A back-propagation programmed network that simulat posterior parietal neurons

Nature 331, 679-684 DOI: 10.1038/331679a0

Citation Report

#	Article	IF	CITATIONS
1	Learning from a computer cat. Nature, 1988, 331, 657-658.	13.7	10
2	Neural populations revealed. Nature, 1988, 332, 308-308.	13.7	38
3	The evolution of human lateral asymmetries: new evidence and second thoughts. Journal of Human Evolution, 1988, 17, 615-637.	1.3	35
4	The significance of neuroscience for philosophy. Trends in Neurosciences, 1988, 11, 304-307.	4.2	12
5	Means to immortalize neural cells. Trends in Neurosciences, 1988, 11, 307.	4.2	0
6	The role of the teacher in learning-based models of parietal area 7a. Brain Research Bulletin, 1988, 21, 505-512.	1.4	5
7	The role of the posterior parietal cortex in coordinate transformations for visual–motor integration. Canadian Journal of Physiology and Pharmacology, 1988, 66, 488-501.	0.7	173
8	Behavioral neurophysiology: insights into seeing and grasping. Science, 1988, 242, 736-741.	6.0	166
9	Computational neuroscience. Science, 1988, 241, 1299-1306.	6.0	377
10	Connectionism and physiological psychology: A marriage made in heaven?. Philosophical Psychology, 1988, 1, 359-372.	0.5	0
11	The organization of spatial coding in the hippocampus: a study of neural ensemble activity. Journal of Neuroscience, 1989, 9, 2764-2775.	1.7	175
12	Gaze-dependent visual neurons in area V3A of monkey prestriate cortex. Journal of Neuroscience, 1989, 9, 1112-1125.	1.7	260
13	Is backpropagation biologically plausible?. , 1989, , .		49
14	Visual and Eye Movement Functions of the Posterior Parietal Cortex. Annual Review of Neuroscience, 1989, 12, 377-403.	5.0	334
15	Neural kinematics net for a redundant robot arm. , 1989, , .		14
16	Back propagation fails to separate where perceptrons succeed. IEEE Transactions on Circuits and Systems, 1989, 36, 665-674.	0.9	71
17	The distributed representation of vestibulo-oculomotor signals by brain-stem neurons. Biological Cybernetics, 1989, 61, 79-88.	0.6	63
18	On the ability of neural networks to perform generalization by induction. Biological Cybernetics, 1989, 61, 125-8.	0.6	29

TATION RED

#	Article	IF	CITATIONS
19	The recent excitement about neural networks. Nature, 1989, 337, 129-132.	13.7	599
20	Function of identified interneurons in the leech elucidated using neural networks trained by back-propagation. Nature, 1989, 340, 468-471.	13.7	54
21	The antiphon: a device for reliable memory from unreliable components. I. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1989, 423, 201-218.	1.5	9
22	Pattern classification using neural networks. , 1989, 27, 47-50.		661
23	Neuronal models of cognitive functions. Cognition, 1989, 33, 63-109.	1.1	247
24	Localization of a leech inhibitory synapse by photo-ablation of individual dendrites. Brain Research, 1989, 504, 43-48.	1.1	13
25	An Investigation of Trained Neural Networks from a Neurophysiological Perspective. Perception, 1989, 18, 793-803.	0.5	20
26	Gating of retinal transmission by afferent eye position and movement signals. Science, 1989, 243, 93-96.	6.0	91
27	REPRESENTATION OF EGOCENTRIC SPACE IN THE POSTERIOR PARIETAL CORTEX. Quarterly Journal of Experimental Physiology (Cambridge, England), 1989, 74, 583-606.	1.0	129
28	Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications. Behavioral and Brain Sciences, 1990, 13, 519-542.	0.4	575
29	Does visual-field specialization really have implications for coordinated visual-motor behavior?. Behavioral and Brain Sciences, 1990, 13, 542-543.	0.4	1
30	Seeing double: Dichotomizing the visual system. Behavioral and Brain Sciences, 1990, 13, 543-544.	0.4	0
31	The benefits and constraints of visual processing dichotomies. Behavioral and Brain Sciences, 1990, 13, 544-545.	0.4	3
32	Ups and downs of the visual field: Manipulation and locomotion. Behavioral and Brain Sciences, 1990, 13, 545-546.	0.4	1
33	Response field biases in parietal, temporal, and frontal lobe visual areas. Behavioral and Brain Sciences, 1990, 13, 546-547.	0.4	1
34	Twisting the world by 90°. Behavioral and Brain Sciences, 1990, 13, 547-548.	0.4	12
35	Visual information in the upper and lower visual fields may be processed differently, but how and why remains to be established. Behavioral and Brain Sciences, 1990, 13, 549-550.	0.4	0
36	The ups and downs of visual fields. Behavioral and Brain Sciences, 1990, 13, 550-551.	0.4	0

<u><u> </u></u>		 Repo	~ -
			2
\sim	/		

#	Article	IF	CITATIONS
37	Ecology and functional specialization: The whole is less than the sum of the parts. Behavioral and Brain Sciences, 1990, 13, 551-551.	0.4	0
38	Pigeons, primates, and division of labor in the vertebrate visual system. Behavioral and Brain Sciences, 1990, 13, 551-552.	0.4	0
39	Attention to near and far space: The third dichotomy. Behavioral and Brain Sciences, 1990, 13, 552-553.	0.4	12
40	The role of dorsal/ventral processing dissociation in the economy of the primate brain. Behavioral and Brain Sciences, 1990, 13, 553-554.	0.4	0
41	Why the computations must not be ignored. Behavioral and Brain Sciences, 1990, 13, 554-555.	0.4	0
42	Peripheral lower visual fields: A neglected factor?. Behavioral and Brain Sciences, 1990, 13, 555-555.	0.4	2
43	Properties of neurons in the dorsal visual pathway of the monkey. Behavioral and Brain Sciences, 1990, 13, 555-556.	0.4	0
44	Different regions of space or different spaces altogether: What are the dorsal/ventral systems processing?. Behavioral and Brain Sciences, 1990, 13, 556-557.	0.4	35
45	The primary visual system does not care about Previc's near-far dichotomy. Why not?. Behavioral and Brain Sciences, 1990, 13, 557-558.	0.4	1
46	Only half way up. Behavioral and Brain Sciences, 1990, 13, 558-558.	0.4	1
47	Visual processing in three-dimensional space: Perceptions and misperceptions. Behavioral and Brain Sciences, 1990, 13, 559-575.	0.4	9
48	Functional specialization in the visual system: Retinotopic or body centered?. Behavioral and Brain Sciences, 1990, 13, 548-549.	0.4	1
49	Orbital position and eye movement influences on visual responses in the pulvinar nuclei of the behaving macaque. Experimental Brain Research, 1990, 82, 235-46.	0.7	45
50	Self-calibrated collinearity detector. Biological Cybernetics, 1990, 63, 463-475.	0.6	8
51	A learned neural network that simulates properties of the neuronal population vector. Biological Cybernetics, 1990, 63, 377-382.	0.6	19
52	Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology, 1990, 28, 597-613.	2.8	2,648
53	Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. Journal of Comparative Neurology, 1990, 296, 65-113.	0.9	758
54	Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. Journal of Comparative Neurology, 1990, 299, 421-445.	0.9	547

#	Article	IF	CITATIONS
55	Image reconstruction based on human and monkey cone mosaics. Journal of Visual Communication and Image Representation, 1990, 1, 137-152.	1.7	1
56	Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. Journal of Neuroscience, 1990, 10, 436-447.	1.7	1,003
57	Using neural networks to learn shape decomposition by successive prototypication. Lecture Notes in Computer Science, 1990, , 610-612.	1.0	1
58	Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. Journal of Neuroscience, 1990, 10, 1176-1196.	1.7	867
59	Simulating Visual Attention. Journal of Cognitive Neuroscience, 1990, 2, 213-231.	1.1	48
60	Modeling Orientation Discrimination at Multiple Reference Orientations with a Neural Network. Neural Computation, 1990, 2, 152-161.	1.3	13
61	Receptive Field Characteristics That Allow Parietal Lobe Neurons to Encode Spatial Properties of Visual Input: A Computational Analysis. Journal of Cognitive Neuroscience, 1990, 2, 141-155.	1.1	22
62	A Dynamic Neural Network Model of Sensorimotor Transformations in the Leech. Neural Computation, 1990, 2, 274-282.	1.3	34
63	A _{R-P} learning applied to a network model of cortical area 7a. , 1990, , .		4
64	A dynamical neural network model of sensorimotor transformations in the leech. , 1990, , .		1
65	Algorithm programmed by a neural network model for coordinate transformation. , 1990, , .		42
66	Synthetic neural modeling: the 'Darwin' series of recognition automata. Proceedings of the IEEE, 1990, 78, 1498-1530.	16.4	89
67	Spatial distribution of modalities and receptive fields in sensorimotor cortex of awake cats. Experimental Neurology, 1990, 107, 78-96.	2.0	7
68	Opening the grey box. Trends in Neurosciences, 1991, 14, 286-293.	4.2	124
69	Recognition by linear combinations of models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13, 992-1006.	9.7	672
70	Connectionist Models of Orientation Identification. Connection Science, 1991, 3, 127-142.	1.8	14
71	Saccade-related activity in the lateral intraparietal area. II. Spatial properties. Journal of Neurophysiology, 1991, 66, 1109-1124.	0.9	367

	CITATION R	EPORT	
#	Article	IF	CITATIONS
74	The cortical column: A new processing unit for multilayered networks. Neural Networks, 1991, 4, 15-25.	3.3	35
75	A more biologically plausible learning rule for neural networks Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 4433-4437.	3.3	186
76	A More Biologically Plausible Learning Rule Than Backpropagation Applied to a Network Model of Cortical Area 7a. Cerebral Cortex, 1991, 1, 293-307.	1.6	74
77	Recurrent Network Model of the Neural Mechanism of Short-Term Active Memory. Neural Computation, 1991, 3, 179-193.	1.3	81
78	A neural network model of sensoritopic maps with predictive short-term memory properties Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 9653-9657.	3.3	131
79	"Dead Reckoning,―Landmark Learning, and the Sense of Direction: A Neurophysiological and Computational Hypothesis. Journal of Cognitive Neuroscience, 1991, 3, 190-202.	1.1	361
80	Chapter 23 A cognitive neuroscience of visual cognition: Further developments. Advances in Psychology, 1991, , 351-381.	0.1	31
81	Neural networks for complex scene recognition: simulation of a visual system with several cortical areas. , 0, , .		8
82	Distinct Syndromes of Hemineglect. Archives of Neurology, 1992, 49, 1187-1194.	4.9	301
83	Internal Representations of Movement in the Cerebral Cortex as Revealed by the Analysis of Reaching. Cerebral Cortex, 1992, 2, 269-276.	1.6	17
84	Statistical mechanics of learning from examples. Physical Review A, 1992, 45, 6056-6091.	1.0	382
85	Categorical versus coordinate spatial relations: Computational analyses and computer simulations Journal of Experimental Psychology: Human Perception and Performance, 1992, 18, 562-577.	0.7	196
86	Visually perceived eye level: Changes induced by a pitched-from-vertical 2-line visual field Journal of Experimental Psychology: Human Perception and Performance, 1992, 18, 257-289.	0.7	46
87	SACCADIC DYSMETRIA IN A PATIENT WITH A RIGHT FRONTOPARIETAL LESION. Brain, 1992, 115, 1387-1402.	3.7	185
88	Does the nervous system use equilibrium-point control to guide single and multiple joint movements?. Behavioral and Brain Sciences, 1992, 15, 603-613.	0.4	473
89	The representation of egocentric space in the posterior parietal cortex. Behavioral and Brain Sciences, 1992, 15, 691-700.	0.4	334
90	Is stiffness the mainspring of posture and movement?. Behavioral and Brain Sciences, 1992, 15, 756-758.	0.4	42
91	Equilibrium-point hypothesis, minimum effort control strategy and the triphasic muscle activation pattern. Behavioral and Brain Sciences, 1992, 15, 769-771.	0.4	47

#	Article	IF	CITATIONS
92	Context, cortex, and dopamine: A connectionist approach to behavior and biology in schizophrenia Psychological Review, 1992, 99, 45-77.	2.7	1,464
93	Stimulus configuration, classical conditioning, and hippocampal function Psychological Review, 1992, 99, 268-305.	2.7	237
94	Maximally fault tolerant neural networks. IEEE Transactions on Neural Networks, 1992, 3, 14-23.	4.8	110
95	Horizontal integration and cortical dynamics. Neuron, 1992, 9, 1-13.	3.8	634
96	Evidence for the lateral intraparietal area as the parietal eye field. Current Opinion in Neurobiology, 1992, 2, 840-846.	2.0	127
97	Organization of space perception: neural representation of three-dimensional space in the posterior parietal cortex. Current Opinion in Neurobiology, 1992, 2, 170-174.	2.0	93
98	Identification models of the nervous system. Neuroscience, 1992, 47, 853-862.	1.1	53
99	Learning visual coordinate transformations with competition. , 0, , .		2
100	Cerebral cortical mechanisms of reaching movements. Science, 1992, 255, 1517-1523.	6.0	469
101	Computer simulation of neurone pattern processing. Journal of Biomedical Engineering, 1992, 14, 222-228.	0.7	3
102	Does the nervous system depend on kinesthetic information to control natural limb movements?. Behavioral and Brain Sciences, 1992, 15, 614-632.	0.4	327
103	Implications of neural networks for how we think about brain function. Behavioral and Brain Sciences, 1992, 15, 644-655.	0.4	93
104	Predicting responses of nonlinear neurons in monkey striate cortex to complex patterns. Journal of Neuroscience, 1992, 12, 3568-3581.	1.7	59
106	Successive approximation in targeted movement: An alternative hypothesis. Behavioral and Brain Sciences, 1992, 15, 729-730.	0.4	0
107	Does limb proprioception drift?. Experimental Brain Research, 1992, 91, 162-6.	0.7	233
108	Vestibuloocular reflex arc analysis using an experimentally constrained neural network. Biological Cybernetics, 1992, 67, 113-122.	0.6	7
109	Parallel pathways converge. Current Biology, 1992, 2, 555-557.	1.8	31
110	Realistic neural network models using backpropagation: panacea or oxymoron?. Seminars in Neuroscience, 1992, 4, 47-59.	2.3	22

#	Article	IF	CITATIONS
111	Two models for transforming auditory signals from head-centered to eye-centered coordinates. Biological Cybernetics, 1992, 67, 291-302.	0.6	96
112	Improving the convergence of the back-propagation algorithm. Neural Networks, 1992, 5, 465-471.	3.3	382
113	Effects of gaze on apparent visual responses of frontal cortex neurons. Experimental Brain Research, 1993, 93, 423-34.	0.7	114
114	A neural network representation of electromyography and joint dynamics in human gait. Journal of Biomechanics, 1993, 26, 101-109.	0.9	130
115	A lower bound on the detectability of nonassociative learning in the local bending reflex of the medicinal leech. Behavioral and Neural Biology, 1993, 59, 208-224.	2.3	18
116	The computational leech. Trends in Neurosciences, 1993, 16, 283-290.	4.2	23
117	The role of neural networks in the study of the posterior parietal cortex. , 0, , .		0
118	Color opponency as the internal representation acquired by a three-layered neural network model. , 0, , .		1
119	Neural nets, random design and reverse engineering. , 0, , .		1
120	Coordinate transformations in the representation of spatial information. Current Opinion in Neurobiology, 1993, 3, 171-176.	2.0	338
121	Remapping of neural activity in the motor colliculus: A neural network study. Vision Research, 1993, 33, 1287-1298.	0.7	113
122	Behaviorally Based Modeling and Computational Approaches to Neuroscience. Annual Review of Neuroscience, 1993, 16, 597-623.	5.0	99
123	Modeling of Neural Circuits: What Have We Learned?. Annual Review of Neuroscience, 1993, 16, 531-546.	5.0	74
124	Thinking about brain cell assemblies. Science, 1993, 261, 993-994.	6.0	112
125	Topography of supplementary eye field afferents to frontal eye field in macaque: Implications for mapping between saccade coordinate systems. Visual Neuroscience, 1993, 10, 385-393.	0.5	89
126	Introduction to the Symposium: What is Computational Neurobiology?. American Zoologist, 1993, 33, 3-7.	0.7	1
127	Methods in Computational Neurobiology. American Zoologist, 1993, 33, 8-15.	0.7	0
128	A Theory of Dopamine Function and Its Role in Cognitive Deficits in Schizophrenia. Schizophrenia Bulletin, 1993, 19, 85-104.	2.3	194

ARTICLE IF CITATIONS # A Neural Network Model of Cortical Activity during Reaching. Journal of Cognitive Neuroscience, 129 1.1 52 1993, 5, 14-33. Egocentric Spaw Representation in Early Vision. Journal of Cognitive Neuroscience, 1993, 5, 150-161. 1.1 133 Distributed Representation of Limb Motor Programs in Arrays of Adjustable Pattern Generators. 131 1.1 121 Journal of Cognitive Neuroscience, 1993, 5, 56-78. Computations in the Ascending Auditory Pathway in Songbirds Related to Song Learning. American Zoologist, 1993, 33, 94-103. A Neural Network Model of Sensorimotor Transformations in the Local Bending Reflex of the 133 0.7 2 Medicinal Leech. American Zoologist, 1993, 33, 40-53. Chapter 9 Sensory integration in the deep layers of superior colliculus. Progress in Brain Research, 1993, 95, 91-102. 135 The Role of Computational Complexity in Perceptual Theory. Advances in Psychology, 1993, , 261-296. 0.1 6 Chapter 28 Visual pathways to perception and action. Progress in Brain Research, 1993, 95, 317-337. 136 290 137 A spiking network model of short-term active memory. Journal of Neuroscience, 1993, 13, 3406-3420. 1.7 237 Can sense be made of spinal interneuron circuits?., 1994, , 31-41. Education, Occupation, and Alzheimer's Disease. JAMA - Journal of the American Medical Association, 139 3.8 1 1994, 272, 1405. Selection Versus Instruction: Use of Computer Models to Compare Brain Theories. International Review of Neurobiology, 1994, 37, 211-242. Psychoneural isomorphism: Historical background and current relevance. Philosophical Psychology, 142 0.5 63 1994, 7, 183-210. The Anatomy and Physiology of Primate Neurons that Control Rapid Eye Movements. Annual Review of Neuroscience, 1994, 17, 465-488. 143 5.0 A Neural Model of the Cortical Representation of Egocentric Distance. Cerebral Cortex, 1994, 4, 144 62 1.6 314-329. Acquisition of color opponent representation by a three-layered neural network model. Biological 145 Cybernetics, 1994, 72, 35-41. Training redundant artificial neural networks: Imposing biology on technology. Psychological 146 1.0 12 Research, 1994, 57, 54-62. Head-direction cells in the rat posterior cortex. Experimental Brain Research, 1994, 101, 8-23. 498

		CITATION RE	PORT	
#	Article		IF	CITATIONS
148	Head-direction cells in the rat posterior cortex. Experimental Brain Research, 1994, 101,	24-34.	0.7	208
149	Neural network models of cortical functions based on the computational properties of t cortex. Journal of Physiology (Paris), 1994, 88, 291-308.	he cerebral	2.1	14
150	Differentiation of Beats of Ventricular and Sinus Origin Using a Self-Training Neural Netr Pacing and Clinical Electrophysiology, 1994, 17, 611-626.	work. PACE -	0.5	12
151	Connectionist networks and language disorders. Journal of Communication Disorders, 1 305-323.	994, 27,	0.8	7
152	Spatial summation among coextensive and parallel line segments across wide separatio Egocentric localization and the Great Circle Model. Vision Research, 1994, 34, 2577-259	ns (50°): 98.	0.7	30
153	Spatial scale dependent in-phase and anti-phase directional biases in the perception of s motion patterns. Vision Research, 1994, 34, 1843-1861.	elf-organized	0.7	14
154	A theory of visual stability across saccadic eye movements. Behavioral and Brain Science 247-258.	2s, 1994, 17,	0.4	419
155	Just how different are perceptual and visuomotor localization abilities?. Behavioral and E Sciences, 1994, 17, 258-259.	Brain	0.4	Ο
156	Perceptual stability and postsaccadic visual information: Can man bridge a gap?. Behavi Sciences, 1994, 17, 259-260.	oral and Brain	0.4	23
157	Voluntary oscillopsia: Watching the world go round. Behavioral and Brain Sciences, 199	4, 17, 260-262.	0.4	Ο
158	Early concepts on efference copy and reafference. Behavioral and Brain Sciences, 1994,	17, 262-265.	0.4	16
159	Keeping track of visual codes that move from cell to cell during eye movements. Behavio Sciences, 1994, 17, 265-265.	bral and Brain	0.4	0
160	A localist evaluation solution for visual stability across saccades. Behavioral and Brain So 1994, 17, 265-266.	iences,	0.4	30
161	Visual stability and transsaccadic information processing. Behavioral and Brain Sciences 266-267.	, 1994, 17,	0.4	0
162	Task dependent spatial memory across saccades. Behavioral and Brain Sciences, 1994,	17, 267-268.	0.4	2
163	Is there any essential difference between the "calibration―and "elimination―s and Brain Sciences, 1994, 17, 268-269.	olutions?. Behavioral	0.4	0
164	Theory of coordinate transformation by efference copy survives another attack. Behavic Sciences, 1994, 17, 269-270.	ral and Brain	0.4	2
165	The world as an outside iconic memory – no strong internal metric means no problem stability. Behavioral and Brain Sciences, 1994, 17, 270-271.	of visual	0.4	4

#	Article	IF	CITATIONS
166	Seeing where we look: Fixation as extraretinal information. Behavioral and Brain Sciences, 1994, 17, 271-272.	0.4	80
167	The "calibration―solution still leaves much work to be done. Behavioral and Brain Sciences, 1994, 17, 273-274.	0.4	0
168	Is perception isomorphic with neural activity?. Behavioral and Brain Sciences, 1994, 17, 274-274.	0.4	1
169	Neuronal death of the cancellation theory?. Behavioral and Brain Sciences, 1994, 17, 274-275.	0.4	0
170	On the locus of visual stability. Behavioral and Brain Sciences, 1994, 17, 275-276.	0.4	0
171	Calibration models and ecological efference mediation theory: Toward a synthesis of indirect and direct perception theories. Behavioral and Brain Sciences, 1994, 17, 276-277.	0.4	0
172	Stability relative to what?. Behavioral and Brain Sciences, 1994, 17, 277-278.	0.4	1
173	Vector code in space constancy. Behavioral and Brain Sciences, 1994, 17, 278-278.	0.4	0
174	The translation solution plus motion suppression account for perceived stability. Behavioral and Brain Sciences, 1994, 17, 278-279.	0.4	0
175	There is no "point―to space. Behavioral and Brain Sciences, 1994, 17, 279-279.	0.4	0
176	Visual stability: What is new?. Behavioral and Brain Sciences, 1994, 17, 280-281.	0.4	0
177	Fixations or smooth eye movements?. Behavioral and Brain Sciences, 1994, 17, 281-282.	0.4	2
178	How our world remains stable despite disturbing influences. Behavioral and Brain Sciences, 1994, 17, 282-292.	0.4	3
179	Is there a role for extraretinal factors in the maintenance of stability in a structured environment?. Behavioral and Brain Sciences, 1994, 17, 258-258.	0.4	26
180	The perceptual stability of the visual field: What is calibration for?. Behavioral and Brain Sciences, 1994, 17, 272-272.	0.4	0
181	What does calibration solve?. Behavioral and Brain Sciences, 1994, 17, 279-280.	0.4	2
182	An anatomically constrained neural network model of fear conditioning Behavioral Neuroscience, 1995, 109, 246-257.	0.6	129
183	Models of Oculomotor Function: an Appraisal of the Engineer's Intrusion into Oculomotor Physiology. Studies in Visual Information Processing, 1995, , 23-46.	0.3	3

#	Article	IF	CITATIONS
185	Using reflexive behaviors of the medicinal leech to study information processing. Journal of Neurobiology, 1995, 27, 380-389.	3.7	34
186	A novel interpretation for the collicular role in saccade generation. Biological Cybernetics, 1995, 73, 431-445.	0.6	18
187	Head position signals used by parietal neurons to encode locations of visual stimuli. Nature, 1995, 375, 232-235.	13.7	349
188	Eye Position Influence on the Parieto-occipital Area PO (V6) of the Macaque Monkey. European Journal of Neuroscience, 1995, 7, 2486-2501.	1.2	514
189	Transfer of coded information from sensory to motor networks. Journal of Neuroscience, 1995, 15, 6461-6474.	1.7	240
190	Global motion discrimination using more physiological modified artificial neural networks. , 0, , .		0
191	The Protective Effects of Education on Simulated Brain Injury. Journal of Neurotrauma, 1995, 12, 957-960.	1.7	3
192	Functional Anatomy of Reaching and Visuomotor Learning: A Positron Emission Tomography Study. Cerebral Cortex, 1995, 5, 111-122.	1.6	120
193	REVIEW â– : Multiple Representations of Space in the Brain. Neuroscientist, 1995, 1, 43-50.	2.6	107
194	Oculocentric Spatial Representation in Parietal Cortex. Cerebral Cortex, 1995, 5, 470-481.	1.6	236
195	Psychophysical approaches to motor control. Current Opinion in Neurobiology, 1995, 5, 742-748.	2.0	13
196	Context effects on perceived position: Sustained and transient temporal influences on spatial interactions. Vision Research, 1995, 35, 635-646.	0.7	7
197	Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory Psychological Review, 1995, 102, 419-457.	2.7	4,586
198	Encoding of Intention and Spatial Location in the Posterior Parietal Cortex. Cerebral Cortex, 1995, 5, 457-469.	1.6	338
199	Neuromodulation and cortical function: modeling the physiological basis of behavior. Behavioural Brain Research, 1995, 67, 1-27.	1.2	496
200	Feature Article: Distributed Modular Architectures Linking Basal Ganglia, Cerebellum, and Cerebral Cortex: Their Role in Planning and Controlling Action. Cerebral Cortex, 1995, 5, 95-110.	1.6	589
201	A Model of Spatial Map Formation in the Hippocampus of the Rat. Neural Computation, 1996, 8, 85-93.	1.3	333
202	Strengths and Weaknesses of the Backpropagation Neural Network in QSAR and QSPR Studies. , 1996, , 1-46.		46

		CITATION REPORT	
#	Article	IF	CITATIONS
203	The representation of shape in the temporal lobe. Behavioural Brain Research, 1996, 76, 99-116	5. 1.2	9
204	Brief Papers. Brain and Cognition, 1996, 32, 193-273.	0.8	2
205	Neural network simulations of the primate oculomotor system. II. Frames of reference. Brain Re Bulletin, 1996, 40, 337-343.	search 1.4	43
206	The microscopic anatomy and physiology of the mammalian saccadic system. Progress in Neuro 1996, 50, 133-254.	obiology, 2.8	327
207	Developmental Cognitive Neuroscience: A Biological Perspective on Cognitive Change. , 1996,	, 333-372.	6
208	Eye-centered, head-centered, and intermediate coding of remembered sound locations in area I Journal of Neurophysiology, 1996, 76, 2071-2076.	.IP. 0.9	295
209	Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. Journal of Neuroscience, 1996, 16, 2381-2396.	1.7	417
210	Optic Flow Processing in Monkey STS: A Theoretical and Experimental Approach. Journal of Neuroscience, 1996, 16, 6265-6285.	1.7	147
211	Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal ar Journal of Neurophysiology, 1996, 76, 2841-2852.	ea. 0.9	923
212	Generalization to Local Remappings of the Visuomotor Coordinate Transformation. Journal of Neuroscience, 1996, 16, 7085-7096.	1.7	166
213	A Canonical Microfunction for Learning Perceptual Invariances. Perception, 1996, 25, 207-220.	0.5	42
214	Cerebellar long-term depression as investigated in a cell culture preparation. Behavioral and Bra Sciences, 1996, 19, 339-346.	in 0.4	41
215	Cellular mechanisms of long-term depression in the cerebellum. Behavioral and Brain Sciences, 19, 347-353.	1996, 0.4	38
216	Long-lasting potentiation of GABAergic inhibitory synaptic transmission in cerebellar Purkinje co Its properties and possible mechanisms. Behavioral and Brain Sciences, 1996, 19, 354-361.	ells: 0.4	46
217	Nitric oxide and synaptic plasticity: NO news from the cerebellum. Behavioral and Brain Science 19, 362-367.	es, 1996, 0.4	17
218	On climbing fiber signals and their consequence(s). Behavioral and Brain Sciences, 1996, 19, 38	34-398. 0.4	179
219	Does the cerebellum learn strategies for the optimal time-varying control of joint stiffness?. Behavioral and Brain Sciences, 1996, 19, 399-410.	0.4	56
220	Spanning the levels in cerebellar function. Behavioral and Brain Sciences, 1996, 19, 434-435.	0.4	4

#	Article	IF	CITATIONS
221	What has to be learned in motor learning?. Behavioral and Brain Sciences, 1996, 19, 436-437.	0.4	2
222	Perhaps it's time to completely rethink cerebellar function. Behavioral and Brain Sciences, 1996, 19, 438-439.	0.4	10
223	One cannot build theories of cerebellar function on shaky foundations: Induction properties of long-term depression have to be taken into account. Behavioral and Brain Sciences, 1996, 19, 440-441.	0.4	3
224	Saccades and the adjustable pattern generator. Behavioral and Brain Sciences, 1996, 19, 441-442.	0.4	3
225	Grasping cerebellar function depends on our understanding the principles of sensorimotor integration: The frame of reference hypothesis. Behavioral and Brain Sciences, 1996, 19, 442-445.	0.4	4
226	The cerebellum as comparator: Increases in cerebellar activity during motor learning may reflect its role as part of an error detection/correction mechanism. Behavioral and Brain Sciences, 1996, 19, 447-448.	0.4	7
227	Cerebellum does more than recalibration of movements after perturbations. Behavioral and Brain Sciences, 1996, 19, 448-449.	0.4	2
228	How and what does the cerebellum learn?. Behavioral and Brain Sciences, 1996, 19, 449-450.	0.4	2
229	Is stiffness a byproduct or a target?. Behavioral and Brain Sciences, 1996, 19, 450-451.	0.4	1
230	What can and what cannot be adjusted in the movement patterns of cerebellar patients?. Behavioral and Brain Sciences, 1996, 19, 451-452.	0.4	0
231	Two separate pathways for cerebellar LTD: NO-dependent and NO-independent. Behavioral and Brain Sciences, 1996, 19, 453-455.	0.4	1
232	Positive cerebellar feedback loops. Behavioral and Brain Sciences, 1996, 19, 455-456.	0.4	1
233	Cerebellar arm ataxia: Theories still have a lot to explain. Behavioral and Brain Sciences, 1996, 19, 457.	0.4	0
234	Constructing a theory of cerebellar function in limb movement control is premature. Behavioral and Brain Sciences, 1996, 19, 461-462.	0.4	0
235	The common inverse-dynamics motor-command coordinates for complex and simple spikes. Behavioral and Brain Sciences, 1996, 19, 462-464.	0.4	22
236	The notions of joint stiffness and synaptic plasticity in motor memory. Behavioral and Brain Sciences, 1996, 19, 465-466.	0.4	2
237	Sensory prediction as a role for the cerebellum. Behavioral and Brain Sciences, 1996, 19, 466-467.	0.4	29
238	Further evidence for the involvement of nitric oxide in trans-ACPD-induced suppression of AMPA responses in cultured chick Purkinje neurons. Behavioral and Brain Sciences, 1996, 19, 467-468.	0.4	2

#	Article	IF	CITATIONS
239	Nitric oxide is involved in cerebellar long-term depression. Behavioral and Brain Sciences, 1996, 19, 468-469.	0.4	2
240	The cerebellum and cerebral cortex: Contrasting and converging contributions to spatial navigation and memory. Behavioral and Brain Sciences, 1996, 19, 469-470.	0.4	2
241	Cerebellar theory out of control. Behavioral and Brain Sciences, 1996, 19, 470-471.	0.4	25
242	Cerebellar rhythms: Exploring another metaphor. Behavioral and Brain Sciences, 1996, 19, 471-472.	0.4	4
243	Dysmetria of thought: Correlations and conundrums in the relationship between the cerebellum, learning, and cognitive processing. Behavioral and Brain Sciences, 1996, 19, 472-473.	0.4	40
244	We know a lot about the cerebellum, but do we know what motor learning is?. Behavioral and Brain Sciences, 1996, 19, 474-475.	0.4	0
245	Limitations of PET and lesion studies in defining the role of the human cerebellum in motor learning. Behavioral and Brain Sciences, 1996, 19, 477.	0.4	4
246	Sensorimotor learning in structures "upstream―from the cerebellum. Behavioral and Brain Sciences, 1996, 19, 477-478.	0.4	2
247	Eyeblink conditioning, motor control, and the analysis of limbic-cerebellar interactions. Behavioral and Brain Sciences, 1996, 19, 479-481.	0.4	57
248	A cerebellar long-term depression update. Behavioral and Brain Sciences, 1996, 19, 482-487.	0.4	2
249	Cellular mechanisms of long-term depression: From consensus to open questions. Behavioral and Brain Sciences, 1996, 19, 488.	0.4	0
250	A bridge between cerebellar long-term depression and discrete motor learning: Studies on gene knockout mice. Behavioral and Brain Sciences, 1996, 19, 488-490.	0.4	3
251	More models of the cerebellum. Behavioral and Brain Sciences, 1996, 19, 492-496.	0.4	4
252	More on climbing fiber signals and their consequence(s). Behavioral and Brain Sciences, 1996, 19, 496-498.	0.4	11
253	Resilient cerebellar theory complies with stiff opposition. Behavioral and Brain Sciences, 1996, 19, 499-501.	0.4	2
254	Q: Is the cerebellum an adaptive combiner of motor and mental/motor activities? A: Yes, maybe, certainly not, who can say?. Behavioral and Brain Sciences, 1996, 19, 501-528.	0.4	25
255	Fodor's frame problem and relevance theory. Behavioral and Brain Sciences, 1996, 19, 530-532.	0.4	71
256	Journal response time: A case for multiple submission. Behavioral and Brain Sciences, 1996, 19, 533-534.	0.4	1

	CHATION R	EPORT	
#	Article	IF	CITATIONS
257	Peer review: Agreement and disagreement. Behavioral and Brain Sciences, 1996, 19, 534-536.	0.4	0
258	The place of consciousness in the information processing approach: The mental-pool thought experiment. Behavioral and Brain Sciences, 1996, 19, 537-538.	0.4	19
259	Consciousness and the "causal paradox― Behavioral and Brain Sciences, 1996, 19, 538-542.	0.4	10
260	Mental models: The revised theory brings new problems. Behavioral and Brain Sciences, 1996, 19, 542-543.	0.4	5
261	Mental models and syllogisms. Behavioral and Brain Sciences, 1996, 19, 543-546.	0.4	5
262	What about the increasing adaptive value of manipulative language use?. Behavioral and Brain Sciences, 1996, 19, 546-548.	0.4	2
263	Deception as cause or consequence of language?. Behavioral and Brain Sciences, 1996, 19, 548.	0.4	1
264	What behavers do. Behavioral and Brain Sciences, 1996, 19, 549-550.	0.4	2
265	Secure footing. Behavioral and Brain Sciences, 1996, 19, 550-551.	0.4	0
266	Suppression of motion during saccades. Behavioral and Brain Sciences, 1996, 19, 551-552.	0.4	0
267	The phantom array. Behavioral and Brain Sciences, 1996, 19, 552-553.	0.4	31
268	Relationship of saccadic suppression to space constancy. Behavioral and Brain Sciences, 1996, 19, 553-554.	0.4	1
269	Human Pavlovian autonomie conditioning and its relation to awareness of the CS/US contingency: Focus on the phenomenon and some forgotten facts. Behavioral and Brain Sciences, 1996, 19, 555-556.	0.4	3
270	Implicit learning from a computer-science perspective. Behavioral and Brain Sciences, 1996, 19, 556-557.	0.4	0
271	Set theoretic foundations for a theory of human memory. Behavioral and Brain Sciences, 1996, 19, 559.	0.4	0
272	Mathematical constraints on a theory of human memory. Behavioral and Brain Sciences, 1996, 19, 559-560.	0.4	0
273	Models of the cerebellum and motor learning. Behavioral and Brain Sciences, 1996, 19, 368-383.	0.4	282
274	On the specific role of the cerebellum in motor learning and cognition: Clues from PET activation and lesion studies in man. Behavioral and Brain Sciences, 1996, 19, 411-433.	0.4	282

	CITATION REPORT	
Article	IF	CITATIONS
How and where does nitric oxide affect cerebellar synaptic plasticity? New methods for investigatir its action. Behavioral and Brain Sciences, 1996, 19, 437-438.	ng 0.4	0
Long-term changes of synaptic transmission: A topic of long-term interest. Behavioral and Brain Sciences, 1996, 19, 439-440.	0.4	2
How can the cerebellum match "error signal―and "error correction�. Behavioral and Brai 1996, 19, 442.	in Sciences, 0.4	4
Timing implications of metabotropic mechanisms for cerebellar learning. Behavioral and Brain Sciences, 1996, 19, 445-447.	0.4	2
The role of the cerebellum in motor learning is limited. Behavioral and Brain Sciences, 1996, 19, 45	3. 0.4	3
Programming the cerebellum. Behavioral and Brain Sciences, 1996, 19, 455.	0.4	2
Molecules involved in cerebellar long-term depression (LTD) and mutant mice defective in it. Behavioral and Brain Sciences, 1996, 19, 456-457.	0.4	0
New players for cerebellar long-term depression. Behavioral and Brain Sciences, 1996, 19, 462.	0.4	1
Which cerebellar cells contribute to extracellular cGMP?. Behavioral and Brain Sciences, 1996, 19, 464-465.	0.4	1
How to link the specificity of cerebellar anatomy to motor learning?. Behavioral and Brain Sciences, 1996, 19, 474.	, 0.4	2
Motor learning and synaptic plasticity in the cerebellum. Behavioral and Brain Sciences, 1996, 19, 475-477.	0.4	4
What behavioral benefit does stiffness control have? An elaboration of Smith's proposal. Behaviora and Brain Sciences, 1996, 19, 478-479.	l 0.4	5
Plasticity of cerebro-cerebellar interactions in patients with cerebellar dysfunction. Behavioral and Brain Sciences, 1996, 19, 481-482.	0.4	2
No more news from the cerebellum. Behavioral and Brain Sciences, 1996, 19, 490-492.	0.4	3
Context selection and the frame problem. Behavioral and Brain Sciences, 1996, 19, 529-530.	0.4	10
Implicit learning: What does it all mean?. Behavioral and Brain Sciences, 1996, 19, 557-558.	0.4	1

291	Similarities and contrasts between cerebellar LTD and hippocampal LTP. Behavioral and Brain Sciences, 1996, 19, 435-436.	0.4	3
292	Chapter 4 Neural networks and visual information processing. Handbook of Perception and Action, 1996, , 103-141.	0.1	0

#

275

277

279

281

283

284

285

287

289

#	Article	IF	CITATIONS
293	Visual stability across saccades while viewing complex pictures Journal of Experimental Psychology: Human Perception and Performance, 1996, 22, 563-581.	0.7	373
294	Computational significance of the cellular mechanisms for synaptic plasticity in Purkinje cells. Behavioral and Brain Sciences, 1996, 19, 457-461.	0.4	9
295	A distributed model of the saccadic system: The effects of internal noise. Neurocomputing, 1996, 11, 245-269.	3.5	17
296	Memory for places: A navigational model in support of Marr's theory of hippocampal function. , 1996, 6, 735-748.		60
297	An Analysis of Craniocentric and Oculocentric Coding Stages in a Neural Network Model of the Saccadic System. Neural Networks, 1996, 9, 1497-1511.	3.3	7
298	The Sources of Visual Information to the Primate Frontal Lobe: A Novel Role for the Superior Parietal Lobule. Cerebral Cortex, 1996, 6, 319-328.	1.6	310
299	The Role of Neuronal Synchronization in Response Selection: A Biologically Plausible Theory of Structured Representations in the Visual Cortex. Journal of Cognitive Neuroscience, 1996, 8, 603-625.	1.1	156
300	Functional Significance of Long-Term Potentiation for Sequence Learning and Prediction. Cerebral Cortex, 1996, 6, 406-416.	1.6	285
301	Subtypes of optic ataxia: Reframing the disconnection account. Neurocase, 1997, 3, 159-166.	0.2	152
302	Static and Dynamic State Feedback Control Model of Basal Ganglia-Thalamocortical Loops. International Journal of Neural Systems, 1997, 08, 339-357.	3.2	10
303	Modulation of responses to optic flow in area 7a by retinotopic and oculomotor cues in monkey. Cerebral Cortex, 1997, 7, 647-661.	1.6	53
304	In search of common foundations for cortical computation. Behavioral and Brain Sciences, 1997, 20, 657-683.	0.4	368
305	Egocentric Action in Early Infancy: Spatial Frames of Reference for Saccades. Psychological Science, 1997, 8, 224-230.	1.8	38
306	Eye position-dependent activation of neurones in striate cortex of macaque. NeuroReport, 1997, 8, 1405-1409.	0.6	41
307	Perceptual Learning From Cross-Modal Feedback. Psychology of Learning and Motivation - Advances in Research and Theory, 1997, , 309-351.	0.5	9
308	Computational maps and target fields for reaching movements. Advances in Psychology, 1997, , 507-546.	0.1	6
309	Computational Analyses and Hemispheric Asymmetries in Visual-Form Recognition. Advances in Psychology, 1997, , 125-158.	0.1	30
310	Behavioural Aspects of Combining Backpropagation Learning and Self-organizing Maps. Connection Science, 1997, 9, 235-252.	1.8	4

# 311	ARTICLE Multimodal integration for the representation of space in the posterior parietal cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 1421-1428.	IF 1.8	CITATIONS
312	A new view of hemineglect based on the response properties of parietal neurones. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 1449-1459.	1.8	110
313	MULTIMODAL REPRESENTATION OF SPACE IN THE POSTERIOR PARIETAL CORTEX AND ITS USE IN PLANNING MOVEMENTS. Annual Review of Neuroscience, 1997, 20, 303-330.	5.0	1,357
314	Language Acquisition and Use: Learning and Applying Probabilistic Constraints. Science, 1997, 275, 1599-1603.	6.0	367
315	Information: In the stimulus or in the context?. Behavioral and Brain Sciences, 1997, 20, 698-700.	0.4	5
316	Is synchronization necessary and is it sufficient?. Behavioral and Brain Sciences, 1997, 20, 683-684.	0.4	23
317	Progress toward an understanding of cortical computation. Behavioral and Brain Sciences, 1997, 20, 703-714.	0.4	28
318	Nonlinear computation and dynamic cognitive generalities. Behavioral and Brain Sciences, 1997, 20, 688-689.	0.4	0
319	Topologic organization of context fields for sensorimotor coordination. Behavioral and Brain Sciences, 1997, 20, 693-693.	0.4	0
320	Information theory: The Holy Grail of cortical computation?. Behavioral and Brain Sciences, 1997, 20, 698-698.	0.4	3
321	On the normalization of coherent contrast and the semantics of synchronization. Behavioral and Brain Sciences, 1997, 20, 697-698.	0.4	0
322	Binding by synchronisation: A task-dependence hypothesis. Behavioral and Brain Sciences, 1997, 20, 685-686.	0.4	1
323	Word recognition in the split brain and PET studies of spatial stimulus-response compatibility support contextual integration. Behavioral and Brain Sciences, 1997, 20, 690-691.	0.4	0
324	Internal context and top-down processing. Behavioral and Brain Sciences, 1997, 20, 691-692.	0.4	1
325	Glossing over too much. Behavioral and Brain Sciences, 1997, 20, 692-692.	0.4	0
326	Eye Position Effects in Monkey Cortex. I. Visual and Pursuit-Related Activity in Extrastriate Areas MT and MST. Journal of Neurophysiology, 1997, 77, 944-961.	0.9	192
327	A Neural Model of Multimodal Adaptive Saccadic Eye Movement Control by Superior Colliculus. Journal of Neuroscience, 1997, 17, 9706-9725.	1.7	110
328	Visual-Motor Transformations Required for Accurate and Kinematically Correct Saccades. Journal of Neurophysiology, 1997, 78, 1447-1467.	0.9	94

#	Article	IF	Citations
329	Schizophrenia as a model of context-deficient cortical computation. Behavioral and Brain Sciences, 1997, 20, 696-697.	0.4	60
330	Support for grouping-by-synchronization, the context-field, and its mechanisms, but doubt in the use of information theory by the cortex. Behavioral and Brain Sciences, 1997, 20, 686-687.	0.4	0
331	Principles of cortical synchronization. Behavioral and Brain Sciences, 1997, 20, 689-690.	0.4	21
332	Synthesizing synchrony versus dissecting dissonance. Behavioral and Brain Sciences, 1997, 20, 700-700.	0.4	0
333	Synchronization, binding, multiscale dynamic processing, and neuron sociology. Behavioral and Brain Sciences, 1997, 20, 694-695.	0.4	1
334	On the computational basis of synchronized codes. Behavioral and Brain Sciences, 1997, 20, 700-701.	0.4	0
335	Do the biological details matter?. Behavioral and Brain Sciences, 1997, 20, 684-685.	0.4	1
336	Local attractor dynamics will introduce further information to synchronous neuronal fields. Behavioral and Brain Sciences, 1997, 20, 701-702.	0.4	4
337	Context dependent feature groups, a proposal for object representation. Behavioral and Brain Sciences, 1997, 20, 702-703.	0.4	0
338	Synchronizing oscillations: Coding by concurrence and by sequence. Behavioral and Brain Sciences, 1997, 20, 690-690.	0.4	0
339	Synchronicity and its use in the brain. Behavioral and Brain Sciences, 1997, 20, 695-696.	0.4	7
340	An internal teacher for neural computation. Behavioral and Brain Sciences, 1997, 20, 687-688.	0.4	0
341	'Tis all in pieces (separate RFs and CFs), all coherence gone. Behavioral and Brain Sciences, 1997, 20, 693-694.	0.4	0
342	Spatial Attention Effects in Macaque Area V4. Journal of Neuroscience, 1997, 17, 3201-3214.	1.7	384
343	Spatial Processing in the Monkey Frontal Eye Field. I. Predictive Visual Responses. Journal of Neurophysiology, 1997, 78, 1373-1383.	0.9	386
344	Eye Position Effects in Monkey Cortex. II. Pursuit- and Fixation-Related Activity in Posterior Parietal Areas LIP and 7A. Journal of Neurophysiology, 1997, 77, 962-977.	0.9	387
345	Invariant Visual Responses From Attentional Gain Fields. Journal of Neurophysiology, 1997, 77, 3267-3272.	0.9	123
346	Representation of Multiple Kinematic Parameters of the Cat Hindlimb in Spinocerebellar Activity. Journal of Neurophysiology, 1997, 78, 1421-1432.	0.9	65

#	Article	IF	CITATIONS
347	Apparent Position of Visual Targets during Real and Simulated Saccadic Eye Movements. Journal of Neuroscience, 1997, 17, 7941-7953.	1.7	160
348	Representations of Graphomotor Trajectories in the Human Parietal Cortex: Evidence for Controlled Processing and Automatic Performance. European Journal of Neuroscience, 1997, 9, 378-389.	1.2	110
349	Spatial invariance of visual receptive fields in parietal cortex neurons. Nature, 1997, 389, 845-848.	13.7	552
350	Learning navigational maps through potentiation and modulation of hippocampal place cells. , 1997, 4, 79-94.		100
351	Reference frames in saccadic targeting. Experimental Brain Research, 1997, 115, 267-282.	0.7	63
352	Recognition of object position and shape by the spread pattern of a spatial spreading associative neural network. Systems and Computers in Japan, 1997, 28, 9-19.	0.2	9
353	Transformation of Sensory Signals into Commands for Saccadic Eye Movements: a Neural Network Study. Journal of Theoretical Biology, 1997, 189, 121-131.	0.8	37
354	Biologically plausible neural computation. BioSystems, 1997, 40, 11-19.	0.9	35
355	Estimation of spatiotemporal neural activity using radial basis function networks. Journal of Computational Neuroscience, 1998, 5, 421-441.	0.6	10
356	Representation of visual space in area 7a neurons using the center of mass equation. , 1998, 5, 365-381.		13
357	Multiple Realization, Computation and the Taxonomy of Psychological States. SynthÃ^se, 1998, 114, 445-461.	0.6	22
358	From sensation to cognition. Brain, 1998, 121, 1013-1052.	3.7	2,510
359	Simultaneous encoding of tactile information by three primate cortical areas. Nature Neuroscience, 1998, 1, 621-630.	7.1	187
360	Separate body- and world-referenced representations of visual space in parietal cortex. Nature, 1998, 394, 887-891.	13.7	555
361	Computational model of obsessive-compulsive disorder: Examination of etiologic hypothesis and treatment strategies. Depression and Anxiety, 1998, 8, 91-103.	2.0	25
362	A neural network study of precollicular saccadic averaging. Biological Cybernetics, 1998, 78, 465-477.	0.6	11
363	Task-dependent mixtures of coordinate systems in visuomotor transformations. Experimental Brain Research, 1998, 119, 224-236.	0.7	43
364	Eye position encoding in the macaque posterior parietal cortex. European Journal of Neuroscience, 1998, 10, 153-160.	1.2	60

#	Article	IF	CITATIONS
365	The maintenance of spatial accuracy by the perisaccadic remapping of visual receptive fields. Neural Networks, 1998, 11, 1229-1240.	3.3	85
366	From Eye to Hand: Planning Goal-directed Movements. Neuroscience and Biobehavioral Reviews, 1998, 22, 761-788.	2.9	255
367	Modeling learning in brain stem and cerebellar sites responsible for VOR plasticity. Brain Research Bulletin, 1998, 46, 333-346.	1.4	13
368	Statistical inference: learning in artificial neural networks. Trends in Cognitive Sciences, 1998, 2, 4-10.	4.0	8
369	Six principles for biologically based computational models of cortical cognition. Trends in Cognitive Sciences, 1998, 2, 455-462.	4.0	274
370	Neural networks as models of psychopathology. Biological Psychiatry, 1998, 43, 471-482.	0.7	28
371	Probabilistic Interpretation of Population Codes. Neural Computation, 1998, 10, 403-430.	1.3	323
372	SPATIO-MOTOR REPRESENTATIONS IN REACHING: EVIDENCE FOR SUBTYPES OF OPTIC ATAXIA. Cognitive Neuropsychology, 1998, 15, 279-312.	0.4	69
373	Distance Modulation of Neural Activity in the Visual Cortex. , 1998, 281, 552-555.		99
374	Computational Studies of Lateralization of Phoneme Sequence Generation. Neural Computation, 1998, 10, 1277-1297.	1.3	66
376	Development of localized oriented receptive fields by learning a translation-invariant code for natural images. Network: Computation in Neural Systems, 1998, 9, 219-234.	2.2	6
377	Single Units and Visual Cortical Organization. Perception, 1998, 27, 889-935.	0.5	343
378	Computational modelling of optic flow selectivity in MSTd neurons. Network: Computation in Neural Systems, 1998, 9, 467-493.	2.2	15
379	Les modèles de simulation des dyslexies Canadian Journal of Experimental Psychology, 1998, 52, 128-146.	0.7	1
380	Human Oculomotor System Accounts for 3-D Eye Orientation in the Visual-Motor Transformation for Saccades. Journal of Neurophysiology, 1998, 80, 2274-2294.	0.9	72
381	Eye Position Effects on the Neuronal Activity of Dorsal Premotor Cortex in the Macaque Monkey. Journal of Neurophysiology, 1998, 80, 1132-1150.	0.9	149
382	Electrical Microstimulation Distinguishes Distinct Saccade-Related Areas in the Posterior Parietal Cortex. Journal of Neurophysiology, 1998, 80, 1713-1735.	0.9	191
383	A Model That Accounts for Activity in Primate Frontal Cortex during a Delayed Matching-to-Sample Task. Journal of Neuroscience, 1998, 18, 399-410.	1.7	81

#	Article	IF	CITATIONS
384	Gaze-Centered Remapping of Remembered Visual Space in an Open-Loop Pointing Task. Journal of Neuroscience, 1998, 18, 1583-1594.	1.7	396
385	Interpreting Neuronal Population Activity by Reconstruction: Unified Framework With Application to Hippocampal Place Cells. Journal of Neurophysiology, 1998, 79, 1017-1044.	0.9	616
386	Influence of Head Position on the Spatial Representation of Acoustic Targets. Journal of Neurophysiology, 1999, 81, 2720-2736.	0.9	80
387	Auditory Spatial Discriminatory and Mnemonic Neurons in Rat Posterior Parietal Cortex. Journal of Neurophysiology, 1999, 82, 2503-2517.	0.9	72
389	Influence of Gaze Rotation on the Visual Response of Primate MSTd Neurons. Journal of Neurophysiology, 1999, 81, 2764-2786.	0.9	98
390	A model of saccade generation based on parallel processing and competitive inhibition. Behavioral and Brain Sciences, 1999, 22, 661-674.	0.4	717
391	Unwanted reflex-like saccades in visual extinction patients. Behavioral and Brain Sciences, 1999, 22, 683-683.	0.4	1
392	About saccade generation in reading. Behavioral and Brain Sciences, 1999, 22, 702-703.	0.4	2
393	Spatial programming and the representation of salience. Behavioral and Brain Sciences, 1999, 22, 682-682.	0.4	1
394	Frontal eye field: A cortical salience map. Behavioral and Brain Sciences, 1999, 22, 699-700.	0.4	5
395	Is covert attention really unnecessary?. Behavioral and Brain Sciences, 1999, 22, 695-696.	0.4	13
396	No "When―without "Where― Behavioral and Brain Sciences, 1999, 22, 696-697.	0.4	2
397	Top-down influences on saccade generation in cognitive tasks. Behavioral and Brain Sciences, 1999, 22, 697-698.	0.4	5
398	Generating oculomotor and neuronal behavior in a neural field model of the superior colliculus. Behavioral and Brain Sciences, 1999, 22, 700-701.	0.4	1
399	Change in motor plan with a change in the selection of the to-be-recognized word. Behavioral and Brain Sciences, 1999, 22, 674-675.	0.4	44
400	The underrated role of the "move system―in determining saccade latency. Behavioral and Brain Sciences, 1999, 22, 681-682.	0.4	6
401	Concurrent processing of saccades. Behavioral and Brain Sciences, 1999, 22, 691-692.	0.4	8
402	Temporal delays, not underactivation of detection processes may be responsible for neglect. Behavioral and Brain Sciences, 1999, 22, 675-676.	0.4	0

ARTICLE IF CITATIONS Oculomotor capture by abrupt onsets reveals concurrent programming of voluntary and involuntary 403 0.4 8 saccades. Behavioral and Brain Sciences, 1999, 22, 689-690. Ocular disengagement inhibited by target onset in periphery?. Behavioral and Brain Sciences, 1999, 22, 404 0.4 698-698. 405 Adding depth to the picture. Behavioral and Brain Sciences, 1999, 22, 701-702. 0.4 0 Is attention required in a model of saccade generation?. Behavioral and Brain Sciences, 1999, 22, 406 679-680. Contextual factors in the generation of express and regular saccades. Behavioral and Brain Sciences, 407 0.4 3 1999, 22, 689-689. 408 Winner-takes-all and action selection. Behavioral and Brain Sciences, 1999, 22, 692-693. 0.4 Learning from cerebellar lesions about the temporal and spatial aspects of saccadic control. 409 0.4 0 Behavioral and Brain Sciences, 1999, 22, 687-688. Can parallel processing and competitive inhibition explain the generation of saccades?. Behavioral and Brain Sciences, 1999, 22, 685-686. 0.4 411 Linking covert and overt attention. Behavioral and Brain Sciences, 1999, 22, 676-677. 0.4 0 Salience, saccades, and the role of cortex. Behavioral and Brain Sciences, 1999, 22, 698-699. 0.4 Close interactions between "When―and "Where―in saccade target selection: Multiple saliency and 413 0.4 0 distractor effects. Behavioral and Brain Sciences, 1999, 22, 693-694. Lateral interactions in the superior colliculus, not an extended fixation zone, can account for the 0.4 84 remote distractor effect. Behavioral and Brain Sciences, 1999, 22, 694-695. Monocular and binocular mechanisms in saccade generation. Behavioral and Brain Sciences, 1999, 22, 415 0.4 0 704-705. Dopamine and impairment at the executive level. Behavioral and Brain Sciences, 1999, 22, 678-679. 0.4 Where and When does the What system play a role in eye movement control?. Behavioral and Brain 417 0 0.4 Sciences, 1999, 22, 680-681. Exorcising the devil: Adding details to a descriptive account of oculomotor control. Behavioral and Brain Sciences, 1999, 22, 703-704. 419 How are saccades generated?. Behavioral and Brain Sciences, 1999, 22, 706-713. 0.4 10 The effect of auditory distractors on saccades toward visual targets. Behavioral and Brain Sciences, 0.4 1999, 22, 677-678.

CITATION REPORT

#

ARTICLE IF CITATIONS # Voluntary and involuntary components in saccade and attention control. Behavioral and Brain 421 0.4 1 Sciences, 1999, 22, 684-685. The role of executive control in saccade generation. Behavioral and Brain Sciences, 1999, 22, 686-687. 0.4 423 Is there more to visual attention than meets the eye?. Behavioral and Brain Sciences, 1999, 22, 690-691. 0.4 0 Higher level influences on saccade generation in normals and patients with visual hemineglect. 424 Behavioral and Brain Sciences, 1999, 22, 688-689. Gaze direction controls response gain in primary visual-cortex neurons. Nature, 1999, 398, 239-242. 425 13.7 169 brinker is a target of Dpp in Drosophila that negatively regulates Dpp-dependent genes. Nature, 1999, 13.7 398, 242-246. The Contributions of Vestibular Signals to the Representations of Space in the Posterior Parietal 427 1.8 45 Cortex. Annals of the New York Academy of Sciences, 1999, 871, 282-292. Computational analyses in cognitive neuroscience: In defense of biological implausibility. 428 1.4 36 Psychonomic Bulletin and Review, 1999, 6, 173-182. 429 A large-scale distributed network for covert spatial attention. Brain, 1999, 122, 1093-1106. 3.7 606 Gaze effects in the cerebral cortex: reference frames for space coding and action. Experimental Brain Research, 1999, 128, 170-180. Parieto-frontal coding of reaching: an integrated framework. Experimental Brain Research, 1999, 129, 431 192 0.7 0325-0346. The role of cortical area MST in a model of combined smooth eye-head pursuit. Biological Cybernetics, 0.6 1999, 80, 71-84. Neural network models of bilateral coordination. Biological Cybernetics, 1999, 80, 215-225. 433 0.6 3 Modeling Cortical Circuitry. Cerebral Cortex, 1999, , 1-17. 434 0.6 435 Reach Plans in Eye-Centered Coordinates. Science, 1999, 285, 257-260. 6.0 691 Sensor selection by reliability based on possibility measure., 0,,. A neurocomputational model of figure-ground discrimination and target tracking. IEEE Transactions 437 4.8 16 on Neural Networks, 1999, 10, 860-884. Adaptation, learning and evolution for intelligent systems., 1999, , .

#	Article	IF	CITATIONS
439	A neural model of saccadic eye movement control explains task-specific adaptation. Vision Research, 1999, 39, 3123-3143.	0.7	97
440	SPACE AND ATTENTION IN PARIETAL CORTEX. Annual Review of Neuroscience, 1999, 22, 319-349.	5.0	1,556
441	Chapter 6 Frames of reference in hemineglect: a computational approach. Progress in Brain Research, 1999, 121, 81-97.	0.9	20
442	To see better to the left when looking more to the right: Effects of gaze direction and frames of spatial coordinates in unilateral neglect. Journal of the International Neuropsychological Society, 1999, 5, 75-82.	1.2	35
443	Eye position encoding in the macaque ventral intraparietal area (VIP). NeuroReport, 1999, 10, 873-878.	0.6	57
444	Orbital position dependency is different for the gain of externally and internally triggered saccades. NeuroReport, 1999, 10, 2665-2670.	0.6	14
445	Attention-referenced visual representations: Evidence from impaired visual localization Journal of Experimental Psychology: Human Perception and Performance, 2000, 26, 917-933.	0.7	44
446	Spreading associative neural network recognizes the shape and position of an object simultaneously. , 2000, , .		0
447	Eye position effects in macaque area V4. NeuroReport, 2000, 11, 1277-1283.	0.6	55
448	Computational principles of learning in the neocortex and hippocampus. Hippocampus, 2000, 10, 389-397.	0.9	159
449	Computational approaches to sensorimotor transformations. Nature Neuroscience, 2000, 3, 1192-1198.	7.1	303
450	Models identify hidden assumptions. Nature Neuroscience, 2000, 3, 1198-1198.	7.1	7
451	Information processing with population codes. Nature Reviews Neuroscience, 2000, 1, 125-132.	4.9	610
452	Gain modulation of recurrent networks. Neurocomputing, 2000, 32-33, 623-628.	3.5	4
453	Coordinate transformations for eye and arm movements in the brain. Current Opinion in Neurobiology, 2000, 10, 747-754.	2.0	114
454	Motor systems Understanding motor circuits: where bottom-up meets top-down. Current Opinion in Neurobiology, 2000, 10, 673-675.	2.0	3
455	Self, World and Space: The Meaning and Mechanismsof Ego- and Allocentric Spatial Representation. Brain and Mind, 2000, 1, 59-92.	0.6	96
456	Computational Evidence for the Subitizing Phenomenon as an Emergent Property of the Human Cognitive Architecture. Cognitive Science, 2000, 24, 93-122.	0.8	42

#	Article	IF	CITATIONS
457	Memory Activity of LIP Neurons for Sequential Eye Movements Simulated With Neural Networks. Journal of Neurophysiology, 2000, 84, 651-665.	0.9	56
458	Curvature of Visual Space Under Vertical Eye Rotation: Implications for Spatial Vision and Visuomotor Control. Journal of Neuroscience, 2000, 20, 2360-2368.	1.7	19
459	Center-Surround Interactions in the Middle Temporal Visual Area of the Owl Monkey. Journal of Neurophysiology, 2000, 84, 2658-2669.	0.9	168
460	Eye Position Signal Modulates a Human Parietal Pointing Region during Memory-Guided Movements. Journal of Neuroscience, 2000, 20, 5835-5840.	1.7	120
461	The Somatosensory System. , 2000, , 291-329.		15
462	Beyond Hebb: Exclusive-OR and Biological Learning. Physical Review Letters, 2000, 84, 3013-3016.	2.9	21
463	Models of the Posterior Parietal Cortex Which Perform Multimodal Integration and Represent Space in Several Coordinate Frames. Journal of Cognitive Neuroscience, 2000, 12, 601-614.	1.1	202
464	Studies of Neuromodulation of Oscillatory Systems in Aplysia, by Means of Genetic Algorithms. Adaptive Behavior, 2000, 8, 267-296.	1.1	4
465	Alkali-Silica Reaction of Concrete with Admixtures. Journal of Engineering Mechanics - ASCE, 2000, 126, 243-249.	1.6	8
466	<title>Perception of space and geometry through visual attention and statistical learning</title> . , 2000, , .		0
467	<title>Visual target selection employing local-to-global strategies for support vector
machines</title> . , 2000, , .		1
469	Reaches to Sounds Encoded in an Eye-Centered Reference Frame. Neuron, 2000, 27, 647-652.	3.8	124
470	Artificial neural networks estimate the contribution of taste neurons to coding. Physiology and Behavior, 2000, 69, 107-113.	1.0	7
471	Conjunctive representations in learning and memory: Principles of cortical and hippocampal function Psychological Review, 2001, 108, 311-345.	2.7	786
472	Space Coding in Primate Posterior Parietal Cortex. NeuroImage, 2001, 14, S46-S51.	2.1	178
473	Eye Position Influences Auditory Responses in Primate Inferior Colliculus. Neuron, 2001, 29, 509-518.	3.8	188
474	Fixation could simplify, not complicate, the interpretation of retinal flow. Vision Research, 2001, 41, 815-834.	0.7	17
475	A model of visual–spatial memory across saccades. Vision Research, 2001, 41, 1575-1592.	0.7	13

#	Article	IF	CITATIONS
476	The sensorimotor contingency of multisensory localization correlates with the conscious percept of spatial unity. Behavioral and Brain Sciences, 2001, 24, 1001-1002.	0.4	2
477	In search of the ultimate evidence: The fastest visual reaction adapts to environment, not retinal locations. Behavioral and Brain Sciences, 2001, 24, 1008-1009.	0.4	2
478	A non-epistemic, non-pictorial, internal, material visual field. Behavioral and Brain Sciences, 2001, 24, 1010-1011.	0.4	0
479	On the distinction between "sensorimotor―and "motorsensory―contingencies. Behavioral and Brain Sciences, 2001, 24, 992-992.	0.4	2
480	Visual perception is not visual awareness. Behavioral and Brain Sciences, 2001, 24, 985-985.	0.4	4
481	The existence of internal visual memory representations. Behavioral and Brain Sciences, 2001, 24, 1002-1003.	0.4	35
482	Does functionalism really deal with the phenomenal side of experience?. Behavioral and Brain Sciences, 2001, 24, 993-994.	0.4	2
483	Reexamining visual cognition in human infants: On the necessity of representation. Behavioral and Brain Sciences, 2001, 24, 1003-1004.	0.4	0
484	Mirror neurons: A sensorimotor representation system. Behavioral and Brain Sciences, 2001, 24, 983-984.	0.4	10
486	Real action in a virtual world. Behavioral and Brain Sciences, 2001, 24, 984-985.	0.4	5
487	Still room for representations. Behavioral and Brain Sciences, 2001, 24, 1007-1008.	0.4	1
488	The explanatory gap is still there. Behavioral and Brain Sciences, 2001, 24, 996-997.	0.4	3
489	Sensorimotor contingencies do not replace internal representations, and mastery is not necessary for perception. Behavioral and Brain Sciences, 2001, 24, 994-995.	0.4	2
490	Whither visual representations? Whither qualia?. Behavioral and Brain Sciences, 2001, 24, 980-981.	0.4	2
491	Trans-saccadic representation makes your Porsche go places. Behavioral and Brain Sciences, 2001, 24, 981-982.	0.4	2
492	How do we account for the absence of "change deafness�. Behavioral and Brain Sciences, 2001, 24, 988-988.	0.4	1
493	Cognitive Neuroscience. , 2001, , 2133-2140.		3
494	Proprioception From a Spinocerebellar Perspective. Physiological Reviews, 2001, 81, 539-568.	13.1	263

#	Article	IF	Citations
495	Consciousness as action: The eliminativist sirens are calling. Behavioral and Brain Sciences, 2001, 24, 990-991.	0.4	2
496	Perceptual theories that emphasize action are necessary but not sufficient. Behavioral and Brain Sciences, 2001, 24, 998-998.	0.4	0
497	Seeing, acting, and knowing. Behavioral and Brain Sciences, 2001, 24, 999-999.	0.4	4
498	Dreaming and the place of consciousness in nature. Behavioral and Brain Sciences, 2001, 24, 1000-1001.	0.4	3
499	The role of eye movements in perception. Behavioral and Brain Sciences, 2001, 24, 988-990.	0.4	1
500	Attention sheds no light on the origin of phenomenal experience. Behavioral and Brain Sciences, 2001, 24, 993-993.	0.4	4
501	Visual conscious perception could be grounded in a nonconscious sensorimotor domain. Behavioral and Brain Sciences, 2001, 24, 974-975.	0.4	1
502	Change blindness, Gibson, and the sensorimotor theory of vision. Behavioral and Brain Sciences, 2001, 24, 1004-1006.	0.4	1
503	Perceptions as hypotheses of the outside world. Behavioral and Brain Sciences, 2001, 24, 1009-1010.	0.4	0
504	Three experiments to test the sensorimotor theory of vision. Behavioral and Brain Sciences, 2001, 24, 977-977.	0.4	3
505	Sensorimotor chauvinism?. Behavioral and Brain Sciences, 2001, 24, 979-980.	0.4	9
506	In the Mind's Eye: Perceptual coupling and sensorimotor contingencies. Behavioral and Brain Sciences, 2001, 24, 986-986.	0.4	1
507	Does sensorimotor contingency theory account for perceptual-motor dissociations?. Behavioral and Brain Sciences, 2001, 24, 991-992.	0.4	0
508	Re-presenting the case for representation. Behavioral and Brain Sciences, 2001, 24, 1006-1007.	0.4	0
509	Neural correlates of consciousness are not pictorial representations. Behavioral and Brain Sciences, 2001, 24, 999-1000.	0.4	35
510	The role of the brain in perception. Behavioral and Brain Sciences, 2001, 24, 975-975.	0.4	0
511	Sins of omission and commission. Behavioral and Brain Sciences, 2001, 24, 997-998.	0.4	3
512	Acting out our sensory experience. Behavioral and Brain Sciences, 2001, 24, 1011-1021.	0.4	21

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
513	Misperceptions dependent on oculomotor activity. Behavioral and Brain Sciences, 2001, 24, 982-983.	0.4	6
514	Visual awareness relies on exogenous orienting of attention: Evidence from unilateral neglect. Behavioral and Brain Sciences, 2001, 24, 975-976.	0.4	2
515	The absence of representations causes inconsistencies in visual perception. Behavioral and Brain Sciences, 2001, 24, 1006-1006.	0.4	2
516	Experience, attention, and mental representation. Behavioral and Brain Sciences, 2001, 24, 978-979.	0.4	1
517	Doing it my way: Sensation, perception – and feeling red. Behavioral and Brain Sciences, 2001, 24, 987-987.	0.4	2
518	Chapter 11 Coordinate transformations in the visual system: how to generate gain fields and what to compute with them. Progress in Brain Research, 2001, 130, 175-190.	0.9	77
519	Simulating a lesion in a basis function model of spatial representations: Comparison with hemineglect Psychological Review, 2001, 108, 653-673.	2.7	63
520	Chapter 23 Information transfer between sensory and motor networks. Handbook of Biological Physics, 2001, 4, 1001-1041.	0.8	0
521	Chapter 16 Connectionist contributions to population coding in the motor cortex. Progress in Brain Research, 2001, 130, 245-266.	0.9	1
522	Inactivation of macaque lateral intraparietal area delays initiation of the second saccade predominantly from contralesional eye positions in a double-saccade task. Experimental Brain Research, 2001, 137, 45-57.	0.7	51
523	Egocentric mental rotation in Hungarian dyslexic children. Dyslexia, 2001, 7, 3-11.	0.8	11
524	Self-organizing task modules and explicit coordinate systems in a neural network model for 3-D saccades. , 2001, 10, 127-150.		18
525	Supervised and unsupervised learning with two sites of synaptic integration. Journal of Computational Neuroscience, 2001, 11, 207-215.	0.6	64
526	Functional implications of temporal structure in primate cortical information processing. Zoology, 2001, 104, 241-255.	0.6	26
528	The callosal dilemma: Explaining diaschisis in the context of hemispheric rivalry via a neural network model. Neurological Research, 2001, 23, 465-471.	0.6	53
529	OCKHAM'S RAZOR MODELING OF THE MATRISOME CHANNELS OF THE BASAL GANGLIA THALAMOCORTICAL LOOPS. International Journal of Neural Systems, 2001, 11, 125-143.	3.2	4
530	A Model of Movement Coordinates in the Motor Cortex: Posture-dependent Changes in the Gain and Direction of Single Cell Tuning Curves. Cerebral Cortex, 2001, 11, 1124-1135.	1.6	33
531	Generalization in Interactive Networks: The Benefits of Inhibitory Competition and Hebbian Learning. Neural Computation, 2001, 13, 1199-1241.	1.3	92

#	Article	IF	CITATIONS
533	Behaviorism revisited. Behavioral and Brain Sciences, 2001, 24, 977-978.	0.4	5
534	A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 2001, 24, 939-973.	0.4	2,295
535	Surprise, surprise. Behavioral and Brain Sciences, 2001, 24, 982-982.	0.4	18
536	From Knowing What to Knowing Where: Modeling Object-Based Attention with Feedback Disinhibition of Activation. Journal of Cognitive Neuroscience, 2001, 13, 479-491.	1.1	139
537	The hippocampus, space, and viewpoints in episodic memory. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 2002, 55, 1057-1080.	2.3	109
538	Mechanisms Underlying Spatial Representation Revealed through Studies of Hemispatial Neglect. Journal of Cognitive Neuroscience, 2002, 14, 272-290.	1.1	31
539	Computational subunits of visual cortical neurons revealed by artificial neural networks. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8974-8979.	3.3	57
540	Coding of far and near space during walking in neglect patients Neuropsychology, 2002, 16, 390-399.	1.0	60
541	Visuomotor transformations for eye-hand coordination. Progress in Brain Research, 2002, 140, 329-340.	0.9	26
542	Standing on the gateway to memory: Shouldn't we step in?. Cognitive Neuropsychology, 2002, 19, 557-575.	0.4	24
543	A Neural Model of Perceptual-Motor Alignment. Journal of Cognitive Neuroscience, 2002, 14, 538-549.	1.1	18
544	Intentional Maps in Posterior Parietal Cortex. Annual Review of Neuroscience, 2002, 25, 189-220.	5.0	1,149
545	Gain Modulation from Background Synaptic Input. Neuron, 2002, 35, 773-782.	3.8	866
546	Deficits of Motor Intention following Parietal Lesions. Behavioural Neurology, 2002, 13, 29-37.	1.1	3
547	Inner space: Reference frames. Current Biology, 2002, 12, R380-R383.	1.8	8
548	Through the eye, slowly; Delays and localization errors in the visual system. Nature Reviews Neuroscience, 2002, 3, 191-191.	4.9	190
549	A common reference frame for movement plans in the posterior parietal cortex. Nature Reviews Neuroscience, 2002, 3, 553-562.	4.9	576
550	A computational perspective on the neural basis of multisensory spatial representations. Nature Reviews Neuroscience, 2002, 3, 741-747.	4.9	631

#	Article	IF	CITATIONS
551	Neural network models for the gaze shift system in the superior colliculus and cerebellum. Neural Networks, 2002, 15, 811-832.	3.3	14
552	The Visuomotor Transformation for Arm Movement Accounts for 3â€D Eye Orientation and Retinal Geometry. Annals of the New York Academy of Sciences, 2002, 956, 515-519.	1.8	2
553	Detecting changes between real-world objects using spatiochromatic filters. Psychonomic Bulletin and Review, 2003, 10, 533-555.	1.4	31
554	Representation of heading direction in far and near head space. Experimental Brain Research, 2003, 151, 501-513.	0.7	26
555	Cost minimization during simulated evolution of paired neural networks leads to asymmetries and specialization. Cognitive Systems Research, 2003, 4, 365-383.	1.9	36
556	Spatiotopic temporal integration of visual motion across saccadic eye movements. Nature Neuroscience, 2003, 6, 877-881.	7.1	177
557	Pyramidal Neuron as Two-Layer Neural Network. Neuron, 2003, 37, 989-999.	3.8	622
558	Gaze modulation of visual aftereffects. Vision Research, 2003, 43, 639-649.	0.7	34
559	Neural Correlates of Visual Localization and Perisaccadic Mislocalization. Neuron, 2003, 37, 537-545.	3.8	73
560	A Computational Basis to Object?. Neuron, 2003, 37, 189-190.	3.8	0
561	Ocular kinematics and eye-hand coordination. Strabismus, 2003, 11, 33-47.	0.4	6
562	The Eye and the Hand: Neural Mechanisms and Network Models for Oculomanual Coordination in Parietal Cortex. Cerebral Cortex, 2003, 13, 1276-1286.	1.6	28
563	Multiple Levels of Representation of Reaching in the Parieto-frontal Network. Cerebral Cortex, 2003, 13, 1009-1022.	1.6	210
564	Equivalence of Backpropagation and Contrastive Hebbian Learning in a Layered Network. Neural Computation, 2003, 15, 441-454.	1.3	99
565	Computing with Populations of Monotonically Tuned Neurons. Neural Computation, 2003, 15, 2115-2127.	1.3	11
566	Attention, spatial representation, and visual neglect: Simulating emergent attention and spatial memory in the selective attention for identification model (SAIM) Psychological Review, 2003, 110, 29-87.	2.7	132
567	Effects of Gaze Shifts on Maintenance of Spatial Memory in Macaque Frontal Eye Field. Journal of Neuroscience, 2003, 23, 5446-5454.	1.7	40
568	Multiplicative Gain Changes Are Induced by Excitation or Inhibition Alone. Journal of Neuroscience, 2003, 23, 10040-10051.	1.7	124

	Сітатіо	CITATION REPORT	
#	Article	IF	Citations
569	Space Coordinate Systems in the Brain. Equilibrium Research, 2003, 62, 18-26.	0.2	0
570	Systematic Changes in Motor Cortex Cell Activity With Arm Posture During Directional Isometric Force Generation. Journal of Neurophysiology, 2003, 89, 212-228.	0.9	119
571	Target Selection for Reaching and Saccades Share a Similar Behavioral Reference Frame in the Macaque. Journal of Neurophysiology, 2003, 89, 1456-1466.	0.9	50
572	A Neural Network Model of Flexible Spatial Updating. Journal of Neurophysiology, 2004, 91, 1608-1619.	0.9	28
573	Extrinsic Cues Suppress the Encoding of Intrinsic Cues. Journal of Cognitive Neuroscience, 2004, 16, 339-350.	1.1	23
574	Integration of Retinal Disparity and Fixation-Distance Related Signals Toward an Egocentric Coding of Distance in the Posterior Parietal Cortex of Primates. Journal of Neurophysiology, 2004, 91, 2670-2684.	0.9	81
575	Involvement of Monkey Inferior Colliculus in Spatial Hearing. Journal of Neuroscience, 2004, 24, 4145-4156.	1.7	88
576	Superlinear Population Encoding of Dynamic Hand Trajectory in Primary Motor Cortex. Journal of Neuroscience, 2004, 24, 8551-8561.	1.7	109
577	Fast Remapping of Sensory Stimuli onto Motor Actions on the Basis of Contextual Modulation. Journal of Neuroscience, 2004, 24, 1113-1118.	1.7	69
578	Context-dependent selection of visuomotor maps. BMC Neuroscience, 2004, 5, 47.	0.8	30
579	Allocentric Spatial Memory Activation of the Hippocampal Formation Measured With fMRI Neuropsychology, 2004, 18, 450-461.	1.0	101
580	Multisensory integration in multiple reference frames in the posterior parietal cortex. Cognitive Processing, 2004, 5, 159.	0.7	25
581	Visual illusion in virtual world alters women?s target-directed walking. Experimental Brain Research, 2004, 159, 360-369.	0.7	12
582	A model of active visual search with object-based attention guiding scan paths. Neural Networks, 2004, 17, 873-897.	3.3	56
583	Is speech perception modular or interactive?. Trends in Cognitive Sciences, 2004, 8, 3-5.	4.0	10
584	Frames of Reference for Eye-Head Gaze Commands in Primate Supplementary Eye Fields. Neuron, 2004, 44, 1057-1066.	3.8	75
585	Spatial Transformations for Eye–Hand Coordination. Journal of Neurophysiology, 2004, 92, 10-19.	0.9	347
586	Hemispheric Asymmetries in Cognitive Modeling: Connectionist Modeling of Unilateral Visual Neglect Psychological Review, 2004, 111, 283-308.	2.7	29

# 587	ARTICLE Doing Without Schema Hierarchies: A Recurrent Connectionist Approach to Normal and Impaired Routine Sequential Action Psychological Review, 2004, 111, 395-429.	IF 2.7	Citations 319
588	Reference frames for representing visual and tactile locations in parietal cortex. Nature Neuroscience, 2005, 8, 941-949.	7.1	393
589	Navigation in space - the role of the macaque ventral intraparietal area. Journal of Physiology, 2005, 566, 29-35.	1.3	64
590	A model of target selection based on goal-dependent modulation. Neurocomputing, 2005, 65-66, 161-166.	3.5	1
591	The nature and contribution of space- and object-based attentional biases to free-viewing perceptual asymmetries. Experimental Brain Research, 2005, 162, 384-393.	0.7	28
592	Spatial object representation and its use in planning eye movements. Experimental Brain Research, 2005, 165, 315-327.	0.7	12
593	Learning visuomotor transformations for gaze-control and grasping. Biological Cybernetics, 2005, 93, 119-130.	0.6	26
594	Three-dimensional cytoarchitectonic analysis of the posterior bank of the human precentral sulcus. Anatomy and Embryology, 2005, 210, 387-400.	1.5	15
595	Gaze Orienting in Dynamic Visual Double Steps. Journal of Neurophysiology, 2005, 94, 4300-4313.	0.9	26
596	Distributed Population Mechanism for the 3-D Oculomotor Reference Frame Transformation. Journal of Neurophysiology, 2005, 93, 1742-1761.	0.9	50
597	Dynamic Spatiotemporal Synaptic Integration in Cortical Neurons: Neuronal Gain, Revisited. Journal of Neurophysiology, 2005, 94, 2785-2796.	0.9	40
598	Eye-Centered, Head-Centered, and Complex Coding of Visual and Auditory Targets in the Intraparietal Sulcus. Journal of Neurophysiology, 2005, 94, 2331-2352.	0.9	450
599	Orientation Congruency Effects for Familiar Objects. Psychological Science, 2005, 16, 214-221.	1.8	51
600	Gaze direction modulates visual aftereffects in depth and color. Vision Research, 2005, 45, 2885-2894.	0.7	10
601	From brainstem to cortex: Computational models of saccade generation circuitry. Progress in Neurobiology, 2005, 77, 215-251.	2.8	110
602	Drivers and modulators from push-pull and balanced synaptic input. Progress in Brain Research, 2005, 149, 147-155.	0.9	135
603	Multimodal spatial representation: On the semantic unity of over. Cognitive Linguistics Research, 2005, , 235-284.	0.1	36
604	When Response Variability Increases Neural Network Robustness to Synaptic Noise. Neural Computation, 2006, 18, 1349-1379.	1.3	45

ARTICLE IF CITATIONS # Modeling Gravity-Dependent Plasticity of the Angular Vestibuloocular Reflex With a Physiologically 605 0.9 6 Based Neural Network. Journal of Neurophysiology, 2006, 96, 3349-3361. Deficits and Recovery in Visuospatial Memory During Head Motion After Bilateral Labyrinthine Lesion. Journal of Neurophysiology, 2006, 96, 1676-1682. Spaceâ€"Time Separation During Obstacle-Avoidance Learning in Monkeys. Journal of Neurophysiology, 607 0.9 57 2006, 96, 2613-2632. Short-term memory for serial order: A recurrent neural network model.. Psychological Review, 2006, 609 293 113, 201-233. Coordinate transformations in object recognition. Psychological Bulletin, 2006, 132, 920-945. 610 5.5 96 A nonparametric quantification of neural response field structures. NeuroReport, 2006, 17, 963-967. 0.6 Hemispheric Asymmetry in Memory-Guided Pointing During Single-Pulse Transcranial Magnetic 612 0.9 34 Stimulation of Human Parietal Cortex. Journal of Neurophysiology, 2006, 96, 3016-3027. The Isolation, Primacy, and Recency Effects Predicted by an Adaptive LTD/LTP Threshold in Postsynaptic 0.8 Cells. Cognitive Science, 2006, 30, 243-275. 614 Why we view the brain as a computer. SynthÃ^{se}, 2006, 153, 393-416. 0.6 67 The posterior parietal cortex: Sensorimotor interface for the planning and online control of visually 509 guided movements. Neuropsychologia, 2006, 44, 2594-2606. Preparatory Activity in Premotor and Motor Cortex Reflects the Speed of the Upcoming Reach. Journal 616 0.9 239 of Neurophysiology, 2006, 96, 3130-3146. Visual and Nonvisual Contributions to Three-Dimensional Heading Selectivity in the Medial Superior 271 Temporal Area. Journal of Neuroscience, 2006, 26, 73-85. Biologically inspired automatic construction of cross-modal mapping in robotic eye/hand systems. 619 1 2006, , . Saccades Exert Spatial Control of Motion Processing for Smooth Pursuit Eye Movements. Journal of 1.7 Neuroscience, 2006, 26, 7607-7618. Automated cross-modal mapping in robotic eye/hand systems using plastic radial basis function 621 1.8 19 networks. Connection Science, 2007, 19, 25-52. Gain Mechanisms for Contextually Guided Visuomotor Transformations. Journal of Neuroscience, 2007, 27, 10588-10596. Spatiotemporal Properties of Eye Position Signals in the Primate Central Thalamus. Cerebral Cortex, 623 1.6 40 2007, 17, 1504-1515. Visual Remapping by Vector Subtraction: Analysis of Multiplicative Gain Field Models. Neural 624 1.3 Computation, 2007, 19, 2353-2386.

#	Article	IF	CITATIONS
625	Synapse specificity of long-term potentiation breaks down with aging. Learning and Memory, 2007, 14, 185-189.	0.5	20
626	Neural networks for perceptual processing: from simulation tools to theories. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 339-353.	1.8	10
627	Spatial constancy and the brain: insights from neural networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 375-382.	1.8	8
628	Multilevel structure in behaviour and in the brain: a model of Fuster's hierarchy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1615-1626.	1.8	86
629	Parietal stimulation destabilizes spatial updating across saccadic eye movements. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9069-9074.	3.3	64
630	Target Selection Signals for Arm Reaching in the Posterior Parietal Cortex. Journal of Neuroscience, 2007, 27, 2001-2012.	1.7	122
631	Postsaccadic Activities in the Posterior Parietal Cortex of Primates Are Influenced by both Eye Movement Vectors and Eye Position. Journal of Neuroscience, 2007, 27, 3268-3273.	1.7	18
632	Temporal Complexity and Heterogeneity of Single-Neuron Activity in Premotor and Motor Cortex. Journal of Neurophysiology, 2007, 97, 4235-4257.	0.9	281
633	fMRI reveals a preference for near viewing in the human parieto-occipital cortex. NeuroImage, 2007, 36, 167-187.	2.1	129
635	Inhibitory control in mind and brain: An interactive race model of countermanding saccades Psychological Review, 2007, 114, 376-397.	2.7	472
636	Remembering the past and imagining the future: A neural model of spatial memory and imagery Psychological Review, 2007, 114, 340-375.	2.7	796
637	Computations for geometrically accurate visually guided reaching in 3-D space. Journal of Vision, 2007, 7, 4.	0.1	68
638	Frames of Reference for Gaze Saccades Evoked During Stimulation of Lateral Intraparietal Cortex. Journal of Neurophysiology, 2007, 98, 696-709.	0.9	21
639	Reference Frames for Reach Planning in Macaque Dorsal Premotor Cortex. Journal of Neurophysiology, 2007, 98, 966-983.	0.9	106
640	Computing vector differences using a gain field-like mechanism in monkey frontal eye field. Journal of Physiology, 2007, 582, 647-664.	1.3	44
641	Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nature Neuroscience, 2007, 10, 249-255.	7.1	141
642	The proprioceptive representation of eye position in monkey primary somatosensory cortex. Nature Neuroscience, 2007, 10, 640-646.	7.1	442
643	Skill theory v2.0: dispositions, emulation, and spatial perception. SynthÃ^se, 2007, 159, 389-416.	0.6	62

#	Article	IF	CITATIONS
644	Functional organization within a neural network trained to update target representations across 3-D saccades. Journal of Computational Neuroscience, 2007, 22, 191-209.	0.6	10
645	Top-Down modulation of neural responses in visual perception: a computational exploration. Natural Computing, 2008, 7, 45-55.	1.8	2
646	Mechanism of gain modulation at single neuron and network levels. Journal of Computational Neuroscience, 2008, 25, 158-168.	0.6	31
647	Time-invariant reference frames for parietal reach activity. Experimental Brain Research, 2008, 188, 77-89.	0.7	35
648	<i>Spatial Cognition and the Brain</i> . Annals of the New York Academy of Sciences, 2008, 1124, 77-97.	1.8	468
649	Neuronal mechanisms of visual stability. Vision Research, 2008, 48, 2070-2089.	0.7	773
650	Different spatial organizations of saccade related BOLD-activation in parietal and striate cortex. Brain Research, 2008, 1233, 89-97.	1.1	17
651	A Principle for Learning Egocentric-Allocentric Transformation. Neural Computation, 2008, 20, 709-737.	1.3	26
652	Assessing the Function of Motor Cortex: Single-Neuron Models of How Neural Response Is Modulated by Limb Biomechanics. Neuron, 2008, 58, 414-428.	3.8	37
653	Spatial updating and the maintenance of visual constancy. Neuroscience, 2008, 156, 801-818.	1.1	74
654	Stability of the fittest: organizing learning through retroaxonal signals. Trends in Neurosciences, 2008, 31, 130-136.	4.2	85
655	Mechanisms of Self-Motion Perception. Annual Review of Neuroscience, 2008, 31, 389-410.	5.0	226
656	Profile of Richard A. Andersen. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8167-8169.	3.3	0
657	Neural Ensemble Decoding Reveals a Correlate of Viewer- to Object-Centered Spatial Transformation in Monkey Parietal Cortex. Journal of Neuroscience, 2008, 28, 5218-5228.	1.7	75
658	Solving the Problem of Negative Synaptic Weights in Cortical Models. Neural Computation, 2008, 20, 1473-1494.	1.3	71
659	Monkey primary somatosensory cortex has a proprioceptive representation of eye position. Progress in Brain Research, 2008, 171, 37-45.	0.9	22
660	The role of motion capture in an illusory transformation of optic flow fields. Journal of Vision, 2008, 8, 27.	0.1	5
661	Dynamic, object-based remapping of visual features in trans-saccadic perception. Journal of Vision, 2008, 8, 2-2.	0.1	36

ARTICLE IF CITATIONS # Experimental test of visuomotor updating models that explain perisaccadic mislocalization. Journal 662 0.1 18 of Vision, 2008, 8, 8-8. Spatial Modulation of Primate Inferotemporal Responses by Eye Position. PLoS ONE, 2008, 3, e3492. 1.1 Neuronal Responses to Moving Targets in Monkey Frontal Eye Fields. Journal of Neurophysiology, 664 0.9 28 2008, 100, 1544-1556. Perisaccadic Mislocalization of Visual Targets by Head-Free Gaze Shifts: Visual or Motor?. Journal of 0.9 Neurophysiology, 2008, 100, 1848-1867. Modulation of Visual Signals in Macaque MT and MST Neurons During Pursuit Eye Movement. Journal 666 0.9 60 of Neurophysiology, 2009, 102, 3225-3233. Gain Modulation., 2009, , 485-490. Spatial Transformations for Eyeâ€"Hand Coordination., 2009, , 203-211. 668 2 Learning Backward Induction: A Neural Network Agent Approach. SSRN Electronic Journal, 2009, , . 0.4 Reaching in Depth: Hand Position Dominates over Binocular Eye Position in the Rostral Superior 670 1.7 63 Parietal Lobule. Journal of Neuroscience, 2009, 29, 11461-11470. Implementation of Spatial Transformation Rules for Goal-Directed Reaching via Gain Modulation in 671 1.7 Monkey Parietal and Premotor Cortex. Journal of Neuroscience, 2009, 29, 9490-9499. Rank-Order-Selective Neurons Form a Temporal Basis Set for the Generation of Motor Sequences. 672 1.7 15 Journal of Neuroscience, 2009, 29, 4369-4380. Space, Time, and Objects., 2009, , . Decoding the Cortical Transformations for Visually Guided Reaching in 3D Space. Cerebral Cortex, 674 1.6 102 2009, 19, 1372-1393. Multimodal Integration in Rostral Fastigial Nucleus Provides an Estimate of Body Movement. Journal 1.7 94 of Neuroscience, 2009, 29, 10499-10511. Spatiotemporal Distortions of Visual Perception at the Time of Saccades. Journal of Neuroscience, 676 88 1.7 2009, 29, 13147-13157. Parietal encoding of action in depth. Neuropsychologia, 2009, 47, 1409-1420. Selective attention and the active remapping of object features in trans-saccadic perception. Vision 678 0.7 65 Research, 2009, 49, 1249-1255. 679 A face feature space in the macaque temporal lobe. Nature Neuroscience, 2009, 12, 1187-1196. 384

#	Article	IF	CITATIONS
680	Human soundâ€localization behaviour after multiple changes in eye position. European Journal of Neuroscience, 2009, 29, 2233-2246.	1.2	11
681	Intention, Action Planning, and Decision Making in Parietal-Frontal Circuits. Neuron, 2009, 63, 568-583.	3.8	561
682	Using a Compound Gain Field to Compute a Reach Plan. Neuron, 2009, 64, 744-755.	3.8	101
683	Fields of Gain in the Brain. Neuron, 2009, 64, 598-600.	3.8	26
684	Coherent Behavior in Neuronal Networks. , 2009, , .		5
685	On the biological plausibility of grandmother cells: Implications for neural network theories in psychology and neuroscience Psychological Review, 2009, 116, 220-251.	2.7	136
686	A neural model of visually guided steering, obstacle avoidance, and route selection Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 1501-1531.	0.7	25
687	Marr on Computational-Level Theories. Philosophy of Science, 2010, 77, 477-500.	0.5	52
688	Spatial maps for time and motion. Experimental Brain Research, 2010, 206, 121-128.	0.7	31
689	Neuronal arithmetic. Nature Reviews Neuroscience, 2010, 11, 474-489.	4.9	449
690	A Functionally Equivalent Artificial Neural Network Model of the Prey Orientation Behavior of Waterstriders (Gerridae). Ethology, 1998, 104, 285-297.	0.5	2
691	Spatial constancy and the brain: insights from neural networks. , 0, , 74-92.		0
692	Neural networks for perceptual processing: from simulation tools to theories. , 0, , 7-34.		0
693	Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses. Frontiers in Computational Neuroscience, 2010, 4, 24.	1.2	148
694	Binding by asynchrony: the neuronal phase code. Frontiers in Neuroscience, 2010, 4, .	1.4	42
695	Comparison of gain-like properties of eye position signals in inferior colliculus versus auditory cortex of primates. Frontiers in Integrative Neuroscience, 2010, 4, .	1.0	12
696	Structure Learning in a Sensorimotor Association Task. PLoS ONE, 2010, 5, e8973.	1.1	26
697	Influence of Saccade Efference Copy on the Spatiotemporal Properties of Remapping: A Neural Network Study. Journal of Neurophysiology, 2010, 103, 117-139.	0.9	25

#	Article	IF	CITATIONS
698	Representation of Horizontal Head-on-Body Position in the Primate Superior Colliculus. Journal of Neurophysiology, 2010, 103, 858-874.	0.9	19
699	How to Modify a Neural Network Gradually Without Changing Its Input-Output Functionality. Neural Computation, 2010, 22, 1-47.	1.3	32
700	Rapid Formation of Spatiotopic Representations As Revealed by Inhibition of Return. Journal of Neuroscience, 2010, 30, 8882-8887.	1.7	54
701	Attentional Facilitation throughout Human Visual Cortex Lingers in Retinotopic Coordinates after Eye Movements. Journal of Neuroscience, 2010, 30, 10493-10506.	1.7	68
702	Idiosyncratic and systematic aspects of spatial representations in the macaque parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7951-7956.	3.3	106
703	Sensory-Spatial Transformations in the Left Posterior Parietal Cortex May Contribute to Reach Timing. Journal of Neurophysiology, 2010, 104, 2375-2388.	0.9	31
704	The Brain's Router: A Cortical Network Model of Serial Processing in the Primate Brain. PLoS Computational Biology, 2010, 6, e1000765.	1.5	113
705	Visuotactile Representation of Peripersonal Space: A Neural Network Study. Neural Computation, 2010, 22, 190-243.	1.3	40
706	Privileged Processing of the Straight-Ahead Direction in Primate Area V1. Neuron, 2010, 66, 126-137.	3.8	39
707	Multimodal representation of optic flow in area PEc of macaque monkey. Neuroscience, 2010, 171, 1241-1255.	1.1	23
708	Brains as analog-model computers. Studies in History and Philosophy of Science Part A, 2010, 41, 271-279.	0.6	30
709	Computation, San Diego Style. Philosophy of Science, 2010, 77, 862-874.	0.5	5
710	A robotics approach for interpreting the gaze-related modulation of the activity of premotor neurons during reaching. , 2010, , .		2
711	Multiplicative Gain Modulation Arises Through Unsupervised Learning in a Predictive Coding Model of Cortical Function. Neural Computation, 2011, 23, 1536-1567.	1.3	18
713	Learning to move machines with the mind. Trends in Neurosciences, 2011, 34, 61-75.	4.2	128
714	Three-Dimensional Transformations for Goal-Directed Action. Annual Review of Neuroscience, 2011, 34, 309-331.	5.0	152
715	Representations and Processes of Human Spatial Competence. Topics in Cognitive Science, 2011, 3, 741-759.	1.1	11
716	Introduction to the Topic on Modeling Spatial Cognition. Topics in Cognitive Science, 2011, 3, 628-631.	1.1	3

#	Article	IF	CITATIONS
718	Spatiotopic Coding of BOLD Signal in Human Visual Cortex Depends on Spatial Attention. PLoS ONE, 2011, 6, e21661.	1.1	76
719	TOWARDS A MODELING VIEW OF COMPUTING. , 2011, , 381-391.		1
720	Area MSTd Neurons Encode Visual Stimuli in Eye Coordinates During Fixation and Pursuit. Journal of Neurophysiology, 2011, 105, 60-68.	0.9	20
721	Parietofrontal circuits in goalâ€oriented behaviour. European Journal of Neuroscience, 2011, 33, 2017-2027.	1.2	59
722	Haptic Interaction of Touch and Proprioception: Implications for Neuroprosthetics. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 490-500.	2.7	30
723	The coding and updating of visuospatial memory for goal-directed reaching and pointing. Vision Research, 2011, 51, 819-826.	0.7	17
724	Explanation and description in computational neuroscience. SynthÃ ^{se, 2011, 183, 339-373.}	0.6	135
725	Foveal Attention and Inhibition of Return: A Model for the Generation of Perceptual Scan Paths. Cognitive Computation, 2011, 3, 303-310.	3.6	1
726	Acquisition of nonlinear forward optics in generative models: Two-stage "downside-up―learning for occluded vision. Neural Networks, 2011, 24, 148-158.	3.3	1
727	Sensory integration for reaching. Progress in Brain Research, 2011, 191, 195-209.	0.9	53
728	The Neural Basis of Parallel Saccade Programming: An fMRI Study. Journal of Cognitive Neuroscience, 2011, 23, 3669-3680.	1.1	11
729	Active Data Collection for Efficient Estimation and Comparison of Nonlinear Neural Models. Neural Computation, 2011, 23, 2242-2288.	1.3	40
730	Computational models of spatial updating in peri-saccadic perception. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 554-571.	1.8	52
731	Spatiotopic coding and remapping in humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 504-515.	1.8	108
732	Spatial constancy mechanisms in motor control. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 476-491.	1.8	66
733	A Lack of Anticipatory Remapping of Retinotopic Receptive Fields in the Middle Temporal Area. Journal of Neuroscience, 2011, 31, 10432-10436.	1.7	25
734	A Computational Model for the Influence of Corollary Discharge and Proprioception on the Perisaccadic Mislocalization of Briefly Presented Stimuli in Complete Darkness. Journal of Neuroscience, 2011, 31, 17392-17405.	1.7	277
735	Large-Scale Automated Histology in the Pursuit of Connectomes. Journal of Neuroscience, 2011, 31, 16125-16138.	1.7	151

#	Article	IF	CITATIONS
736	Impaired Endogenously Evoked Automated Reaching in Parkinson's Disease. Journal of Neuroscience, 2011, 31, 17848-17863.	1.7	62
737	Multiple Reference Frames for Saccadic Planning in the Human Parietal Cortex. Journal of Neuroscience, 2011, 31, 1059-1068.	1.7	54
738	Neural networks as a unifying learning model for random normal form games. Adaptive Behavior, 2011, 19, 383-408.	1.1	6
739	Eye position effects in saccadic adaptation. Journal of Neurophysiology, 2011, 106, 2536-2545.	0.9	14
740	A neurobehavioral model of flexible spatial language behaviors Journal of Experimental Psychology: Learning Memory and Cognition, 2012, 38, 1490-1511.	0.7	28
741	Location-Dependent Excitatory Synaptic Interactions in Pyramidal Neuron Dendrites. PLoS Computational Biology, 2012, 8, e1002599.	1.5	74
742	Pontine Reference Frames for the Sensory Guidance of Movement. Cerebral Cortex, 2012, 22, 345-362.	1.6	8
743	Accurate planning of manual tracking requires a 3D visuomotor transformation of velocity signals. Journal of Vision, 2012, 12, 6-6.	0.1	7
744	HEAD-CENTRIC DISPARITY AND EPIPOLAR GEOMETRY ESTIMATION FROM A POPULATION OF BINOCULAR ENERGY NEURONS. International Journal of Neural Systems, 2012, 22, 1250007.	3.2	5
745	The Operation of the Visual System in Relation to Action. Current Biology, 2012, 22, R811-R817.	1.8	22
746	The Need for Speed: Eye-Position Signal Dynamics in the Parietal Cortex. Neuron, 2012, 76, 1048-1051.	3.8	2
747	Space coding for sensorimotor transformations can emerge through unsupervised learning. Cognitive Processing, 2012, 13, 141-146.	0.7	8
748	Body area segmentation from visual scene based on predictability of neuro-dynamical system. , 2012, , .		0
749	Automated car braking system: Using neural network system via Labview environment. , 2012, , .		0
750	Coding of the Reach Vector in Parietal Area 5d. Neuron, 2012, 75, 342-351.	3.8	65
751	The Postsaccadic Unreliability of Gain Fields Renders It Unlikely that the Motor System Can Use Them to Calculate Target Position in Space. Neuron, 2012, 76, 1201-1209.	3.8	294
752	Higher Level Visual Cortex Represents Retinotopic, Not Spatiotopic, Object Location. Cerebral Cortex, 2012, 22, 2794-2810.	1.6	119
753	Three-dimensional eye position signals shape both peripersonal space and arm movement activity in the medial posterior parietal cortex. Frontiers in Integrative Neuroscience, 2012, 6, 37.	1.0	28

#	Article	IF	CITATIONS
754	Eye position effects in saccadic adaptation in macaque monkeys. Journal of Neurophysiology, 2012, 108, 2819-2826.	0.9	10
755	Privileged visual processing of the straight-ahead direction in humans. Journal of Vision, 2012, 12, 34-34.	0.1	19
756	Paying Attention through Eye Movements: A Computational Investigation of the Premotor Theory of Spatial Attention. Journal of Cognitive Neuroscience, 2012, 24, 1519-1531.	1.1	37
757	A neural mechanism for coordinate transformation predicts pre-saccadic remapping. Biological Cybernetics, 2012, 106, 89-109.	0.6	24
758	Face-infringement space: the frame of reference of the ventral intraparietal area. Biological Cybernetics, 2012, 106, 219-239.	0.6	3
759	Dynamics of Eye-Position Signals in the Dorsal Visual System. Current Biology, 2012, 22, 173-179.	1.8	69
760	Functional Biases in Visual Cortex Neurons with Identified Projections to Higher Cortical Targets. Current Biology, 2012, 22, 269-277.	1.8	31
761	A neural model of sequential movement planning and control of eye movements: Item-Order-Rank working memory and saccade selection by the supplementary eye fields. Neural Networks, 2012, 26, 29-58.	3.3	46
762	Deep Hierarchies in the Primate Visual Cortex: What Can We Learn for Computer Vision?. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35, 1847-1871.	9.7	285
763	Frontoparietal mechanisms supporting attention to location and intensity of painful stimuli. Pain, 2013, 154, 1758-1768.	2.0	57
764	Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature, 2013, 503, 78-84.	13.7	1,350
765	Integration of visual motion and locomotion in mouse visual cortex. Nature Neuroscience, 2013, 16, 1864-1869.	7.1	353
766	Using Dynamic Field Theory to extend the embodiment stance toward higher cognition. New Ideas in Psychology, 2013, 31, 322-339.	1.2	63
767	Getting lost in Alzheimer's disease: A break in the mental frame syncing. Medical Hypotheses, 2013, 80, 416-421.	0.8	49
768	Frames of reference for eye–head gaze shifts evoked during frontal eye field stimulation. European Journal of Neuroscience, 2013, 37, 1754-1765.	1.2	18
769	Physiologically Inspired Model for the Visual Recognition of Transitive Hand Actions. Journal of Neuroscience, 2013, 33, 6563-6580.	1.7	75
770	Control of the Gain of Visual-Motor Transmission Occurs in Visual Coordinates for Smooth Pursuit Eye Movements. Journal of Neuroscience, 2013, 33, 9420-9430.	1.7	13
771	Population Coding and the Labeling Problem: Extrinsic Versus Intrinsic Representations. Neural Computation, 2013, 25, 2235-2264.	1.3	19

#	Article	IF	CITATIONS
772	Modulation of Visual Responses by Gaze Direction in Human Visual Cortex. Journal of Neuroscience, 2013, 33, 9879-9889.	1.7	49
773	The neural binding problem(s). Cognitive Neurodynamics, 2013, 7, 1-11.	2.3	88
774	Eye-Position Signals in the Dorsal Visual System Are Accurate and Precise on Short Timescales. Journal of Neuroscience, 2013, 33, 12395-12406.	1.7	37
775	Two Distinct Ipsilateral Cortical Representations for Individuated Finger Movements. Cerebral Cortex, 2013, 23, 1362-1377.	1.6	155
776	Spatiotopic perceptual learning mediated by retinotopic processing and attentional remapping. European Journal of Neuroscience, 2013, 38, 3758-3767.	1.2	10
777	Representation of Spatial Relations. , 2013, , .		0
778	A Self-Organizing Model of the Visual Development of Hand-Centred Representations. PLoS ONE, 2013, 8, e66272.	1.1	5
779	A Model of Self-Organizing Head-Centered Visual Responses in Primate Parietal Areas. PLoS ONE, 2013, 8, e81406.	1.1	5
780	Coordinate transformation approach to social interactions. Frontiers in Neuroscience, 2013, 7, 147.	1.4	25
781	Brain circuits underlying visual stability across eye movementsââ,¬â€converging evidence for a neuro-computational model of area LIP. Frontiers in Computational Neuroscience, 2014, 8, 25.	1.2	23
782	Recovering stimulus locations using populations of eye-position modulated neurons in dorsal and ventral visual streams of non-human primates. Frontiers in Integrative Neuroscience, 2014, 8, 28.	1.0	19
783	Whereââ,¬â"¢s Waldo? How perceptual, cognitive, and emotional brain processes cooperate during learning to categorize and find desired objects in a cluttered scene. Frontiers in Integrative Neuroscience, 2014, 8, 43.	1.0	34
784	Gravity Influences the Visual Representation of Object Tilt in Parietal Cortex. Journal of Neuroscience, 2014, 34, 14170-14180.	1.7	38
785	Self-organization of head-centered visual responses under ecological training conditions. Network: Computation in Neural Systems, 2014, 25, 116-136.	2.2	6
786	A Role for Mixed Corollary Discharge and Proprioceptive Signals in Predicting the Sensory Consequences of Movements. Journal of Neuroscience, 2014, 34, 16103-16116.	1.7	17
787	Against Division: Consciousness, Information and the Visual Streams. Mind and Language, 2014, 29, 383-406.	1.2	28
788	Interaction of Egocentric and World-Centered Reference Frames in the Rat Posterior Parietal Cortex. Journal of Neuroscience, 2014, 34, 5431-5446.	1.7	180
789	Evolution of biologically plausible neural networks performing a visually guided reaching task. , 2014, , .		3

#	Article	IF	CITATIONS
790	Neural circuits as computational dynamical systems. Current Opinion in Neurobiology, 2014, 25, 156-163.	2.0	171
791	An Augmented Two-Layer Model Captures Nonlinear Analog Spatial Integration Effects in Pyramidal Neuron Dendrites. Proceedings of the IEEE, 2014, 102, 782-798.	16.4	68
792	Temporal Analysis of Reference Frames in Parietal Cortex Area 5d during Reach Planning. Journal of Neuroscience, 2014, 34, 5273-5284.	1.7	35
793	Optic Ataxia: From Balint's Syndrome to the Parietal Reach Region. Neuron, 2014, 81, 967-983.	3.8	112
794	The role of egocentric and allocentric abilities in Alzheimer's disease: A systematic review. Ageing Research Reviews, 2014, 16, 32-44.	5.0	92
795	A single functional model of drivers and modulators in cortex. Journal of Computational Neuroscience, 2014, 36, 97-118.	0.6	17
796	Nonretinotopic visual processing in the brain. Visual Neuroscience, 2015, 32, E017.	0.5	37
797	Direct encoding of orientation variance in the visual system. Journal of Vision, 2015, 15, 3.	0.1	26
798	Detecting early egocentric and allocentric impairments deficits in Alzheimerââ,¬â,,¢s disease: an experimental study with virtual reality. Frontiers in Aging Neuroscience, 2015, 7, 88.	1.7	80
799	The Development of Hand-Centered Visual Representations in the Primate Brain: A Computer Modeling Study Using Natural Visual Scenes. Frontiers in Computational Neuroscience, 2015, 9, 147.	1.2	3
800	Transfer of conflict and cooperation from experienced games to new games: a connectionist model of learning. Frontiers in Neuroscience, 2015, 9, 102.	1.4	2
801	LEARNING STIMULUS-STIMULUS ASSOCIATION IN SPATIO-TEMPORAL NEURAL NETWORKS. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.3	0
802	Cognitive Neuroscience. , 2015, , 95-102.		3
803	Gaze-Dependent Topography in Human Posterior Parietal Cortex. Cerebral Cortex, 2015, 25, 1519-1526.	1.6	5
804	Computations underlying the visuomotor transformation for smooth pursuit eye movements. Journal of Neurophysiology, 2015, 113, 1377-1399.	0.9	6
805	Connecting multiple spatial scales to decode the population activity of grid cells. Science Advances, 2015, 1, e1500816.	4.7	117
806	The vision of Hsiao on somatosensation. Journal of Neurophysiology, 2015, 113, 684-687.	0.9	0
807	Microstructure-Tensile Properties Correlation for the Ti-6Al-4V Titanium Alloy. Journal of Materials Engineering and Performance, 2015, 24, 1754-1762.	1.2	22

#	ARTICLE How different spatial representations interact in virtual environments: the role of mental frame	IF 0.7	CITATIONS
809	syncing. Cognitive Processing, 2015, 16, 191-201. Do not get lost in translation: The role of egocentric heading in spatial orientation. Neuroscience Letters, 2015, 602, 84-88.	1.0	6
810	Human Spatial Orientation, Neural Basis of. , 2015, , 386-391.		0
811	Transsaccadic processing: stability, integration, and the potential role of remapping. Attention, Perception, and Psychophysics, 2015, 77, 3-27.	0.7	44
812	Colour-based lips segmentation method using artificial neural networks. , 2015, , .		13
813	On explaining and understanding cognitive behaviour. Australian Journal of Psychology, 2015, 67, 241-250.	1.4	6
814	Eye Velocity Gain Fields in MSTd During Optokinetic Stimulation. Cerebral Cortex, 2015, 25, 2181-2190.	1.6	6
815	A novel face recognition method: Using random weight networks and quasi-singular value decomposition. Neurocomputing, 2015, 151, 1180-1186.	3.5	17
816	Neural Network Evidence for the Coupling of Presaccadic Visual Remapping to Predictive Eye Position Updating. Frontiers in Computational Neuroscience, 2016, 10, 52.	1.2	6
817	Toward an Integration of Deep Learning and Neuroscience. Frontiers in Computational Neuroscience, 2016, 10, 94.	1.2	400
818	Saccadic Adaptation Is Associated with Starting Eye Position. Frontiers in Human Neuroscience, 2016, 10, 322.	1.0	2
819	Characteristics of Eye-Position Gain Field Populations Determine Geometry of Visual Space. Frontiers in Integrative Neuroscience, 2015, 9, 72.	1.0	11
820	The Dorsal Visual System Predicts Future and Remembers Past Eye Position. Frontiers in Systems Neuroscience, 2016, 10, 9.	1.2	20
821	A State Space Model for Spatial Updating of Remembered Visual Targets during Eye Movements. Frontiers in Systems Neuroscience, 2016, 10, 39.	1.2	7
822	Spaces in the Brain: From Neurons to Meanings. Frontiers in Psychology, 2016, 7, 1820.	1.1	23
823	Multisensory Processing and Perceptual Consciousness: Part I. Philosophy Compass, 2016, 11, 121-133.	0.7	14
824	Proton onducting Graphene Oxide oupled Neuron Transistors for Brainâ€Inspired Cognitive Systems. Advanced Materials, 2016, 28, 3557-3563.	11.1	226
825	Convolutional Neural Network Based on Principal Component Analysis Initialization for Image Classification. , 2016, , .		15

#	Article	IF	CITATIONS
826	Neural correlate of spatial (misâ€)localization during smooth eye movements. European Journal of Neuroscience, 2016, 44, 1846-1855.	1.2	15
827	A theory of local learning, the learning channel, and the optimality of backpropagation. Neural Networks, 2016, 83, 51-74.	3.3	44
828	The Proactive Self in Space: HowÂEgocentric and Allocentric Spatial Impairments Contribute to Anosognosia inÂAlzheimer's Disease. Journal of Alzheimer's Disease, 2016, 55, 881-892.	1.2	10
829	Spatiotopic Adaptation in Visual Areas. Journal of Neuroscience, 2016, 36, 9526-9534.	1.7	29
830	Parieto-frontal gradients and domains underlying eye and hand operations in the action space. Neuroscience, 2016, 334, 76-92.	1.1	13
831	Random synaptic feedback weights support error backpropagation for deep learning. Nature Communications, 2016, 7, 13276.	5.8	412
832	Eye position effects on the remapped memory trace of visual motion in cortical area MST. Scientific Reports, 2016, 6, 22013.	1.6	5
833	A moving observer in a three-dimensional world. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150265.	1.8	10
834	The neural basis of depth perception from motion parallax. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150256.	1.8	26
835	Color-based object segmentation method using artificial neural network. Simulation Modelling Practice and Theory, 2016, 64, 3-17.	2.2	21
836	Why neurons mix: high dimensionality for higher cognition. Current Opinion in Neurobiology, 2016, 37, 66-74.	2.0	513
837	Visual Neuroscience: The Puzzle of Perceptual Stability. Current Biology, 2016, 26, R199-R201.	1.8	10
838	Number As a Primary Perceptual Attribute: A Review. Perception, 2016, 45, 5-31.	0.5	198
839	Modeling the motor cortex: Optimality, recurrent neural networks, and spatial dynamics. Neuroscience Research, 2016, 104, 64-71.	1.0	14
840	Remapping, Spatial Stability, and Temporal Continuity: From the Pre-Saccadic to Postsaccadic Representation of Visual Space in LIP. Cerebral Cortex, 2016, 26, 3183-3195.	1.6	28
841	Reactivation of associative structure specific outcome responses during prospective evaluation in reward-based choices. Nature Communications, 2017, 8, 15821.	5.8	43
842	Spatial representation in the hippocampal formation: a history. Nature Neuroscience, 2017, 20, 1448-1464.	7.1	362
843	Implementing a Bayes Filter in a Neural Circuit: The Case of Unknown Stimulus Dynamics. Neural Computation, 2017, 29, 2450-2490.	1.3	6

#	Article	IF	CITATIONS
844	Learning in the machine: The symmetries of the deep learning channel. Neural Networks, 2017, 95, 110-133.	3.3	18
845	A predictive coding model of gaze shifts and the underlying neurophysiology. Visual Cognition, 2017, 25, 770-801.	0.9	5
846	Efficient probabilistic inference in generic neural networks trained with non-probabilistic feedback. Nature Communications, 2017, 8, 138.	5.8	56
847	A Novel Image Classification Method with CNN-XGBoost Model. Lecture Notes in Computer Science, 2017, , 378-390.	1.0	81
848	Constructing representations of spatial location from briefly presented displays. Cognitive Processing, 2017, 18, 81-85.	0.7	0
849	Lung Nodule Classification by Jointly Using Visual Descriptors and Deep Features. Lecture Notes in Computer Science, 2017, , 116-125.	1.0	21
850	Temporal stability of reference frames in monkey area V6A during a reaching task in 3D space. Brain Structure and Function, 2017, 222, 1959-1970.	1.2	17
851	Modeling the N400 ERP component as transient semantic over-activation within a neural network model of word comprehension. Cognition, 2017, 162, 153-166.	1.1	39
852	Reward-based training of recurrent neural networks for cognitive and value-based tasks. ELife, 2017, 6, .	2.8	126
853	A Theory of How Columns in the Neocortex Enable Learning the Structure of the World. Frontiers in Neural Circuits, 2017, 11, 81.	1.4	95
854	The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding. Frontiers in Computational Neuroscience, 2017, 11, 13.	1.2	7
855	Computational Foundations of Natural Intelligence. Frontiers in Computational Neuroscience, 2017, 11, 112.	1.2	36
856	Cortical Activation during Landmark-Centered vs. Gaze-Centered Memory of Saccade Targets in the Human: An FMRI Study. Frontiers in Systems Neuroscience, 2017, 11, 44.	1.2	12
857	Modeling and Error Compensation of Robotic Articulated Arm Coordinate Measuring Machines Using BP Neural Network. Complexity, 2017, 2017, 1-8.	0.9	16
858	Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system. PLoS ONE, 2017, 12, e0178304.	1.1	8
859	Mapping hourly dynamics of urban population using trajectories reconstructed from mobile phone records. Transactions in GIS, 2018, 22, 494-513.	1.0	52
860	A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts Brain Responses, and Reveals a Cortical Processing Hierarchy. Neuron, 2018, 98, 630-644.e16.	3.8	358
861	Deep Learning in Biomedical Data Science. Annual Review of Biomedical Data Science, 2018, 1, 181-205.	2.8	76

#	Article	IF	CITATIONS
862	An Integrative Framework for Sensory, Motor, and Cognitive Functions of the Posterior Parietal Cortex. Neuron, 2018, 97, 1219-1234.	3.8	89
863	Role of Rostral Fastigial Neurons in Encoding a Body-Centered Representation of Translation in Three Dimensions. Journal of Neuroscience, 2018, 38, 3584-3602.	1.7	13
864	Neural substrates for allocentricâ€ŧoâ€egocentric conversion of remembered reach targets in humans. European Journal of Neuroscience, 2018, 47, 901-917.	1.2	19
865	A neural network model for development of reaching and pointing based on the interaction of forward and inverse transformations. Developmental Science, 2018, 21, e12565.	1.3	3
866	Neuronal Representation of the Saccadic Timing Signals in Macaque Lateral Intraparietal Area. Cerebral Cortex, 2018, 28, 2887-2900.	1.6	9
867	The Brain as an Input–Output Model of the World. Minds and Machines, 2018, 28, 53-75.	2.7	11
868	Fronto-parietal organization for response times in inhibition of return: The FORTIOR model. Cortex, 2018, 102, 176-192.	1.1	15
869	Self-organising coordinate transformation with peaked and monotonic gain modulation in the primate dorsal visual pathway. PLoS ONE, 2018, 13, e0207961.	1.1	2
870	Vestibular System and Self-Motion. Frontiers in Cellular Neuroscience, 2018, 12, 456.	1.8	32
871	Peri-Saccadic Remapping Accounts for Visual Stability. , 2018, , .		0
872	Digital, big data and computational forensics. Forensic Sciences Research, 2018, 3, 179-182.	0.9	9
873	Active dendritic integration and mixed neocortical network representations during an adaptive sensing behavior. Nature Neuroscience, 2018, 21, 1583-1590.	7.1	73
874	STCS: a practical solar radiation based temperature correction scheme in meteorological WSN. International Journal of Sensor Networks, 2018, 28, 22.	0.2	14
875	A spatial memory signal shows that the parietal cortex has access to a craniotopic representation of space. ELife, 2018, 7, .	2.8	7
876	The Case of Schizophrenia. , 2018, , 183-270.		0
877	Modeling auditory-visual evoked eye-head gaze shifts in dynamic multisteps. Journal of Neurophysiology, 2018, 119, 1795-1808.	0.9	3
878	Spiking neurons with short-term synaptic plasticity form superior generative networks. Scientific Reports, 2018, 8, 10651.	1.6	20
879	Saccade-induced changes in ocular torsion reveal predictive orientation perception. Journal of Vision, 2019, 19, 10.	0.1	5

#	Article	IF	CITATIONS
880	Harnessing behavioral diversity to understand neural computations for cognition. Current Opinion in Neurobiology, 2019, 58, 229-238.	2.0	40
881	Deep learning as a tool for neural data analysis: Speech classification and cross-frequency coupling in human sensorimotor cortex. PLoS Computational Biology, 2019, 15, e1007091.	1.5	43
882	The role of location in visual feature binding. Attention, Perception, and Psychophysics, 2019, 81, 1551-1563.	0.7	20
883	Neural network and regression methods for optimizations between two meteorological factors. Physica A: Statistical Mechanics and Its Applications, 2019, 523, 778-796.	1.2	2
884	A review of computational models of basic rule learning: The neural-symbolic debate and beyond. Psychonomic Bulletin and Review, 2019, 26, 1174-1194.	1.4	8
885	Deep convolutional models improve predictions of macaque V1 responses to natural images. PLoS Computational Biology, 2019, 15, e1006897.	1.5	179
886	A Stable Visual World in Primate Primary Visual Cortex. Current Biology, 2019, 29, 1471-1480.e6.	1.8	32
887	The capacity of feedforward neural networks. Neural Networks, 2019, 116, 288-311.	3.3	39
888	Neuromagnetic signatures of the spatiotemporal transformation for manual pointing. NeuroImage, 2019, 197, 306-319.	2.1	11
889	Deep neural network models of sensory systems: windows onto the role of task constraints. Current Opinion in Neurobiology, 2019, 55, 121-132.	2.0	78
890	The roles of supervised machine learning in systems neuroscience. Progress in Neurobiology, 2019, 175, 126-137.	2.8	88
891	Bodily awareness and novel multisensory features. SynthÃ^se, 2019, 198, 3913.	0.6	4
892	Multidimensional Neural Selectivity in the Primate Amygdala. ENeuro, 2019, 6, ENEURO.0153-19.2019.	0.9	22
893	From thought to action: The brain–machine interface in posterior parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26274-26279.	3.3	49
894	Annual Research Review: Developmental computational psychiatry. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2019, 60, 412-426.	3.1	33
895	Task representations in neural networks trained to perform many cognitive tasks. Nature Neuroscience, 2019, 22, 297-306.	7.1	322
896	Visual and Vestibular Selectivity for Self-Motion in Macaque Posterior Parietal Area 7a. Cerebral Cortex, 2019, 29, 3932-3947.	1.6	44
897	A Brief History of the Encoding of Hand Position by the Cerebral Cortex: Implications for Motor Control and Cognition. Cerebral Cortex, 2019, 29, 716-731.	1.6	12

#	Article	IF	CITATIONS
898	Spatial coordinate transforms linking the allocentric hippocampal and egocentric parietal primate brain systems for memory, action in space, and navigation. Hippocampus, 2020, 30, 332-353.	0.9	27
899	Eye position signals in the dorsal pulvinar during fixation and goal-directed saccades. Journal of Neurophysiology, 2020, 123, 367-391.	0.9	12
900	Diagnosis of COVID-19 in CT image using CNN and XGBoost. , 2020, , .		15
901	Deep Reinforcement Learning and Its Neuroscientific Implications. Neuron, 2020, 107, 603-616.	3.8	102
902	Mixed Selectivity in Macaque Medial Parietal Cortex during Eye-Hand Reaching. IScience, 2020, 23, 101616.	1.9	24
903	Artificial Neural Networks for Neuroscientists: A Primer. Neuron, 2020, 107, 1048-1070.	3.8	148
904	Convolutional neural networks explain tuning properties of anterior, but not middle, face-processing areas in macaque inferotemporal cortex. Communications Biology, 2020, 3, 221.	2.0	12
905	Explaining "spatial purport of perception†a predictive processing approach. SynthÃ^se, 2021, 198, 9739-9762.	0.6	0
906	Uncertainty and spatial updating in posterior parietal cortex. Cortex, 2020, 130, 441-443.	1.1	2
907	A Compositional Neural Architecture for Language. Journal of Cognitive Neuroscience, 2020, 32, 1407-1427.	1.1	57
908	Shared contributions of the head and torso to spatial reference frames across spatial judgments. Cognition, 2020, 204, 104349.	1.1	4
909	Neural coding of action in three dimensions: Task―and timeâ€invariant reference frames for visuospatial and motorâ€related activity in parietal area V6A. Journal of Comparative Neurology, 2020, 528, 3108-3122.	0.9	6
910	Online Active Extreme Learning Machine With Discrepancy Sampling for PolSAR Classification. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 2027-2041.	2.7	14
911	Learning in the machine: To share or not to share?. Neural Networks, 2020, 126, 235-249.	3.3	7
912	Backpropagation and the brain. Nature Reviews Neuroscience, 2020, 21, 335-346.	4.9	385
913	Nonretinocentric localization of successively presented flashes during smooth pursuit eye movements. Journal of Vision, 2020, 20, 8.	0.1	1
914	Mouse entorhinal cortex encodes a diverse repertoire of self-motion signals. Nature Communications, 2021, 12, 671.	5.8	19
916	The Image Classification Method with CNN-XGBoost Model Based on Adaptive Particle Swarm Optimization. Information (Switzerland), 2021, 12, 156.	1.7	16

#	Article	IF	CITATIONS
919	The future of neuromodulation: smart neuromodulation. Expert Review of Medical Devices, 2021, 18, 307-317.	1.4	13
920	An egocentric straight-ahead bias in primate's vision. Brain Structure and Function, 2021, 226, 2897-2909.	1.2	2
922	The Neural Bases of Egocentric Spatial Representation for Extracorporeal and Corporeal Tasks: An fMRI Study. Brain Sciences, 2021, 11, 963.	1.1	5
924	Compensating for a shifting world: evolving reference frames of visual and auditory signals across three multimodal brain areas. Journal of Neurophysiology, 2021, 126, 82-94.	0.9	18
925	Wood Species Recognition Based on Visible and Near-Infrared Spectral Analysis Using Fuzzy Reasoning and Decision-Level Fusion. Journal of Spectroscopy, 2021, 2021, 1-16.	0.6	5
926	A Comprehensive Review on Radiomics and Deep Learning for Nasopharyngeal Carcinoma Imaging. Diagnostics, 2021, 11, 1523.	1.3	16
927	Post-Processing of High Formwork Monitoring Data Based on the Back Propagation Neural Networks Model and the Autoregressive—Moving-Average Model. Symmetry, 2021, 13, 1543.	1.1	5
928	The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews, 2022, 102, 551-604.	13.1	32
930	Connectionism and the Study of Change. , 0, , 420-440.		7
931	Gain Modulation as a Mechanism for Switching Reference Frames, Tasks, and Targets. , 2009, , 121-142.		6
933			
	ANNs and MAMFs: Transparency or Opacity?. , 1994, , 123-129.		1
934	ANNs and MAMFs: Transparency or Opacity?. , 1994, , 123-129. Movement Selection, Preparation, and the Decision to Act: Neurophysiological Studies in Nonhuman Primates. , 2003, , 249-268.		1
934 935	Movement Selection, Preparation, and the Decision to Act: Neurophysiological Studies in Nonhuman	0.6	
	Movement Selection, Preparation, and the Decision to Act: Neurophysiological Studies in Nonhuman Primates. , 2003, , 249-268. The Nature and Plasticity of Sensory Processing within Adult Rat Barrel Cortex. Cerebral Cortex, 1995,	0.6	1
935	Movement Selection, Preparation, and the Decision to Act: Neurophysiological Studies in Nonhuman Primates., 2003,, 249-268. The Nature and Plasticity of Sensory Processing within Adult Rat Barrel Cortex. Cerebral Cortex, 1995, , 333-373.	0.6	1 40
935 936	 Movement Selection, Preparation, and the Decision to Act: Neurophysiological Studies in Nonhuman Primates., 2003, 249-268. The Nature and Plasticity of Sensory Processing within Adult Rat Barrel Cortex. Cerebral Cortex, 1995, 333-373. Attentional Gain Modulation as a Basis for Translation Invariance., 1997, 807-812. Temperature Error Correction Based on BP Neural Network in Meteorological Wireless Sensor 		1 40 4
935 936 937	Movement Selection, Preparation, and the Decision to Act: Neurophysiological Studies in Nonhuman Primates. , 2003, , 249-268. The Nature and Plasticity of Sensory Processing within Adult Rat Barrel Cortex. Cerebral Cortex, 1995, , 333-373. Attentional Gain Modulation as a Basis for Translation Invariance. , 1997, , 807-812. Temperature Error Correction Based on BP Neural Network in Meteorological Wireless Sensor Network. Lecture Notes in Computer Science, 2016, , 117-132.		1 40 4 13

#	Article	IF	CITATIONS
941	Neuronal Coding of Visual Space in the Posterior Parietal Cortex. , 1997, , 539-553.		5
942	Multiple Parietal "Eye Fieldsâ€: Insights from Electrical Microstimulation. , 1997, , 95-108.		6
943	Specific Parietal Lobe Contribution to Spatial Constancy Across Saccades. , 1997, , 149-172.		5
944	Reaching Toward Visual Targets. II. Computational Studies. , 1992, , 159-174.		3
946	Learning Backward Induction: A Neural Network Agent Approach. , 2011, , 61-73.		1
947	Control of Movement in Three-Dimensional Space. , 1996, , 1-40.		4
948	Space Coding in Inferior Premotor Cortex (Area F4): Facts and Speculations. , 1996, , 99-120.		15
949	The Role of the Posterior Parietal Cortex and Cerebellum in the Visual Guidance of Movement. , 1996, , 131-151.		1
950	Face Recognition Based on Local Gabor Binary Patterns and Convolutional Neural Network. Lecture Notes in Electrical Engineering, 2018, , 699-707.	0.3	2
951	Insects Image Classification Through Deep Convolutional Neural Networks. Smart Innovation, Systems and Technologies, 2021, , 217-228.	0.5	8
952	Nonlinearities in the Saccadic System and Efferent Feedback to the Collicular Motor Map. , 1994, , 139-149.		2
953	Exploring Cortical Microcircuits: A Combined Anatomical, Physiological, and Computational Approach. , 1992, , 381-412.		12
954	Multiscale and Distributed Visual Representations and Mappings for Invariant Low-Level Perception. , 1992, , 462-476.		3
955	For and Against Spatial Coding of Saccades. Studies in Visual Information Processing, 1994, 5, 3-17.	0.3	3
956	MODEL OF VISUO-MOTOR TRANSFORMATIONS PERFORMED BY THE CEREBRAL CORTEX TO COMMAND ARM MOVEMENTS AT VISUAL TARGETS IN THE 3-D SPACE. , 1990, , 33-41.		4
957	On the Role of Neural Synchrony in the Primate Visual Cortex. , 1996, , 201-227.		10
959	Brain Time and Phenomenological Time. , 2005, , 160-207.		19
960	The cerebellum and memory. Behavioral and Brain Sciences, 1992, 15, 801-802.	0.4	3

	Сг	tation Report	
#	ARTICLE Categorical versus coordinate spatial relations: computational analyses and computer simulations.	IF	CITATIONS
961	Journal of Experimental Psychology: Human Perception and Performance, 1992, 18, 562-77.	0.7	172
962	Coding of far and near space during walking in neglect patients. Neuropsychology, 2002, 16, 390-9.	1.0	27
963	Development of localized oriented receptive fields by learning a translation-invariant code for natural images*. Network: Computation in Neural Systems, 1998, 9, 219-234.	2.2	12
964	Where Are the Switches on This Thing?. , 2006, , 423-431.		11
966	Posterior parietal networks encoding visual space. , 2002, , 59-69.		10
967	Coding near and far space. , 2002, , 119-129.		18
969	Neural network models. , 2001, , 145-242.		1
970	Binding in working memory and long-term memoryTowards an integrated model. , 2006, , 221-250.		9
971	Function-Theoretic Explanation and the Search for Neural Mechanisms. , 2018, , .		16
979	A Theory of How the Brain Might Work. Cold Spring Harbor Symposia on Quantitative Biology, 1990, 55, 899-910.	2.0	183
980	Informational maneuvering in dynamic environment. , 0, , .		5
981	Corollary Discharge and Oculomotor Proprioception: Cortical Mechanisms for Spatially Accurate Vision. Annual Review of Vision Science, 2016, 2, 61-84.	2.3	50
982	Spatial Memory Following Shifts of Gaze. I. Saccades to Memorized World-Fixed and Gaze-Fixed Targets. Journal of Neurophysiology, 2003, 89, 2564-2576.	0.9	57
983	The neural encoding of the location of targets for saccadic eye movements. Journal of Experimental Biology, 1989, 146, 195-207.	0.8	50
984	A Sensorimotor Model for Computing Intended Reach Trajectories. PLoS Computational Biology, 2016 12, e1004734.	6, 1.5	3
985	Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework. PLoS Computational Biology, 2016, 12, e1004792.	1.5	204
986	Simulating the Cortical 3D Visuomotor Transformation of Reach Depth. PLoS ONE, 2012, 7, e41241.	1.1	15
987	Experimental Test of Spatial Updating Models for Monkey Eye-Head Gaze Shifts. PLoS ONE, 2012, 7, e47606.	1.1	6

#	Article	IF	CITATIONS
988	Columnar Architecture Improves Noise Robustness in a Model Cortical Network. PLoS ONE, 2015, 10, e0119072.	1.1	2
989	The Importance of Lateral Connections in the Parietal Cortex for Generating Motor Plans. PLoS ONE, 2015, 10, e0134669.	1.1	4
991	Perisaccadic remapping: What? How? Why?. Reviews in the Neurosciences, 2020, 31, 505-520.	1.4	18
992	Flexible Reference Frames for Grasp Planning in Human Parietofrontal Cortex. ENeuro, 2015, 2, ENEURO.0008-15.2015.	0.9	21
993	Preservation of Partially Mixed Selectivity in Human Posterior Parietal Cortex across Changes in Task Context. ENeuro, 2020, 7, ENEURO.0222-19.2019.	0.9	9
994	Gain Modulation as a Mechanism for Coding Depth from Motion Parallax in Macaque Area MT. Journal of Neuroscience, 2017, 37, 8180-8197.	1.7	12
995	Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model. Journal of Neuroscience, 1997, 17, 5900-5920.	1.7	783
996	Neural Networks as a Learning Paradigm for General Normal Form Games. SSRN Electronic Journal, 0, ,	0.4	1
997	Contributions of posterior parietal cortex to cognitive functions in primates. Cognitive, Affective and Behavioral Neuroscience, 1998, 26, 109-118.	1.2	14
998	Automatic Car Braking System Using Labview. , 2014, , .		1
999	Introduction to Neural Network Models in Psychiatry. Psychiatric Annals, 1992, 22, 113-118.	0.1	24
1000	Inferring eye position from populations of lateral intraparietal neurons. ELife, 2014, 3, e02813.	2.8	26
1001	Looking into the future. ELife, 2014, 3, e03146.	2.8	2
1002	Distinct spatial coordinate of visual and vestibular heading signals in macaque FEFsem and MSTd. ELife, 2017, 6, .	2.8	20
1003	A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. ELife, 2021, 10, .	2.8	168
1006	Nonparametric Regression for Learning Nonlinear Transformations. Studies in Cognitive Systems, 2000, , 1054-1080.	0.1	3
1008	Distributed Processing vs. Dedicated Neurons in the Production of Simple Behavioral Acts. Studies in Cognitive Systems, 2000, , 243-265.	0.1	0
1009	Sensor Selection by Reliability Based on Possibility Measure and Its Application to Grinding Process. Transactions of the Society of Instrument and Control Engineers, 2000, 36, 290-297.	0.1	0

ARTICLE IF CITATIONS # Cortical Maps as Topology-Representing Neural Networks Applied to Motor Control:. Mathematical 1010 0.2 0 Modelling: Theory and Applications, 2001, , 189-218. Inferior temporal cortical visual areas., 2001, , 81-125. 1011 Principles and Conclusions., 2001,, 456-476. 0 1012 Visual attentional mechanisms., 2001, , 126-144. Extrastriate visual areas., 2001, , 57-69. 1014 0 Visual search: Attentional neurodynamics at work., 2001, , 353-382. The cortical neurodynamics of visual attention - a model., 2001, , 323-352. 1017 0 A Computational Approach to the Neuropsychology of Visual Attention., 2001, , 383-403. 1018 1019 The parietal cortex., 2001, , 70-80. 3 The primary visual cortex., 2001, , 36-56. Models of invariant object recognition., 2001, , 243-322. 1021 0 Outputs of visual processing., 2001, , 404-455. Rotation-Invariant Optical Flow by Gaze-Depended Retino-Cortical Mapping. Lecture Notes in Computer 1023 1.0 1 Science, 2002, , 137-145. Audio-Oculomotor Transformation. Lecture Notes in Computer Science, 2002, , 480-490. 1024 1.0 1025 Representation of Sound Location in the Primate Brain. Frontiers in Neuroscience, 2002, , . 0.0 0 The Cerebellum and Cognition., 2002, , 118-128. Neural Networks and Adaptive Control: Neural Network Models., 2002, , 204-222. 0 1028 1029 Anatomy and Physiology of the Cerebellar Cortex., 2002, , 14-36.

#	Article	IF	CITATIONS
1031	The Cerebellar Nuclei and Their Efferent Pathways: Voluntary Motor Learning. , 2002, , 68-86.		0
1032	The Inferior Olivary System and the Climbing Fibers. , 2002, , 42-67.		0
1034	Cerebellar Pathology in Humans and Animals: Genetic Alterations. , 2002, , 137-147.		0
1035	The Vestibulocerebellum and the Oculomotor System. , 2002, , 100-117.		0
1037	Nonadaptive Models, Forerunners of Adaptive Models, and Earlier Adaptive Control Models. , 2002, , 169-203.		0
1038	Specific Features of Adaptive Controllers and Adaptive Signal Processors. , 2002, , 223-246.		0
1039	Adaptive Control Models. , 2002, , 247-270.		0
1041	Cerebellar Memory, Long-Term Depression, and Long-Term Potentiation. , 2002, , 89-99.		0
1042	Specialized Cerebellum-Like Structures. , 2002, , 148-166.		0
1043	The Mossy Fiber Afferent System. , 2002, , 37-41.		0
1044	The Cerebellum as an Adaptive Controller. , 2002, , 273-292.		0
1045	Timing Functions, Classical Conditioning, and Instrumental Conditioning. , 2002, , 129-136.		0
1046	Comparative Anatomy of the Cerebellum. , 2002, , 7-13.		0
1047	A NEURAL ARCHITECTURE FOR RULE-GUIDED BEHAVIOR: A SIMULATION OF PHYSIOLOGICAL EXPERIMENTS. Psychologia, 2003, 46, 268-283.	0.3	0
1048	A Categorical Perception Model in Consideration for Illuminant Changes Using Neural Network. Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2005, 59, 1809-1815.	0.0	1
1049	Investigating Higher Order Cognitive Functions in the Dorsal (magnocellular) Stream of Visual Processing. , 2006, , 285-306.		0
1050	Reductionism in Learning and Memory. Novartis Foundation Symposium, 1998, 213, 117-132.	1.2	1
1051	Gain Modulation and Stability in Neural Networks. , 2008, , 155-167.		0

		CITATION REPORT	
#	Article	IF	CITATIONS
1052	Intact Processing of Nonvisual Location and Orientation Information. , 2009, , 28-35.		0
1053	Visual Updating and Visual Awareness. , 2009, , 248-268.		0
1054	Impaired Processing of Visual Location and Orientation Information. , 2009, , 18-27.		0
1055	Effects of Visual Variables. , 2009, , 60-68.		0
1056	Case History and Initial Findings. , 2009, , 8-17.		0
1057	Does AH's Deficit Affect Her Reading?. , 2009, , 87-97.		0
1058	Orientation Representations and Frames of Reference: The COR Hypothesis. , 2009, , 181-197.		0
1059	Orientation Representations: Empirical Evidence. , 2009, , 198-225.		0
1060	How Does AH Succeed at Reading?. , 2009, , 98-116.		0
1061	Related Cases. , 2009, , 117-134.		0
1063	Mental Imagery and the Visual System. , 2009, , 241-247.		0
1064	Visual Subsystems. , 2009, , 226-240.		0
1065	Spatial Representations and Frames of Reference: Theoretical Foundations. , 2009, , 137-152.		0
1067	The Nature of the Deficit: Initial Conclusions. , 2009, , 46-59.		0
1068	Location Representations and Frames of Reference: Evidence from AH. , 2009, , 153-180.		0
1069	Spelling and the Visual Deficit. , 2009, , 36-45.		0
1070	A Paradox. , 2009, , 69-86.		0
1071	Switchyards-Routing Structures in the Brain. Studies in Computational Intelligence, 2010, , 69-89.	0.7	1

#	Article	IF	CITATIONS
1072	Looking at Sounds: Neural Mechanisms in the Primate Brain. , 2010, , 273-291.		2
1074	Voler fare: Quando l'azione diventa cognizione. , 2012, , 73-89.		0
1075	Representing 3D Shape and Location. , 2013, , 201-212.		0
1076	Self-Organizing Neural Architectures for Eye Movements, Arm Movements, and Eye-Arm Coordination. Springer Series in Synergetics, 1988, , 197-228.	0.2	1
1077	Special issue on human mimetics. On forming neural networks Journal of the Japan Society for Precision Engineering, 1989, 55, 626-628.	0.0	0
1078	REFERENCES FROM ALL CONTRIBUTIONS. , 1990, , 391-434.		0
1079	The Parietal Visual System and some Aspects of Visuospatial Perception. , 1990, , 193-209.		1
1080	Neuronale Netzwerkmodelle und ihre Implementation auf Transputernetzen. Informatik-Fachberichte, 1990, , 68-82.	0.2	0
1082	Multiple Brain Regions Cooperate in Sequential Saccade Generation. Research Notes in Neural Computing, 1991, , 281-295.	0.1	0
1083	Modeling cortical area 7a using Stochastic Real-Valued (SRV) units. , 1991, , 363-368.		1
1084	Neural Darwinism and Selective Recognition Automata: How Selection Shapes Perceptual Categories. NATO ASI Series Series B: Physics, 1991, , 199-218.	0.2	0
1085	Computational Strategy in the Premotor Cortex of the Monkey: A Neural Network Model. NATO ASI Series Series B: Physics, 1991, , 269-278.	0.2	0
1087	Making behavioural choices with interneurones in a distributed system. , 1992, , 170-200.		3
1088	How does the nervous system control the equilibrium trajectory?. Behavioral and Brain Sciences, 1992, 15, 704-705.	0.4	42
1090	Psychologie de synthèseÂ: les métaphores de l'esprit calculateur. , 1993, , 315-362.		1
1092	Plasticity — Memory — Attention. , 1994, , 221-285.		0
1093	Functional Aspects I. , 1994, , 287-371.		0
1094	Learning in Neural Networks. , 1994, , 37-46.		0

#	Article	IF	CITATIONS
1096	Acquisition of Information Representation by Neural Networds. IEEJ Transactions on Electronics, Information and Systems, 1996, 116, 727-733.	0.1	0
1097	Field Computation and Sensory Fusion. , 1997, , 123-137.		0
1098	Coordinate Transformation from Retinotopic Coordinates to Craniotopic Coordinates Equilibrium Research, 1998, 57, 353-368.	0.2	0
1099	Advances in modeling cortical maps. , 1999, , 267-278.		0
1100	Coordinate Transformations. , 2016, , 305-332.		0
1101	The Midbrain Colliculus. , 2016, , 273-304.		0
1109	Pattern Recognition using a Neural Network on a Microcontroller with I2C Ultrasonic Sensors. Annals of Emerging Technologies in Computing, 2019, 3, 9-19.	1.0	3
1111	A Learning Automata-Based Compression Scheme for Convolutional Neural Network. Lecture Notes in Electrical Engineering, 2020, , 42-49.	0.3	0
1115	Multisensory Integration for Self-Motion Perception. , 2020, , 458-482.		3
1117	Interception from a Dragonfly Neural Network Model. , 2020, , .		4
1118	Deep learning approaches for neural decoding across architectures and recording modalities. Briefings in Bioinformatics, 2021, 22, 1577-1591.	3.2	27
1119	Interactions Between Shape Perception and Egocentric Localization. , 2007, , 159-171.		0
1120	Neural Nets Distributed on Microcontrollers using Metaheuristic Parallel Optimization Algorithm. Annals of Emerging Technologies in Computing, 2020, 4, 28-38.	1.0	0
1121	Can the Brain Do Backpropagation? -Exact Implementation of Backpropagation in Predictive Coding Networks. Advances in Neural Information Processing Systems, 2020, 33, 22566-22579.	2.8	5
1122	On the solidification of the manifold of the t-distributed stochastic neighbour embedding for condition classification of machine tools. Engineering Research Express, 2021, 3, 045031.	0.8	0
1123	Motor memories of object dynamics are categorically organized. ELife, 2021, 10, .	2.8	11
1124	Exploring Cognition with Brain–Machine Interfaces. Annual Review of Psychology, 2022, 73, 131-158.	9.9	12
1127	Building an allocentric travelling direction signal via vector computation. Nature, 2022, 601, 92-97.	13.7	92

#	Article	IF	CITATIONS
1128	Decision Formation in Parietal Cortex Transcends a Fixed Frame of Reference. SSRN Electronic Journal, 0, , .	0.4	0
1130	Motor-related signals support localization invariance for stable visual perception. PLoS Computational Biology, 2022, 18, e1009928.	1.5	7
1131	Integrating Philosophy of Understanding With the Cognitive Sciences. Frontiers in Systems Neuroscience, 2022, 16, 764708.	1.2	5
1133	Computational mechanisms of distributed value representations and mixed learning strategies. Nature Communications, 2021, 12, 7191.	5.8	3
1134	The neuroecology of the water-to-land transition and the evolution of the vertebrate brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200523.	1.8	18
1135	Neural Mechanism for Coding Depth from Motion Parallax in Area MT: Gain Modulation or Tuning Shifts?. Journal of Neuroscience, 2022, 42, 1235-1253.	1.7	1
1136	Robust coding of eye position in posterior parietal cortex despite context-dependent tuning. Journal of Neuroscience, 2022, , JN-RM-0674-21.	1.7	0
1138	A novel interpretation for the collicular role in saccade generation. Biological Cybernetics, 1995, 73, 431-445.	0.6	2
1139	Attention-referenced visual representations: evidence from impaired visual localization. Journal of Experimental Psychology: Human Perception and Performance, 2000, 26, 917-33.	0.7	17
1140	An anatomically constrained neural network model of fear conditioning. Behavioral Neuroscience, 1995, 109, 246-57.	0.6	37
1141	Distinct representations of body and head motion are dynamically encoded by Purkinje cell populations in the macaque cerebellum. ELife, 2022, 11, .	2.8	12
1142	A connectionist model of path integration with and without a representation of distance to the starting point. Cognitive, Affective and Behavioral Neuroscience, 1998, 26, 21-35.	1.2	14
1144	Motor cortex activity across movement speeds is predicted by network-level strategies for generating muscle activity. ELife, 0, 11, .	2.8	27
1145	Representation learning in the artificial and biological neural networks underlying sensorimotor integration. Science Advances, 2022, 8, .	4.7	5
1146	Integration of allocentric and egocentric visual information in a convolutional/multilayer perceptron network model of goal-directed gaze shifts. Cerebral Cortex Communications, 2022, 3, .	0.7	2
1147	Evaluation of innovative enterprise's financing capability using BP neural network under the background of big-intelligence mobile cloud. Soft Computing, 0, , .	2.1	0
1151	Decision formation in parietal cortex transcends a fixed frame of reference. Neuron, 2022, 110, 3206-3215.e5.	3.8	5
1152	An Optimized Deep Spiking Neural Network Architecture Without Gradients. IEEE Access, 2022, 10, 97912-97929.	2.6	8

#	Article	IF	CITATIONS
1153	A Midbrain Inspired Recurrent Neural Network Model for Robust Change Detection. Journal of Neuroscience, 0, , JN-RM-0164-22.	1.7	1
1155	Degrees of algorithmic equivalence between the brain and its DNN models. Trends in Cognitive Sciences, 2022, 26, 1090-1102.	4.0	15
1156	The implications of categorical and category-free mixed selectivity on representational geometries. Current Opinion in Neurobiology, 2022, 77, 102644.	2.0	14
1158	Diagnosis of COVID-19 Using Artificial Intelligence Techniques. Smart Innovation, Systems and Technologies, 2023, , 189-201.	0.5	0
1159	Photons guided by axons may enable backpropagation-based learning in the brain. Scientific Reports, 2022, 12, .	1.6	3
1160	Interpretability of artificial neural network models in artificial intelligence versus neuroscience. Nature Machine Intelligence, 2022, 4, 1065-1067.	8.3	9
1161	Understanding 3D vision as a policy network. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	1.8	3
1167	Psychophysical evidence for the involvement of head/body-centered reference frames in egocentric visuospatial memory: A whole-body roll tilt paradigm. Journal of Vision, 2023, 23, 16.	0.1	1
1168	Rethinking Vision and Action. Annual Review of Psychology, 2023, 74, 59-86.	9.9	4
1169	The quarks of attention: Structure and capacity of neural attention building blocks. Artificial Intelligence, 2023, 319, 103901.	3.9	4
1170	On Logical Inference over Brains, Behaviour, and Artificial Neural Networks. Computational Brain & Behavior, 2023, 6, 213-227.	0.9	21
1171	Encoding of dynamic facial information in the middle dorsal face area. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	1
1172	Research and Application of Cuttings Flow Prediction Model for Horizontal Well. , 2023, 4, 149-154.		0
1174	Dynamical latent state computation in the male macaque posterior parietal cortex. Nature Communications, 2023, 14, .	5.8	1
1177	Learning by non-interfering feedback chemical signaling in physical networks. Physical Review Research, 2023, 5, .	1.3	3
1186	Space perception. , 2024, , .		Ο