering and Communications Technologies, 2022, , 406-416.	0.5	0
954	Poligraph: Intrusion-Tolerant and Distributed Fake News Detection System. IEEE Transactions on Information Forensics and Security, 2022, 17, 28-41.	4.5	9
955	TontineCoin: Survivor-based Proof-of-Stake. Peer-to-Peer Networking and Applications, 2022, 15, 988.	2.6	0
956	Antipaxos: Taking Interactive Consistency to the Next Level. , 2022, , .		0
957	Leaderless Consensus. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	CITATIONS
958	Revisiting asynchronous fault tolerant computation with optimal resilience. Distributed Computing, $0, 1.$	0.7	1
959	Extending On-chain Trust to Off-chain Trustworthy Blockchain Data Collection using Trusted Execution Environment (TEE). IEEE Transactions on Computers, 2022, , 1-1.	2.4	11
960	Blockchain-based automated and robust cyber security management. Journal of Parallel and Distributed Computing, 2022, 163, 62-82.	2.7	8
962	Scalable Consensus Over Finite Capacities in Multiagent IoT Ecosystems. IEEE Internet of Things Journal, 2023, 10, 6673-6688.	5.5	1
963	Solving Consensus in True Partial Synchrony. IEEE Transactions on Parallel and Distributed Systems, 2022, , 1-1.	4.0	2
964	Free2Shard. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2022, 6, 1-38.	1.4	4
965	DAMYSUS., 2022,,.		20
966	State machine replication scalability made simple. , 2022, , .		14
967	Protocol. Internet Policy Review, 2022, 11, .	1.8	1
968	Making CRDTs Byzantine fault tolerant. , 2022, , .		7
969	Relaxed Paxos., 2022,,.		1
970	Renaissance: A self-stabilizing distributed SDN control plane using in-band communications. Journal of Computer and System Sciences, 2022, 127, 91-121.	0.9	4
971	Blockchain Consensus Algorithms: A Survey. , 2021, , .		5
972	Loss-freedom, Order-preservation and No-buffering: Pick Any Two During Flow Migration in Network Functions. , 2021, , .		0
973	A Blockchain-enabled Anonymous-yet- Traceable Distributed Key Generation. , 2021, , .		1
974	BFT in Blockchains: From Protocols to Use Cases. ACM Computing Surveys, 2022, 54, 1-37.	16.1	9
975	Tolerating Adversarial Attacks and Byzantine Faults in Distributed Machine Learning. , 2021, , .		2
976	Improving Transaction Speed and Scalability in Blockchain Systems. , 2021, , .		0

#	Article	IF	Citations
977	Beyond Bitcoin: Recent Trends and Perspectives in Distributed Ledger Technology. Cryptography, 2021, 5, 36.	1.4	4
978	Rational Agreement in the Presence of Crash Faults. , 2021, , .		3
979	Blockchain-based Internet of Musical Things. Blockchain: Research and Applications, 2022, 3, 100083.	4.5	7
981	Agreeing within a few writes. Theoretical Computer Science, 2022, , .	0.5	O
982	Towards Formal Verification ofÂHotStuff-Based Byzantine Fault Tolerant Consensus inÂAgda. Lecture Notes in Computer Science, 2022, , 616-635.	1.0	1
983	Breaking Blockchain's Communication Barrier With Coded Computation. IEEE Journal on Selected Areas in Information Theory, 2022, 3, 405-421.	1.9	5
984	TRAP., 2022,,.		1
985	SconeKV: a Scalable, Strongly Consistent Key-Value Store. IEEE Transactions on Parallel and Distributed Systems, 2022, , 1-1.	4.0	0
987	Adversarial Cross-Chain Commerce. Synthesis Lectures on Computer Science, 2021, , 133-154.	0.3	0
989	Resilient Dynamic Average-Consensus of Multiagent Systems. , 2022, 6, 3487-3492.		4
990	Scalar DL. Proceedings of the VLDB Endowment, 2022, 15, 1324-1336.	2.1	4
991	Adrestus: Secure, scalable blockchain technology in a decentralized ledger via zones. Blockchain: Research and Applications, 2022, 3, 100093.	4.5	2
992	AnonymousFox: An Efficient and Scalable Blockchain Consensus Algorithm. IEEE Internet of Things Journal, 2022, 9, 24236-24252.	5 . 5	5
993	As easy as ABC: Optimal (A)ccountable (B)yzantine (C)onsensus is easy!. , 2022, , .		3
994	The Universal Gossip Fighter. , 2022, , .		0
995	SOK: A Comprehensive Survey on Distributed Ledger Technologies. , 2022, , .		7
996	Communication complexity of byzantine agreement, revisited. Distributed Computing, 2023, 36, 3-28.	0.7	1
997	A probabilistic Proof-of-Stake protocol with fast confirmation. Journal of Information Security and Applications, 2022, 68, 103268.	1.8	0

#	Article	IF	CITATIONS
998	Tool: An Efficient and Flexible Simulator for Byzantine Fault-Tolerant Protocols., 2022,,.		3
999	Eventual consensus in Synod: verification using a failure-aware actor model. Innovations in Systems and Software Engineering, 0, , .	1.6	1
1000	Revisiting the Power of Non-Equivocation in Distributed Protocols. , 2022, , .		1
1001	Internet Computer Consensus. , 2022, , .		10
1002	How to achieve adaptive security for asynchronous BFT?. Journal of Parallel and Distributed Computing, 2022, 169, 252-268.	2.7	1
1003	Serviços DistribuÃdos Tolerantes a Intrusões: resultados recentes e problemas abertos. , 0, , 113-162.		0
1004	Untangling theÂOverlap Between Blockchain andÂDLTs. Lecture Notes in Networks and Systems, 2022, , 483-505.	0.5	0
1005	COBRA: Dynamic Proactive Secret Sharing for Confidential BFT Services. , 2022, , .		6
1006	Spurt: Scalable Distributed Randomness Beacon with Transparent Setup. , 2022, , .		7
1007	Access Control using Blockchain: A Taxonomy and Review. , 2022, , .		0
1008	Revisiting Tendermint: Design Tradeoffs, Accountability, and Practical Use., 2022,,.		3
1009	Marlin: Two-Phase BFT with Linearity. , 2022, , .		7
1010	Finite-time consensus for leader-follower and leaderless swarms in the presence of malicious agents. International Journal of Control, 0 , $1-13$.	1.2	0
1011	Modelling proof-of-work agreement protocol by coloured Petri nets. International Journal of Parallel, Emergent and Distributed Systems, 2022, 37, 597-612.	0.7	1
1013	A Privacy-Preserving Blockchain-Based Method to Optimize Energy Trading. IEEE Transactions on Smart Grid, 2023, 14, 1148-1157.	6.2	11
1014	Tangle 2.0 Leaderless Nakamoto Consensus on the Heaviest DAG. IEEE Access, 2022, 10, 105807-105842.	2.6	20
1015	The impact of network delay on Nakamoto consensus mechanism. Electronic Research Archive, 2022, 30, 3735-3754.	0.4	0
1016	Black-Box for Blockchain Parameters Adjustment. IEEE Access, 2022, 10, 101795-101802.	2.6	1

#	Article	IF	CITATIONS
1017	Distributed Oracle forÂEstimating Global Network Delay withÂKnown Error Bounds. Lecture Notes in Computer Science, 2022, , 201-221.	1.0	0
1018	Red Light Green Light Method for Solving Large Markov Chains. Journal of Scientific Computing, 2022, 93, .	1.1	1
1019	Byzantine Fault Tolerance For Distributed Ledgers Revisited. , 2022, 1, 1-26.		2
1020	Scaling proof-of-authority protocol to improve performance and security. Peer-to-Peer Networking and Applications, 2022, 15, 2633-2649.	2.6	1
1021	Making Byzantine consensus live. Distributed Computing, 2022, 35, 503-532.	0.7	2
1022	Be Aware ofÂYour Leaders. Lecture Notes in Computer Science, 2022, , 279-295.	1.0	5
1023	Jolteon andÂDitto: Network-Adaptive Efficient Consensus withÂAsynchronous Fallback. Lecture Notes in Computer Science, 2022, , 296-315.	1.0	18
1024	Quick Order Fairness. Lecture Notes in Computer Science, 2022, , 316-333.	1.0	9
1025	Crime and Punishment in Distributed Byzantine Decision Tasks. , 2022, , .		2
1026	Leopard: Towards High Throughput-Preserving BFT for Large-scale Systems. , 2022, , .		2
1027	Performance Modeling and Analysis of Hotstuff for Blockchain Consensus., 2022, , .		1
1028	Automatic Integration of BFT State-Machine Replication into IoT Systems. , 2022, , .		0
1029	LWSBFT: Leaderless weakly synchronous BFT protocol. Computer Networks, 2022, 219, 109419.	3.2	0
1030	Pravuil: Global Consensus for a United World. , 2022, 1, 325-344.		0
1031	Linear View Change in Optimistically Fast BFT. , 2022, , .		0
1032	Flexico: An efficient dual-mode consensus protocol for blockchain networks. PLoS ONE, 2022, 17, e0277092.	1.1	1
1033	Building blocks of sharding blockchain systems: Concepts, approaches, and open problems. Computer Science Review, 2022, 46, 100513.	10.2	22
1034	Blockchain Security when Messages are Lost. , 2022, , .		2

#	Article	IF	CITATIONS
1035	SAZyzz: Scaling AZyzzyva to Meet Blockchain Requirements. IEEE Transactions on Services Computing, 2022, , 1-14.	3.2	2
1036	Building Protocols for Scalable Decentralized Applications. Springer Optimization and Its Applications, 2022, , 215-255.	0.6	0
1037	Formal Verification of Blockchain Byzantine Fault Tolerance. Springer Optimization and Its Applications, 2022, , 389-412.	0.6	0
1038	ZPaxos: An Asynchronous BFT Paxos with a Leaderless Synchronous Group. , 2022, , .		0
1039	FlexiShard: a Flexible Sharding Scheme for Blockchain based on a Hybrid Fault Model. , 2022, , .		2
1040	Constant Latency in Sleepy Consensus. , 2022, , .		5
1041	PACE., 2022,,.		5
1042	Bolt-Dumbo Transformer., 2022,,.		11
1043	Permissionless Clock Synchronization withÂPublic Setup. Lecture Notes in Computer Science, 2022, , 181-211.	1.0	0
1044	Synchronization modulo P in dynamic networks. Theoretical Computer Science, 2023, 942, 200-212.	0.5	0
1045	A Hybrid Double-layer BFT Consensus Protocol for Large-Scale IoT Blockchain. , 2022, , .		1
1046	Breaking Blockchain's Communication Barrier with Coded Computation. , 2022, , .		0
1047	A Fault-Model-Relevant Classification of Consensus Mechanisms for MPI and HPC. International Journal of Parallel Programming, 0, , .	1.1	0
1048	In-ConcReTeS: Interactive Consistency meets Distributed Real-Time Systems, Again!., 2022, , .		0
1049	On Specifications andÂProofs ofÂTimed Circuits. Lecture Notes in Computer Science, 2022, , 107-130.	1.0	0
1050	TenderTee: Increasing the Resilience of Tendermint by using Trusted Environments. , 2023, , .		0
1051	Nero: A Deterministic Leaderless Consensus Algorithm for DAG-Based Cryptocurrencies. Algorithms, 2023, 16, 38.	1.2	7
1052	GeoChain: A Locality-Based Sharding Protocol for Permissioned Blockchains., 2023,,.		2

#	Article	IF	CITATIONS
1053	Byzantine Fault-Tolerant Causal Ordering., 2023, , .		5
1054	Highway: A Super Pipelined Parallel BFT Consensus Algorithm forÂPermissioned Blockchain. Lecture Notes in Computer Science, 2023, , 31-38.	1.0	0
1055	A Survey of Blockchain Consensus Protocols. ACM Computing Surveys, 2023, 55, 1-35.	16.1	25
1056	Strengthening Atomic Multicast for Partitioned State Machine Replication. , 2022, , .		O
1057	Detecting Causality in the Presence of Byzantine Processes: There is No Holy Grail., 2022,,.		1
1058	Byzantine Consensus Based on Modified Treap Topology. , 2022, , .		0
1059	Consenso Bizantino entre Participantes Desconhecidos., 0, , .		0
1060	Trusted-Committee- Based Secure and Scalable BFT Consensus for Consortium Blockchain., 2022, , .		1
1061	Cross-chain payment protocols with success guarantees. Distributed Computing, 2023, 36, 137-157.	0.7	0
1062	Leaderless consensus. Journal of Parallel and Distributed Computing, 2023, 176, 95-113.	2.7	2
1063	Deterministic or probabilistic? - A survey on Byzantine fault tolerant state machine replication. Computers and Security, 2023, 129, 103200.	4.0	0
1064	Survey on Parameterized Verification with Threshold Automata and the Byzantine Model Checker. Logical Methods in Computer Science, 0, Volume 19, Issue 1, .	0.4	1
1065	A comparative study on consensus mechanism with security threats and future scopes: Blockchain. Computer Communications, 2023, 201, 102-115.	3.1	17
1066	BeauForT: Robust Byzantine Fault Tolerance for Client-Centric Mobile Web Applications. IEEE Transactions on Parallel and Distributed Systems, 2023, 34, 1241-1252.	4.0	2
1067	GDPR Personal Privacy Security Mechanism for Smart Home System. Electronics (Switzerland), 2023, 12, 831.	1.8	4
1068	Myochain: A Blockchain Protocol for Delay Bounded Transaction Confirmation. , 2023, , .		0
1069	RAC-Chain: An Asynchronous Consensus-based Cross-chain Approach to Scalable Blockchain for Metaverse. ACM Transactions on Multimedia Computing, Communications and Applications, 2024, 20, 1-24.	3.0	1
1070	Multi-pipeline HotStuff: A High Performance Consensus for Permissioned Blockchain., 2022,,.		0

#	Article	IF	CITATIONS
1071	Efficient-HotStuff: A BFT Blockchain Consensus with Higher Efficiency and Stronger Robustness., 2023,,.		2
1072	An Efficient and Secure Node-sampling Consensus Mechanism for Blockchain Systems. , 2022, , .		0
1073	Randomized Testing of Byzantine Fault Tolerant Algorithms. , 2023, 7, 757-788.		4
1074	A Secure and Intelligent Data Sharing Scheme for UAV-Assisted Disaster Rescue. IEEE/ACM Transactions on Networking, 2023, 31, 2422-2438.	2.6	11
1075	Trees and Turtles: Modular Abstractions for State Machine Replication Protocols., 2023,,.		1
1078	BeeGees: Stayin' Alive in Chained BFT. , 2023, , .		2
1079	On the Validity of Consensus. , 2023, , .		0
1081	Invited Paper: Initial Steps Toward a Compiler for Distributed Programs. , 2023, , .		0
1082	A Survey and a State-of-the-Art Related to Consensus Mechanisms in Blockchain Technology. Lecture Notes in Networks and Systems, 2023, , 208-217.	0.5	0
1085	Toward Time Synchronization in Delay Tolerant Network based Solar System Internetworking. , 2023, ,		0
1086	FnF-BFT: A BFT Protocol withÂProvable Performance Under Attack. Lecture Notes in Computer Science, 2023, , 165-198.	1.0	0
1088	Parallel Proof-of-Work with Concrete Bounds. , 2022, , .		1
1089	Analysing and Improving Shard Allocation Protocols for Sharded Blockchains., 2022,,.		4
1091	Blockchain Proportional Governance Reconfiguration: Mitigating a Governance Oligarchy., 2023,,.		0
1092	SoK: Scalability Techniques for BFT Consensus. , 2023, , .		2
1093	SecurShard: A Model for Hierarchical Fault Detection in Blockchain Sharding. , 2023, , .		0
1094	SightsTeeple: Agreeing to Disagree with Functional Blockchain Consensus. , 2023, , .		0
1099	Assessing Distributed Consensus Performance on Mobile Cyber-Physical System Swarms. , 2023, , .		O

#	Article	IF	CITATIONS
1101	Smart Redbelly Blockchain: Reducing Congestion for Web3., 2023,,.		2
1102	Lyra: Fast and Scalable Resilience to Reordering Attacks in Blockchains., 2023,,.		1
1103	FlexLog: A Shared Log for Stateful Serverless Computing. , 2023, , .		0
1104	Heron: Scalable State Machine Replication on Shared Memory. , 2023, , .		O
1106	Basilic: Resilient-Optimal Consensus Protocols with Benign and Deceitful Faults., 2023,,.		0
1109	A Centralized Blockchain Architecture with Optimum Sharing. , 2023, , .		0
1111	Transaction Confirmation in Coded Blockchain. , 2023, , .		0
1112	Gleaning the Consensus for Linearizable and Conflict-Free Per-Replica Local Reads. , 2023, , .		0
1114	The Consensus Machine: Formalising Consensus inÂtheÂPresence ofÂMalign Agents. Lecture Notes in Computer Science, 2023, , 136-162.	1.0	0
1116	Brief Announcement: Byzantine-Tolerant Detection ofÂCausality inÂSynchronous Systems. Lecture Notes in Computer Science, 2023, , 57-61.	1.0	0
1117	Byzantine Fault-Tolerant Causal Order Satisfying Strong Safety. Lecture Notes in Computer Science, 2023, , 111-125.	1.0	0
1118	An Implementation Study ofÂtheÂlmpact ofÂBatching onÂReplication Protocols Performance. Lecture Notes in Computer Science, 2023, , 264-278.	1.0	0
1120	Oracle Agreement: From an Honest Super Majority to Simple Majority. , 2023, , .		0
1121	On the Minimal Knowledge Required for Solving Stellar Consensus. , 2023, , .		0
1122	MRTOM: Mostly Reliable Totally Ordered Multicast, a Network Primitive to Offload Distributed Systems., 2023,,.		0
1124	Joining Parallel and Partitioned State Machine Replication Models for Enhanced Shared Logging Performance., 2023,,.		0
1126	Improving Fault Tolerance in Blockchain Sharding using One-to-Many Block-to-Shard Mapping., 2023,,.		0
1127	ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path., 2023,,.		1

#	Article	IF	CITATIONS
1128	TopoCommit: A Topological Commit Protocol for Cross-Ledger Transactions in Scientific Computing. , 2023, , .		0
1129	Towards Practical Sleepy BFT., 2023,,.		0
1130	Themis: Fast, Strong Order-Fairness in Byzantine Consensus. , 2023, , .		1
1131	Using Range-Revocable Pseudonyms to Provide Backward Unlinkability in the Edge. , 2023, , .		0
1132	Interchain Timestamping for Mesh Security., 2023,,.		1
1133	Enhancing Blockchain Performance viaÂOn-chain andÂOff-chain Collaboration. Lecture Notes in Computer Science, 2023, , 393-408.	1.0	0
1134	Zef: Low-latency, Scalable, Private Payments. , 2023, , .		1
1135	Bridging the Gap of Timing Assumptions in Byzantine Consensus. , 2023, , .		0
1136	PrimCast. , 2023, , .		0
1137	FlexCast., 2023,,.		1
1138	Simplex Consensus: A Simple andÂFast Consensus Protocol. Lecture Notes in Computer Science, 2023, , 452-479.	1.0	0
1139	Concurrent Asynchronous Byzantine Agreement inÂExpected-Constant Rounds, Revisited. Lecture Notes in Computer Science, 2023, , 422-451.	1.0	O
1141	FPGAs-based Edge Computing with Distributed Leader Election on Internet of Things. , 2023, , .		0
1142	Player-Replaceability andÂForensic Support Are Two Sides ofÂtheÂSame (Crypto) Coin. Lecture Notes in Computer Science, 2024, , 56-74.	1.0	O
1143	SoK: Essentials of BFT Consensus for Blockchains. , 2023, , .		0
1144	Echidna: A New Consensus Algorithm for Efficient State Machine Replication. , 2023, , .		0
1146	Byzantine Generals inÂtheÂPermissionless Setting. Lecture Notes in Computer Science, 2024, , 21-37.	1.0	0
1151	Aion: Secure Transaction Ordering Using TEEs. Lecture Notes in Computer Science, 2024, , 332-350.	1.0	O

#	Article	IF	CITATIONS
1153	Self-stabilizing Byzantine Multivalued Consensus: (extended abstract). , 2024, , .		0
1154	RNBFT: Leveraging Randomness to Achieve Scalable Byzantine Consensus. , 2023, , .		0
1156	Stretch-BFT: Workload-Adaptive and Stretchable Consensus Protocol for Permissioned Blockchain. , 2023, , .		0
1158	OsirisBFT: Say No to Task Replication for Scalable Byzantine Fault Tolerant Analytics. , 2024, , .		0
1159	Data Protection Challenges in Distributed Ledger and Blockchain Technologies: A Combined Legal and Technical Analysis. Signals and Communication Technology, 2024, , 127-152.	0.4	0
1160	A Simple Single Slot Finality Protocol forÂEthereum. Lecture Notes in Computer Science, 2024, , 376-393.	1.0	0
1161	Tendermint. Advances in Information Security, 2024, , 195-221.	0.9	0
1162	Ten Myths About Blockchain Consensus. Advances in Information Security, 2024, , 3-24.	0.9	O