Melanized dopaminergic neurons are differentially suse Parkinson's disease

Nature 334, 345-348 DOI: 10.1038/334345a0

Citation Report

#	Article	IF	CITATIONS
1	Neuromelanin-containing neurons are selectively vulnerable in parkinsonism. Trends in Pharmacological Sciences, 1988, 9, 347-348.	4.0	6
2	Current theories on the cause of Parkinson's disease Journal of Neurology, Neurosurgery and Psychiatry, 1989, 52, 13-17.	0.9	29
3	Selective vulnerability of pigmented dopaminergic neurons in Parkinson's disease. Acta Neurologica Scandinavica, 1989, 80, 19-22.	1.0	71
4	Is Parkinson's disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration?. Acta Neurologica Scandinavica, 1989, 80, 47-54.	1.0	261
5	Biochemistry of Parkinson's disease 28 years later: A critical review. Movement Disorders, 1989, 4, S126-S144.	2.2	154
6	Midbrain dopaminergic cell loss in parkinson's disease: Computer visualization. Annals of Neurology, 1989, 26, 507-514.	2.8	359
7	Striatal dopamine deficiency in parkinson's disease: Role of aging. Annals of Neurology, 1989, 26, 551-557.	2.8	246
8	Schizophrenia: a disease of interhemispheric processes at forebrain and brainstem levels?. Behavioural Brain Research, 1989, 34, 1-33.	1.2	81
9	Distinct nigrostriatal projection systems innervate striosomes and matrix in the primate striatum. Brain Research, 1989, 498, 344-350.	1.1	130
10	3-Acetylpyridine-induced degeneration of the nigrostriatal dopamine system: An animal model of olivopontocerebellar atrophy-associated parkinsonism. Experimental Neurology, 1989, 105, 1-9.	2.0	34
11	Biochemical mechanism of action of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicology Letters, 1989, 48, 121-149.	0.4	118
12	Retroviral transfer of a human tyrosine hydroxylase cDNA in various cell lines: regulated release of dopamine in mouse anterior pituitary AtT-20 cells Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 7233-7237.	3.3	94
13	Behavioural Effect of Engineered Cells that Synthesize L-DOPA or Dopamine after Grafting into the Rat Neostriatum. European Journal of Neuroscience, 1990, 2, 116-119.	1.2	102
14	A Two-Compartment Description and Kinetic Procedure for Measuring Regional Cerebral [¹¹ C]Nomifensine Uptake Using Positron Emission Tomography. Journal of Cerebral Blood Flow and Metabolism, 1990, 10, 307-316.	2.4	73
15	MPTP induced Parkinsonian syndrome: long term follow-up and neurophysiological study. Italian Journal of Neurological Sciences, 1990, 11, 443-458.	0.1	7
16	Neuromelanin synthesis in rat and human substantia nigra. Journal of Neural Transmission Parkinson's Disease and Dementia Section, 1990, 2, 1-14.	1.2	39
17	Selective loss of nigral neurons in Pick's disease: a morphometric study. Acta Neuropathologica, 1990, 81, 155-161.	3.9	25
18	Neuropathology of immunohistochemically identified brainstem neurons in Parkinson's disease. Annals of Neurology, 1990, 27, 373-385.	2.8	346

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Tyrosine hydroxylase gene expression in human ventral mesencephalon: Detection of t hydroxylase messenger RNA in neurites. Journal of Neuroscience Research, 1990, 25, 5	yrosine 69-575.	1.3	23
20	Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture. Jou Neuroscience Research, 1990, 26, 428-435.	rnal of	1.3	333
21	The Nigrostriatal Dopaminergic System Assessed In Vivo by Positron Emission Tomogra Volunteer Subjects and Patients With Parkinson's Disease. Archives of Neurology, 199	aphy in Healthy 0, 47, 1290-1298.	4.9	376
22	Superoxide dismutase and Parkinson's disease. Lancet, The, 1990, 335, 1035-1036.		6.3	77
23	Decreased tyrosine hydroxylase messenger RNA in the surviving dopamine neurons of nigra in parkinson's disease: An in situ hybridization study. Neuroscience, 1990, 38, 24	the substantia I5-253.	1.1	143
24	Neurotensin receptors in parkinson's disease and progressive supranuclear palsy: an autoradiographic study in basal ganglia. Neuroscience, 1990, 39, 351-360.		1.1	49
25	Olfactory bulb transplantation into the olfactory bulb of neonatal rats. Brain Research, 315-319.	1990, 513,	1.1	24
26	MPTP-induced parkinsonism: relative changes in dopamine concentration in subregion nigra, ventral tegmental area and retrorubral field of symptomatic and asymptomatic v Brain Research, 1990, 513, 320-324.	s of substantia vervet monkeys.	1.1	45
27	Loss of brainstem serotonin- and substance P-containing neurons in Parkinson's diseas Research, 1990, 510, 104-107.	se. Brain	1.1	320
28	Dose-dependent destruction of the coeruleus-cortical and nigral-striatal projections by Research, 1990, 527, 7-20.	MPTP. Brain	1.1	142
29	Microtopography of d1 dopaminergic binding sites in the human substantia nigra: An a study. Neuroscience, 1990, 37, 387-398.	autoradiographic	1.1	25
30	Neurotransmitters and neuromodulators in the basal ganglia. Trends in Neurosciences, 244-254.	, 1990, 13,	4.2	1,478
31	Dopaminergic innervation of the cerebral cortex: unexpected differences between rode primates. Trends in Neurosciences, 1991, 14, 21-27.	ents and	4.2	524
32	Smoker's melanosis may explain the lower hearing loss and lower frequency of Parkins found among tobacco smokers — A new hypothesis. Medical Hypotheses, 1991, 35,	on's disease 247-249.	0.8	9
33	Parkinson's disease: management. Lancet, The, 1991, 337, 1324-1327.		6.3	22
34	Cysteinyldopamine is not incorporated into neuromelanin. Neuroscience Letters, 1991	, 131, 57-60.	1.0	40
35	The effect ofl-DOPA and carbidopa treatment on the survival of rat fetal dopamine grat tyrosine hydroxylase immunohistochemistry and [3H]mazindol autoradiography. Neuro 43, 95-110.	fts assessed by oscience, 1991,	1.1	68
36	Parkinson's disease: pathophysiology. Lancet, The, 1991, 337, 1321-1324.		6.3	452

#	Article	IF	CITATIONS
37	Environment, Genetics and Idiopathic Parkinson's Disease. Canadian Journal of Neurological Sciences, 1991, 18, 70-76.	0.3	21
38	Chapter 5 The substantia nigra and its relations with the striatum in the monkey. Progress in Brain Research, 1991, 87, 81-99.	0.9	14
39	Singleâ€₽hoton Emission Computed Tomography Findings in Unilateral Parkinsonism. Journal of Neuroimaging, 1991, 1, 200-202.	1.0	1
40	AGEING AND PARKINSON'S DISEASE: SUBSTANTIA NIGRA REGIONAL SELECTIVITY. Brain, 1991, 114, 2283-2301.	3.7	3,002
41	Selective Increase of Iron in Substantia Nigra Zona Compacta of Parkinsonian Brains. Journal of Neurochemistry, 1991, 56, 978-982.	2.1	501
42	Iron-Melanin Interaction and Lipid Peroxidation: Implications for Parkinson's Disease. Journal of Neurochemistry, 1991, 57, 1609-1614.	2.1	294
43	Iron and Aluminum Increase in the Substantia Nigra of Patients with Parkinson's Disease: An X-Ray Microanalysis. Journal of Neurochemistry, 1991, 56, 446-451.	2.1	501
44	The Iron Chelator Desferrioxamine (Desferal) Retards 6-Hydroxydopamine-Induced Degeneration of Nigrostriatal Dopamine Neurons. Journal of Neurochemistry, 1991, 56, 1441-1444.	2.1	302
45	Medullary catecholaminergic neurons in the normal human brain and in Parkinson's disease. Annals of Neurology, 1991, 29, 577-584.	2.8	94
46	Catecholaminergic neurons in the parabrachial nucleus of normal individuals and patients with idiopathic parkinson's disease. Annals of Neurology, 1991, 30, 192-196.	2.8	32
47	Alterations of dopaminergic and noradrenergic innervations in motor cortex in parkinson's disease. Annals of Neurology, 1991, 30, 365-374.	2.8	224
48	Pathology of Parkinson's disease. Molecular and Chemical Neuropathology, 1991, 14, 153-197.	1.0	547
49	Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson's disease Journal of Neurology, Neurosurgery and Psychiatry, 1991, 54, 388-396.	0.9	465
50	Contextual analysis for both light and electronic microscopy applications. , 1992, , .		0
52	Compartmentalization of excitatory amino acid receptors in human striatum Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 7688-7692.	3.3	72
53	Changes in neurotransmitter levels associated with the deficiency of some essential amino acids in the diet. British Journal of Nutrition, 1992, 68, 409-420.	1.2	23
54	Dopamine transporter mRNA content in human substantia nigra decreases precipitously with age Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 7095-7099.	3.3	165
55	Slow changes of tyrosine hydroxylase gene expression in dopaminergic brain neurons after neurotoxin lesioning: a model for neuron aging. Molecular Brain Research, 1992, 13, 63-73.	2.5	64

#	Article	IF	CITATIONS
56	Cloning of human neurotensin/neuromedin n genomic sequences and expression in the ventral mesencephalon of schizophrenics and age/sex matched controls. Neuroscience, 1992, 50, 259-268.	1.1	53
57	Diclofenac-induced pseudomembranous colitis. Lancet, The, 1992, 340, 126-127.	6.3	64
58	Dopamine, tremor, and Parkinson's disease. Lancet, The, 1992, 340, 125-126.	6.3	79
59	c-fos protein-like immunoreactivity: Distribution in the human brain and over-expression in the hippocampus of patients with Alzheimer's disease. Neuroscience, 1992, 46, 9-21.	1.1	82
60	Co-expression of tyrosine hydroxylase messenger RNA 1 and 2 in human ventral mesencephalon revealed by digoxigenin- and biotin-labelled oligodeoxyribonucleotides. Journal of Chemical Neuroanatomy, 1992, 5, 11-18.	1.0	15
61	Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigrostriatal projections and differential neuronal susceptibility in Parkinson's disease. Brain Research, 1992, 581, 283-291.	1.1	148
62	Excitotoxic lesions of the pedunculopontine tegmental nucleus of the rat. I. Comparison of the effects of various excitotoxins, with particular reference to the loss of immunohistochemically identified cholinergic neurons. Brain Research, 1992, 589, 181-193.	1.1	46
63	Selective loss of nigral neurons in Alzheimer's disease: a morphometric study. Acta Neuropathologica, 1992, 83, 271-276.	3.9	40
64	Is the Vulnerability of Neurons in the Substantia Nigra of Patients with Parkinson's Disease Related to Their Neuromelanin Content?. Journal of Neurochemistry, 1992, 59, 1080-1089.	2.1	218
65	Iron-Melanin Complex in Substantia Nigra of Parkinsonian Brains: An X-Ray Microanalysis. Journal of Neurochemistry, 1992, 59, 1168-1171.	2.1	304
66	Toxic Effects of Iron for Cultured Mesencephalic Dopaminergic Neurons Derived from Rat Embryonic Brains. Journal of Neurochemistry, 1992, 59, 118-127.	2.1	48
67	Human brain phenolsulfotransferase. Regional distribution in Parkinson's disease. Journal of Neural Transmission Parkinson's Disease and Dementia Section, 1992, 4, 267-276.	1.2	3
68	In vivo trapping of hydroxyl free radicals in the striatum utilizing intracranial microdialysis perfusion of salicylate: effects of MPTP, MPDP+, and MPP+. Journal of Neural Transmission, 1992, 89, 139-145.	1.4	106
69	Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys. Journal of Comparative Neurology, 1992, 325, 1-21.	0.9	168
70	The oxidant stress hypothesis in Parkinson's disease: Evidence supporting it. Annals of Neurology, 1992, 32, 804-812.	2.8	876
71	Why are nigral catecholaminergic neurons more vulnerable than other cells in Parkinson's disease?. Annals of Neurology, 1992, 32, S88-S93.	2.8	117
72	Role of iron and iron chelation in dopaminergic-induced neurodegeneration: Implication for Parkinson's disease. Annals of Neurology, 1992, 32, S105-S110.	2.8	86
73	Loss of C1 and C3 epinephrine-synthesizing neurons in the medulla oblongata in parkinson's disease. Annals of Neurology, 1993, 33, 357-367.	2.8	79

	CHARLON	LPORI	
#	ARTICLE	IF	CITATIONS
74	Neural degeneration and the transport of neurotransmitters. Annals of Neurology, 1993, 34, 638-645.	2.8	66
75	The possible role of iron in the etiopathology of parkinson's disease. Movement Disorders, 1993, 8, 1-12.	2.2	309
76	Suppressive effect ofL-dopa on dopamine cells remaining in the ventral tegmental area of rats previously exposed to the neurotoxin 6-hydroxydopamine. Movement Disorders, 1993, 8, 129-133.	2.2	124
77	Ascorbic acid protects against levodopa-induced neurotoxicity on a catecholamine-rich human neuroblastoma cell line. Movement Disorders, 1993, 8, 278-284.	2.2	52
78	Nigral degeneration in parkinson's disease. Movement Disorders, 1993, 8, S31-S35.	2.2	51
79	Infusion of iron into the rat substantia nigra: Nigral pathology and dose-dependent loss of striatal dopaminergic markers. Journal of Neuroscience Research, 1993, 35, 67-82.	1.3	102
80	Movement disorders in neuronal ceroidlipofuscinoses. Journal of Inherited Metabolic Disease, 1993, 16, 256-258.	1.7	6
81	Advances in Our Understanding of the Mechanisms of the Neurotoxicity of MPTP and Related Compounds. Journal of Neurochemistry, 1993, 61, 1191-1206.	2.1	538
82	Distribution of125I-Ferrotransferrin Binding Sites in the Mesencephalon of Control Subjects and Patients with Parkinson's Disease. Journal of Neurochemistry, 1993, 60, 2338-2341.	2.1	51
83	Purified Human Neuromelanin, Synthetic Dopamine Melanin as a Potential Model Pigment, and the Normal Human Substantia Nigra: Characterization by Electron Paramagnetic Resonance Spectroscopy. Journal of Neurochemistry, 1993, 61, 68-79.	2.1	51
84	Immunocytochemical Quantification of Tyrosine Hydroxylase at a Cellular Level in the Mesencephalon of Control Subjects and Patients with Parkinson's and Alzheimer's Disease. Journal of Neurochemistry, 1993, 61, 1024-1034.	2.1	61
85	Striatal L-DOPA Decarboxylase Activity in Parkinson's Disease In Vivo: Implications for the Regulation of Dopamine Synthesis. Journal of Neurochemistry, 1993, 61, 1538-1541.	2.1	76
86	Total and paramagnetic metals in human substantia nigra and its neuromelanin. Journal of Neural Transmission Parkinson's Disease and Dementia Section, 1993, 5, 203-213.	1.2	109
87	Inhibition of catechol-O-methyltransferase (COMT) as well as tyrosine and tryptophan hydroxylase by the orally active iron chelator, 1,2-dimethyl-3-hydroxypyridin-4-one (L1, CP20), in rat brain in vivo. Biochemical Pharmacology, 1993, 45, 2417-2424.	2.0	48
88	Differential vulnerability to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine of dopaminergic and cholinergic neurons in the monkey mesopontine tegmentum. Brain Research, 1993, 624, 281-285.	1.1	20
89	Autoradiographic study of [125lepidermal growth factor-binding sites in the mesencephalon of control and parkinsonian brains post-mortem. Brain Research, 1993, 628, 72-76.	1.1	4
90	Tyrosine hydroxylase protein and messenger RNA in the dopaminergic nigral neurons of patients with Parkinson's disease. Brain Research, 1993, 606, 341-345.	1.1	73
91	Does neuromelanin contribute to the vulnerability of catecholaminergic neurons in monkeys intoxicated with MPTP?. Neuroscience, 1993, 56, 499-511.	1.1	97

#	Article	IF	CITATIONS
92	Decreased tyrosine hydroxylase mRNA but not cholecystokinin mRNA in the pars compacta of the substantia nigra and ventral tegmental area of aged rats. Molecular Brain Research, 1993, 19, 333-338.	2.5	23
93	Glutathione peroxidase, glial cells and Parkinson's disease. Neuroscience, 1993, 52, 1-6.	1.1	422
94	Iron, melanin and dopamine interaction: relevance to parkinson's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1993, 17, IN3-150.	2.5	43
95	Stable parkinsonian syndrome and uneven loss of striatal dopamine fibres following chronic MPTP administration in baboons. Neuroscience, 1993, 53, 169-178.	1.1	97
96	Preferential expression of superoxide dismutase messenger RNA in melanized neurons in human mesencephalon. Neuroscience, 1993, 55, 167-175.	1.1	35
97	Hydroxyl Free Radical (·OH) Formation Reflected by Salicylate Hydroxylation and Neuromelanin. Annals of the New York Academy of Sciences, 1993, 679, 370-375.	1.8	34
98	Loss of basic fibroblast growth factor in substantia nigra neurons in Parkinson's disease. Neurology, 1993, 43, 372-372.	1.5	113
99	Intrastriatal implantation of interleukin-1. Journal of Neurosurgery, 1994, 80, 484-490.	0.9	67
100	The roles of neuromelanin, binding of metal ions, and oxidative cytotoxicity in the pathogenesis of Parkinson's disease: A hypothesis. Journal of Neural Transmission Parkinson's Disease and Dementia Section, 1994, 7, 83-100.	1.2	106
101	Neurotrophic-4/5 is a survival factor for embryonic midbrain dopaminergic neurons in enriched cultures. Journal of Neuroscience Research, 1994, 37, 144-154.	1.3	106
102	Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. Journal of Comparative Neurology, 1994, 342, 321-334.	0.9	283
103	Decreased tyrosine hydroxylase content in the dopaminergic neurons of MPTP-intoxicated monkeys: Effect of levodopa and GM1 ganglioside therapy. Annals of Neurology, 1994, 36, 206-214.	2.8	47
104	Oxidative stress: Free radical production in neural degeneration. , 1994, 63, 37-122.		454
105	Does the calcium binding protein calretinin protect dopaminergic neurons against degeneration in Parkinson's disease?. Brain Research, 1994, 668, 62-70.	1.1	105
106	Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study. Brain Research, 1994, 660, 8-18.	1.1	157
107	Monoamine vesicular uptake sites in patients with Parkinson's disease and Alzheimer's disease, as measured by tritiated dihydrotetrabenazine autoradiography. Brain Research, 1994, 659, 1-9.	1.1	33
108	Biochemistry of Parkinson's disease with special reference to the dopaminergic systems. Molecular Neurobiology, 1994, 9, 135-142.	1.9	74
109	Immunohistochemical study of catechol-O-methyltransferase in the human mesostriatal system. Neuroscience, 1994, 62, 449-457.	1.1	55

#	Article	IF	CITATIONS
110	Binding of 1,2(N)-dimethyl-6,7-dihydroxy-isoquinolinium ion to melanin: Effects of ferrous and ferric ion on the binding. Neuroscience Letters, 1994, 171, 9-12.	1.0	29
111	Chronic MPTP treatment reproduces in baboons the differential vulnerability of mesencephalic dopaminergic neurons observed in parkinson's disease. Neuroscience, 1994, 63, 47-56.	1.1	108
112	Effects of L-Cysteine on the Oxidation Chemistry of Dopamine: New Reaction Pathways of Potential Relevance to Idiopathic Parkinson's Disease. Journal of Medicinal Chemistry, 1994, 37, 1084-1098.	2.9	143
113	Neuropsychological correlates of l-deprenyl therapy in idiopathic parkinsonism. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1994, 18, 115-128.	2.5	6
114	Loss of striatal high affinity NGF binding sites in progressive supranuclear palsy but not in Parkinson's disease. Neuroscience Letters, 1994, 182, 59-62.	1.0	11
115	Binding sites for 5-hydroxytryptamine-2 receptor agonists are predominantly located in striosomes in the human basal ganglia. Molecular Brain Research, 1994, 24, 199-209.	2.5	37
116	Behavioural recovery of rats grafted with dopamine cells after partial striatal dopaminergic depletion in a conditioned reaction-time task. Neuroscience, 1994, 63, 73-84.	1.1	19
117	The effects of glutathione and ascorbic acid on the oxidations of 6-hydroxydopa and 6-hydroxydopamine. Biochimica Et Biophysica Acta - General Subjects, 1994, 1201, 498-504.	1.1	26
118	The dopamine transporter and dopamine D2 receptor messenger RNAs are differentially expressed in limbic- and motor-related subpopulations of human mesencephalic neurons. Neuroscience, 1994, 63, 357-362.	1.1	80
119	Distribution of manganese-dependent superoxide dismutase in the human brain. Neuroscience, 1994, 61, 317-330.	1.1	59
120	Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9603-9607.	3.3	195
121	Oxidative stress in Parkinson's disease. Neuropathology and Applied Neurobiology, 1995, 21, 3-9.	1.8	86
122	Damage to dopamine systems differs between parkinson's disease and alzheimer's disease with parkinsonism. Annals of Neurology, 1995, 37, 300-312.	2.8	126
123	Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nature Genetics, 1995, 10, 104-110.	9.4	431
124	Influence of glutathione on the oxidation chemistry of the catecholaminergic neurotransmitter dopamine. Journal of Electroanalytical Chemistry, 1995, 398, 117-128.	1.9	47
125	Regional distribution of monoamine vesicular uptake sites in the mesencephalon of control subjects and patients with Parkinson's disease: a postmortem study using tritiated tetrabenazine. Brain Research, 1995, 692, 233-243.	1.1	35
126	Cardiotrophin-1. Journal of Biological Chemistry, 1995, 270, 10915-10922.	1.6	401
127	Magnetic Resonance Imaging Evidence of Decreased Putamenal Iron Content in Idiopathic Parkinson's Disease. Archives of Neurology, 1995, 52, 583-588.	4.9	89

ARTICLE IF CITATIONS # Effect of intraventricular injection of 1-methyl-4-phenylpyridinium: protection by acetyl-L-carnitine. 128 21 1.1 Human and Experimental Toxicology, 1995, 14, 865-871. GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo. 129 3.8 Neuron, 1995, 15, 1465-1473. 130 Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron, 1995, 15, 35-44. 3.8 447 The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems. 1.8 Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1995, 1271, 343-348. Dopamine-induced programmed cell death in mouse thymocytes. Biochimica Et Biophysica Acta -132 1.9 109 Molecular Cell Research, 1995, 1268, 171-177. Chemical anatomy of primate basal ganglia. Progress in Neurobiology, 1995, 46, 131-197. 2.8 134 Control of neuronal diversity by the floor plate: Contact-mediated induction of midbrain 134 13.5 219 dopaminergic neurons. Cell, 1995, 80, 95-101. Dopamine differentiation factors produce partial motor recovery in 6-hydroxydopamine lesioned rats. 2.1 24 Neurobiology of Disease, 1995, 2, 1-12. The role of transition metals in the pathogenesis of Parkinson's disease. Journal of the Neurological 136 0.3 134 Sciences, 1995, 134, 69-78. Increased susceptibility to MPTP toxicity in middle-aged rhesus monkeys. Neurobiology of Aging, 1995, 1.5 16,931-937. Heterogeneity of melanized neurons expressing neurotensin receptor messenger RNA in the substantia nigra and the nucleus paranigralis of control and Parkinson's disease brain. Neuroscience, 1995, 64, 138 1.1 29 405-417. Calbindin D28k-containing neurons are restricted to the medial substantia nigra in humans. 1.1 Neuroscience, 1995, 65, 87-91. A quantitative morphometrical study of neuron degeneration in the substantia nigra in Parkinson's 140 0.3 44 disease. Journal of the Neurological Sciences, 1996, 140, 40-45. Oxidative Stress and Parkinson's Disease. Annals of the New York Academy of Sciences, 1996, 786, 141 1.8 132 217-223. 142 Pterin-Dependent Amino Acid Hydroxylases. Chemical Reviews, 1996, 96, 2659-2756. 23.0 310 Further Insights into the Influence of I-Cysteine on the Oxidation Chemistry of Dopamine:  Reaction Pathways of Potential Relevance to Parkinson's Disease. Chemical Research in Toxicology, 1996, 9, 143 751-763. Nitric oxide synthase and neuronal vulnerability in parkinson's disease. Neuroscience, 1996, 72, 355-363. 144 1.1 556 Interaction of neuromelanin and iron in substantia nigra and other areas of human brain. 145 1.1 Neuroscience, 1996, 73, 407-415.

#	Article	IF	CITATIONS
146	Increased m-calpain expression in the mesencephalon of patients with parkinson's disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death?. Neuroscience, 1996, 73, 979-987.	1.1	146
147	DOPAMINE-INDUCED APOPTOSIS IN HUMAN NEURONAL CELLS: INHIBITION BY NUCLEIC ACIDS ANTISENSE TO THE DOPAMINE TRANSPORTER. Neuroscience, 1996, 74, 39-50.	1.1	124
148	Lack of toxicity of human neuromelanin to rat brain dopaminergic neurons. Parkinsonism and Related Disorders, 1996, 2, 69-74.	1.1	16
149	Dopamine transporter (DAT) and synaptic vesicle amine transporter (VMAT2) gene expression in the substantia nigra of control and Parkinson's disease. Molecular Brain Research, 1996, 36, 157-162.	2.5	85
150	Oxidative stress and antioxidant therapy in Parkinson's disease. Progress in Neurobiology, 1996, 48, 1-19.	2.8	312
151	The mesolimbic dopaminergic pathway is more resistant than the nigrostriatal dopaminergic pathway to MPTP and MPP+ toxicity: role of BDNF gene expression. Molecular Brain Research, 1996, 41, 16-26.	2.5	89
152	Tyrosinase enhances the covalent modification of DNA by dopamine. Molecular Brain Research, 1996, 42, 167-170.	2.5	27
153	Midbrain neuropathology in idiopathic Parkinson's disease and diffuse Lewy body disease. Journal of Clinical Neuroscience, 1996, 3, 52-60.	0.8	93
154	Synthesis, Redox Properties,in VivoFormation, and Neurobehavioral Effects ofN-Acetylcysteinyl Conjugates of Dopamine:Â Possible Metabolites of Relevance to Parkinson's Disease. Chemical Research in Toxicology, 1996, 9, 1117-1126.	1.7	70
155	Oxidation Chemistry of (â^')-Norepinephrine in the Presence ofl-Cysteine. Journal of Medicinal Chemistry, 1996, 39, 2018-2029.	2.9	45
156	GDNF: Signalweg entschlļsselt. Nachrichten Aus Der Chemie, 1996, 44, 891-892.	0.0	0
158	Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1956-1961.	3.3	502
159	Profound Loss of Layer II Entorhinal Cortex Neurons Occurs in Very Mild Alzheimer's Disease. Journal of Neuroscience, 1996, 16, 4491-4500.	1.7	1,570
160	Cellular distribution of the iron-binding protein lactotransferrin in the mesencephalon of Parkinson's disease cases. Acta Neuropathologica, 1996, 91, 566-572.	3.9	111
161	Pattern of brain destruction in Parkinson's and Alzheimer's diseases. Journal of Neural Transmission, 1996, 103, 455-490.	1.4	309
162	Clinical and pathological features in hydrocarbon-induced Parkinsonism. Annals of Neurology, 1996, 40, 922-925.	2.8	37
163	Expression of glutamate receptors in the human and rat basal ganglia: Effect of the dopaminergic denervation on AMPA receptor gene expression in the striatopallidal complex in parkinson's disease and rat with 6-OHDA lesion. , 1996, 368, 553-568.		80
164	Mechanism of resistance to NO-induced neurotoxicity in cultured rat dopaminergic neurons. , 1996, 46, 509-518.		29

#	Article	IF	CITATIONS
165	Characterization of Products from the Reactions of Dopamine Quinone withN-Acetylcysteine. Bioorganic Chemistry, 1996, 24, 110-126.	2.0	37
166	Renal and neuronal abnormalities in mice lacking GDNF. Nature, 1996, 382, 76-79.	13.7	1,212
167	Does monoamine oxidase type B play a role in dopaminergic nerve cell death in Parkinson's disease?. Neurology, 1996, 46, 1262-1262.	1.5	72
168	Chapter VI Dopamine systems in the primate brain. Handbook of Chemical Neuroanatomy, 1997, , 263-375.	0.3	44
169	THE ROLE OF VESICULAR TRANSPORT PROTEINS IN SYNAPTIC TRANSMISSION AND NEURAL DEGENERATION. Annual Review of Neuroscience, 1997, 20, 125-156.	5.0	288
170	Nuclear translocation of NF-ÂB is increased in dopaminergic neurons of patients with Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7531-7536.	3.3	657
171	Oxidation of Dopamine in the Presence of Cysteine:  Characterization of New Toxic Products. Chemical Research in Toxicology, 1997, 10, 147-155.	1.7	82
172	NEUROANATOMY OF THE BASAL GANGLIA. Psychiatric Clinics of North America, 1997, 20, 691-704.	0.7	26
173	Correlation between neuromorphometry in the substantia nigra and clinical features in Parkinson's disease using disector counts. Journal of the Neurological Sciences, 1997, 151, 83-87.	0.3	124
174	Specific A10 Dopaminergic Nuclei in the Midbrain Degenerate in Parkinson's Disease. Experimental Neurology, 1997, 144, 202-213.	2.0	118
175	Regulation of Astroglial-Derived Dopaminergic Neurotrophic Factors by Interleukin-1β in the Striatum of Young and Middle-Aged Mice. Experimental Neurology, 1997, 148, 348-359.	2.0	55
176	EPR investigations of the iron domain in neuromelanin. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1997, 1361, 49-58.	1.8	52
177	The expression of mRNA for a kappa opioid receptor in the substantia nigra of Parkinson's disease brain. Molecular Brain Research, 1997, 44, 12-20.	2.5	10
178	Dopamine–melanin induces apoptosis in PC12 cells; possible implications for the etiology of Parkinson's disease. Neurochemistry International, 1997, 31, 207-216.	1.9	85
179	Unbiased Estimation of Neuronal Numbers in the Human Nucleus Coeruleus during Aging. Neurobiology of Aging, 1997, 18, 393-399.	1.5	102
180	Spatial, Temporal and Numeric Analysis of Alzheimer Changes in the Nucleus Coeruleus. Neurobiology of Aging, 1997, 18, 401-406.	1.5	91
181	A dopaminergic neurotoxin, 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, N-methyl(R)salsolinol, and its oxidation product, 1,2(N)-dimethyl-6,7-dihydroxyisoquinolinium ion, accumulate in the nigro-striatal system of the human brain. Neuroscience Letters, 1997, 223, 61-64.	1.0	96
182	Binding of Iron to Neuromelanin of Human Substantia Nigra and Synthetic Melanin: An Electron Paramagnetic Resonance Spectroscopy Study. Free Radical Biology and Medicine, 1997, 23, 110-119.	1.3	114

#	Article	IF	CITATIONS
183	The density of [125I]-transferrin binding sites on perikarya of melanized neurons of the substantia nigra is decreased in Parkinson's disease. Brain Research, 1997, 749, 170-174.	1.1	47
184	Systemic administration of MPTP induces thalamic neuronal degeneration in mice. Brain Research, 1997, 759, 9-17.	1.1	79
185	Biochemical and physiological evidence that carnosine is an endogenous neuroprotector against free radicals. Cellular and Molecular Neurobiology, 1997, 17, 259-271.	1.7	79
186	Intranigral iron infusion in the rat. Biological Trace Element Research, 1997, 58, 177-195.	1.9	18
187	Excessive iron accumulation in the brain: A possible potential risk of neurodegeneration in Parkinson's disease. Journal of Neural Transmission, 1997, 104, 649-660.	1.4	96
188	Isolation of single immunohistochemically identified whole neuronal cell bodies from post-mortem human brain for simultaneous analysis of multiple gene expression. Journal of Neuroscience Methods, 1997, 77, 43-48.	1.3	16
189	Irreversible Inhibition of Mitochondrial Complex I by 7â€(2â€Aminoethyl)â€3,4â€Dihydroâ€5â€Hydroxyâ€2 <i>H</i> â€1,4â€Benzothiazineâ€3â€Carboxylic Acid (DH Nigral Endotoxin of Relevance to Parkinson's Disease. Journal of Neurochemistry, 1997, 69, 1530-1541.	BTâ£l): A	Pu te tive
190	Mitochondrial Free Radical Signal in Ceramideâ€Dependent Apoptosis: A Putative Mechanism for Neuronal Death in Parkinson's Disease. Journal of Neurochemistry, 1997, 69, 1612-1621.	2.1	170
191	Differential distribution of the normal and mutated forms of huntingtin in the human brain. Annals of Neurology, 1997, 42, 712-719.	2.8	48
192	Differential modification of dopamine transporter and tyrosine hydroxylase mRNAs in midbrain of subjects with parkinson's, alzheimer's with parkinsonism, and alzheimer's disease. Movement Disorders, 1997, 12, 885-897.	2.2	98
193	MPTP Produces Differential Oxidative Stress and Antioxidative Responses in the Nigrostriatal and Mesolimbic Dopaminergic Pathways. Free Radical Biology and Medicine, 1998, 24, 76-84.	1.3	79
194	Low numbers and no loss of melanized nigral neurons with increasing age in normal human brains from India. Annals of Neurology, 1998, 43, 283-287.	2.8	96
195	Chronic levodopa is not toxic for remaining dopamine neurons, but instead promotes their recovery, in rats with moderate nigrostriatal lesions. Annals of Neurology, 1998, 43, 561-575.	2.8	206
196	Enhanced glial cell line-derived neurotrophic factor mRNA expression upon (?)-deprenyl and melatonin treatments. Journal of Neuroscience Research, 1998, 53, 593-604.	1.3	90
197	Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. , 1998, 54, 691-697.		162
198	Expression of N-Methyl-D-Aspartate receptor subunit mRNA in the human brain: Mesencephalic dopaminergic neurons. , 1998, 390, 91-101.		38
199	Oxidative stress and neurodegenerative disorders. Journal of Biomedical Science, 1998, 5, 401-414.	2.6	178
200	Compensatory mechanisms in experimental and human Parkinsonism: towards a dynamic approach. Progress in Neurobiology, 1998, 55, 93-116.	2.8	193

ARTICLE IF CITATIONS Orphan neurones and amine excess: the functional neuropathology of Parkinsonism and 201 9.1 18 neuropsychiatric disease. Brain Research Reviews, 1998, 27, 177-242. Effects of 4-hydroxynonenal, a lipid peroxidation product, on dopamine transport and Na+/K+ ATPase in rat striatal synaptosomes. Neurochemistry International, 1998, 33, 531-540. Brain-derived neurotrophic factor prevents the loss of nigral neurons induced by excitotoxic 203 1.1 64 striatal-pallidal lesions. Neuroscience, 1998, 83, 741-748. Tyrosine kinase B messenger RNA expression in normal human brain and in the substantia nigra of 204 1.1 parkinsonian patients: an in situ hybridization study. Neuroscience, 1998, 86, 813-826. The midbrain dopaminergic cell groups in the baboon papio ursinus. Brain Research Bulletin, 1998, 47, 205 1.4 16 611-623. The natural history of parkinson's disease. Annals of Neurology, 1998, 44, S1-9. 2.8 Glial cells and inflammation in parkinson's disease: A role in neurodegeneration?. Annals of 207 2.8 289 Neurology, 1998, 44, S115-20. Iron- and Manganese-Catalyzed Autoxidation of Dopamine in the Presence of I-Cysteine:  Possible Insights into Iron- and Manganese-Mediated Dopaminergic Neurotoxicity. Chemical Research in 208 1.7 100 Toxicology, 1998, 11, 824-837. Electrochemical Oxidation of N-Acyldopamines and Regioselective Reactions of Their Quinones 209 1.4 35 withN-Acetylcysteine and Thiourea. Archives of Biochemistry and Biophysics, 1998, 352, 19-30. Reduction of 13-Hydroperoxy-9,11-octadecadienoic Acid by Dopamine-Melanin. Biochemical and 1.0 Biophysical Research Communications, 1998, 244, 781-784. X-Ray Absorption Fine-Structure Spectroscopy Studies of Fe Sites in Natural Human Neuromelanin and 211 0.2 40 Synthetic Analogues. Biophysical Journal, 1998, 75, 3135-3142. Regional dopamine transporter gene expression in the substantia nigra from control and Parkinson's disease brains. Journal of Neurology, Neurosurgery and Psychiatry, 1998, 65, 164-169. Dopamine Induces Apoptosis through an Oxidation-involved SAPK/JNK Activation Pathway. Journal of 213 1.6 289 Biological Chemistry, 1998, 273, 3756-3764. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4013-4018. 214 3.3 684 Neuronal distribution of intranuclear inclusions in Huntington's disease with adult onset. 215 59 0.6 NeuroReport, 1998, 9, 1823-1826. Chapter 20 Neuropathological hallmarks of Alzheimer's and Parkinson's diseases. Progress in Brain 119 Research, 1998, 117, 267-285. Bilateral 6-hydroxydopamine lesion in the dopaminergic A8 cell group produces long-lasting deficits 217 0.6 13 in motor programming of cats.. Behavioral Neuroscience, 1998, 112, 102-115. Parkinsonian patients report blunted subjective effects of methylphenidate.. Experimental and Clinical 1.3 24 Psychopharmacology, 1998, 6, 54-63.

		ICLFORT	
#	Article	IF	CITATIONS
219	Neuropathology of Movement Disorders. Neurosurgery Clinics of North America, 1998, 9, 237-262.	0.8	24
220	Induction of Interleukin-1 Associated with Compensatory Dopaminergic Sprouting in the Denervated Striatum of Young Mice: Model of Aging and Neurodegenerative Disease. Journal of Neuroscience, 1998, 18, 5614-5629.	1.7	112
221	Pathogenesis and preclinical course of Parkinson's disease. Journal of Neural Transmission Supplementum, 1999, 56, 31-74.	0.5	39
222	Chemical architecture of the basal ganglia. Handbook of Chemical Neuroanatomy, 1999, , 227-284.	0.3	14
223	Mechanism and consequences of nerve cell death in Parkinson's disease. Journal of Neural Transmission Supplementum, 1999, 56, 127-137.	0.5	31
224	The substantia nigra of the human brain. Brain, 1999, 122, 1437-1448.	3.7	1,481
225	Aluminum enhances melanin-induced lipid peroxidation. Neurochemical Research, 1999, 24, 1001-1008.	1.6	24
226	The substantia nigra of the human brain. Brain, 1999, 122, 1421-1436.	3.7	395
227	Model neuromelanins as antioxidative agents during lipid peroxidation. Neurotoxicity Research, 1999, 1, 141-147.	1.3	20
228	Neurotoxicity due to o-Quinones: Neuromelanin formation and possible mechanisms for o-Quinone detoxification. Neurotoxicity Research, 1999, 1, 153-169.	1.3	33
229	Reactive oxygen species and reactive nitrogen species: Relevance to cyto(neuro)toxic events and neurologic disorders. An overview. Neurotoxicity Research, 1999, 1, 197-233.	1.3	185
230	Paraquat induced activation of transcription factor AP-1 and apoptosis in PC12 cells. Journal of Neural Transmission, 1999, 106, 1-21.	1.4	47
231	Iron and cell death in Parkinson's disease: a nuclear microscopic study into iron-rich granules in the parkinsonian substantia nigra of primate models. Nuclear Instruments & Methods in Physics Research B, 1999, 158, 349-355.	0.6	17
232	Protective effect of histidine on MPP + -induced hydroxyl radical generation in rat striatum. Brain Research, 1999, 817, 206-208.	1.1	9
233	Distribution of semaphorin IV in adult human brain. Brain Research, 1999, 823, 67-79.	1.1	42
234	Reserpine prevents hydroxyl radical formation by MPP+ in rat striatum. Brain Research, 1999, 828, 68-73.	1.1	29
235	Leads for the development of neuroprotective treatment in Parkinson's disease and brain imaging methods for estimating treatment efficacy. European Journal of Pharmacology, 1999, 375, 75-86.	1.7	29
236	Protective effect of imidaprilat, a new angiotensin-converting enzyme inhibitor against 1-methyl-4-phenylpyridinium ion-induced â‹OH generation in rat striatum. European Journal of Pharmacology, 1999, 378, 39-45.	1.7	11

λτιωνι Ρ

#	Article	IF	CITATIONS
237	Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Current Opinion in Neurobiology, 1999, 9, 26-36.	2.0	212
238	The vulnerability of nigral neurons to Parkinson's disease is unrelated to their intrinsic capacity for dopamine synthesis: Anin situ hybridization study. Movement Disorders, 1999, 14, 206-218.	2.2	33
239	Distribution of iron in a single neuron of patients with Parkinson's disease. X-Ray Spectrometry, 1999, 28, 456-460.	0.9	22
240	Tyrosine hydroxylase-immunoreactive elements in the human globus pallidus and subthalamic nucleus. , 1999, 409, 400-410.		72
241	Characterization of dopaminergic midbrain neurons in a DBH:BDNF transgenic mouse. , 1999, 413, 449-462.		30
242	Dopaminergic cell group A8 in the monkey: Anatomical organization and projections to the striatum. , 1999, 414, 334-347.		79
243	Pathophysiology of Parkinson's disease. Biomedicine and Pharmacotherapy, 1999, 53, 117-121.	2.5	46
244	In vitro and in vivo studies investigating possible antioxidant actions of nicotine: relevance to Parkinson's and Alzheimer's diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1999, 1454, 143-152.	1.8	101
245	Age-related dopamine deficiency in the mesostriatal dopamine system of zitter mutant rats: regional fiber vulnerability in the striatum and the olfactory tubercle. Neuroscience, 1999, 95, 389-398.	1.1	35
246	Blood vessels change in the mesencephalon of patients with Parkinson's disease. Lancet, The, 1999, 353, 981-982.	6.3	202
247	Levodopa induces a cytoplasmic localization of D1 dopamine receptors in striatal neurons in Parkinson's disease. Annals of Neurology, 1999, 46, 103-111.	2.8	77
248	Evidence of Functional Zinc Deficiency in Parkinson's Disease. Journal of Alternative and Complementary Medicine, 1999, 5, 57-64.	2.1	56
249	Reduced expression of brain-derived neurotrophic factor protein in Parkinson's disease substantia nigra. NeuroReport, 1999, 10, 557-561.	0.6	272
250	Calpastatin immunoreactivity in the monkey and human brain of control subjects and patients with Parkinson's disease. , 2000, 419, 175-192.		19
251	Dopaminergic innervation of the subthalamic nucleus in the normal state, in MPTP-treated monkeys, and in Parkinson's disease patients. Journal of Comparative Neurology, 2000, 425, 121-129.	0.9	100
252	Isolation and 13C-NMR characterization of an insoluble proteinaceous fraction from substantia nigra of patients with parkinson's disease. Movement Disorders, 2000, 15, 977-981.	2.2	42
253	The probable involvement of soluble and deposited melanins, their intermediates and the reactive oxygen side-products in human diseases and aging. Toxicology, 2000, 145, 85-101.	2.0	79
254	Drug treatment of Parkinson's disease. Biochemical Pharmacology, 2000, 59, 1023-1031.	2.0	93

#	Article	IF	CITATIONS
255	Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson's disease?. Brain Research, 2000, 873, 225-234.	1.1	280
256	Potassium chloride depolarization enhances MPP+-induced hydroxyl radical generation in the rat striatum. Brain Research, 2000, 852, 488-491.	1.1	10
258	Pathoanatomy of Parkinson's disease. Journal of Neurology, 2000, 247, 113-1110.	1.8	422
259	Glial cells and Parkinson's disease. Journal of Neurology, 2000, 247, II58-II62.	1.8	57
260	Parkinson's disease: affection of brain stem nuclei controlling premotor and motor neurons of the somatomotor system. Acta Neuropathologica, 2000, 99, 489-495.	3.9	133
261	Inconsistency between severe substantia nigra degeneration with Lewy bodies and clinical parkinsonism in dementia patients: a cliniconeuropathological study. Acta Neuropathologica, 2000, 99, 511-516.	3.9	6
262	DOPAMINE MERCAPTURATE CAN AUGMENT DOPAMINERGIC NEURODEGENERATION*. Drug Metabolism Reviews, 2000, 32, 363-376.	1.5	11
263	Preservation of midbrain catecholaminergic neurons in very old human subjects. Brain, 2000, 123, 366-373.	3.7	139
264	Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2875-2880.	3.3	644
265	Pattern of dopaminergic loss in the striatum of humans with MPTP induced parkinsonism. Journal of Neurology, Neurosurgery and Psychiatry, 2000, 68, 313-316.	0.9	77
266	Mapping the Basal Ganglia. , 2000, , 177-206.		3
267	Up-regulation of tyrosine hydroxylase mRNA in a sub-population of A10 dopamine neurons in Parkinson's disease. Molecular Brain Research, 2000, 79, 45-54.	2.5	27
268	Methamphetamine enhances 1-methyl-4-phenylpyridinium ion-induced hydroxyl radical generation in the rat striatum. Neuroscience Letters, 2000, 292, 54-56.	1.0	8
269	Role of Dopamine in Learning and Memory. Drugs and Aging, 2000, 16, 365-379.	1.3	152
270	Dopamine Cell Degeneration Induced by Intraventricular Administration of 6-Hydroxydopamine in the Rat: Similarities with Cell Loss in Parkinson's Disease. Experimental Neurology, 2001, 169, 163-181.	2.0	102
271	Hunting genes in Parkinson's disease from the roots. Medical Hypotheses, 2001, 57, 51-55.	0.8	17
272	Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Progress in Neurobiology, 2001, 65, 135-172.	2.8	1,056
273	Motor behavioural changes after intracerebroventricular injection of 6-hydroxydopamine in the rat: an animal model of Parkinson's disease. Behavioural Brain Research, 2001, 122, 79-92.	1.2	74

#	Article	IF	CITATIONS
274	Memory disruption in rats with nigral lesions induced by MPTP: a model for early Parkinson's disease amnesia. Behavioural Brain Research, 2001, 124, 9-18.	1.2	109
275	Verminderde vergrijzing en M. Korsakov; toeval of een voorbeeld van serendiptisme?. Acta Neuropsychiatrica, 2001, 13, 73-75.	1.0	0
276	Caspase-8 Is an Effector in Apoptotic Death of Dopaminergic Neurons in Parkinson's Disease, But Pathway Inhibition Results in Neuronal Necrosis. Journal of Neuroscience, 2001, 21, 2247-2255.	1.7	242
277	Is Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson's disease?. Journal of Neurochemistry, 2001, 76, 1785-1793.	2.1	138
278	Protection of intracellular dopamine cytotoxicity by dopamine disposition and metabolism factors. Journal of Neurochemistry, 2001, 77, 776-785.	2.1	58
279	NAIP protects the nigrostriatal dopamine pathway in an intrastriatal 6-OHDA rat model of Parkinson's disease. European Journal of Neuroscience, 2001, 14, 391-400.	1.2	72
280	Caspase-3 activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Movement Disorders, 2001, 16, 185-189.	2.2	97
281	Chronic L-DOPA administration is not toxic to the remaining dopaminergic nigrostriatal neurons, but instead may promote their functional recovery, in rats with partial 6-OHDA or FeCl3nigrostriatal lesions. Movement Disorders, 2001, 16, 424-434.	2.2	91
282	Effects of synthetic dopamine-melanins on oxygen radical formation induced by metal ions with dopamine. Neuroscience Research Communications, 2001, 29, 31-40.	0.2	1
283	Is there a rationale for neuroprotection against dopamine toxicity in Parkinson's disease?. Cellular and Molecular Neurobiology, 2001, 21, 215-235.	1.7	65
284	Nicotine, but not cotinine, partially protects dopaminergic neurons against MPTP-induced degeneration in mice. Brain Research, 2001, 890, 347-350.	1.1	42
285	Nitric oxide enhances MPP+-induced hydroxyl radical generation via depolarization activated nitric oxide synthase in rat striatum. Brain Research, 2001, 902, 223-228.	1.1	17
287	Neuroprotection for Parkinson's disease: a new approach for a new millennium. Expert Opinion on Investigational Drugs, 2001, 10, 1855-1868.	1.9	25
288	Chemical state imaging of iron in nerve cells from a patient with Parkinsonism-dementia complex. Journal of Applied Physics, 2002, 91, 1613-1617.	1.1	17
289	Neuromelanin in the Human Brain: A Review and Atlas of Pigmented Cells in the Substantia Nigra. Archives of Physiology and Biochemistry, 2002, 110, 257-369.	1.0	24
290	Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson's disease. Human Molecular Genetics, 2002, 11, 2395-2407.	1.4	226
291	Differential nicotinic receptor expression in monkey basal ganglia: Effects of nigrostriatal damage. Neuroscience, 2002, 112, 619-630.	1.1	26
292	Stem cells in the treatment of Parkinson's disease. Brain Research Bulletin, 2002, 57, 795-808.	1.4	103

#	Article	IF	CITATIONS
293	FADD: A link between TNF family receptors and caspases in Parkinson's disease. Neurology, 2002, 58, 308-310.	1.5	62
294	Differential neurobehavioral deficits induced by apomorphine and its oxidation product, 8-oxo-apomorphine-semiquinone, in rats. European Journal of Pharmacology, 2002, 443, 105-111.	1.7	29
295	Spared error-related potentials in mild to moderate Parkinson's disease. Neuropsychologia, 2002, 40, 2116-2124.	0.7	62
296	Influence of neuromelanin on oxidative pathways within the human substantia nigra. Neurotoxicology and Teratology, 2002, 24, 621-628.	1.2	87
297	Severe generalized dystonia due to primary putaminal degeneration: Case report and review of the literature. Movement Disorders, 2002, 17, 576-584.	2.2	8
298	Dopamine efflux by MPTP and hydroxyl radical generation. Journal of Neural Transmission, 2002, 109, 1159-1180.	1.4	86
299	Synthetic neuromelanin is toxic to dopaminergic cell cultures. Journal of Neural Transmission, 2002, 109, 651-661.	1.4	13
300	Association study between iron-related genes polymorphisms and Parkinson's disease. Journal of Neurology, 2002, 249, 801-804.	1.8	107
301	Protective action of the peroxisome proliferator-activated receptor-Î ³ agonist pioglitazone in a mouse model of Parkinson's disease. Journal of Neurochemistry, 2002, 82, 615-624.	2.1	347
302	Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson's disease. Journal of Neurochemistry, 2002, 83, 320-330.	2.1	111
303	Altered Brain Metabolism of Iron as a Cause of Neurodegenerative Diseases?. Journal of Neurochemistry, 1994, 63, 793-807.	2.1	618
304	Enzymatic Oxidation of Dopamine: The Role of Prostaglandin H Synthase. Journal of Neurochemistry, 1995, 64, 919-924.	2.1	316
305	Ironâ€Mediated Oxidation of 3,4â€Dihydroxyphenylalanine to an Excitotoxin. Journal of Neurochemistry, 1995, 64, 1742-1748.	2.1	24
306	Mössbauer Spectroscopic Studies of Purified Human Neuromelanin Isolated from the Substantia Nigra. Journal of Neurochemistry, 1995, 65, 923-926.	2.1	108
307	Generation of Reactive Oxygen Species by Tyrosine Hydroxylase: A Possible Contribution to the Degeneration of Dopaminergic Neurons?. Journal of Neurochemistry, 1997, 68, 328-332.	2.1	69
308	Increased Protein Oxidation in Human Substantia Nigra Pars Compacta in Comparison with Basal Ganglia and Prefrontal Cortex Measured with an Improved Dinitrophenylhydrazine Assay. Journal of Neurochemistry, 1998, 70, 268-275.	2.1	377
309	<i>Paired</i> â€Like Homeodomain Proteins, Phox2a and Phox2b, Are Responsible for Noradrenergic Cellâ€Specific Transcription of the Dopamine βâ€Hydroxylase Gene. Journal of Neurochemistry, 1998, 71, 1813-1826.	2.1	123
310	Blood Vessels And Neurodegeneration In Parkinson's Disease. Advances in Behavioral Biology, 2002, , 341-347.	0.2	2

ARTICLE IF CITATIONS The lesion of the rat substantia nigra pars compacta dopaminergic neurons as a model for Parkinson's 312 1.7 103 disease memory disabilities. Cellular and Molecular Neurobiology, 2002, 22, 227-237. Ageing of substantia nigra in humans: cell loss may be compensated by hypertrophy. Neuropathology 313 1.8 and Applied Neurobiology, 2002, 28, 283-291. Time-Course of Nigrostriatal Degeneration in a Progressive MPTP-Lesioned Macaque Model of 314 1.9 76 Parkinson's Disease. Molecular Neurobiology, 2003, 28, 209-218. MPP+-induced degeneration is potentiated by dicoumarol in cultures of the RCSN-3 dopaminergic cell line. Implications of neuromelanin in oxidative metabolism of dopamine neurotoxicity. Neurotoxicity 1.3 Research, 2003, 5, 407-410. Brain sites of movement disorder: Genetic and environmental agents in neurodevelopmental 316 1.327 perturbations. Neurotoxicity Research, 2003, 5, 1-26. Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic 1.3 neurodegeneration underlying Parkinson's disease. Neurotoxicity Research, 2003, 5, 35-43. Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochemical 318 2.0 189 Pharmacology, 2003, 66, 489-494. Cigarette smoke and nicotine protect dopaminergic neurons against the 319 1.1 90 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Parkinsonian toxin. Brain Research, 2003, 984, 224-232. Neuromelanin associated redoxâ€active iron is increased in the substantia nigra of patients with 320 2.1 206 Parkinson's disease. Journal of Neurochemistry, 2003, 86, 1142-1148. Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic 321 1.2 188 neurons. European Journal of Neuroscience, 2003, 18, 1731-1738. Kainic acid lesion-induced nigral neuronal death. Journal of Chemical Neuroanatomy, 2003, 26, 65-73. 322 7 1.0 Parkinson's Disease. Neuron, 2003, 39, 889-909. 3.8 4,639 Degeneration of the nigrostriatal pathway and induction of motor deficit by tetrahydrobiopterin: an 324 2.1 24 in vivo model relevant to Parkinson's disease. Neurobiology of Disease, 2003, 13, 167-176. Behavioral changes are not directly related to striatal monoamine levels, number of nigral neurons, 2.1 or dose of parkinsonian toxin MPTP in mice. Neurobiology of Disease, 2003, 14, 218-228. Animal models of Parkinson's disease in rodents induced by toxins: an update. Journal of Neural 326 0.584 Transmission Supplementum, 2003, , 89-100. Rasagiline: an anti-Parkinson drug with neuroprotective activity. Expert Review of Neurotherapeutics, 327 1.4 2003, 3, 737-749. Transforming Growth Factor-Î²s Are Essential for the Development of Midbrain Dopaminergic 328 1.7 155 Neurons<i>In Vitro</i>and<i>In Vivo</i>Journal of Neuroscience, 2003, 23, 5178-5186. Inhibition of Calpains Prevents Neuronal and Behavioral Deficits in an MPTP Mouse Model of 265 Parkinson's Disease. Journal of Neuroscience, 2003, 23, 4081-4091.

#	Article	IF	CITATIONS
330	Overlesioned hemiparkinsonian non human primate model correlation between clinical neurochemical and histochemical changes. Frontiers in Bioscience - Landmark, 2003, 8, a155-166.	3.0	46
331	Blood vessels and Parkinsonism. Frontiers in Bioscience - Landmark, 2004, 9, 277.	3.0	34
332	Molecular basis for catecholaminergic neuron diversity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13891-13896.	3.3	127
333	Neuroprotective effect of the angiotensin-converting enzyme inhibitor perindopril in MPTP-treated mice. Neurological Research, 2004, 26, 644-657.	0.6	13
334	Substantia Nigra and Locus Coeruleus. , 2004, , 449-463.		23
335	Rescue of Mesencephalic Dopaminergic Neurons in Culture by Low-Level Stimulation of Voltage-Gated Sodium Channels. Journal of Neuroscience, 2004, 24, 5922-5930.	1.7	106
336	Pleiotrophin mRNA is highly expressed in neural stem (progenitor) cells of mouse ventral mesencephalon and the product promotes production of dopaminergic neurons from embryonic stem cellâ€derived nestinâ€positive cells. FASEB Journal, 2004, 18, 1237-1239.	0.2	86
337	Tissue transglutaminase catalyzes the formation of alphaâ€synuclein crosslinks in Parkinson's disease. FASEB Journal, 2004, 18, 932-934.	0.2	114
338	Association between waking EEG slowing and REM sleep behavior disorder in PD without dementia. Neurology, 2004, 62, 401-406.	1.5	106
339	Regulation of Dopaminergic Loss by Fas in a 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Model of Parkinson's Disease. Journal of Neuroscience, 2004, 24, 2045-2053.	1.7	122
340	The neuregulin receptor, ErbB4, is not required for normal development and adult maintenance of the substantia nigra pars compacta. Journal of Neurochemistry, 2004, 91, 1302-1311.	2.1	44
341	Disruption of self-organized actions in monkeys with progressive MPTP-induced parkinsonism: II. Effects of reward preference. European Journal of Neuroscience, 2004, 19, 437-446.	1.2	27
342	Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nature Neuroscience, 2004, 7, 726-735.	7.1	842
343	Neurodegenerative diseases and oxidative stress. Nature Reviews Drug Discovery, 2004, 3, 205-214.	21.5	2,923
344	Biochemical, behavioral and immunohistochemical alterations in MPTP-treated mouse model of Parkinson's disease. Pharmacology Biochemistry and Behavior, 2004, 78, 143-153.	1.3	70
345	Sound lateralization in Parkinson's disease. Cognitive Brain Research, 2004, 21, 335-341.	3.3	22
346	Effects of melanin and manganese on dna damage and repair in PC12-derived neurons. Free Radical Biology and Medicine, 2004, 36, 1144-1154.	1.3	23
347	The Relevance of Iron in the Pathogenesis of Parkinson's Disease. Annals of the New York Academy of Sciences, 2004, 1012, 193-208.	1.8	285

#	Article	IF	CITATIONS
348	Induction and specification of midbrain dopaminergic cells: focus on SHH, FGF8, and TGF-?. Cell and Tissue Research, 2004, 318, 23-33.	1.5	69
349	Redox imbalance. Cell and Tissue Research, 2004, 318, 201-213.	1.5	181
350	Long-term retention of neurotoxic ?-carbolines in brain neuromelanin. Journal of Neural Transmission, 2004, 111, 141-157.	1.4	49
351	Neuromelanin inhibits enzymatic activity of 26S proteasome in human dopaminergic SH-SY5Y cells. Journal of Neural Transmission, 2004, 111, 1253-1265.	1.4	46
352	Aging of the nigrostriatal system in the squirrel monkey. Journal of Comparative Neurology, 2004, 471, 387-395.	0.9	105
353	Inverse relationship between the contents of neuromelanin pigment and the vesicular monoamine transporter-2: Human midbrain dopamine neurons. Journal of Comparative Neurology, 2004, 473, 97-106.	0.9	103
354	Expression of dopamine and vesicular monoamine transporters and differential vulnerability of mesostriatal dopaminergic neurons. Journal of Comparative Neurology, 2004, 479, 198-215.	0.9	84
355	A 100% increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinson's disease. Movement Disorders, 2004, 19, 687-692.	2.2	294
356	Minocycline in Huntington's disease: A pilot study. Movement Disorders, 2004, 19, 692-695.	2.2	100
357	Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation. Physiological Reviews, 2004, 84, 1155-1228.	13.1	1,666
358	Enhanced survival, reinnervation, and functional recovery of intrastriatal dopamine grafts co-transplanted with Schwann cells overexpressing high molecular weight FGF-2 isoforms. Experimental Neurology, 2004, 187, 118-136.	2.0	60
359	Response to Obeso et al.: Presymptomatic compensation in Parkinson's disease is not dopamine-mediated. Trends in Neurosciences, 2004, 27, 127-128.	4.2	19
360	TGF-β promotes survival on mesencephalic dopaminergic neurons in cooperation with Shh and FGF-8. Neurobiology of Disease, 2004, 16, 300-310.	2.1	58
361	Partial bilateral mesencephalic lesions affect D1 but not D2 binding in both the striatum and cortex. Neurochemistry International, 2004, 45, 995-1004.	1.9	4
362	GDNF promotes neuronal differentiation and dopaminergic development of mouse mesencephalic neurospheres. Neuroscience Letters, 2004, 361, 52-55.	1.0	53
364	Dopamine and Neurodegeneration. , 2005, , 415-445.		1
365	Dolichol is the major lipid component of human substantia nigra neuromelanin. Journal of Neurochemistry, 2005, 92, 990-995.	2.1	61
366	Differential effects of human neuromelanin and synthetic dopamine melanin on neuronal and glial cells. Journal of Neurochemistry, 2005, 95, 599-608.	2.1	28

#	Article	IF	CITATIONS
367	Striatal expression of GDNF and differential vulnerability of midbrain dopaminergic cells. European Journal of Neuroscience, 2005, 21, 1815-1827.	1.2	74
368	Dopamine melanin-loaded PC12 cells: a model for studies on pigmented neurons. Pigment Cell & Melanoma Research, 2005, 18, 306-314.	4.0	11
369	Challenging conventional wisdom: The etiologic role of dopamine oxidative stress in Parkinson's disease. Movement Disorders, 2005, 20, 271-282.	2.2	79
370	Open-label pilot study of levetiracetam (Keppra) for the treatment of levodopa-induced dyskinesias in Parkinson's disease. Movement Disorders, 2005, 20, 1205-1209.	2.2	69
371	Frequency of movement disorders in an Ethiopian university practice. Movement Disorders, 2005, 20, 1209-1213.	2.2	20
372	Imaging in cell-based therapy for neurodegenerative diseases. European Journal of Nuclear Medicine and Molecular Imaging, 2005, 32, S417-S434.	3.3	16
373	Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. Journal of Neural Transmission, 2005, 112, 1237-1248.	1.4	94
374	Pathophysiology: biochemistry of Parkinson's disease. , 2005, , 598-611.		Ο
375	Substance P, Neurokinins A and B, and Synthetic Tachykinin Peptides Protect Mesencephalic Dopaminergic Neurons in Culture via an Activity-Dependent Mechanism. Molecular Pharmacology, 2005, 68, 1214-1224.	1.0	38
376	Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Human Molecular Genetics, 2005, 14, 1709-1725.	1.4	338
377	"Subcellular Proteomics―of Neuromelanin Granules Isolated from the Human Brain. Molecular and Cellular Proteomics, 2005, 4, 945-957.	2.5	95
378	α-Synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson's disease. Brain, 2005, 128, 2654-2664.	3.7	187
379	Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Molecular Brain Research, 2005, 134, 109-118.	2.5	227
380	Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. Neurobiology of Disease, 2005, 18, 19-31.	2.1	160
381	Molecular and cellular alterations in the Pitx3-deficient midbrain dopaminergic system. Molecular and Cellular Neurosciences, 2005, 30, 352-363.	1.0	30
382	Lesion of the substantia nigra, pars compacta impairs delayed alternation in a Y-maze in rats. Experimental Neurology, 2005, 192, 134-141.	2.0	48
383	Pathogenesis of nigral cell death in Parkinson's disease. Parkinsonism and Related Disorders, 2005, 11, S3-S7.	1.1	137
384	Neuroinflammatory processes in Parkinson's disease. Parkinsonism and Related Disorders, 2005, 11, S9-S15.	1.1	181

#	Article	IF	CITATIONS
385	Neuromelanin in human dopamine neurons: Comparison with peripheral melanins and relevance to Parkinson's disease. Progress in Neurobiology, 2005, 75, 109-124.	2.8	313
386	Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Progress in Neurobiology, 2005, 76, 77-98.	2.8	1,350
387	The Hippocampal-VTA Loop: Controlling the Entry of Information into Long-Term Memory. Neuron, 2005, 46, 703-713.	3.8	1,697
388	Signalling through phospholipase C beta 4 is not essential for midbrain dopaminergic neuron survival. Neuroscience, 2005, 136, 171-179.	1.1	4
389	Lack of association between polymorphic microsatellites of the VMAT2 gene and Parkinson's disease in Japan. Journal of the Neurological Sciences, 2005, 232, 91-94.	0.3	4
392	Dopaminergic Neurons Reduced to Silence by Oxidative Stress: An Early Step in the Death Cascade in Parkinson's Disease?. Science Signaling, 2006, 2006, pe19-pe19.	1.6	9
393	New face of neuromelanin. , 2006, , 119-123.		26
394	Studies on genomic DNA topology and stability in brain regions of Parkinson's disease. Archives of Biochemistry and Biophysics, 2006, 449, 143-156.	1.4	58
395	The stepping test and its learning process in different degrees of unilateral striatal lesions by 6-hydroxydopamine in rats. Neuroscience Research, 2006, 55, 403-409.	1.0	21
396	Developmental origin and fate of meso-diencephalic dopamine neurons. Progress in Neurobiology, 2006, 78, 1-16.	2.8	114
397	Neuroprotective effect of arundic acid, an astrocyte-modulating agent, in mouse brain against MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity. Neuropharmacology, 2006, 50, 329-344.	2.0	18
398	Decreased susceptibility to oxidative stress underlies the resistance of specific dopaminergic cell populations to paraquat-induced degeneration. Neuroscience, 2006, 141, 929-937.	1.1	64
399	Degeneration of dopaminergic mesocortical neurons and activation of compensatory processes induced by a long-term paraquat administration in rats: Implications for Parkinson's disease. Neuroscience, 2006, 141, 2155-2165.	1.1	63
401	Relationship Among α-Synuclein Accumulation, Dopamine Synthesis, and Neurodegeneration in Parkinson Disease Substantia Nigra. Journal of Neuropathology and Experimental Neurology, 2006, 65, 808-815.	0.9	79
402	Differential regulation of tyrosine hydroxylase expression by sonic hedgehog. NeuroReport, 2006, 17, 693-698.	0.6	3
403	The Role of Iron in the Pathogenesis of Parkinson's Disease. , 2006, , 125-149.		11
404	The Role of Glial Reaction and Inflammation in Parkinson's Disease. Annals of the New York Academy of Sciences, 2003, 991, 214-228.	1.8	394
405	Modifications of the iron-neuromelanin system in Parkinson's disease. Journal of Neurochemistry, 2006, 96, 909-916.	2.1	105

#	Article	IF	CITATIONS
406	Genetic vitamin E deficiency does not affect MPTP susceptibility in the mouse brain. Journal of Neurochemistry, 2006, 98, 1810-1816.	2.1	17
407	Mesencephalic human neural progenitor cells transplanted into the neonatal hemiparkinsonian rat striatum differentiate into neurons and improve motor behaviour. Journal of Anatomy, 2006, 209, 721-732.	0.9	17
408	Gene expression profiles of brain dopamine neurons and relevance to neuropsychiatric disease. Journal of Physiology, 2006, 575, 411-416.	1.3	43
409	Strategies to unravel molecular codes essential for the development of meso-diencephalic dopaminergic neurons. Journal of Physiology, 2006, 575, 397-402.	1.3	6
410	Allopurinol suppresses 2-bromoethylamine and 1-methyl-4-phenylpyridinium ion (MPP+)-induced hydroxyl radical generation in rat striatum. Toxicology, 2006, 218, 75-79.	2.0	6
411	Altered regulation of iron transport and storage in Parkinson's disease. , 2006, , 201-204.		31
412	Transforming Growth Factor Î ² Is Required for Differentiation of Mouse Mesencephalic Progenitors into Dopaminergic Neurons In Vitro and In Vivo: Ectopic Induction in Dorsal Mesencephalon. Stem Cells, 2006, 24, 2120-2129.	1.4	89
413	Neuromelanin induces oxidative stress in mitochondria through release of iron: mechanism behind the inhibition of 26S proteasome. Journal of Neural Transmission, 2006, 113, 633-644.	1.4	63
414	Functional effects of neuromelanin and synthetic melanin in model systems. Journal of Neural Transmission, 2006, 113, 751-756.	1.4	24
415	Subcellular proteomics reveals neuromelanin granules to be a lysosome-related organelle. Journal of Neural Transmission, 2006, 113, 741-749.	1.4	42
416	Neuromelanin and iron in human locus coeruleus and substantia nigra during aging: consequences for neuronal vulnerability. Journal of Neural Transmission, 2006, 113, 757-767.	1.4	103
417	Proteomics of the human brain: sub-proteomes might hold the key to handle brain complexity. Journal of Neural Transmission, 2006, 113, 1041-1054.	1.4	27
418	Effect of desferrioxamine, a strong iron (III) chelator, on 1-methyl-4-phenylpyridinium ion (MPP+)-induced hydroxyl radical generation in the rat striatum. European Journal of Pharmacology, 2006, 539, 34-38.	1.7	8
419	Recent clinical failures in Parkinson's disease with apoptosis inhibitors underline the need for a paradigm shift in drug discovery for neurodegenerative diseases. Biochemical Pharmacology, 2006, 72, 1197-1206.	2.0	86
420	Improvements in motor behavioral tests during deep brain stimulation of the subthalamic nucleus in rats with different degrees of unilateral parkinsonism. Brain Research, 2006, 1120, 202-210.	1.1	36
421	Regional vulnerability of mesencephalic dopaminergic neurons prone to degenerate in Parkinson's disease: A post-mortem study in human control subjects. Neurobiology of Disease, 2006, 23, 409-421.	2.1	21
422	Ventral tegmental area dopamine neurons are resistant to human mutant alpha-synuclein overexpression. Neurobiology of Disease, 2006, 23, 522-532.	2.1	89
423	Detrimental deletions: mitochondria, aging and Parkinson's disease. BioEssays, 2006, 28, 963-967.	1.2	34

#	Article	IF	CITATIONS
424	Pathological dynamics of activated microglia following medial forebrain bundle transection. Clia, 2006, 53, 92-102.	2.5	101
425	Melanized nigral neuronal numbers in Nigerian and British individuals. Movement Disorders, 2006, 21, 1239-1241.	2.2	13
426	Electromyography patterns of propriospinal myoclonus can be mimicked voluntarily. Movement Disorders, 2006, 21, 1241-1244.	2.2	62
427	Regional Alpha-Synuclein Aggregation, Dopaminergic Dysregulation, and the Development of Drug-Related Visual Hallucinations in Parkinson's Disease. Journal of Neuropsychiatry and Clinical Neurosciences, 2006, 18, 149-157.	0.9	6
428	Dopaminergic Substantia Nigra Neurons Project Topographically Organized to the Subventricular Zone and Stimulate Precursor Cell Proliferation in Aged Primates. Journal of Neuroscience, 2006, 26, 2321-2325.	1.7	138
429	Chronic Oral Nicotine Normalizes Dopaminergic Function and Synaptic Plasticity in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Primates. Journal of Neuroscience, 2006, 26, 4681-4689.	1.7	69
432	Progressive Loss of Dopaminergic Neurons in the Ventral Midbrain of Adult Mice Heterozygote for Engrailed1. Journal of Neuroscience, 2007, 27, 1063-1071.	1.7	148
433	Glia Protects Neurons against Extracellular Human Neuromelanin. Neurodegenerative Diseases, 2007, 4, 218-226.	0.8	18
434	Stem-Cell-Based Strategies for the Treatment of Parkinson's Disease. Neurodegenerative Diseases, 2007, 4, 339-347.	0.8	41
436	The Functional Impact of the Intrastriatal Dopamine Neuron Grafts in Parkinsonian Rats Is Reduced with Advancing Disease. Journal of Neuroscience, 2007, 27, 5849-5856.	1.7	33
437	Kinetic and Structural Analysis of the Early Oxidation Products of Dopamine. Journal of Biological Chemistry, 2007, 282, 15597-15605.	1.6	254
438	Retinoic acid counteracts developmental defects in the substantia nigra caused by Pitx3 deficiency. Development (Cambridge), 2007, 134, 2673-2684.	1.2	134
439	Redox Imbalance. , 2007, , 183-200.		3
440	An Assessment of the Chances of Antiapoptotic Drug Therapy in Patients with Neurodegenerative Disorders. , 2007, , 467-502.		0
441	An Endogenous Serine/Threonine Protein Phosphatase Inhibitor, G-Substrate, Reduces Vulnerability in Models of Parkinson's Disease. Journal of Neuroscience, 2007, 27, 8314-8323.	1.7	33
442	Dopamine D2 receptor stimulation promotes the proliferation of neural progenitor cells in adult mouse hippocampus. NeuroReport, 2007, 18, 659-664.	0.6	24
443	Kinase signaling pathways: potential therapeutic targets in Parkinson's disease. Future Neurology, 2007, 2, 39-49.	0.9	3
444	Restoration of the Striatal Dopamine Synthesis for Parkinsons Disease:Viral Vector-Mediated Enzyme Replacement Strategy. Current Gene Therapy, 2007, 7, 109-120.	0.9	45

#	Article	IF	CITATIONS
445	Generation and Transplantation of Dopaminergic Neurons Derived from Embryonic Stem Cells. Current Stem Cell Research and Therapy, 2007, 2, 139-147.	0.6	5
446	Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease. Trends in Neurosciences, 2007, 30, 244-250.	4.2	507
447	Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry. Progress in Neurobiology, 2007, 83, 332-347.	2.8	130
448	Involvement of brain endogenous histamine in the degeneration of dopaminergic neurons in 6-hydroxydopamine-lesioned rats. Neuropharmacology, 2007, 53, 832-841.	2.0	38
449	Aging of the rat mesostriatal system: Differences between the nigrostriatal and the mesolimbic compartments. Experimental Neurology, 2007, 204, 147-161.	2.0	48
450	Generation and survival of midbrain dopaminergic neurons in weaver mice. International Journal of Developmental Neuroscience, 2007, 25, 299-307.	0.7	9
451	Distribution of the dopamine innervation in the macaque and human thalamus. NeuroImage, 2007, 34, 965-984.	2.1	144
452	How to improve neuroprotection in Parkinson's disease?. Parkinsonism and Related Disorders, 2007, 13, S332-S335.	1.1	22
453	Die Parkinson-Krankheit. , 2007, , .		12
454	Nigrostriatal Damage Preferentially Decreases a Subpopulation of α6β2* nAChRs in Mouse, Monkey, and Parkinson's Disease Striatum. Molecular Pharmacology, 2007, 72, 52-61.	1.0	103
455	Oxidative stress and Parkinson's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 83, 507-520.	1.0	73
456	Neurochemistry of Parkinson's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 83, 153-204.	1.0	4
457	Iron Storage within Dopamine Neurovesicles Revealed by Chemical Nano-Imaging. PLoS ONE, 2007, 2, e925.	1.1	159
458	Striatal delta opioid receptor binding in experimental models of Parkinson's disease and dyskinesia. Movement Disorders, 2007, 22, 28-40.	2.2	22
459	Rat model of Parkinson's disease with bilateral motor abnormalities, reversible with levodopa, and dyskinesias. Movement Disorders, 2007, 22, 533-539.	2.2	58
460	The proteomic approach in Parkinson's disease. Proteomics - Clinical Applications, 2007, 1, 1428-1435.	0.8	9
461	The significance of organellar proteomics for the nervous system. Proteomics - Clinical Applications, 2007, 1, 1436-1445.	0.8	2
462	Role of activity-dependent mechanisms in the control of dopaminergic neuron survival. Journal of Neurochemistry, 2007, 101, 289-297.	2.1	42

#	Article	IF	CITATIONS
463	Nicotinic receptors as CNS targets for Parkinson's disease. Biochemical Pharmacology, 2007, 74, 1224-1234.	2.0	90
464	Acupuncture inhibits microglial activation and inflammatory events in the MPTP-induced mouse model. Brain Research, 2007, 1131, 211-219.	1.1	111
465	Role of heparin binding growth factors in nigrostriatal dopamine system development and Parkinson's disease. Brain Research, 2007, 1147, 77-88.	1.1	71
466	Inhibition of mitogen-activated protein kinase and stimulation of Akt kinase signaling pathways: Two approaches with therapeutic potential in the treatment of neurodegenerative disease. , 2007, 114, 261-277.		99
467	Particular vulnerability of rat mesencephalic dopaminergic neurons to tetrahydrobiopterin: Relevance to Parkinson's disease. Neurobiology of Disease, 2007, 25, 112-120.	2.1	35
468	Basal ganglia dopamine loss due to defect in purine recycling. Neurobiology of Disease, 2007, 26, 396-407.	2.1	48
469	Increased vulnerability of nigrostriatal terminals in DJ-1-deficient mice is mediated by the dopamine transporter. Neurobiology of Disease, 2007, 27, 141-150.	2.1	87
470	Dementia: The Significance of Cerebral Metabolic Disturbances in Alzheimer's Disease. Relation to Parkinson's Disease. , 2007, , 189-232.		1
471	Comparative pharmacological study of free radical scavenger, nitric oxide synthase inhibitor, nitric oxide synthase activator and cyclooxygenase inhibitor against MPTP neurotoxicity in mice. Metabolic Brain Disease, 2008, 23, 335-349.	1.4	19
472	Evaluation of Estrogen Neuroprotective Effect on Nigrostriatal Dopaminergic Neurons Following 6-Hydroxydopamine Injection into the Substantia Nigra Pars Compacta or the Medial Forebrain Bundle. Neurochemical Research, 2008, 33, 1238-1246.	1.6	31
473	The comparative biology of neuromelanin and lipofuscin in the human brain. Cellular and Molecular Life Sciences, 2008, 65, 1669-1682.	2.4	166
474	Neuroprotective effect of benzylideneacetophenone derivative on the MPTP model of neurodegeneration in mice. Archives of Pharmacal Research, 2008, 31, 1098-1107.	2.7	7
475	Targeting reactive oxygen species, reactive nitrogen species and inflammation in MPTP neurotoxicity and Parkinson's disease. Neurological Sciences, 2008, 29, 293-301.	0.9	81
476	Role of reactive nitrogen and reactive oxygen species against MPTP neurotoxicity in mice. Journal of Neural Transmission, 2008, 115, 831-842.	1.4	50
477	Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions. Journal of Neurology, 2008, 255, 1231-1235.	1.8	72
478	Structural Characteristics of Human Substantia Nigra Neuromelanin and Synthetic Dopamine Melanins. Journal of Neurochemistry, 2008, 75, 2583-2589.	2.1	107
479	Brain iron pathways and their relevance to Parkinson's disease. Journal of Neurochemistry, 2008, 79, 225-236.	2.1	326
480	Increased Iron in the Substantia Nigra Compacta of the MPTP‣esioned Hemiparkinsonian African Green Monkey: Evidence from Proton Microprobe Elemental Microanalysis. Journal of Neurochemistry, 1994, 62, 134-146.	2.1	128

#	Article	IF	CITATIONS
481	Iron and Other Metals in Neuromelanin, Substantia Nigra, and Putamen of Human Brain. Journal of Neurochemistry, 1994, 62, 1097-1101.	2.1	141
482	Nonmotor symptoms in Parkinson's disease: Investigating earlyâ€phase onset of behavioral dysfunction in the 6â€hydroxydopamineâ€lesioned rat model. Journal of Neuroscience Research, 2008, 86, 2050-2061.	1.3	110
483	Apathy following subthalamic stimulation in Parkinson disease: A dopamine responsive symptom. Movement Disorders, 2008, 23, 964-969.	2.2	193
484	Protective effect of captopril and enaraprilat, angiotensin-converting enzyme inhibitors, on para-nonylphenol-induced OH generation and dopamine efflux in rat striatum. Toxicology, 2008, 250, 96-99.	2.0	13
485	Transforming Growth Factor β Cooperates with Persephin for Dopaminergic Phenotype Induction. Stem Cells, 2008, 26, 1683-1694.	1.4	31
486	Oxidative Stress in Parkinson's Disease. Annals of the New York Academy of Sciences, 2008, 1147, 93-104.	1.8	392
487	Neuromelanin selectively induces apoptosis in dopaminergic SH‣Y5Y cells by deglutathionylation in mitochondria: involvement of the protein and melanin component. Journal of Neurochemistry, 2008, 105, 2489-2500.	2.1	34
488	Neuromelanin can protect against ironâ€mediated oxidative damage in system modeling iron overload of brain aging and Parkinson's disease. Journal of Neurochemistry, 2008, 106, 1866-1875.	2.1	174
489	Cyclooxygenaseâ€2 deficiency modifies the neurochemical effects, motor impairment and coâ€morbid anxiety provoked by paraquat administration in mice. European Journal of Neuroscience, 2008, 28, 707-716.	1.2	37
490	Clinical Neuroanatomy: A Neurobehavioral Approach. , 2008, , .		0
491	Self-Amplification of Nigral Degeneration in Parkinson's Disease: A Hypothesis. International Journal of Neuroscience, 2008, 118, 1741-1758.	0.8	13
492	Neuroanatomy and Pathology of Sporadic Parkinson's Disease. Advances in Anatomy, Embryology and Cell Biology, 2008, , .	1.0	85
494	Cyclooxygenase-2 is involved in oxidative damage and alpha-synuclein accumulation in dopaminergic cells. Neuroscience Letters, 2008, 436, 205-209.	1.0	25
495	Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1: A new genetic model for Parkinson's disease?. Parkinsonism and Related Disorders, 2008, 14, S107-S111.	1.1	18
496	Neuromelanin-bound ferric iron as an experimental model of dopaminergic neurodegeneration in Parkinson's disease. Parkinsonism and Related Disorders, 2008, 14, S185-S188.	1.1	30
497	α-synuclein and Parkinson's disease: a proteomic view. Expert Review of Proteomics, 2008, 5, 239-248.	1.3	31
498	Human-based studies on α-synuclein deposition and relationship to Parkinson's disease symptoms. Experimental Neurology, 2008, 209, 12-21.	2.0	39
499	Intracellular Chemical Imaging of the Developmental Phases of Human Neuromelanin Using Synchrotron X-ray Microspectroscopy, Analytical Chemistry, 2008, 80, 9557-9566	3.2	100

ARTICLE IF CITATIONS # Mesencephalic Human Neural Progenitor Cells Transplanted into the Adult Hemiparkinsonian Rat Striatum Lack Dopaminergic Differentiation but Improve Motor Behavior. Cells Tissues Organs, 2008, 500 1.3 8 188, 373-383. Neuroprotective activities of catalpol on MPP+/MPTP-induced neurotoxicity. Neurological Research, 501 2008, 30, 639-644. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of 502 Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 3.3 354 2008, 105, 18578-18583. Analysis of organelles within the nervous system: impact on brain and organelle functions. Expert Review of Proteomics, 2008, 5, 333-351. Functional Convergence of Dopaminergic and Cholinergic Input Is Critical for 504 1.7 62 Hippocampus-Dependent Working Memory. Journal of Neuroscience, 2008, 28, 7797-7807. Metal Catalyzed Oxidation of Alpha-Synuclein – A Role for Oligomerization in Pathology?. Current Alzheimer Research, 2008, 5, 599-606. Perfusion Magnetic Resonance Imaging in Psychiatry. Topics in Magnetic Resonance Imaging, 2008, 19, 506 0.7 44 111-130. Paraquat-induced Neurodegeneration: a Model of Parkinson's Disease Risk Factors., 2008, , 207-217. 508 The MPTP Mouse Model of Parkinson's Disease: the True, the False, and the Unknown., 2008, , 147-158. 1 Nurr1 Is Required for Maintenance of Maturing and Adult Midbrain Dopamine Neurons. Journal of 509 1.7 Neuroscience, 2009, 29, 15923-15932. Single Nigrostriatal Dopaminergic Neurons Form Widely Spread and Highly Dense Axonal 510 670 1.7 Arborizations in the Neostriatum. Journal of Neuroscience, 2009, 29, 444-453. Genotypic analysis of gene expression in the dissection of the aetiology of complex neurological and 511 3.8 psychiatric diseases. Briefings in Functional Genomics & Proteomics, 2009, 8, 194-198. Dopamine Depletion Induces Distinct Compensatory Gene Expression Changes in DARPP-32 Signal 512 Transduction Cascades of Striatonigral and Striatopallidal Neurons. Journal of Neuroscience, 2009, 1.7 25 29, 6828-6839. Kinetics of Microglial Activation and Degeneration of Dopamine-Containing Neurons in a Rat Model of Parkinson Disease Induced by 6-Hydroxydopamine. Journal of Neuropathology and Experimental Neurology, 2009, 68, 1092-1102. Low dose rotenone treatment causes selective transcriptional activation of cell death related 514 2.1 31 pathways in dopaminergic neurons in vivo. Neurobiology of Disease, 2009, 33, 182-192. Dopamine transporter glycosylation correlates with the vulnerability of midbrain dopaminergic cells in Parkinson's disease. Neurobiology of Disease, 2009, 36, 494-508. Role of nuclear transcription factor kappa B (NF-kappaB) for MPTP 516 (1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine)-induced apoptosis in nigral neurons of mice. Experimental 0.9 59 and Molecular Pathology, 2009, 86, 57-64. Neuroinflammation in Parkinson's disease: a target for neuroprotection?. Lancet Neurology, The, 1,648 2009, 8, 382-397.

#	Article	IF	CITATIONS
518	Basal ganglia and thalamic input from neurons located within the ventral tier cell cluster region of the substantia nigra pars compacta in the rat. Journal of Comparative Neurology, 2010, 518, 1283-1300.	0.9	20
519	Mean-field modeling of the basal ganglia-thalamocortical system. II. Journal of Theoretical Biology, 2009, 257, 664-688.	0.8	100
520	Modulation of α-Synuclein Aggregation by Dopamine: A Review. Neurochemical Research, 2009, 34, 1838-1846.	1.6	101
521	Ventral Mesencephalon Astrocytes Are More Efficient Than Those of Other Regions in Inducing Dopaminergic Neurons Through Higher Expression Level of TGF-β3. Journal of Molecular Neuroscience, 2009, 37, 288-300.	1.1	6
522	Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle. Molecular Neurodegeneration, 2009, 4, 24.	4.4	118
523	Neuronal cell replacement in Parkinson's disease. Journal of Internal Medicine, 2009, 266, 358-371.	2.7	59
524	Evidence for a dopaminergic innervation of the pedunculopontine nucleus in monkeys, and its drastic reduction after MPTP intoxication. Journal of Neurochemistry, 2009, 110, 1321-1329.	2.1	47
525	Proteomics in human Parkinson's disease research. Journal of Proteomics, 2009, 73, 10-29.	1.2	98
526	Unexpected expression of α- and β-globin in mesencephalic dopaminergic neurons and glial cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15454-15459.	3.3	240
527	Identification of L-ferritin in Neuromelanin Granules of the Human Substantia Nigra. Molecular and Cellular Proteomics, 2009, 8, 1832-1838.	2.5	51
528	Iron Deficiency and Excess in the Brain: Implications for Cognitive Impairment and Neurodegeneration. , 2009, , 95-123.		0
529	Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson's disease: Critical role for the astrocyte. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2933-2938.	3.3	520
531	Parkinson's disease: The syndrome, the pathogenesis and pathophysiology. Cortex, 2009, 45, 915-921.	1.1	139
532	Walking pattern analysis after unilateral 6-OHDA lesion and transplantation of foetal dopaminergic progenitor cells in rats. Behavioural Brain Research, 2009, 199, 317-325.	1.2	30
533	Inflammatory priming of the substantia nigra influences the impact of later paraquat exposure: Neuroimmune sensitization of neurodegeneration. Neurobiology of Aging, 2009, 30, 1361-1378.	1.5	72
534	Interplay between Cytosolic Dopamine, Calcium, and α-Synuclein Causes Selective Death of Substantia Nigra Neurons. Neuron, 2009, 62, 218-229.	3.8	456
535	Foxa1 and Foxa2 function both upstream of and cooperatively with Lmx1a and Lmx1b in a feedforward loop promoting mesodiencephalic dopaminergic neuron development. Developmental Biology, 2009, 333, 386-396.	0.9	139
536	Dopamine and the Dopamine Oxidation Product 5,6-Dihydroxylindole Promote Distinct On-Pathway and Off-Pathway Aggregation of α-Synuclein in a pH-Dependent Manner. Journal of Molecular Biology, 2009, 387, 771-785.	2.0	86

#	Article	IF	CITATIONS
537	Phenotype, Compartmental Organization and Differential Vulnerability of Nigral Dopaminergic Neurons. , 2009, , 21-37.		4
538	Iron transport in Parkinson's disease. Parkinsonism and Related Disorders, 2009, 15, S209-S211.	1.1	34
539	P0372 THE PROTECTIVE EFFECT OF VITAMIN E ON LOCUS COERULEUS IN EARLY MODEL OF PARKINSON'S DISEASE IN RAT: IMMUNOREACTIVITY EVIDENCE. European Journal of Internal Medicine, 2009, 20, S127.	1.0	0
540	Retention of the cyanobacterial neurotoxin <i>β</i> â€ <i>N</i> â€methylaminoâ€ <scp>l</scp> â€alanine in melanin and neuromelaninâ€containing cells – a possible link between Parkinsonâ€dementia complex and pigmentary retinopathy. Pigment Cell and Melanoma Research, 2009, 22, 120-130.	1.5	72
541	Upregulation of NAD(P)H:Quinone Oxidoreductase (NQO1) in Glial Cells of 6-Hydroxydopamine-Lesioned Substantia Nigra in the Rat. Advances in Behavioral Biology, 2009, , 411-429.	0.2	1
542	The Nigrostriatal Pathway: Axonal Collateralization and Compartmental Specificity. , 2009, , 49-58.		17
543	Gene Therapy for Neurological Disorders: Challenges and Future Prospects for the Use of Growth Factors for the Treatment of Parkinsons Disease. Current Gene Therapy, 2009, 9, 375-388.	0.9	45
544	Convergence of multiple hits that could underlie Parkinson's disease. Future Neurology, 2009, 4, 525-529.	0.9	Ο
545	Functional Genomics of Brain Aging and Alzheimers Disease: Focus on Selective Neuronal Vulnerability. Current Genomics, 2010, 11, 618-633.	0.7	81
547	Role of the glucose-dependent insulinotropic polypeptide and its receptor in the central nervous system: therapeutic potential in neurological diseases. Behavioural Pharmacology, 2010, 21, 394-408.	0.8	51
548	Neuroprotective and Anti-inflammatory Activities of Ketogenic Diet on MPTP-induced Neurotoxicity. Journal of Molecular Neuroscience, 2010, 42, 145-153.	1.1	129
549	Neuron-selective changes in RNA transcripts related to energy metabolism in toxic models of parkinsonism in rodents. Neurobiology of Disease, 2010, 38, 476-481.	2.1	26
550	The dopamine transporter is differentially regulated after dopaminergic lesion. Neurobiology of Disease, 2010, 40, 518-530.	2.1	28
551	α-Synuclein overexpression increases dopamine toxicity in BE(2)-M17 cells. BMC Neuroscience, 2010, 11, 41.	0.8	44
552	Different striatal D2-like receptor function in an early stage after unilateral striatal lesion and medial forebrain bundle lesion in rats. Brain Research, 2010, 1317, 227-235.	1.1	23
553	VTA neurons show a potentially protective transcriptional response to MPTP. Brain Research, 2010, 1343, 1-13.	1.1	28
554	Expression of the paralogous tyrosine hydroxylase encoding genes <i>th1</i> and <i>th2</i> reveals the full complement of dopaminergic and noradrenergic neurons in zebrafish larval and juvenile brain. Journal of Comparative Neurology, 2010, 518, 423-438.	0.9	158
555	Genetic dissection of dopaminergic and noradrenergic contributions to catecholaminergic tracts in early larval zebrafish. Journal of Comparative Neurology, 2010, 518, 439-458.	0.9	108

#	Article	IF	CITATIONS
556	Tryptamine-derived alkaloids from Annonaceae exerting neurotrophin-like properties on primary dopaminergic neurons. Bioorganic and Medicinal Chemistry, 2010, 18, 5103-5113.	1.4	11
557	Iron elevations in the aging Parkinsonian brain: a consequence of impaired iron homeostasis?. Journal of Neurochemistry, 2010, 112, 332-339.	2.1	61
558	Vulnerability of mesostriatal dopaminergic neurons in Parkinson's disease. Frontiers in Neuroanatomy, 2010, 4, 140.	0.9	55
559	Subtle Cardiovascular Dysfunction in the Unilateral 6-Hydroxydopamine-Lesioned Rat. Parkinson's Disease, 2010, 2010, 1-10.	0.6	14
560	<i>LRRK2</i> G2019S Mutation Induces Dendrite Degeneration through Mislocalization and Phosphorylation of Tau by Recruiting Autoactivated GSK3β. Journal of Neuroscience, 2010, 30, 13138-13149.	1.7	153
561	Selective neuronal vulnerability to oxidative stress in the brain. Frontiers in Aging Neuroscience, 2010, 2, 12.	1.7	653
562	Resveratrol Protects Dopamine Neurons Against Lipopolysaccharide-Induced Neurotoxicity through Its Anti-Inflammatory Actions. Molecular Pharmacology, 2010, 78, 466-477.	1.0	162
563	Bioavailability and catalytic properties of copper and iron for Fenton chemistry in human cerebrospinal fluid. Redox Report, 2010, 15, 29-35.	1.4	27
564	Enhancement of dopamine sensing by layer-by-layer assembly of PVI–dmeOs and Nafion on carbon nanotubes. Nanotechnology, 2010, 21, 215601.	1.3	24
565	Morbo di Parkinson idiopatico: aspetti clinici, diagnostici e terapeutici. EMC - Neurologia, 2010, 10, 1-29.	0.0	0
566	Effects of Caffeine in Parkinson's Disease: From Neuroprotection to the Management of Motor and Non-Motor Symptoms. Journal of Alzheimer's Disease, 2010, 20, S205-S220.	1.2	128
567	Matrix metalloproteinase-3 contributes to vulnerability of the nigral dopaminergic neurons. Neurochemistry International, 2010, 56, 161-167.	1.9	15
568	Ageing enhances α-synuclein, ubiquitin and endoplasmic reticular stress protein expression in the nigral neurons of Asian Indians. Neurochemistry International, 2010, 57, 530-539.	1.9	41
569	The probable relation between Toxoplasma gondii and Parkinson's disease. Neuroscience Letters, 2010, 475, 129-131.	1.0	107
570	Differentiation of human ES and Parkinson's disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Molecular and Cellular Neurosciences, 2010, 45, 258-266.	1.0	203
571	Striatal 6-OHDA lesion in mice: Investigating early neurochemical changes underlying Parkinson's disease. Behavioural Brain Research, 2010, 208, 137-143.	1.2	45
572	Microdialysis study of striatal dopamine in MPTP-hemilesioned rats challenged with apomorphine and amphetamine. Behavioural Brain Research, 2010, 215, 63-70.	1.2	8
573	Dopaminergic cells in the periaqueductal grey matter of MPTP-treated monkeys and mice; patterns of survival and effect of deep brain stimulation and lesion of the subthalamic nucleus. Parkinsonism and Related Disorders, 2010, 16, 338-344.	1.1	27

#	Article	IF	CITATIONS
574	Selective cell death in neurodegeneration: Why are some neurons spared in vulnerable regions?. Progress in Neurobiology, 2010, 92, 316-329.	2.8	106
575	Parkinson's disease: Insights from non-traditional model organisms. Progress in Neurobiology, 2010, 92, 558-571.	2.8	60
576	Heterogeneous dopamine populations project to specific subregions of the primate amygdala. Neuroscience, 2010, 165, 1501-1518.	1.1	25
577	Inhibition of Respiratory Growth and Survival in Yeast by Dopamine and Counteraction with Ascorbate or Glutathione. Journal of Biomolecular Screening, 2010, 15, 297-301.	2.6	15
578	Protective effects of octacosanol on 6-hydroxydopamine-induced Parkinsonism in rats via regulation of ProNGF and NGF signaling. Acta Pharmacologica Sinica, 2010, 31, 765-774.	2.8	58
579	Engrailed protects mouse midbrain dopaminergic neurons against mitochondrial complex I insults. Nature Neuroscience, 2011, 14, 1260-1266.	7.1	129
581	TRPM1: New Trends for an Old TRP. Advances in Experimental Medicine and Biology, 2011, 704, 135-145.	0.8	20
582	Basal Ganglia. , 2011, , 495-564.		3
583	Single-Cell Redox Imaging Demonstrates a Distinctive Response of Dopaminergic Neurons to Oxidative Insults. Antioxidants and Redox Signaling, 2011, 15, 855-871.	2.5	70
584	Novel MAO-B inhibitors. International Review of Neurobiology, 2011, 100, 217-236.	0.9	5
585	Rotenone induced neurotoxicity in rat brain areas: A histopathological study. Neuroscience Letters, 2011, 501, 123-127.	1.0	39
586	Maternal separation affects the number, proliferation and apoptosis of glia cells in the substantia nigra and ventral tegmental area of juvenile rats. Neuroscience, 2011, 173, 1-18.	1.1	49
587	The impact of maternal separation on the number of tyrosine hydroxylase-expressing midbrain neurons during different stages of ontogenesis. Neuroscience, 2011, 182, 43-61.	1.1	40
588	Dissociation of Progressive Dopaminergic Neuronal Death and Behavioral Impairments by Bax Deletion in a Mouse Model of Parkinson's Diseases. PLoS ONE, 2011, 6, e25346.	1.1	31
589	Possible Involvement of Complement Factor C1q in the Clearance of Extracellular Neuromelanin From the Substantia Nigra in Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2011, 70, 125-132.	0.9	74
590	The Intranasal Administration of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP): A New Rodent Model to Test Palliative and Neuroprotective Agents for Parkinson's disease. Current Pharmaceutical Design, 2011, 17, 489-507.	0.9	75
591	P25α / TPPP expression increases plasma membrane presentation of the dopamine transporter and enhances cellular sensitivity to dopamine toxicity. FEBS Journal, 2011, 278, 493-505.	2.2	3

#	Article	IF	CITATIONS
593	Upregulation of microglial C1q expression has no effects on nigrostriatal dopaminergic injury in the MPTP mouse model of Parkinson disease. Journal of Neuroimmunology, 2011, 236, 39-46.	1.1	34
594	Neuromelanin, neurotransmitter status and brainstem location determine the differential vulnerability of catecholaminergic neurons to mitochondrial DNA deletions. Molecular Brain, 2011, 4, 43.	1.3	39
595	In vitro optimization of retinoic acid–induced neuritogenesis and TH endogenous expression in human SH-SY5Y neuroblastoma cells by the antioxidant Trolox. Molecular and Cellular Biochemistry, 2011, 358, 325-334.	1.4	23
596	Functions of the nigrostriatal dopaminergic synapse and the use of neurotransplantation in Parkinson's disease. Journal of Neurology, 2011, 258, 1393-1405.	1.8	36
597	Substantia nigra hyperechogenicity is a risk marker of Parkinson's disease: no. Journal of Neural Transmission, 2011, 118, 607-612.	1.4	14
598	The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson's disease. Neurobiology of Disease, 2011, 43, 364-371.	2.1	217
599	Striatal Dopaminergic Fiber Recovery After Acute I-DOPA Treatment in 6-Hydroxydopamine (6-OHDA) Lesioned Rats. Cell Biochemistry and Biophysics, 2011, 59, 49-56.	0.9	4
600	Neuromelanin Activates Microglia and Induces Degeneration of Dopaminergic Neurons: Implications for Progression of Parkinson's Disease. Neurotoxicity Research, 2011, 19, 63-72.	1.3	208
601	En1 and Wnt signaling in midbrain dopaminergic neuronal development. Neural Development, 2011, 6, 23.	1.1	92
602	Inhaled Hydrogen Sulfide Prevents Neurodegeneration and Movement Disorder in a Mouse Model of Parkinson's Disease. Antioxidants and Redox Signaling, 2011, 15, 343-352.	2.5	149
603	Neuroprotection of midbrain dopamine neurons by nicotine is gated by cytoplasmic Ca ²⁺ . FASEB Journal, 2011, 25, 2563-2573.	0.2	72
604	Cell Based Therapies in Parkinson's Disease. Annals of Neurosciences, 2011, 18, 76-83.	0.9	9
605	Current concepts on the etiology and pathogenesis of Parkinson disease. , 2011, , 93-118.		2
606	Midbrain Dopamine Neurons Associated with Reward Processing Innervate the Neurogenic Subventricular Zone. Journal of Neuroscience, 2011, 31, 13078-13087.	1.7	45
607	Magnetic Resonance Spectroscopic Methods for the Assessment of Metabolic Functions in the Diseased Brain. Current Topics in Behavioral Neurosciences, 2011, 11, 169-198.	0.8	14
608	The Use of Stem Cells in Regenerative Medicine for Parkinson's and Huntington's Diseases. Current Medicinal Chemistry, 2012, 19, 6018-6035.	1.2	8
609	Survival of Dopaminergic Amacrine Cells after Near-Infrared Light Treatment in MPTP-Treated Mice. ISRN Neurology, 2012, 2012, 1-8.	1.5	27
610	Parkinson's Disease in a Dish: What Patient Specific-Reprogrammed Somatic Cells Can Tell Us about Parkinson's Disease, If Anything?. Stem Cells International, 2012, 2012, 1-10.	1.2	4

#	Article	IF	CITATIONS
611	Quantitative imaging of Cu, Fe, Mn and Zn in the L-DOPA-treated unilateral 6-hydroxydopamine Parkinson's disease mouse model by LA-ICP-MS. Biomedical Spectroscopy and Imaging, 2012, 1, 125-136.	1.2	15
612	Immunopathogenesis of Neurodegenerative Diseases: Current Therapeutic Models of Neuroprotection with Special Reference to Natural Products. Current Pharmaceutical Design, 2012, 18, 34-42.	0.9	48
613	Neuroprotective effects of agmatine in mice infused with a single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Behavioural Brain Research, 2012, 235, 263-272.	1.2	39
614	Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit. Human Molecular Genetics, 2012, 21, 4817-4826.	1.4	144
615	Lewy pathology is not the first sign of degeneration in vulnerable neurons in Parkinson disease. Neurology, 2012, 79, 2307-2314.	1.5	127
616	Neuroinflammation in Parkinson's disease. Parkinsonism and Related Disorders, 2012, 18, S210-S212.	1.1	516
617	Brain-resident microglia predominate over infiltrating myeloid cells in activation, phagocytosis and interaction with T-lymphocytes in the MPTP mouse model of Parkinson disease. Experimental Neurology, 2012, 238, 183-191.	2.0	92
618	Neuregulin-1 receptor tyrosine kinase ErbB4 is upregulated in midbrain dopaminergic neurons in Parkinson disease. Neuroscience Letters, 2012, 531, 209-214.	1.0	22
619	Genetic dissection of midbrain dopamine neuron development in vivo. Developmental Biology, 2012, 372, 249-262.	0.9	17
620	Regional changes in type 1 cannabinoid receptor availability in Parkinson's disease in vivo. Neurobiology of Aging, 2012, 33, 620.e1-620.e8.	1.5	82
621	Anxiety in Parkinson's disease: A critical review of experimental and clinical studies. Neuropharmacology, 2012, 62, 115-124.	2.0	167
622	Trends and Issues in Characterizing Early Cognitive Changes in Parkinson's Disease. Current Neurology and Neuroscience Reports, 2012, 12, 695-702.	2.0	9
623	Gold Nanostructures on Flexible Substrates as Electrochemical Dopamine Sensors. ACS Applied Materials & Interfaces, 2012, 4, 5570-5575.	4.0	124
624	Living on the edge with too many mouths to feed: Why dopamine neurons die. Movement Disorders, 2012, 27, 1478-1483.	2.2	343
625	Physical activity and environmental enrichment regulate the generation of neural precursors in the adult mouse substantia nigra in a dopamine-dependent manner. BMC Neuroscience, 2012, 13, 132.	0.8	46
627	Activity-dependent neurotransmitter respecification. Nature Reviews Neuroscience, 2012, 13, 94-106.	4.9	136
628	Systems Biology of Parkinson's Disease. , 2012, , .		8
629	Substantia Nigra, Ventral Tegmental Area, and Retrorubral Fields. , 2012, , 439-455.		23

	Сітатіс	on Report	
#	Article	IF	CITATIONS
630	Brain Imaging in Behavioral Neuroscience. Current Topics in Behavioral Neurosciences, 2012, , .	0.8	3
631	G-substrate. Progress in Molecular Biology and Translational Science, 2012, 106, 381-416.	0.9	12
632	Colloids as Mobile Substrates for the Implantation and Integration of Differentiated Neurons into the Mammalian Brain. PLoS ONE, 2012, 7, e30293.	1.1	17
633	The emerging role of norepinephrine in cognitive dysfunctions of Parkinson's disease. Frontiers in Behavioral Neuroscience, 2012, 6, 48.	1.0	100
634	The effects of seed extract of Mucuna gigantea on the expression of neural markers in mesenchymal stem cells. Journal of Medicinal Plants Research, 2012, 6, .	0.2	4
635	Loss of Functional Alpha-Synuclein: A Toxic Event in Parkinson's Disease?. Journal of Parkinson's Disease, 2012, 2, 249-267.	1.5	72
636	Lewy pathology and neurodegeneration in premotor Parkinson's disease. Movement Disorders, 2012, 27, 597-607.	2.2	141
637	Reserve pool neuron transmitter respecification: Novel neuroplasticity. Developmental Neurobiology, 2012, 72, 465-474.	1.5	35
638	Neuromelanin enhances the toxicity of α-synuclein in SK-N-SH cells. Journal of Neural Transmission, 2012, 119, 685-691.	1.4	18
639	CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochimica Acta, 2012, 61, 78-86.	2.6	220
640	Voltage-gated calcium channels and Parkinson's disease. , 2012, 133, 324-333.		37
641	Peroxiredoxin distribution in the mouse brain with emphasis on neuronal populations affected in neurodegenerative disorders. Journal of Comparative Neurology, 2012, 520, 258-280.	0.9	79
642	Intranasal Administration of Neurotoxicants in Animals: Support for the Olfactory Vector Hypothesis of Parkinson's Disease. Neurotoxicity Research, 2012, 21, 90-116.	1.3	76
643	Biomarker candidates of neurodegeneration in Parkinson's disease for the evaluation of disease-modifying therapeutics. Journal of Neural Transmission, 2012, 119, 39-52.	1.4	68
644	Neuronal vulnerability, pathogenesis, and Parkinson's disease. Movement Disorders, 2013, 28, 41-50.	2.2	199
645	Animal models of Parkinson's disease: Limits and relevance to neuroprotection studies. Movement Disorders, 2013, 28, 61-70.	2.2	156
646	Probucol Affords Neuroprotection in a 6-OHDA Mouse Model of Parkinson's Disease. Neurochemical Research, 2013, 38, 660-668.	1.6	37
647	Melanin affinity and its possible role in neurodegeneration. Journal of Neural Transmission, 2013, 120, 1623-1630.	1.4	39

#	Article	IF	CITATIONS
648	Variability in neuronal expression of dopamine receptors and transporters in the substantia nigra. Movement Disorders, 2013, 28, 1351-1359.	2.2	20
649	Long-term effects of ionising radiation on the brain: cause for concern?. Radiation and Environmental Biophysics, 2013, 52, 5-16.	0.6	42
650	Neuronal vulnerability, pathogenesis, and Parkinson's disease. Movement Disorders, 2013, 28, 715-724.	2.2	145
651	Specific needs of dopamine neurons for stimulation in order to survive: implication for Parkinson disease. FASEB Journal, 2013, 27, 3414-3423.	0.2	59
652	Parkinson Disease Protein DJ-1 Binds Metals and Protects against Metal-induced Cytotoxicity. Journal of Biological Chemistry, 2013, 288, 22809-22820.	1.6	74
653	Hemoglobin is present as a canonical α2β2 tetramer in dopaminergic neurons. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1939-1943.	1.1	41
654	Disease duration and the integrity of the nigrostriatal system in Parkinson's disease. Brain, 2013, 136, 2419-2431.	3.7	965
655	Oxidative and nitrative alphaâ€synuclein modifications and proteostatic stress: implications for disease mechanisms and interventions in synucleinopathies. Journal of Neurochemistry, 2013, 125, 491-511.	2.1	116
656	Glial cell-line derived neurotrophic factor (GDNF) replacement attenuates motor impairments and nigrostriatal dopamine deficits in 12-month-old mice with a partial deletion of GDNF. Pharmacology Biochemistry and Behavior, 2013, 104, 10-19.	1.3	17
657			
007	Acupuncture Treatment for Parkinsona€™s Disease. , 2013, , 215-253.		3
658	Acupuncture Treatment for Parkinsona€™s Disease. , 2013, , 215-253. Nucleotide excision repair in chronic neurodegenerative diseases. DNA Repair, 2013, 12, 568-577.	1.3	25
658 659	Acupuncture Treatment for Parkinsona€™s Disease., 2013, , 215-253. Nucleotide excision repair in chronic neurodegenerative diseases. DNA Repair, 2013, 12, 568-577. Gremlin is a novel VTA derived neuroprotective factor for dopamine neurons. Brain Research, 2013, 1500, 88-98.	1.3	3 25 10
658 659 660	Acupuncture Treatment for Parkinsona Ms Disease., 2013, 215-253. Nucleotide excision repair in chronic neurodegenerative diseases. DNA Repair, 2013, 12, 568-577. Gremlin is a novel VTA derived neuroprotective factor for dopamine neurons. Brain Research, 2013, 1500, 88-98. Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4087-4092.	1.3 1.1 3.3	3 25 10 233
658 659 660 661	Acupuncture Treatment for Parkinsona€™s Disease., 2013, , 215-253. Nucleotide excision repair in chronic neurodegenerative diseases. DNA Repair, 2013, 12, 568-577. Gremlin is a novel VTA derived neuroprotective factor for dopamine neurons. Brain Research, 2013, 1500, 88-98. Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4087-4092. <scp>AGC </scp> lâ€malate aspartate shuttle activity is critical for dopamine handling in the nigrostriatal pathway. Journal of Neurochemistry, 2013, 124, 347-362.	1.3 1.1 3.3 2.1	3 25 10 233 15
658 659 660 661 662	Acupuncture Treatment for Parkinsona€ ™s Disease., 2013, 215-253. Nucleotide excision repair in chronic neurodegenerative diseases. DNA Repair, 2013, 12, 568-577. Gremlin is a novel VTA derived neuroprotective factor for dopamine neurons. Brain Research, 2013, 1500, 88-98. Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4087-4092. <scp>AGC</scp> 1â€malate aspartate shuttle activity is critical for dopamine handling in the nigrostriatal pathway. Journal of Neurochemistry, 2013, 124, 347-362. α-Synuclein Elevation in Human Neurodegenerative Diseases: Experimental, Pathogenetic, and Therapeutic Implications. Molecular Neurobiology, 2013, 47, 484-494.	1.3 1.1 3.3 2.1 1.9	3 25 10 233 15 45
 658 659 660 661 662 663 	Acupuncture Treatment for Parkinsona€ ™s Disease., 2013, , 215-253. Nucleotide excision repair in chronic neurodegenerative diseases. DNA Repair, 2013, 12, 568-577. Gremlin is a novel VTA derived neuroprotective factor for dopamine neurons. Brain Research, 2013, 1500, 88-98. Large î±-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4087-4092. <scp>AGC</scp> 1â€malate aspartate shuttle activity is critical for dopamine handling in the nigrostriatal pathway. Journal of Neurochemistry, 2013, 124, 347-362. α-Synuclein Elevation in Human Neurodegenerative Diseases: Experimental, Pathogenetic, and Therapeutic Implications. Molecular Neurobiology, 2013, 47, 484-494. The pathology roadmap in Parkinson disease. Prion, 2013, 7, 85-91.	1.3 1.1 3.3 2.1 1.9 0.9	3 25 10 233 15 45 56
 658 659 660 661 662 663 664 	Acupuncture Treatment for Parkinsonat Ms Disease., 2013, 215-253. Nucleotide excision repair in chronic neurodegenerative diseases. DNA Repair, 2013, 12, 568-577. Gremlin is a novel VTA derived neuroprotective factor for dopamine neurons. Brain Research, 2013, 1500, 88-98. Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4087-4092. <scp>AGC </scp> lâ€malate aspartate shuttle activity is critical for dopamine handling in the nigrostriatal pathway. Journal of Neurochemistry, 2013, 124, 347-362. α-Synuclein Elevation in Human Neurodegenerative Diseases: Experimental, Pathogenetic, and Therapeutic Implications. Molecular Neurobiology, 2013, 47, 484-494. The pathology roadmap in Parkinson disease. Prion, 2013, 7, 85-91. Synthesis and structural characterization of soluble neuromelanin analogs provides important clues to its biosynthesis. Journal of Biological Inorganic Chemistry, 2013, 18, 81-93.	1.3 1.1 3.3 2.1 1.9 0.9 1.1	3 25 10 233 15 45 56 27

#	Article	IF	CITATIONS
666	Mouse models of Parkinson's disease associated with mitochondrial dysfunction. Molecular and Cellular Neurosciences, 2013, 55, 87-94.	1.0	22
667	Schizophrenia and Parkinson's disease: Selected therapeutic advances beyond the dopaminergic etiologies. Alexandria Journal of Medicine, 2013, 49, 287-291.	0.4	26
668	Prevention of Brain Disorders by Nicotine. , 2013, , 1469-1501.		0
669	Atorvastatin improves cognitive, emotional and motor impairments induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats, an experimental model of Parkinson's disease. Brain Research, 2013, 1513, 103-116.	1.1	49
670	The Peptidyl-prolyl Isomerase Pin1 Up-regulation and Proapoptotic Function in Dopaminergic Neurons. Journal of Biological Chemistry, 2013, 288, 21955-21971.	1.6	68
671	The α7 nAChR Agonist PNU-282987 Reduces Inflammation and MPTP-Induced Nigral Dopaminergic Cell Loss in Mice. Journal of Parkinson's Disease, 2013, 3, 161-172.	1.5	46
672	Innate Immunity and Neuroinflammation. Mediators of Inflammation, 2013, 2013, 1-19.	1.4	149
673	Gastrodin Protects Apoptotic Dopaminergic Neurons in a Toxin-Induced Parkinson's Disease Model. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-13.	0.5	102
674	TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proceedings of the United States of America, 2013, 110, E1817-26.	3.3	600
675	The Role of Oxidative Stress in Parkinson's Disease. Journal of Parkinson's Disease, 2013, 3, 461-491.	1.5	1,218
676	Parkinson's Disease: From Genetics to Treatments. Cell Transplantation, 2013, 22, 639-652.	1.2	21
677	Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Scientific Reports, 2013, 3, 1393.	1.6	134
678	Characterization of Cognitive Deficits in Rats Overexpressing Human Alpha-Synuclein in the Ventral Tegmental Area and Medial Septum Using Recombinant Adeno-Associated Viral Vectors. PLoS ONE, 2013, 8, e64844.	1.1	21
679	Molecular Marker Differences Relate to Developmental Position and Subsets of Mesodiencephalic Dopaminergic Neurons. PLoS ONE, 2013, 8, e76037.	1.1	41
680	Orexinergic Input to Dopaminergic Neurons of the Human Ventral Tegmental Area. PLoS ONE, 2013, 8, e83029.	1.1	24
681	The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson's disease. Frontiers in Computational Neuroscience, 2013, 7, 13.	1.2	264
682	Decomposition of abnormal free locomotor behavior in a rat model of Parkinson's disease. Frontiers in Systems Neuroscience, 2013, 7, 95.	1.2	15
683	DJ-1 Interacts with and Regulates Paraoxonase-2, an Enzyme Critical for Neuronal Survival in Response to Oxidative Stress. PLoS ONE, 2014, 9, e106601.	1.1	42

#	Article	IF	CITATIONS
684	Behavioral Phenotyping of Parkin-Deficient Mice: Looking for Early Preclinical Features of Parkinson's Disease. PLoS ONE, 2014, 9, e114216.	1.1	94
685	The degeneration and replacement of dopamine cells in Parkinsonââ,¬â,,¢s disease: the role of aging. Frontiers in Neuroanatomy, 2014, 8, 80.	0.9	28
686	Molecular mechanisms of dopaminergic subset specification: fundamental aspects and clinical perspectives. Cellular and Molecular Life Sciences, 2014, 71, 4703-4727.	2.4	51
687	7 tesla magnetic resonance imaging: A closer look at substantia nigra anatomy in Parkinson's disease. Movement Disorders, 2014, 29, 1574-1581.	2.2	113
688	DJ-1 interacts with RACK1 and protects neurons from oxidative-stress-induced apoptosis. Biochemical Journal, 2014, 462, 489-497.	1.7	28
689	L-dopa reverses behavioral deficits in the Pitx3 mouse fetus Behavioral Neuroscience, 2014, 128, 749-759.	0.6	2
690	Proteomics as a new paradigm to tackle Parkinson's disease research challenges. Translational Proteomics, 2014, 4-5, 1-17.	1.2	11
691	Evolutionary and biomedical consequences of internal melanins. Pigment Cell and Melanoma Research, 2014, 27, 327-338.	1.5	60
692	Protective and toxic roles of dopamine in Parkinson's disease. Journal of Neurochemistry, 2014, 129, 898-915.	2.1	366
693	Arabidopsis AtPARK13, Which Confers Thermotolerance, Targets Misfolded Proteins. Journal of Biological Chemistry, 2014, 289, 14458-14469.	1.6	17
694	Mesencephalic dopaminergic neurons express a repertoire of olfactory receptors and respond to odorant-like molecules. BMC Genomics, 2014, 15, 729.	1.2	46
695	Non-serine-phosphorylated tyrosine hydroxylase expressing neurons are present in mouse striatum, accumbens and cortex that increase in number following dopaminergic denervation. Journal of Chemical Neuroanatomy, 2014, 56, 35-44.	1.0	5
696	PARK13 regulates PINK1 and subcellular relocation patterns under oxidative stress in neurons. Journal of Neuroscience Research, 2014, 92, 1167-1177.	1.3	12
697	Causes and Consequences of Degeneration of the Dorsal Motor Nucleus of the Vagus Nerve in Parkinson's Disease. Antioxidants and Redox Signaling, 2014, 21, 649-667.	2.5	51
698	Effects of bacterial melanin on motor recovery and regeneration after unilateral destruction of Substantia Nigra pars compacta in rats. Neuropeptides, 2014, 48, 37-46.	0.9	12
699	Copper pathology in vulnerable brain regions in Parkinson's disease. Neurobiology of Aging, 2014, 35, 858-866.	1.5	188
700	Neuromelanin of the Human Substantia Nigra: An Update. Neurotoxicity Research, 2014, 25, 13-23.	1.3	191
701	Induction of depressive-like behavior by intranigral 6-OHDA is directly correlated with deficits in striatal donamine and hippocampal serotonin. Behavioural Brain Research, 2014, 259, 70-77	1.2	62

#	Article	IF	CITATIONS
702	Transcriptional and structural plasticity of tyrosine hydroxylase expressing neurons in both striatum and nucleus accumbens following dopaminergic denervation. Journal of Chemical Neuroanatomy, 2014, 61-62, 169-175.	1.0	7
703	Cytoprotective effects of hydrogen sulfide-releasing <i>N</i> -methyl- <scp>d</scp> -aspartate receptor antagonists mediated by intracellular sulfane sulfur. MedChemComm, 2014, 5, 1577-1583.	3.5	31
704	PACAP27 prevents Parkinson-like neuronal loss and motor deficits but not microglia activation induced by prostaglandin J2. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1707-1719.	1.8	33
705	Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson's disease. Brain, 2014, 137, 2493-2508.	3.7	232
706	Biophysical groundwork as a hinge to unravel the biology of <i>α</i> -synuclein aggregation and toxicity. Quarterly Reviews of Biophysics, 2014, 47, 1-48.	2.4	32
707	The lifelong maintenance of mesencephalic dopaminergic neurons by Nurr1 and engrailed. Journal of Biomedical Science, 2014, 21, 27.	2.6	47
708	Selective and efficient electrochemical biosensing of ultrathin molybdenum disulfide sheets. Nanotechnology, 2014, 25, 335702.	1.3	40
709	Loss of dopamine phenotype among midbrain neurons in <scp>L</scp> esch– <scp>N</scp> yhan disease. Annals of Neurology, 2014, 76, 95-107.	2.8	41
710	The chaperone-like protein 14-3-3η interacts with human α-synuclein aggregation intermediates rerouting the amyloidogenic pathway and reducing α-synuclein cellular toxicity. Human Molecular Genetics, 2014, 23, 5615-5629.	1.4	56
711	Measuring attention in a Parkinson's disease rat model using the 5-arm maze test. Physiology and Behavior, 2014, 130, 176-181.	1.0	4
712	Differential effects of intrastriatal 6-hydroxydopamine on cell number and morphology in midbrain dopaminergic subregions of the rat. Brain Research, 2014, 1574, 113-119.	1.1	22
713	Evaluation of Nigrostriatal Neurodegeneration and Neuroinflammation Following Repeated Intranasal 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) Administration in Mice, an Experimental Model of Parkinson's Disease. Neurotoxicity Research, 2014, 25, 24-32.	1.3	23
714	Molecular determinants of selective dopaminergic vulnerability in Parkinsonââ,¬â,,¢s disease: an update. Frontiers in Neuroanatomy, 2014, 8, 152.	0.9	171
715	Frequency-dependent neural activity in Parkinson's disease. Human Brain Mapping, 2014, 35, 5815-5833.	1.9	68
716	Differences in mitochondrial function in homogenated samples from healthy and epileptic specific brain tissues revealed by high-resolution respirometry. Mitochondrion, 2015, 25, 104-112.	1.6	66
717	Melanins and melanogenesis: from pigment cells toÂhuman health and technological applications. Pigment Cell and Melanoma Research, 2015, 28, 520-544.	1.5	347
718	Autologous iPSC-derived dopamine neuron transplantation in a nonhuman primate Parkinson's disease model. Cell Discovery, 2015, 1, 15012.	3.1	49
719	Critical appraisal of rotigotine transdermal system in management of Parkinson's disease and restless legs syndrome – patient considerations. Degenerative Neurological and Neuromuscular Disease, 2015, 5, 63.	0.7	2

#	Article	IF	CITATIONS
720	Effects of Hypericum perforatum on turning behavior in an animal model of Parkinson's disease. Brazilian Journal of Pharmaceutical Sciences, 2015, 51, 111-115.	1.2	9
721	β-Amyloid and α-Synuclein Cooperate To Block SNARE-Dependent Vesicle Fusion. Biochemistry, 2015, 54, 1831-1840.	1.2	23
722	Striatal tyrosine hydroxylase-positive neurons are associated with l-DOPA-induced dyskinesia in hemiparkinsonian mice. Neuroscience, 2015, 298, 302-317.	1.1	24
723	Neuroprotective effects of hydrogen sulfide and the underlying signaling pathways. Reviews in the Neurosciences, 2015, 26, 129-42.	1.4	51
724	Molecular heterogeneity of midbrain dopaminergic neurons – Moving toward single cell resolution. FEBS Letters, 2015, 589, 3714-3726.	1.3	79
725	BAG2 Gene-mediated Regulation of PINK1 Protein Is Critical for Mitochondrial Translocation of PARKIN and Neuronal Survival. Journal of Biological Chemistry, 2015, 290, 30441-30452.	1.6	52
726	Parkinson's disease as a result of aging. Aging Cell, 2015, 14, 293-308.	3.0	165
727	The endosomal pathway in Parkinson's disease. Molecular and Cellular Neurosciences, 2015, 66, 21-28.	1.0	71
728	Flies with Parkinson's disease. Experimental Neurology, 2015, 274, 42-51.	2.0	29
729	Disturbance of sensorimotor filtering in the 6-OHDA rodent model of Parkinson's disease. Life Sciences, 2015, 125, 71-78.	2.0	11
730	Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease via mitochondrial stabilization. Journal of Neuroscience Research, 2015, 93, 755-765.	1.3	55
731	NADH fluorescence lifetime is an endogenous reporter of αâ€synuclein aggregation in live cells. FASEB Journal, 2015, 29, 2484-2494.	0.2	24
732	The vulnerable ventral tegmental area in Parkinson's disease. Basal Ganglia, 2015, 5, 51-55.	0.3	130
733	Neuroprotective effects of 3- O -demethylswertipunicoside against MPTP-induced Parkinson׳s disease in vivo and its antioxidant properties in vitro. Brain Research, 2015, 1624, 78-85.	1.1	1
734	Hydrogen Sulfide and Neuroinflammation. Handbook of Experimental Pharmacology, 2015, 230, 181-189.	0.9	25
735	Identification of neurodegenerative factors using translatome–regulatory network analysis. Nature Neuroscience, 2015, 18, 1325-1333.	7.1	113
736	Cholesterol – A putative endogenous contributor towards Parkinson's disease. Neurochemistry International, 2015, 90, 125-133.	1.9	54
737	Glucocerebrosidase deficiency and mitochondrial impairment in experimental Parkinson disease. Journal of the Neurological Sciences, 2015, 356, 129-136.	0.3	23

#	Article	IF	CITATIONS
738	Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using silver nanoparticles deposited on polypyrrole nanofibers. Journal of Polymer Research, 2015, 22, 1.	1.2	28
739	Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide. Handbook of Experimental Pharmacology, 2015, , .	0.9	15
740	Using Sepia melanin as a PD model to describe the binding characteristics of neuromelanin – A critical review. Journal of Chemical Neuroanatomy, 2015, 64-65, 20-32.	1.0	42
741	Parkinson's disease dementia: a neural networks perspective. Brain, 2015, 138, 1454-1476.	3.7	333
742	Long-term treatment with l-DOPA or pramipexole affects adult neurogenesis and corresponding non-motor behavior in a mouse model of Parkinson's disease. Neuropharmacology, 2015, 95, 367-376.	2.0	51
743	Systemically administered neuregulinâ€1β1 rescues nigral dopaminergic neurons via the ErbB4 receptor tyrosine kinase in <scp>MPTP</scp> mouse models of Parkinson's disease. Journal of Neurochemistry, 2015, 133, 590-597.	2.1	22
745	Intranasal administration of rotenone in mice attenuated olfactory functions through the lesion of dopaminergic neurons in the olfactory bulb. NeuroToxicology, 2015, 51, 106-115.	1.4	30
746	Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by α-synuclein overexpression. Acta Neuropathologica Communications, 2015, 3, 46.	2.4	88
747	Depressive-like phenotype induced by AAV-mediated overexpression of human α-synuclein in midbrain dopaminergic neurons. Experimental Neurology, 2015, 273, 243-252.	2.0	50
748	Breathing in Parkinsonism in the Rat. Advances in Experimental Medicine and Biology, 2015, 884, 1-11.	0.8	6
749	Parkin Mutations Reduce the Complexity of Neuronal Processes in iPSC-Derived Human Neurons. Stem Cells, 2015, 33, 68-78.	1.4	95
750	Ceftriaxone prevents and reverses behavioral and neuronal deficits in an MPTP-induced animal model of Parkinson's disease dementia. Neuropharmacology, 2015, 91, 43-56.	2.0	56
751	Therapeutic strategies in Parkinson's disease: what we have learned from animal models. Annals of the New York Academy of Sciences, 2015, 1338, 16-37.	1.8	27
752	Proteomics in neurodegenerative diseases: Methods for obtaining a closer look at the neuronal proteome. Proteomics - Clinical Applications, 2015, 9, 848-871.	0.8	11
753	Determinants of Selective Vulnerability of Dopamine Neurons in Parkinson's Disease. Handbook of Behavioral Neuroscience, 2016, 24, 821-837.	0.7	0
754	Biological roles and therapeutic potential of G protein-coupled receptors for free fatty acids and metabolic intermediates. The Journal of Physical Fitness and Sports Medicine, 2016, 5, 213-227.	0.2	5
755	Putaminal Mosaic Visualized by Tyrosine Hydroxylase Immunohistochemistry in the Human Neostriatum. Frontiers in Neuroanatomy, 2016, 10, 34.	0.9	16
756	Early Degeneration of Both Dopaminergic and Serotonergic Axons – A Common Mechanism in Parkinson's Disease. Frontiers in Cellular Neuroscience, 2016, 10, 293.	1.8	92

#	Article	IF	CITATIONS
757	Immunomodulators as Therapeutic Agents in Mitigating the Progression of Parkinson's Disease. Brain Sciences, 2016, 6, 41.	1.1	18
758	Studies on the early oxidation process of dopamine by electrochemical measurements and quantum chemical calculations. Electrochimica Acta, 2016, 211, 777-786.	2.6	19
759	LRRK2 knockdown in zebrafish causes developmental defects, neuronal loss, and synuclein aggregation. Journal of Neuroscience Research, 2016, 94, 717-735.	1.3	37
760	Apoptosisâ€inducing factor in nigral dopamine neurons: Higher levels in primates than in mice. Movement Disorders, 2016, 31, 1729-1733.	2.2	3
761	l-DOPA-induced dyskinesia is associated with a deficient numerical downregulation of striatal tyrosine hydroxylase mRNA-expressing neurons. Neuroscience, 2016, 331, 120-133.	1.1	7
762	Knockdown of NogoA prevents MPP+-induced neurotoxicity in PC12 cells via the mTOR/STAT3 signaling pathway. Molecular Medicine Reports, 2016, 13, 1427-1433.	1.1	4
763	Characterization of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, in rat partial and full nigral 6-hydroxydopamine lesion models of Parkinson's disease. Brain Research, 2016, 1646, 354-365.	1.1	34
764	Understanding Dopaminergic Cell Death Pathways in Parkinson Disease. Neuron, 2016, 90, 675-691.	3.8	460
765	Sensitive analysis of α-synuclein by nonlinear laser wave mixing coupled with capillary electrophoresis. Analytical Biochemistry, 2016, 500, 51-59.	1.1	9
766	<i>In vivo</i> imaging of neuromelanin in Parkinson's disease using ¹⁸ F-AV-1451 PET. Brain, 2016, 139, 2039-2049.	3.7	113
767	Nitrogen-Doped Graphene Supported Cobalt Oxide for Sensitive Determination of Dopamine in Presence of High Level Ascorbic Acid. Journal of the Electrochemical Society, 2016, 163, B491-B498.	1.3	20
768	Association between acute kidney injury and risk of Parkinson disease. European Journal of Internal Medicine, 2016, 36, 81-86.	1.0	3
769	Incubator embedded cell culture imaging system (EmSight) based on Fourier ptychographic microscopy. Biomedical Optics Express, 2016, 7, 3097.	1.5	36
770	Converging roles of ion channels, calcium, metabolic stress, and activity pattern of <i>Substantia nigra</i> dopaminergic neurons in health and Parkinson's disease. Journal of Neurochemistry, 2016, 139, 156-178.	2.1	128
771	Neuroprotective Effect of <i>Coptis chinensis</i> in MPP+ and MPTP-Induced Parkinson's Disease Models. The American Journal of Chinese Medicine, 2016, 44, 907-925.	1.5	31
772	The hidden sister of motor fluctuations in Parkinson's disease: A review on nonmotor fluctuations. Movement Disorders, 2016, 31, 1080-1094.	2.2	112
773	Proteomic characterization of neuromelanin granules isolated from human substantia nigra by laser-microdissection. Scientific Reports, 2016, 6, 37139.	1.6	35
774	Midbrain Gene Screening Identifies a New Mesoaccumbal Glutamatergic Pathway and a Marker for Dopamine Cells Neuroprotected in Parkinson's Disease. Scientific Reports, 2016, 6, 35203.	1.6	48

#	Article	IF	CITATIONS
775	Mitochondrial Dysfunction in Neurodegenerative Disorders. , 2016, , .		3
776	Gdf-15 deficiency does not alter vulnerability of nigrostriatal dopaminergic system in MPTP-intoxicated mice. Cell and Tissue Research, 2016, 365, 209-223.	1.5	5
777	Melanin and neuromelanin binding of drugs and chemicals: toxicological implications. Archives of Toxicology, 2016, 90, 1883-1891.	1.9	55
778	Computational Dissection of Dopamine Motor and Motivational Functions in Humans. Journal of Neuroscience, 2016, 36, 6623-6633.	1.7	109
779	Dopamine assay based on an aggregation-induced reversed inner filter effect of gold nanoparticles on the fluorescence of graphene quantum dots. Talanta, 2016, 158, 292-298.	2.9	33
780	Differentiation and Characterization of Dopaminergic Neurons From Baboon Induced Pluripotent Stem Cells. Stem Cells Translational Medicine, 2016, 5, 1133-1144.	1.6	17
781	Mapping dopaminergic deficiencies in the substantia nigra/ventral tegmental area in schizophrenia. Brain Structure and Function, 2016, 221, 185-201.	1.2	36
782	Highly sensitive and selective electrochemical dopamine sensing properties of multilayer graphene nanobelts. Nanotechnology, 2016, 27, 075504.	1.3	40
783	Role of pedunculopontine cholinergic neurons in the vulnerability of nigral dopaminergic neurons in Parkinson's disease. Experimental Neurology, 2016, 275, 209-219.	2.0	36
784	The substantia nigra and ventral tegmental dopaminergic neurons from development to degeneration. Journal of Chemical Neuroanatomy, 2016, 76, 98-107.	1.0	54
785	What lysosomes actually tell us about Parkinson's disease?. Ageing Research Reviews, 2016, 32, 140-149.	5.0	19
786	Iron and dopamine: a toxic couple. Brain, 2016, 139, 1026-1035.	3.7	208
787	Role of Nurr1 in the Generation and Differentiation of Dopaminergic Neurons from Stem Cells. Neurotoxicity Research, 2016, 30, 14-31.	1.3	20
788	Associated degeneration of ventral tegmental area dopaminergic neurons in the rat nigrostriatal lactacystin model of parkinsonism and their neuroprotection by valproate. Neuroscience Letters, 2016, 614, 16-23.	1.0	15
789	Aquaporin-4 deficiency diminishes the differential degeneration of midbrain dopaminergic neurons in experimental Parkinson's disease. Neuroscience Letters, 2016, 614, 7-15.	1.0	36
790	Growth/differentiation factor-15 deficiency compromises dopaminergic neuron survival and microglial response in the 6-hydroxydopamine mouse model of Parkinson's disease. Neurobiology of Disease, 2016, 88, 1-15.	2.1	40
791	Pharmacokinetic and tissue distribution studies of 1,9-pyrazoloanthrone, a c-Jun-N-terminal kinase inhibitor in Wistar rats by a simple and sensitive HPLC method. Journal of Pharmaceutical and Biomedical Analysis, 2016, 120, 57-64.	1.4	3
792	Dopamine modulation of spatial navigation memory in Parkinson'sÂdisease. Neurobiology of Aging, 2016, 38, 93-103.	1.5	28

#	Article	IF	CITATIONS
793	Aminochrome Toxicity is Mediated by Inhibition of Microtubules Polymerization Through the Formation of Adducts with Tubulin. Neurotoxicity Research, 2016, 29, 381-393.	1.3	32
794	Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Progress in Neurobiology, 2017, 155, 96-119.	2.8	490
795	Synthesis of 3D hierarchical Ag/CuO nanostructures in the presence of l -histidine and their application. Journal of Alloys and Compounds, 2017, 699, 803-811.	2.8	7
796	Ferroptosis and cell death mechanisms in Parkinson's disease. Neurochemistry International, 2017, 104, 34-48.	1.9	260
798	L-F001, a Multifunction ROCK Inhibitor Prevents 6-OHDA Induced Cell Death Through Activating Akt/GSK-3beta and Nrf2/HO-1 Signaling Pathway in PC12 Cells and Attenuates MPTP-Induced Dopamine Neuron Toxicity in Mice. Neurochemical Research, 2017, 42, 615-624.	1.6	15
799	Changes in Histidine Decarboxylase, Histamine N-Methyltransferase and Histamine Receptors in Neuropsychiatric Disorders. Handbook of Experimental Pharmacology, 2017, 241, 259-276.	0.9	14
800	Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Archives of Pharmacal Research, 2017, 40, 403-428.	2.7	77
801	α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nature Medicine, 2017, 23, 1-13.	15.2	688
802	Rapamycin upregulates glutamate transporter and IL-6 expression in astrocytes in a mouse model of Parkinson's disease. Cell Death and Disease, 2017, 8, e2611-e2611.	2.7	40
803	Neuromelanin in parkinsonian disorders: an update. International Journal of Neuroscience, 2017, 127, 1116-1123.	0.8	33
804	Synthesis, Structure Characterization, and Evaluation in Microglia Cultures of Neuromelanin Analogues Suitable for Modeling Parkinson's Disease. ACS Chemical Neuroscience, 2017, 8, 501-512.	1.7	40
805	Highly selective sensing of dopamine using carbon nanotube ink doped with anionic surfactant modified disposable paper electrode. Journal of Solid State Electrochemistry, 2017, 21, 1263-1271.	1.2	8
806	Toxic effects of human and rodent variants of alphaâ€synuclein <i>inÂvivo</i> . European Journal of Neuroscience, 2017, 45, 536-547.	1.2	21
808	Dysfunction of mitochondrial Lon protease and identification of oxidized protein in mouse brain following exposure to MPTP: Implications for Parkinson disease. Free Radical Biology and Medicine, 2017, 108, 236-246.	1.3	36
809	The two-century journey of Parkinson disease research. Nature Reviews Neuroscience, 2017, 18, 251-259.	4.9	250
810	Contrast mechanisms associated with neuromelaninâ€MRI. Magnetic Resonance in Medicine, 2017, 78, 1790-1800.	1.9	102
811	Carnosic acid protects non-alcoholic fatty liver-induced dopaminergic neuron injury in rats. Metabolic Brain Disease, 2017, 32, 483-491.	1.4	10
812	Atmospheric-Pressure Plasma Jet Processed Carbon-Based Electrochemical Sensor Integrated with a 3D-Printed Microfluidic Channel. Journal of the Electrochemical Society, 2017, 164, B534-B541.	1.3	14

#	Article	IF	CITATIONS
813	Exercise in an animal model of Parkinson's disease: Motor recovery but not restoration of the nigrostriatal pathway. Neuroscience, 2017, 359, 224-247.	1.1	28
814	Neuroprotective effect of Demethoxycurcumin, a natural derivative of Curcumin on rotenone induced neurotoxicity in SH-SY 5Y Neuroblastoma cells. BMC Complementary and Alternative Medicine, 2017, 17, 217.	3.7	53
815	In Vivo Assessment of Brainstem Depigmentation in Parkinson Disease: Potential as a Severity Marker for Multicenter Studies. Radiology, 2017, 283, 789-798.	3.6	84
816	The whole-brain pattern of magnetic susceptibility perturbations in Parkinson's disease. Brain, 2017, 140, 118-131.	3.7	154
817	A new brain dopamineâ€deficient <i>Drosophila</i> and its pharmacological and genetic rescue. Genes, Brain and Behavior, 2017, 16, 394-403.	1.1	40
818	Brain dopamine neurone â€~damage': methamphetamine users vs. Parkinson's disease – a critical assessment of the evidence. European Journal of Neuroscience, 2017, 45, 58-66.	1.2	48
819	A novel electrochemical biomimetic sensor based on poly(Cu-AMT) with reduced graphene oxide for ultrasensitive detection of dopamine. Talanta, 2017, 162, 80-89.	2.9	78
820	The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience, 2017, 39, 499-550.	2.1	59
821	The Synucleinopathies: Twenty Years On. Journal of Parkinson's Disease, 2017, 7, S51-S69.	1.5	350
822	Detection of Parkinson Disorder Using Kinect Arm Movement - A Computational Based Approach. , 2017, , .		0
823	Effect of Levodopa on Reward and Impulsivity in a Rat Model of Parkinson's Disease. Frontiers in Behavioral Neuroscience, 2017, 11, 145.	1.0	26
824	Pitx3 and En1 determine the size and molecular programming of the dopaminergic neuronal pool. PLoS ONE, 2017, 12, e0182421.	1.1	20
825	Targeting bone morphogenetic protein signalling in midbrain dopaminergic neurons as a therapeutic approach in Parkinson's disease. Neuronal Signaling, 2017, 1, NS20170027.	1.7	19
826	Quantifying changes in nigrosomes using quantitative susceptibility mapping and neuromelanin imaging for the diagnosis of early-stage Parkinson's disease. British Journal of Radiology, 2018, 91, 20180037.	1.0	41
827	Alterations in the nigrostriatal dopamine system after acute systemic PhIP exposure. Toxicology Letters, 2018, 287, 31-41.	0.4	20
828	Exosomes and Stem Cells in Degenerative Disease Diagnosis and Therapy. Cell Transplantation, 2018, 27, 349-363.	1.2	111
829	Early fine motor impairment and behavioral dysfunction in (Thyâ€1)â€h[A30P] alphaâ€synuclein mice. Brain and Behavior, 2018, 8, e00915.	1.0	34
830	Intranasal administration of sodium dimethyldithiocarbamate induces motor deficits and dopaminergic dysfunction in mice. NeuroToxicology, 2018, 66, 107-120.	1.4	10

	CITATION R	EPORT	
#	Article	IF	CITATIONS
831	Early Life Stress, Depression And Parkinson's Disease: A New Approach. Molecular Brain, 2018, 11, 18.	1.3	69
832	The dopamine transporter: An unrecognized nexus for dysfunctional peripheral immunity and signaling in Parkinson's Disease. Brain, Behavior, and Immunity, 2018, 70, 21-35.	2.0	47
833	Imaging Parkinsonian Pathology in Substantia Nigra with MRI. Current Radiology Reports, 2018, 6, 1.	0.4	16
834	Noradrenergic Modulation on Dopaminergic Neurons. Neurotoxicity Research, 2018, 34, 848-859.	1.3	11
835	Poly(m -ferrocenylaniline) modified carbon nanotubes-paste electrode encapsulated in nafion film for selective and sensitive determination of dopamine and uric acid in the presence of ascorbic acid. Journal of Saudi Chemical Society, 2018, 22, 173-182.	2.4	24
836	SIRT1 mediates salidrosideâ€elicited protective effects against MPP ⁺ â€induced apoptosis and oxidative stress in SH‣Y5Y cells: involvement in suppressing MAPK pathways. Cell Biology International, 2018, 42, 84-94.	1.4	27
837	Neuromelanin in Parkinson's Disease: from Fenton Reaction to Calcium Signaling. Neurotoxicity Research, 2018, 33, 515-522.	1.3	32
838	[18F]AV-1451 binding to neuromelanin in the substantia nigra in PD and PSP. Brain Structure and Function, 2018, 223, 589-595.	1.2	36
839	Atorvastatin Prevents Early Oxidative Events and Modulates Inflammatory Mediators in the Striatum Following Intranasal 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Administration in Rats. Neurotoxicity Research, 2018, 33, 549-559.	1.3	9
840	<scp>A</scp> <scp>P</scp> arkinson's disease gene, <scp>DJ</scp> â€1, repairs brain injury through <scp>S</scp> ox9 stabilization and astrogliosis. Glia, 2018, 66, 445-458.	2.5	33
841	NiO Nanoparticles Based Carbon Paste as a Sensor for Detection of Dopamine. International Journal of Electrochemical Science, 2018, 13, 5748-5761.	0.5	10
842	Prostaglandin D2/J2 signaling pathway in a rat model of neuroinflammation displaying progressive parkinsonian-like pathology: potential novel therapeutic targets. Journal of Neuroinflammation, 2018, 15, 272.	3.1	18
843	α-Synuclein and Noradrenergic Modulation of Immune Cells in Parkinson's Disease Pathogenesis. Frontiers in Neuroscience, 2018, 12, 626.	1.4	28
844	Astaxanthin is neuroprotective in an aged mouse model of Parkinson's disease. Oncotarget, 2018, 9, 10388-10401.	0.8	45
845	Investigation of diverse interactions of amino acids (Asp and Glu) in aqueous Dopamine hydrochloride with the manifestation of the catecholamine molecule recognition tool in solution phase. Journal of Molecular Liquids, 2018, 271, 715-729.	2.3	18
846	A Parkinson's disease gene, DJ-1, regulates astrogliosis through STAT3. Neuroscience Letters, 2018, 685, 144-149.	1.0	17
847	Parkinson's disease: convergence on synaptic homeostasis. EMBO Journal, 2018, 37, .	3.5	76
848	On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson's Disease. Frontiers in Neurology, 2018, 9, 455.	1.1	272

#	Article	IF	CITATIONS
849	Can Interactions Between α-Synuclein, Dopamine and Calcium Explain Selective Neurodegeneration in Parkinson's Disease?. Frontiers in Neuroscience, 2018, 12, 161.	1.4	62
850	Chemiexcitation and Its Implications for Disease. Trends in Molecular Medicine, 2018, 24, 527-541.	3.5	21
851	Regional microglia are transcriptionally distinct but similarly exacerbate neurodegeneration in a culture model of Parkinson's disease. Journal of Neuroinflammation, 2018, 15, 139.	3.1	17
852	Neuromelanin organelles are specialized autolysosomes that accumulate undegraded proteins and lipids in aging human brain and are likely involved in Parkinson's disease. Npj Parkinson's Disease, 2018, 4, 17.	2.5	101
853	Reciprocal interaction between monoaminergic systems and the pedunculopontine nucleus: Implication in the mechanism of L-DOPA. Neurobiology of Disease, 2019, 128, 9-18.	2.1	6
854	Considerations related to the use of short neuropeptide promoters in viral vectors targeting hypothalamic neurons. Scientific Reports, 2019, 9, 11146.	1.6	3
855	The locus coeruleus: Another vulnerability target in Parkinson's disease. Movement Disorders, 2019, 34, 1423-1429.	2.2	29
856	Neuromelanin, aging, and neuronal vulnerability in Parkinson's disease. Movement Disorders, 2019, 34, 1440-1451.	2.2	81
857	Impairment of Macroautophagy in Dopamine Neurons Has Opposing Effects on Parkinsonian Pathology and Behavior. Cell Reports, 2019, 29, 920-931.e7.	2.9	29
858	Critical Role of Oxidatively Damaged DNA in Selective Noradrenergic Vulnerability. Neuroscience, 2019, 422, 184-201.	1.1	3
859	Neuromelanin: When darkness is the light to follow. Movement Disorders, 2019, 34, 1478-1478.	2.2	0
860	Oleanolic Acid Mitigates 6-Hydroxydopamine Neurotoxicity by Attenuating Intracellular ROS in PC12 Cells and Striatal Microglial Activation in Rat Brains. Frontiers in Physiology, 2019, 10, 1059.	1.3	19
861	Parkinson disease, substantia nigra vulnerability, and calbindin expression: Enlightening the darkness?. Movement Disorders, 2019, 34, 161-163.	2.2	7
862	Long non-coding RNA repertoire and open chromatin regions constitute midbrain dopaminergic neuron - specific molecular signatures. Scientific Reports, 2019, 9, 1409.	1.6	10
863	Emerging Roles of Complement Protein C1q in Neurodegeneration. , 2019, 10, 652.		51
864	Demethoxycurcumin: A naturally occurring curcumin analogue for treating nonâ€cancerous diseases. Journal of Cellular Physiology, 2019, 234, 19320-19330.	2.0	38
865	Unifying Hypothesis of Dopamine Neuron Loss in Neurodegenerative Diseases: Focusing on Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2019, 12, 123.	1.4	49
866	Divergent Expression Patterns of Drp1 and HSD10 in the Nigro-Striatum of Two Mice Strains Based on their MPTP Susceptibility. Neurotoxicity Research, 2019, 36, 27-38.	1.3	11

#	Article	IF	CITATIONS
867	Subregional differences in astrocytes underlie selective neurodegeneration or protection in Parkinson's disease models in culture. Glia, 2019, 67, 1542-1557.	2.5	42
868	Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis. Nature Communications, 2019, 10, 973.	5.8	217
869	Diet and medical foods in Parkinson's disease. Food Science and Human Wellness, 2019, 8, 83-95.	2.2	22
870	Combinatory microRNA serum signatures as classifiers of Parkinson's disease. Parkinsonism and Related Disorders, 2019, 64, 202-210.	1.1	27
871	A Parkinson's disease gene, DJ-1, regulates anti-inflammatory roles of astrocytes through prostaglandin D2 synthase expression. Neurobiology of Disease, 2019, 127, 482-491.	2.1	35
872	Neuromelanin-sensitive MRI as a noninvasive proxy measure of dopamine function in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5108-5117.	3.3	136
873	Mesenchymal Stem Cells-derived Exosomes: A New Possible Therapeutic Strategy for Parkinson's Disease?. Cells, 2019, 8, 118.	1.8	100
874	Plant poisoning leads to alpha-synucleinopathy and neuromelanopathy in kangaroos. Scientific Reports, 2019, 9, 16546.	1.6	1
875	Diabetes, a Contemporary Risk for Parkinson's Disease: Epidemiological and Cellular Evidences. Frontiers in Aging Neuroscience, 2019, 11, 302.	1.7	53
876	Nitrogen-doped carbon frameworks decorated with palladium nanoparticles for simultaneous electrochemical voltammetric determination of uric acid and dopamine in the presence of ascorbic acid. Mikrochimica Acta, 2019, 186, 795.	2.5	8
877	Recruitment of calbindin into nigral dopamine neurons protects against MPTPâ€Induced parkinsonism. Movement Disorders, 2019, 34, 200-209.	2.2	17
878	Impact of Dopamine Oxidation on Dopaminergic Neurodegeneration. ACS Chemical Neuroscience, 2019, 10, 945-953.	1.7	84
879	The Potential of L-Type Calcium Channels as a Drug Target for Neuroprotective Therapy in Parkinson's Disease. Annual Review of Pharmacology and Toxicology, 2019, 59, 263-289.	4.2	80
880	Mesencephalic and extramesencephalic dopaminergic systems in Parkinson's disease. Journal of Neural Transmission, 2019, 126, 377-396.	1.4	26
881	Histamine-4 receptor antagonist JNJ7777120 inhibits pro-inflammatory microglia and prevents the progression of Parkinson-like pathology and behaviour in a rat model. Brain, Behavior, and Immunity, 2019, 76, 61-73.	2.0	32
882	Graphene–Metal Oxide Nanocomposite Modified Electrochemical Sensors. , 2019, , 113-138.		10
883	Neural Circuitry Regulating REM Sleep and Its Implication in REM Sleep Behavior Disorder. , 2019, , 559-577.		4
884	Astrocyte-Like Cells Differentiated from Dental Pulp Stem Cells Protect Dopaminergic Neurons Against 6-Hydroxydopamine Toxicity. Molecular Neurobiology, 2019, 56, 4395-4413.	1.9	10

#	Article	IF	CITATIONS
885	Dopamin, oxidativer Stress und Protein hinonmodifikationen bei Parkinson und anderen neurodegenerativen Erkrankungen. Angewandte Chemie, 2019, 131, 6580-6596.	1.6	7
886	Dopamine, Oxidative Stress and Protein–Quinone Modifications in Parkinson's and Other Neurodegenerative Diseases. Angewandte Chemie - International Edition, 2019, 58, 6512-6527.	7.2	160
887	The Cellular Environment Affects Monomeric α-Synuclein Structure. Trends in Biochemical Sciences, 2019, 44, 453-466.	3.7	58
888	Imaging behavioural complications of Parkinson's disease. Brain Imaging and Behavior, 2019, 13, 323-332.	1.1	16
889	Neuromelanin Modulates Heterocyclic Aromatic Amine-Induced Dopaminergic Neurotoxicity. Toxicological Sciences, 2020, 173, 171-188.	1.4	19
890	Electro-catalytic detection of dopamine at carbon paste electrode modified with activated carbon: analytical application in blood samples. International Journal of Environmental Analytical Chemistry, 2020, 100, 295-310.	1.8	8
891	Heterogeneity of dopamine release sites in health and degeneration. Neurobiology of Disease, 2020, 134, 104633.	2.1	15
892	Ubiquitin and Receptor-Dependent Mitophagy Pathways and Their Implication in Neurodegeneration. Journal of Molecular Biology, 2020, 432, 2510-2524.	2.0	53
893	Gadolinium-based MRI contrast agent for the detection of tyrosinase. Analyst, The, 2020, 145, 1169-1173.	1.7	8
894	Differential leukocyte count is associated with clinical phenotype in Parkinson's disease. Journal of the Neurological Sciences, 2020, 409, 116638.	0.3	28
895	Models of hyperkinetic disorders in primates. Journal of Neuroscience Methods, 2020, 332, 108551.	1.3	1
896	Tau Tangles in Parkinson's Disease: A 2-Year Follow-Up Flortaucipir PET Study. Journal of Parkinson's Disease, 2020, 10, 161-171.	1.5	10
897	Anthraquinone from Edible Fungi Pleurotus ostreatus Protects Human SH-SY5Y Neuroblastoma Cells Against 6-Hydroxydopamine-Induced Cell Death—Preclinical Validation of Gene Knockout Possibilities of PARK7, PINK1, and SNCA1 Using CRISPR SpCas9. Applied Biochemistry and Biotechnology, 2020, 191, 555-566.	1.4	8
898	Reproducibility assessment of neuromelanin-sensitive magnetic resonance imaging protocols for region-of-interest and voxelwise analyses. NeuroImage, 2020, 208, 116457.	2.1	51
899	A functionalized hydroxydopamine quinone links thiol modification to neuronal cell death. Redox Biology, 2020, 28, 101377.	3.9	23
900	Multimodal assessment of nigrosomal degeneration in Parkinson's disease. Parkinsonism and Related Disorders, 2020, 80, 102-107.	1.1	13
901	Microglia as therapeutic target in central nervous system disorders. Journal of Pharmacological Sciences, 2020, 144, 102-118.	1.1	19
902	Neuromelanin formation exacerbates HAA-induced mitochondrial toxicity and mitophagy impairments. NeuroToxicology, 2020, 81, 147-160.	1.4	14

#	Article	IF	CITATIONS
903	Current Status of Stem Cell-Derived Therapies for Parkinson's Disease: From Cell Assessment and Imaging Modalities to Clinical Trials. Frontiers in Neuroscience, 2020, 14, 558532.	1.4	20
904	Modern Brainstem MRI Techniques for the Diagnosis of Parkinson's Disease and Parkinsonisms. Frontiers in Neurology, 2020, 11, 791.	1.1	18
905	Transgenic Mice Expressing Human α-Synuclein in Noradrenergic Neurons Develop Locus Ceruleus Pathology and Nonmotor Features of Parkinson's Disease. Journal of Neuroscience, 2020, 40, 7559-7576.	1.7	32
906	Calcium, Bioenergetics, and Parkinson's Disease. Cells, 2020, 9, 2045.	1.8	46
907	Degeneration of the locus coeruleus is a common feature of tauopathies and distinct from TDP-43 proteinopathies in the frontotemporal lobar degeneration spectrum. Acta Neuropathologica, 2020, 140, 675-693.	3.9	15
908	The Convergence of Alpha-Synuclein, Mitochondrial, and Lysosomal Pathways in Vulnerability of Midbrain Dopaminergic Neurons in Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 580634.	1.8	40
909	A systematic review and meta-analysis of serum cholesterol and triglyceride levels in patients with Parkinson's disease. Lipids in Health and Disease, 2020, 19, 97.	1.2	33
910	Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson's disease. Stem Cell Research, 2020, 46, 101870.	0.3	68
911	Toward Generating Subtype-Specific Mesencephalic Dopaminergic Neurons in vitro. Frontiers in Cell and Developmental Biology, 2020, 8, 443.	1.8	6
912	Critical roles of astrocyticâ€CCL2â€dependent monocyte infiltration in a DJâ€1 knockout mouse model of delayed brain repair. Glia, 2020, 68, 2086-2101.	2.5	14
913	From Cannabis sativa to Cannabidiol: Promising Therapeutic Candidate for the Treatment of Neurodegenerative Diseases. Frontiers in Pharmacology, 2020, 11, 124.	1.6	83
914	Epalrestat improves motor symptoms by reducing oxidative stress and inflammation in the reserpine induced mouse model of Parkinson's disease. Animal Models and Experimental Medicine, 2020, 3, 9-21.	1.3	20
915	Electrochemical dopamine sensor based on superionic conducting potassium ferrite. Biosensors and Bioelectronics, 2020, 153, 112045.	5.3	59
916	CaV1.3 L-Type Calcium Channels Increase the Vulnerability of Substantia Nigra Dopaminergic Neurons in MPTP Mouse Model of Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 11, 382.	1.7	16
917	Sympathetic nervous activity and hemoglobin levels in de novo Parkinson's disease. Clinical Autonomic Research, 2020, 30, 273-278.	1.4	4
918	Mitochondrial Dysfunction Combined with High Calcium Load Leads to Impaired Antioxidant Defense Underlying the Selective Loss of Nigral Dopaminergic Neurons. Journal of Neuroscience, 2020, 40, 1975-1986.	1.7	34
919	Labelâ€Free Nanoimaging of Neuromelanin in the Brain by Soft Xâ€ray Spectromicroscopy. Angewandte Chemie - International Edition, 2020, 59, 11984-11991.	7.2	13
920	Quantitative proteomic profiling of the rat substantia nigra places glial fibrillary acidic protein at the hub of proteins dysregulated during aging: Implications for idiopathic Parkinson's disease. Journal of Neuroscience Research, 2020, 98, 1417-1432	1.3	2

#	Article	IF	CITATIONS
921	Neurodegenerative Diseases – Is Metabolic Deficiency the Root Cause?. Frontiers in Neuroscience, 2020, 14, 213.	1.4	148
922	Labelâ€Free Nanoimaging of Neuromelanin in the Brain by Soft Xâ€ray Spectromicroscopy. Angewandte Chemie, 2020, 132, 12082-12089.	1.6	О
924	A role for α-Synuclein in axon growth and its implications in corticostriatal glutamatergic plasticity in Parkinson's disease. Molecular Neurodegeneration, 2020, 15, 24.	4.4	18
925	A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons. Autophagy, 2021, 17, 855-871.	4.3	17
926	Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. Neurochemistry International, 2021, 144, 104896.	1.9	20
927	Current and emerging therapeutic targets for Parkinson's disease. Metabolic Brain Disease, 2021, 36, 13-27.	1.4	10
928	Psychosisâ€Like Behavior and Hyperdopaminergic Dysregulation in Human α â€Synuclein <scp>BAC</scp> Transgenic Rats. Movement Disorders, 2021, 36, 716-728.	2.2	11
929	Balance alterations and reduction of pedunculopontine cholinergic neurons in early stages of parkinsonism in middle-aged rats. Experimental Gerontology, 2021, 145, 111198.	1.2	4
930	Etiology and pathogenesis of Parkinson disease. , 2021, , 121-163.e16.		2
931	Inflaming the Brain with Iron. Antioxidants, 2021, 10, 61.	2.2	49
931 933	Inflaming the Brain with Iron. Antioxidants, 2021, 10, 61. An Introspective Approach: A Lifetime of Parkinson's Disease Research and Not Much to Show for It Yet?. Cells, 2021, 10, 513.	2.2 1.8	49 2
931 933 934	Inflaming the Brain with Iron. Antioxidants, 2021, 10, 61. An Introspective Approach: A Lifetime of Parkinson's Disease Research and Not Much to Show for It Yet?. Cells, 2021, 10, 513. Human Paraoxonase-2 (PON2): Protein Functions and Modulation. Antioxidants, 2021, 10, 256.	2.2 1.8 2.2	49 2 37
931 933 934 935	Inflaming the Brain with Iron. Antioxidants, 2021, 10, 61. An Introspective Approach: A Lifetime of Parkinson's Disease Research and Not Much to Show for It Yet?. Cells, 2021, 10, 513. Human Paraoxonase-2 (PON2): Protein Functions and Modulation. Antioxidants, 2021, 10, 256. A robust method for the detection of small changes in relaxation parameters and free water content in the vicinity of the substantia nigra in Parkinson's disease patients. PLoS ONE, 2021, 16, e0247552.	2.2 1.8 2.2 1.1	49 2 37 3
931 933 934 935	Inflaming the Brain with Iron. Antioxidants, 2021, 10, 61. An Introspective Approach: A Lifetime of Parkinson's Disease Research and Not Much to Show for It Yet?. Cells, 2021, 10, 513. Human Paraoxonase-2 (PON2): Protein Functions and Modulation. Antioxidants, 2021, 10, 256. A robust method for the detection of small changes in relaxation parameters and free water content in the vicinity of the substantia nigra in Parkinson's disease patients. PLoS ONE, 2021, 16, e0247552. Substantia nigra neuromelanin magnetic resonance imaging in patients with different subtypes of Parkinson disease. Journal of Neural Transmission, 2021, 128, 171-179.	2.2 1.8 2.2 1.1 1.4	49 2 37 3
931 933 934 935 936	Inflaming the Brain with Iron. Antioxidants, 2021, 10, 61. An Introspective Approach: A Lifetime of Parkinson's Disease Research and Not Much to Show for It Yet?. Cells, 2021, 10, 513. Human Paraoxonase-2 (PON2): Protein Functions and Modulation. Antioxidants, 2021, 10, 256. A robust method for the detection of small changes in relaxation parameters and free water content in the vicinity of the substantia nigra in Parkinson's disease patients. PLoS ONE, 2021, 16, e0247552. Substantia nigra neuromelanin magnetic resonance imaging in patients with different subtypes of Parkinson disease. Journal of Neural Transmission, 2021, 128, 171-179. New Avenues for Parkinson's Disease Therapeutics: Disease-Modifying Strategies Based on the Gut Microbiota. Biomolecules, 2021, 11, 433.	2.2 1.8 2.2 1.1 1.4 1.8	 49 2 37 3 13 38
 931 933 934 935 936 937 938 	Inflaming the Brain with Iron. Antioxidants, 2021, 10, 61. An Introspective Approach: A Lifetime of Parkinson's Disease Research and Not Much to Show for It Yet?. Cells, 2021, 10, 513. Human Paraoxonase-2 (PON2): Protein Functions and Modulation. Antioxidants, 2021, 10, 256. A robust method for the detection of small changes in relaxation parameters and free water content in the vicinity of the substantia nigra in Parkinson's disease patients. PLoS ONE, 2021, 16, e0247552. Substantia nigra neuromelanin magnetic resonance imaging in patients with different subtypes of Parkinson disease. Journal of Neural Transmission, 2021, 128, 171-179. New Avenues for Parkinson's Disease Therapeutics: Disease-Modifying Strategies Based on the Gut Microbiota. Biomolecules, 2021, 11, 433. Deficiency of Biogenic Amines Modulates the Activity of Hypoglossal Nerve in the Reserpine Model of Parkinson's Disease. Cells, 2021, 10, 531.	2.2 1.8 2.2 1.1 1.4 1.8 1.8	 49 2 37 3 13 38 2
931 933 934 935 936 937 938	Inflaming the Brain with Iron. Antioxidants, 2021, 10, 61. An Introspective Approach: A Lifetime of Parkinson's Disease Research and Not Much to Show for It Yet?. Cells, 2021, 10, 513. Human Paraoxonase-2 (PON2): Protein Functions and Modulation. Antioxidants, 2021, 10, 256. A robust method for the detection of small changes in relaxation parameters and free water content in the vicinity of the substantia nigra in Parkinson's disease patients. PLoS ONE, 2021, 16, e0247552. Substantia nigra neuromelanin magnetic resonance imaging in patients with different subtypes of Parkinson disease. Journal of Neural Transmission, 2021, 128, 171-179. New Avenues for Parkinson's Disease Therapeutics: Disease-Modifying Strategies Based on the Gut Microbiota. Biomolecules, 2021, 11, 433. Deficiency of Biogenic Amines Modulates the Activity of Hypoglossal Nerve in the Reserpine Model of Parkinson's Disease. Cells, 2021, 10, 531. Comparison of Locus Coeruleus Pathology with Nigral and Forebrain Pathology in Parkinson's Disease. Movement Disorders, 2021, 36, 2085-2093.	2.2 1.8 2.2 1.1 1.4 1.8 1.8 2.2	 49 2 37 3 3 38 2 23

#	ARTICLE	IF	CITATIONS
943	Heat-Shock Proteins, αB-Crystallin and Hsp27. International Journal of Molecular Sciences, 2021, 22, 3700.	1.8	7
944	Interaction of Neuromelanin with Xenobiotics and Consequences for Neurodegeneration; Promising Experimental Models. Antioxidants, 2021, 10, 824.	2.2	20
945	A Guide to the Generation of a 6-Hydroxydopamine Mouse Model of Parkinson's Disease for the Study of Non-Motor Symptoms. Biomedicines, 2021, 9, 598.	1.4	18
946	Parkinson's disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biology, 2021, 41, 101896.	3.9	75
947	Hypoxia, Acidification and Inflammation: Partners in Crime in Parkinson's Disease Pathogenesis?. Immuno, 2021, 1, 78-90.	0.6	8
948	Estimation of the reducing power and electrochemical behavior of few flavonoids and polyhydroxybenzophenones substantiated by bond dissociation energy: a comparative analysis. Molecular Diversity, 2022, 26, 1101-1113.	2.1	8
949	Oxidative stress and regulated cell death in Parkinson's disease. Ageing Research Reviews, 2021, 67, 101263.	5.0	162
950	On the Road from Phenotypic Plasticity to Stem Cell Therapy. Journal of Neuroscience, 2021, 41, 5331-5337.	1.7	0
951	The dysregulated Pink1- Drosophila mitochondrial proteome is partially corrected with exercise. Aging, 2021, 13, 14709-14728.	1.4	3
953	Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 65.	2.5	74
954	Parkinson's disease multimodal imaging: F-DOPA PET, neuromelanin-sensitive and quantitative iron-sensitive MRI. Npj Parkinson's Disease, 2021, 7, 57.	2.5	31
955	Fluoxetine tunes the abnormal hippocampal oscillations in association with cognitive impairments in 6-OHDA lesioned rats. Behavioural Brain Research, 2021, 409, 113314.	1.2	3
956	Estimates of Intracellular Dopamine in Parkinson's Disease: A Systematic Review and Meta-Analysis. Journal of Parkinson's Disease, 2021, 11, 1011-1018.	1.5	8
957	Subthalamic nucleus deep brain stimulation induces sustained neurorestoration in the mesolimbic dopaminergic system in a Parkinson's disease model. Neurobiology of Disease, 2021, 156, 105404.	2.1	10
958	Toxic Feedback Loop Involving Iron, Reactive Oxygen Species, α-Synuclein and Neuromelanin in Parkinson's Disease and Intervention with Turmeric. Molecular Neurobiology, 2021, 58, 5920-5936.	1.9	22
959	Emerging roles of growth differentiation factor‑15 in brain disorders (Review). Experimental and Therapeutic Medicine, 2021, 22, 1270.	0.8	10
960	Matrix Metalloproteinase-8 Inhibitor Ameliorates Inflammatory Responses and Behavioral Deficits in LRRK2 G2019S Parkinson's Disease Model Mice. Biomolecules and Therapeutics, 2021, 29, 483-491.	1.1	4
961	Astrocytes, a Promising Opportunity to Control the Progress of Parkinson's Disease. Biomedicines, 2021, 9, 1341.	1.4	4

~			_		
C 1^{-1}		ON	DF	DO	DT
	AL		IVE	РU	

#	Article	IF	CITATIONS
962	Diverse midbrain dopaminergic neuron subtypes and implications for complex clinical symptoms of Parkinson's disease. , 2021, 1, .		10
964	Inflammation in parkinson's disease. Sub-Cellular Biochemistry, 2007, , 249-279.	1.0	26
965	Progress in Understanding the Mechanisms of Neuronal Dysfunction and Degeneration in Parkinson's Disease. , 2007, , 49-59.		2
966	Biomarkers for Early Detection of Parkinson's Disease: An Essential Challenge. , 2008, , 35-49.		2
967	Neuromelanin may Mediate Neurotoxicity via its Interaction with Redox Active Iron. , 2000, , 211-218.		4
968	Iron-Melanin Interaction in Substantia Nigra as the Neurotoxic Component of Parkinson's Disease. Advances in Behavioral Biology, 1990, , 257-262.	0.2	1
969	Reactive Dopamine Metabolites and Neurotoxicity. Advances in Experimental Medicine and Biology, 1996, 387, 97-106.	0.8	78
970	Neurodegenerative Disease and Oxidative Stress: Insights from an Animal Model of Parkinsonism. , 1996, , 37-46.		2
971	Intranigral Iron Infusion as a Model for Parkinson's Disease. , 1994, , 175-212.		2
972	MPTP. , 1998, , 141-194.		21
973	Dopamine Receptors and the Treatment of Parkinson's Disease. , 2010, , 525-584.		6
974	Potential sources of increased iron in the substantia nigra of parkinsonian patients. , 2006, , 133-142.		87
975	How to judge animal models of Parkinson's disease in terms of neuroprotection. , 2006, , 255-260.		11
976	Lipid content determines aggregation of neuromelanin granules in vitro. , 2007, , 35-38.		5
977	Parkinson's Disease and Aging. , 2016, , 229-255.		1
978	Neural Transplantation and Restoration of Motor Behaviour in Parkinsonâ€~s Disease. , 2008, , 35-48.		1
979	Pathology of Parkinson's Syndrome. Handbook of Experimental Pharmacology, 1989, , 47-112.	0.9	31
980	Dopaminergic Cell Death in Parkinson's Disease. , 1992, , 99-108.		5

	Сітат	ION REPORT	
#	ARTICLE Neurochemistry of the Sleen-Wabe Cycle in Parbinson's Disease 2015 19-33	IF	CITATIONS 4
901			7
982	Post mortem studies in Parkinson's disease — is it possible to detect brain areas for specific symptoms?. Journal of Neural Transmission Supplementum, 1999, 56, 1-29.	0.5	295
983	Cholinergic and peptidergic systems in PSP. Journal of Neural Transmission Supplementum, 1994, 42, 205-218.	0.5	18
984	Neuronal vulnerability in Parkinson's disease. Journal of Neural Transmission Supplementum, 1997, 50 79-88.	0, _{0.5}	118
985	Loss of dopaminergic neurons in parkinsonism: possible role of reactive dopamine metabolites. , 1997, 49, 103-110.		50
986	Selectivity of melaninized nigra-striatal dopamine neurons to degeneration in Parkinson's disease ma depend on iron-melanin interaction. , 1990, 29, 251-258.	y .	27
987	The neurotoxic component in Parkinson's disease may involve iron-melanin interaction and lipid peroxidation in the substantia nigra. New Vistas in Drug Research, 1990, , 111-122.	0.1	8
988	Senile dementia of Alzheimer's type and Parkinson's disease: neurochemical overlaps and specific differences. New Vistas in Drug Research, 1990, , 221-232.	0.1	6
990	Dopamine Reuptake Sites: The Issues. , 1991, , 111-119.		1
991	Computer Methods in Nuclei Cartography. Methods in Neurosciences, 1992, , 62-79.	0.5	14
992	A multidimensional design of charge transfer interfaces via D–A–D linking fashion for electrophysiological sensing of neurotransmitters. Biosensors and Bioelectronics, 2018, 99, 296-302.	5.3	8
993	CHAPTER 2. Molecular Pathogenesis and Pathophysiology of Parkinson's Disease: New Targets for Ne Therapies. RSC Drug Discovery Series, 2013, , 26-57.	2W 0.2	1
994	Oxidative stress and neurodegenerative disorders. , 1998, 5, 401.		4
995	Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular α-synuclein transfer. Journal of Clinical Investigation, 2019, 129, 3738-3753.	3.9	126
996	Role for VGLUT2 in selective vulnerability of midbrain dopamine neurons. Journal of Clinical Investigation, 2018, 128, 774-788.	3.9	72
997	Parkinson Disease. CONTINUUM Lifelong Learning in Neurology, 2019, 25, 896-918.	0.4	34
998	Sim1 Is a Novel Regulator in the Differentiation of Mouse Dorsal Raphe Serotonergic Neurons. PLoS ONE, 2011, 6, e19239.	1.1	17
999	No Differential Regulation of Dopamine Transporter (DAT) and Vesicular Monoamine Transporter 2 (VMAT2) Binding in a Primate Model of Parkinson Disease. PLoS ONE, 2012, 7, e31439.	1.1	28

#	Article	IF	CITATIONS
1000	High-Frequency Stimulation of the Subthalamic Nucleus Counteracts Cortical Expression of Major Histocompatibility Complex Genes in a Rat Model of Parkinson's Disease. PLoS ONE, 2014, 9, e91663.	1.1	7
1001	A Proteomics Approach to Investigate miR-153-3p and miR-205-5p Targets in Neuroblastoma Cells. PLoS ONE, 2015, 10, e0143969.	1.1	25
1002	Principal Component Analysis of Multimodal Neuromelanin MRI and Dopamine Transporter PET Data Provides a Specific Metric for the Nigral Dopaminergic Neuronal Density. PLoS ONE, 2016, 11, e0151191.	1.1	27
1003	Dopaminergic Neurodegeneration in the Mouse Is Associated with Decrease of Viscoelasticity of Substantia Nigra Tissue. PLoS ONE, 2016, 11, e0161179.	1.1	30
1004	Quantitative T1, T2, and T2* Mapping and Semi-Quantitative Neuromelanin-Sensitive Magnetic Resonance Imaging of the Human Midbrain. PLoS ONE, 2016, 11, e0165160.	1.1	12
1005	Propagated but Topologically Distributed Forebrain Neurons Expressing Alpha-Synuclein in Aged Macaques. PLoS ONE, 2016, 11, e0166861.	1.1	7
1006	Functional characterization of extrinsic tongue muscles in the Pink1-/- rat model of Parkinson disease. PLoS ONE, 2020, 15, e0240366.	1.1	11
1007	Neuromelanin-containing, catecholaminergic neurons in the human brain: ontogenetic aspects, development and aging. Biomedical Reviews, 2014, 13, 39.	0.6	6
1008	Relationship between the Appearance of Symptoms and the Level of Nigrostriatal Degeneration in a Progressive 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Macaque Model of Parkinson's Disease. Journal of Neuroscience, 2001, 21, 6853-6861.	1.7	437
1009	Salidroside ameliorates Parkinson's disease by inhibiting NLRP3-dependent pyroptosis. Aging, 2020, 12, 9405-9426.	1.4	93
1010	Fbxo7 and Pink1 play a reciprocal role in regulating their protein levels. Aging, 2021, 13, 77-88.	1.4	12
1011	The Use of Stem Cells in Regenerative Medicine for Parkinson's and Huntington's Diseases. Current Medicinal Chemistry, 2012, 19, 6018-6035.	1.2	25
1012	Glutamate and Mitochondria: Two Prominent Players in the Oxidative Stress-Induced Neurodegeneration. Current Alzheimer Research, 2016, 13, 185-197.	0.7	70
1013	Postmortem studies in Parkinson's disease. Dialogues in Clinical Neuroscience, 2004, 6, 281-293.	1.8	74
1014	Basal Ganglia Disorders Associated with Imbalances in the Striatal Striosome and Matrix Compartments. Frontiers in Neuroanatomy, 2011, 5, 59.	0.9	354
1015	Anti-parkinsonian effects of octacosanol in 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-treated mice. Neural Regeneration Research, 2012, 7, 1080-7.	1.6	10
1016	Asiatic Acid Protects Dopaminergic Neurons from Neuroinflammation by Suppressing Mitochondrial ROS Production. Biomolecules and Therapeutics, 2019, 27, 442-449.	1.1	38
1017	Neuromelanin-sensitive magnetic resonance imaging: a promising technique for depicting tissue characteristics containing neuromelanin. Neural Regeneration Research, 2014, 9, 759.	1.6	23

#	Article	IF	CITATIONS
1018	Regional brain susceptibility to neurodegeneration: what is the role of glial cells?. Neural Regeneration Research, 2020, 15, 838.	1.6	51
1019	Clinical application of circulating microRNAs in Parkinson's disease: The challenges and opportunities as diagnostic biomarker. Annals of Indian Academy of Neurology, 2020, 23, 84.	0.2	14
1020	Oxidative stress and human health. Advances in Bioscience and Biotechnology (Print), 2012, 03, 997-1019.	0.3	269
1021	Trasplante celular y terapia regenerativa con células madre. Anales Del Sistema Sanitario De Navarra, 0, 29, .	0.2	10
1022	Peripheral stimulation in treating Parkinson's disease: Is it a realistic idea or a romantic whimsicality?. Intractable and Rare Diseases Research, 2012, 1, 144-50.	0.3	9
1023	Simulating Idiopathic Parkinson's Disease by In Vitro and Computational Models. , 0, , .		1
1024	Dopamine neuron ensembles signal the content of sensory prediction errors. ELife, 2019, 8, .	2.8	39
1025	Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson's disease. Journal of Neural Transmission, 2021, 128, 1577-1598.	1.4	35
1026	Chronic methamphetamine-induced neurodegeneration: Differential vulnerability of ventral tegmental area and substantia nigra pars compacta dopamine neurons. Neuropharmacology, 2021, 200, 108817.	2.0	6
1027	Endogenous Brain Catechol Thioethers in Dopaminergic Neurodegeneration. , 2000, , 155-166.		2
1028	Brain Iron and other Trace Metals in Neurodegenerative Diseases. , 2000, , 259-276.		1
1030	Apoptosis, Glial Cells and Parkinson's Disease. Research and Perspectives in Neurosciences, 2001, , 97-107.	0.4	0
1031	Tetrahydrobiopterin (BH4)-Mediated Neuronal Death Following Intrastriatal Kainic Acid: Implications for Parkinson's Disease. , 2002, , 393-397.		0
1032	Anatomo-Chemical Organization of the Basal Ganglia Circuitry in the Normal and Parkinsonian States. Advances in Behavioral Biology, 2002, , 521-530.	0.2	0
1033	Morbus Parkinson und Depression. , 2002, , 45-49.		0
1034	Die Parkinson-Krankheit. , 2004, , 200-227.		14
1035	Sub-Proteome Processing: Isolation of Neuromelanin Granules from the Human Brain. Methods in Molecular Biology, 2009, 566, 95-107.	0.4	0
1036	Effects of dopamine depletion on reward-seeking behavior. , 2009, , 271-289.		0

#	Article	IF	CITATIONS
1037	Étiopathogénie. , 2011, , 9−19.		0
1038	UN MODELO EN RATA FRL DETERIORO COGNITIVO EN LA ENFERMEDAD DE PARKINSON. Revista Mexicana De Analisis De La Conducta, 2011, 32, .	0.7	0
1040	Neuroprotective effects of ginsenoside Rg1 on 1-methyl-4-phenylpyridinum-induced apoptosis in PC12 cells. Academic Journal of Second Military Medical University, 2011, 31, 965-968.	0.0	0
1042	SU-E-I-78: Neuromelanin in the Subthalamic Nucleus of Patients with Parkinson's Disease: An Electron Spin Resonance Spectroscopy Study. Medical Physics, 2012, 39, 3643-3643.	1.6	0
1043	Futures pistes thérapeutiques médicamenteuses pour la maladie de Parkinson. Bulletin De L'Academie Nationale De Medecine, 2012, 196, 1369-1379.	0.0	1
1044	Regulation of DA Homeostasis and Role of VMAT2 in DA-Induced Neurodegeneration. , 2014, , 973-993.		2
1045	NMDA R/VDR in Fish Melanocytes; Receptor Targeted Therapeutic Model and Mechanism in Parkinson's disease. Journal of Biomolecular Research & Therapeutics, 2014, 03, .	0.2	0
1046	Geriatric medicine in future Japanese Journal of Geriatrics, 1989, 26, 1-10.	0.0	2
1047	Patterns of Vulnerability of Mesostriatal Neurons. Advances in Behavioral Biology, 1990, , 207-212.	0.2	1
1048	The role of monoamine oxidase, iron-melanin interaction, and intracellular calcium in Parkinson's disease. , 1990, 32, 239-248.		19
1049	Neuroanatomy of Dopaminergic System in the Human Brain. , 1991, , 1-4.		0
1050	Dopaminergic Innervation of the Cerebral Cortex: Developmental and Organizational Differences in Primates as Compared to Rodents. , 1991, , 75-91.		0
1051	Dopaminergic cell death in Parkinson's disease: a role of iron?. Key Topics in Brain Research, 1993, , 67-77.	0.2	0
1052	Factors Associated to Dopaminergic Cell Death in Parkinson's Disease. , 1994, , 89-100.		0
1053	Suppression of hydroxyl radical formation by MAO inhibitors: a novel possible neuroprotective mechanism in dopaminergic neurotoxicity. , 1994, 41, 189-196.		21
1054	Localization and Density of Transferrin Binding Sites in the Nigrostriatal System of Control Subjects and Patients with Parkinson's Disease. Advances in Behavioral Biology, 1995, , 239-244.	0.2	0
1055	Neurotrophin-3 and neurotrophin-4/5. , 1996, , 219-249.		1
1056	Neurotransporters at the Juncture of Drug Action: Role in Programmed Cell Death, and Toxicity of		1

#	ARTICLE Pathological Changes in Neurodegenerative Disease 1997 115-152	IF	Citations
1057	Oxidative Stress in Parkinson's Disease. Neuroscience Intelligence Unit, 1997, , 175-193.	0.5	0
1059	Parkinson-Krankheit: Pathophysiologie und pathogenetische Faktoren. , 1999, , 3-34.		0
1060	Étiopathogénie. , 2015, , 13-19.e2.		0
1061	Adenosine A2A Receptor-Mediated Control of Non-Motor Functions in Parkinson's Disease. Current Topics in Neurotoxicity, 2015, , 183-205.	0.4	0
1062	Life on the Edge: Determinants of Selective Neuronal Vulnerability in Parkinson's Disease. , 2016, , 141-173.		0
1063	Three-dimensional reconstruction of substantia nigra pars compacta of human brain. I P Pavlov Russian Medical Biological Herald, 2018, 26, 175-183.	0.2	1
1064	Threedimensional reconstruction of substantia nigra pars compacta of human brain. I P Pavlov Russian Medical Biological Herald, 2018, 26, 175-183.	0.2	Ο
1068	Neuromelanin accumulation in patients with schizophrenia: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 2022, 132, 1205-1213.	2.9	13
1069	Detecting parkinsonian degeneration in lateroventral tier of substantia nigra pars compacta with MRI. , 2020, , 313-325.		0
1070	Basal Ganglia. , 2020, , 591-667.		2
1071	Subcellular-specific alpha-synuclein in Parkinson's disease. , 2020, , 175-188.		0
1072	Energy regulation and Parkinson's disease. , 2020, , 205-220.		0
1073	Neurochemical Transmission. , 0, , 545-641.		0
1074	The Basal Ganglia. , 0, , 153-193.		0
1077	Conditioning Against the Pathology of Parkinson's disease. Conditioning Medicine, 2018, 1, 143-162.	1.3	6
1078	Parkinson's Disease Associated with GBA Gene Mutations: Molecular Aspects and Potential Treatment Approaches. Acta Naturae, 2021, 13, 70-78.	1.7	1
1079	Parkinson's Disease Associated with GBA Gene Mutations: Molecular Aspects and Potential Treatment Approaches. Acta Naturae, 2021, 13, 70-78.	1.7	6

#	Article	IF	CITATIONS
1080	The Influence of Transcranial Magnetoacoustic Stimulation Parameters on the Basal Ganglia-Thalamus Neural Network in Parkinson's Disease. Frontiers in Neuroscience, 2021, 15, 761720.	1.4	1
1081	Selected Natural and Synthetic Agents Effective against Parkinson's Disease with Diverse Mechanisms. Current Topics in Medicinal Chemistry, 2022, 22, 199-208.	1.0	1
1082	Histamine-4 Receptor: Emerging Target for the Treatment of Neurological Diseases. Current Topics in Behavioral Neurosciences, 2021, , 1.	0.8	2
1083	Potential Role of Heterocyclic Aromatic Amines in Neurodegeneration. Chemical Research in Toxicology, 2022, 35, 59-72.	1.7	15
1084	Interplay of Ferritin Accumulation and Ferroportin Loss in Ageing Brain: Implication for Protein Aggregation in Down Syndrome Dementia, Alzheimer's, and Parkinson's Diseases. International Journal of Molecular Sciences, 2022, 23, 1060.	1.8	21
1085	Computer-Aided Classification Framework of Parkinsonian Disorders Using 11C-CFT PET Imaging. Frontiers in Aging Neuroscience, 2021, 13, 792951.	1.7	6
1086	Neurobiological and Pharmacological Perspectives of D3 Receptors in Parkinson's Disease. Biomolecules, 2022, 12, 243.	1.8	4
1087	Charting human subcortical maturation across the adult lifespan with in vivo 7ÂT MRI. NeuroImage, 2022, 249, 118872.	2.1	13
1088	The Effects of Safinamide Adjunct Therapy on Depression and Apathy in Patients With Parkinson's Disease: Post-hoc Analysis of a Japanese Phase 2/3 Study. Frontiers in Neurology, 2021, 12, 752632.	1.1	3
1089	Mitochondrial ATP Synthase is a Target of Oxidative Stress in Neurodegenerative Diseases. Frontiers in Molecular Biosciences, 2022, 9, 854321.	1.6	15
1090	The potential convergence of NLRP3 inflammasome, potassium, and dopamine mechanisms in Parkinson's disease. Npj Parkinson's Disease, 2022, 8, 32.	2.5	19
1091	Evidence That Substantia Nigra Pars Compacta Dopaminergic Neurons Are Selectively Vulnerable to Oxidative Stress Because They Are Highly Metabolically Active. Frontiers in Cellular Neuroscience, 2022, 16, 826193.	1.8	23
1092	Regional Selectivity of Neuromelanin Changes in the Substantia Nigra in Atypical Parkinsonism. Movement Disorders, 2022, 37, 1245-1255.	2.2	8
1093	Sustained chemogenetic activation of locus coeruleus norepinephrine neurons promotes dopaminergic neuron survival in synucleinopathy. PLoS ONE, 2022, 17, e0263074.	1.1	5
1094	Neuropathology of αâ€synuclein in Parkinson's disease. Neuropathology, 2022, 42, 93-103.	0.7	14
1095	Human IPSC 3D brain model as a tool to study chemical-induced dopaminergic neuronal toxicity. Neurobiology of Disease, 2022, 169, 105719.	2.1	12
1096	Motor and non-motor circuit disturbances in early Parkinson disease: which happens first?. Nature Reviews Neuroscience, 2022, 23, 115-128.	4.9	92
1097	Discovery of Resorcinol-Based Polycyclic Structures as Tyrosinase Inhibitors for Treatment of Parkinson's Disease. ACS Chemical Neuroscience, 2022, 13, 81-96.	1.7	22

#	Article	IF	CITATIONS
1098	Therapeutic Applications of Induced Pluripotent Stem Cell Use in Parkinson's Disease Models. Georgetown Medical Review, 2021, 5, .	0.1	1
1099	Dopamine as a Potential Target for Learning and Memory: Contributing to Related Neurological Disorders. CNS and Neurological Disorders - Drug Targets, 2023, 22, 558-576.	0.8	9
1100	Neuromelanin in Parkinson's Disease: Tyrosine Hydroxylase and Tyrosinase. International Journal of Molecular Sciences, 2022, 23, 4176.	1.8	32
1101	Microgliosis and neuronal proteinopathy in brain persist beyond viral clearance in SARS-CoV-2 hamster model. EBioMedicine, 2022, 79, 103999.	2.7	48
1102	Glial-Neuronal Interactions during Oxidative Stress: Implications for Parkinson's Disease. , 0, , 407-419.		0
1111	Neurodegenerative disorders: Are we wrong?. Revue Neurologique, 2022, , .	0.6	0
1112	Altered hydroxymethylome in the substantia nigra of Parkinson's disease. Human Molecular Genetics, 2022, 31, 3494-3503.	1.4	7
1114	Region-Specific Characteristics of Astrocytes and Microglia: A Possible Involvement in Aging and Diseases. Cells, 2022, 11, 1902.	1.8	10
1116	Neuromelanin granules of the substantia nigra: proteomic profile provides links to tyrosine hydroxylase, stress granules and lysosomes. Journal of Neural Transmission, 2022, 129, 1257-1270.	1.4	10
1118	Nanoparticles-based delivery system and its potentials in treating central nervous system disorders. Nanotechnology, 2022, 33, 452001.	1.3	6
1119	Beneficial effect of transient desflurane inhalation on relieving inflammation and reducing signaling induced by MPTP in mice. Journal of International Medical Research, 2022, 50, 030006052211153.	0.4	0
1120	Medicinal Prospects of Targeting Tyrosinase: A Feature Review. Current Medicinal Chemistry, 2023, 30, 2638-2671.	1.2	8
1121	Magnetic resonance imaging of the dopamine system in schizophrenia – A scoping review. Frontiers in Psychiatry, 0, 13, .	1.3	4
1122	Beta amyloid deposition and cognitive decline in Parkinson's disease: a study of the PPMI cohort. Molecular Brain, 2022, 15, .	1.3	9
1123	The role of neurotransmitter systems in mediating deep brain stimulation effects in Parkinson's disease. Frontiers in Neuroscience, 0, 16, .	1.4	5
1124	Molecular mechanisms underlying the neuroprotection of environmental enrichment in Parkinson's disease. Neural Regeneration Research, 2023, 18, 1450.	1.6	12
1125	The pathobiological basis of depression in Parkinson disease: challenges and outlooks. Journal of Neural Transmission, 2022, 129, 1397-1418.	1.4	15
1126	Iron- and Neuromelanin-Weighted Neuroimaging to Study Mitochondrial Dysfunction in Patients with Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 13678.	1.8	5

		CITATION REPO	DRT	
#	Article	I	F	CITATIONS
1127	The Proteome of Neuromelanin Granules in Dementia with Lewy Bodies. Cells, 2022, 11,	3538.	1.8	2
1128	Molecular heterogeneity in the substantia nigra: A roadmap for understanding PD motor pathophysiology. Neurobiology of Disease, 2022, 175, 105925.		2.1	8
1129	Mechanisms Underlying Brain Aging Under Normal and Pathological Conditions. Neuros Bulletin, 2023, 39, 303-314.	zience	1.5	3
1130	Iron and copper ions accelerate and modify dopamine oxidation to eumelanin: implication neuromelanin genesis. Journal of Neural Transmission, 2023, 130, 29-42.	ns for	1.4	4
1131	Exercise-Boosted Mitochondrial Remodeling in Parkinson's Disease. Biomedicines, 2)22, 10, 3228.	1.4	7
1132	Neurodegeneration and inflammation crosstalk: Therapeutic targets and perspectives. If Neuroscience Reports, 2023, 14, 95-110.	RO	0 .7	7
1134	Dopamine, Immunity, and Disease. Pharmacological Reviews, 2023, 75, 62-158.	:	7.1	43
1135	A journey across dopamine Metabolism: A rotational study of DOPAC. Spectrochimica A Molecular and Biomolecular Spectroscopy, 2023, 290, 122303.	cta - Part A:	2.0	0
1136	<i>In vivo</i> reduction of age-dependent neuromelanin accumulation mitigates feature Parkinson's disease. Brain, 2023, 146, 1040-1052.	s of s	3.7	12
1137	From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Orgar for Parkinson's Disease Modeling and Regenerative Therapy. International Journal of Sciences, 2023, 24, 2523.	oid Cultures Molecular :	1.8	5
1138	H2S-based fluorescent imaging for pathophysiological processes. Frontiers in Chemistry	, 0, 11, .	1.8	6
1139	The role of tyrosine hydroxylase as a key player in neuromelanin synthesis and the assoc neuromelanin with Parkinson's disease. Journal of Neural Transmission, 2023, 130, 6	ation of 11-625.	1.4	17
1140	The role of dopamine in NLRP3 inflammasome inhibition: Implications for neurodegenera Ageing Research Reviews, 2023, 87, 101907.	itive diseases.	5.0	12
1141	Chemiexcitation: Mammalian Photochemistry in the Dark ^{â€} . Photochemist Photobiology, 2023, 99, 251-276.	ry and	1.3	5
1142	The dual role of heme oxygenase in regulating apoptosis in the nervous system of Drosc melanogaster. Frontiers in Physiology, 0, 14, .	phila	1.3	3
1143	Disease mechanisms as Subtypes: Mitochondrial and bioenergetic dysfunction. Handboo Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 53-66.	bk of Clinical	1.0	0
1144	microRNAâ€⊋21 rescues the loss of dopaminergic neurons in a mouse model of Parkinso and Behavior, 2023, 13, .	on's disease. Brain	1.0	4
1145	Signaling pathways in Parkinson's disease: molecular mechanisms and therapeutic in Signal Transduction and Targeted Therapy, 2023, 8, .	iterventions.	7.1	37

#	Article	IF	CITATIONS
1146	Ionic Covalent Organosilicon Polymer Nanosheet for Selective and Sensitive Detection of Dopamine. , 2023, 5, 1376-1383.		5
1147	Lewy bodies, iron, inflammation and neuromelanin: pathological aspects underlying Parkinson's disease. Journal of Neural Transmission, 2023, 130, 627-646.	1.4	8
1148	In Search of a Feedback Signal for Closed-Loop Deep Brain Stimulation: Stimulation of the Subthalamic Nucleus Reveals Altered Glutamate Dynamics in the Globus Pallidus in Anesthetized, 6-Hydroxydopamine-Treated Rats. Biosensors, 2023, 13, 480.	2.3	1
1171	Towards improved screening of toxins for Parkinson's risk. Npj Parkinson's Disease, 2023, 9, .	2.5	0