Knoevenagel, wittig and wittig-horner reactions in the zinc oxide.

Tetrahedron 43, 537-542 DOI: 10.1016/s0040-4020(01)89986-5

Citation Report

#	Article	IF	CITATIONS
1	Ba(OH)2 as catalyst in organic reactions. Tetrahedron, 1988, 44, 1431-1440.	1.9	16
2	Carbon-acylations in the presence of magnesium oxide. A simple synthesis of methanetricarboxylic esters. Tetrahedron, 1989, 45, 4593-4598.	1.9	33
3	The Knoevenagel Reaction. , 1991, , 341-394.		171
4	Phosphate naturel et phosphate trisodique : nouveaux catalyseurs solides de la condensation de Knoevenagel en Milieu Hétérogène. Tetrahedron Letters, 1994, 35, 9399-9400.	1.4	54
5	One-step synthesis of citronitril on hydrotalcite derived base catalysts. Applied Catalysis A: General, 1994, 114, 215-225.	4.3	80
6	New method for the synthesis of 3(2H)-pyridazinones and their alkene precursors: Solvent-free reactions under microwave irradiation. Heteroatom Chemistry, 1995, 6, 469-474.	0.7	8
7	DRY REACTION OF DIETHYL CYANOMETHYLPHOSPHONATE AND TETRAETHYL METHYLENEDIPHOSPHONATE WITH BENZALDEHYDE ON SOLID BASES. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 113, 131-136.	1.6	9
8	A convergent synthesis of Ro24-5913, a novel leukotriene D4 antagonist. Tetrahedron Letters, 1996, 37, 5445-5448.	1.4	13
9	Hydrotalcites as base catalysts. Kinetics of Claisen-Schmidt condensation, intramolecular condensation of acetonylacetone and synthesis of chalcone. Applied Catalysis A: General, 1997, 164, 251-264.	4.3	197
10	Fluorescent molecular rotors with specific hydrophilic functions: Glucosamine and inositol derivatives. Journal of Fluorescence, 1998, 8, 53-57.	2.5	5
11	Activity in the Knoevenagel condensation of encapsulated basic cesium species in faujasite CsNaX or CsNaY. Journal of Molecular Catalysis A, 1998, 130, 195-202.	4.8	39
12	Knoevenagel and aldol condensations catalysed by a new diamino-functionalised mesoporous material. Journal of Molecular Catalysis A, 1999, 142, 361-365.	4.8	147
13	Catalytic Activity of Proton Sponge: Application to Knoevenagel Condensation Reactions. Journal of Catalysis, 1999, 183, 14-23.	6.2	80
15	Heterogeneized Brönsted base catalysts for fine chemicals production: grafted quaternary organic ammonium hydroxides as catalyst for the production of chromenes and coumarins. Applied Catalysis A: General, 2000, 194-195, 241-252.	4.3	79
16	Fluorapatite: new solid catalyst of the Knoevenagel reaction in heterogeneous media without solvent. Applied Catalysis A: General, 2000, 197, L187-L190.	4.3	52
17	Clean synthesis in water: uncatalysed preparation of ylidenemalononitriles. Green Chemistry, 2000, 2, 101-103.	9.0	127
19	Na2CaP2O7, a new catalyst for Knoevenagel reaction. Catalysis Communications, 2001, 2, 101-104.	3.3	55
20	Hydrotalcites: relation between structural features, basicity and activity in the Wittig reaction. Applied Clay Science, 2001, 18, 103-110.	5.2	30

#	Article	IF	CITATIONS
21	FLUORAPATITE/SODIUM NITRATE AS A SOLID SUPPORT FOR THE KNOEVENAGEL REACTION. Synthetic Communications, 2001, 31, 993-999.	2.1	26
23	Immobilized Proton Sponge on Inorganic CarriersThe Synergic Effect of the Support on Catalytic Activity. Journal of Catalysis, 2002, 211, 208-215.	6.2	15
24	Hydroxyapatite as a new solid support for the Knoevenagel reaction in heterogeneous media without solvent. Applied Catalysis A: General, 2002, 228, 155-159.	4.3	111
25	Synthesis of ethyl α-cyanocinnamates catalyzed by KF–Al2O3 under ultrasound irradiation. Ultrasonics Sonochemistry, 2002, 9, 159-161.	8.2	64
26	Wadsworth–Emmons reaction: the unique catalytic reaction by a solid base. Journal of Catalysis, 2003, 218, 191-200.	6.2	29
27	Direct synthesis of Fmoc protected amino acid hydroxamates from acid chlorides mediated by magnesium oxide. Tetrahedron Letters, 2003, 44, 4099-4101.	1.4	15
28	Solvent-free Knoevenagel condensations and Michael additions in the solid state and in the melt with quantitative yield. Tetrahedron, 2003, 59, 3753-3760.	1.9	286
29	Investigation of the basis of catalytic activity of solid state phosphate complexes in the Knoevenagel condensation. Journal of Molecular Catalysis A, 2003, 202, 247-252.	4.8	32
30	Potassium fluoride doped fluorapatite and hydroxyapatite as new catalysts in organic synthesis. Applied Catalysis A: General, 2003, 250, 151-159.	4.3	55
31	Synthesis of Ethyl α-Cyanocinnamates Catalyzed by Al2O3–OK Solid Base. Synthetic Communications, 2003, 33, 783-788.	2.1	9
32	Synthesis of Substituted Stilbenes via the Knoevenagel Condensation. Molecules, 2004, 9, 658-665.	3.8	22
33	Base Catalysis in the Synthesis of Fine Chemicals. Topics in Catalysis, 2004, 29, 189-196.	2.8	108
34	Knoevenagel condensation of [NC–CH2C(O)–NH–CH(CO2Et)–S]2 with ferrocenecarbaldehyde and the activation of the σ(C–S) bond of [(η5·C5H5)Fe{(η5·C5H4)–CHĩC(CN)–C(O)–NH–CH(CO2Et)–CH induced by palladium(II). Journal of Organometallic Chemistry, 2004, 689, 2284-2292.	l2 â£ "S–	;}]£
35	Liquid-phase Knoevenagel reactions over modified basic microporous titanosilicate ETS-10. Journal of Catalysis, 2004, 224, 107-114.	6.2	61
36	Solventâ€Free Synthesis of Ethyl αâ€Cyanocinnamates Catalyzed by K2O–Al2O3 Using Grinding Method. Synthetic Communications, 2004, 34, 829-834.	2.1	15
37	Wadsworth–Emmons reactions catalyzed by nanocrystalline MgO. Journal of Molecular Catalysis A, 2005, 234, 25-27.	4.8	19
38	Uncatalysed Knoevenagel condensation in aqueous medium at room temperature. Tetrahedron Letters, 2005, 46, 6453-6456.	1.4	189
39	MgLa mixed oxides as highly active and selective heterogeneous catalysts for Wadsworth–Emmons reactions. Applied Catalysis B: Environmental, 2005, 55, 177-183.	20.2	23

#	Article	IF	CITATIONS
40	Amino group immobilized on polyacrylamide: An efficient heterogeneous catalyst for the Knoevenagel reaction in solvent-free and aqueous media. Catalysis Communications, 2005, 6, 747-751.	3.3	55
41	Design, Synthesis, and Biological Evaluation of Potent Discodermolide Fluorescent and Photoaffinity Molecular Probes. Organic Letters, 2005, 7, 5199-5202.	4.6	22
42	Optimization of Alkaline Earth Metal Oxide and Hydroxide Catalysts for Base-Catalyzed Reactions. Advances in Catalysis, 2006, 49, 239-302.	0.2	82
43	Novel, Efficient, and Green Procedure for the Knoevenagel Condensation Catalyzed by Diammonium Hydrogen Phosphate in Water. Synthetic Communications, 2006, 36, 2549-2557.	2.1	46
44	Novel, Efficient, and Green Procedure for the Knoevenagel Condensation Catalyzed by Diammonium Hydrogen Phosphate in Water. Synthetic Communications, 2006, 36, 3703-3711.	2.1	16
45	ATR-IR Spectroscopy of Pendant NH2 Groups on Silica Involved in the Knoevenagel Condensation. Langmuir, 2006, 22, 3698-3706.	3.5	49
48	Base-Type Catalysis. , 2006, , 171-205.		4
49	Knoevenagel condensation over β and Y zeolites in liquid phase under solvent free conditions. Applied Catalysis A: General, 2006, 298, 8-15.	4.3	106
50	Hetero-Michael addition of benzenethiol to cycloalkenones using cation-exchanged faujasites: Simultaneous acid–base bifunctional catalysis. Journal of Molecular Catalysis A, 2006, 256, 138-142.	4.8	11
51	An easy-to-use heterogeneous promoted zirconia catalyst for Knoevenagel condensation in liquid phase under solvent-free conditions. Journal of Molecular Catalysis A, 2006, 258, 302-307.	4.8	88
52	Heterogeneous strong base catalysis in supercritical carbon dioxide by mesoporous alumina and sulfated mesoporous alumina. Catalysis Surveys From Asia, 2006, 10, 138-150.	2.6	10
53	Clean synthesis of ethyl α-cyanocinnamates catalysed by hexadecyltrimethyl ammonium bromide in aqueous media. Journal of Chemical Research, 2006, 2006, 346-347.	1.3	5
54	Control of the basic sites strength by adjusting the active species dispersion. Studies in Surface Science and Catalysis, 2006, 162, 283-290.	1.5	0
55	The efficient synthesis of carbon–carbon double bonds via Knoevenagel condensation using red mud packed in a column. Green Chemistry Letters and Reviews, 2007, 1, 61-64.	4.7	4
56	A Straightforward Method for the Synthesis of Functionalized Trisubstituted Alkenes through Na ₂ S/Al ₂ O ₃ Catalyzed Knoevenagel Condensation. Journal of the Chinese Chemical Society, 2007, 54, 1557-1560.	1.4	18
58	Functionalization of Zeolitic Cavities:  Grafting NH ₂ Groups in Framework T Sites of B-SSZ-13 A Way to Obtain Basic Solids Catalysts?. Journal of the American Chemical Society, 2007, 129, 12131-12140.	13.7	34
59	Efficient Knoevenagel condensation catalyzed by cyclic guanidinium lactate ionic liquid as medium. Catalysis Communications, 2007, 8, 115-117.	3.3	59
60	Solventâ€free Knoevenagel Condensations over TiO ₂ . Chinese Journal of Chemistry, 2007, 25, 1563-1567.	4.9	35

#	Article	lF	CITATIONS
61	Supported and liquid phase task specific ionic liquids for base catalysed Knoevenagel reactions. Journal of Molecular Catalysis A, 2007, 269, 64-71.	4.8	65
62	Elucidation of basic properties of mesoporous alumina through the temperature-programmed desorption of carbon dioxide and heterogeneous basic catalysis of mesoporous alumina for the Knoevenagel reaction in supercritical CO2. Journal of Molecular Catalysis A, 2007, 263, 115-120.	4.8	38
63	High Surface Area MgO as a Highly Effective Heterogeneous Base Catalyst for Three-Component Synthesis of Tetrahydrobenzopyran and 3,4-Dihydropyrano[c]chromene Derivatives in Aqueous Media. Catalysis Letters, 2008, 126, 275-279.	2.6	188
64	Nanocrystalline ZnO for <i>Knoevenagel</i> Condensation and Reduction of the Carbon,Carbon Double Bond in Conjugated Alkenes. Helvetica Chimica Acta, 2008, 91, 715-724.	1.6	78
65	Meldrum's Acid Catalyzed Reaction of Tetracyanoethylene and Aldehydes in Water: A Novel Approach to Arylidenemalononitrile. Chemical and Pharmaceutical Bulletin, 2008, 56, 1480-1482.	1.3	4
67	Apatite phosphates containing heterovalent cations and their application in Knoevenagel condensation. Materials Research Bulletin, 2009, 44, 1209-1213.	5.2	14
68	Catalysis by Mesoporous Dendrimers. Topics in Catalysis, 2009, 52, 634-642.	2.8	15
69	A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes. European Journal of Medicinal Chemistry, 2009, 44, 3805-3809.	5.5	386
70	Reaction of Isatins with Active Methylene Compounds on Neutral Alumina: Formation of Knoevenagel Condensates and Other Interesting Products. Heterocycles, 2009, 78, 139.	0.7	15
71	Carbon-Chain Homologations. , 0, , 335-612.		0
72	Knoevenagel reaction: alum-mediated efficient green condensation of active methylene compounds with arylaldehydes. Green Chemistry Letters and Reviews, 2009, 2, 189-192.	4.7	8
73	Acid–base cooperativity in condensation reactions with functionalized mesoporous silica catalysts. Journal of Catalysis, 2009, 263, 181-188.	6.2	129
74	Development of Chiral Thiourea Catalysts and Its Application to Asymmetric Catalytic Reactions. Chemical and Pharmaceutical Bulletin, 2010, 58, 593-601.	1.3	390
75	A Facile, One-Pot Synthesis of β-Substituted (<i>Z</i>)-Acrylonitriles Utilizing an α-Diaminoboryl Carbanion. Organic Letters, 2010, 12, 2171-2173.	4.6	38
76	Highly Selective Aldol Condensation Using Amine-functionalized SiO2-Al2O3 Mixed-oxide under Solvent-free Condition. Chinese Journal of Chemistry, 2010, 28, 2074-2082.	4.9	9
77	P[N(i-Bu)CH2CH2]3N: Nonionic Lewis Base for Promoting the Room-Temperature Synthesis of α,β-Unsaturated Esters, Fluorides, Ketones, and Nitriles Using Wadsworthâ^'Emmons Phosphonates. Journal of Organic Chemistry, 2010, 75, 7166-7174.	3.2	45
78	Microwave-Assisted and Efficient Solvent-free Knoevenagel Condensation. A Sustainable Protocol Using Porous Calcium Hydroxyapatite as Catalyst. Molecules, 2010, 15, 813-823.	3.8	53
79	Synthesis, characterization, and catalytic behavior of two open-framework zinc phosphites with 2D and 3D structures. Inorganic Chemistry Communication, 2011, 14, 150-154.	3.9	6

#	Article	IF	CITATIONS
80	Direct synthesis of acid–base bifunctionalized hexagonal mesoporous silica and its catalytic activity in cascade reactions. Journal of Colloid and Interface Science, 2011, 355, 190-197.	9.4	31
81	Homogeneous and silica-supported azidoproazaphosphatranes as efficient catalysts for the synthesis of substituted coumarins. Catalysis Communications, 2012, 28, 1-4.	3.3	10
82	Simple method to synthesize high surface area magnesium oxide and its use as a heterogeneous base catalyst. Applied Catalysis B: Environmental, 2012, 128, 31-38.	20.2	97
83	Mesoporous carbon nitride as a metal-free base catalyst in the microwave assisted Knoevenagel condensation of ethylcyanoacetate with aromatic aldehydes. Catalysis Today, 2012, 185, 211-216.	4.4	118
84	An efficient basic catalyst based on a new germanium coordination complex. Inorganic Chemistry Communication, 2012, 15, 221-224.	3.9	3
85	An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions. Microporous and Mesoporous Materials, 2012, 157, 112-117.	4.4	155
86	Knoevenagel condensation of aldehydes with active methylene compounds catalyzed by MgC2O4/SiO2 under microwave irradiation and solvent-free conditions. Research on Chemical Intermediates, 2012, 38, 393-402.	2.7	14
87	Facile synthesis of pure non-monoclinic zirconia nanoparticles and their catalytic activity investigations for Knoevenagel condensation. RSC Advances, 2013, 3, 22353.	3.6	25
89	Tin oxide nanoparticles (NP-SnO2): preparation, characterization and their catalytic application in the Knoevenagel condensation. Journal of the Iranian Chemical Society, 2013, 10, 141-149.	2.2	19
90	Calcined eggshell (CES): An efficient natural catalyst for Knoevenagel condensation under aqueous condition. Journal of Chemical Sciences, 2013, 125, 851-857.	1.5	19
91	Wittig- and Horner–Wadsworth–Emmons-Olefination Reactions with Stabilised and Semi-Stabilised Phosphoranes and Phosphonates under Non-Classical Conditions. Journal of Chemical Research, 2014, 38, 453-463.	1.3	22
92	A solvent free approach for Knoevenagel condensation: facile synthesis of 3-cyano and 3-carbethoxycoumarins. Green Processing and Synthesis, 2014, 3, .	3.4	3
93	2.14 Other Condensation Reactions (Knoevenagel, Perkin, Darzens). , 2014, , 571-605.		11
94	Crystal Growth Kinetics as a Tool for Controlling the Catalytic Performance of a FAU-Type Basic Catalyst. ACS Catalysis, 2014, 4, 2333-2341.	11.2	38
95	Chemoselective Palladium-Catalyzed Cyanation of Alkenyl Halides. Organic Letters, 2014, 16, 2158-2161.	4.6	55
96	Mn-grafted imine-functionalized mesoporous SBA-15 as an efficient catalyst for Knoevenagel condensation under mild conditions. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 241-255.	1.7	8
97	Cu-catalyzed debrominative cyanation of gem-dibromoolefins: a facile access to α,β-unsaturated nitriles. Organic and Biomolecular Chemistry, 2015, 13, 5918-5923.	2.8	7
98	Indium(III)-Catalyzed Knoevenagel Condensation of Aldehydes and Activated Methylenes Using Acetic Anhydride as a Promoter. Journal of Organic Chemistry, 2015, 80, 3101-3110.	3.2	77

	Сітатіо	n Report	
#	Article	IF	Citations
99	Green synthesis of 2-amino-7-hydroxy-4-aryl-4\$H\$-chromene-3-carbonitriles using ZnO nanoparticles prepared with mulberry leaf extract and ZnCl\$_{2}\$. Turkish Journal of Chemistry, 2015, 39, 667-675.	1.2	11
100	A Mechanochemical Approach for the Construction of Carbon–Carbon Double Bonds: Efficient Syntheses of Aryl/Heteroaryl/Aliphatic Acrylates and Nitriles. Catalysis Letters, 2015, 145, 1322-1330.	2.6	6
101	Green condensation reaction of aromatic aldehydes with active methylene compounds catalyzed by anion-exchange resin under ultrasound irradiation. Ultrasonics Sonochemistry, 2015, 22, 559-564.	8.2	25
102	Functionalized microporous organic nanotube networks as a new platform for highly efficient heterogeneous catalysis. Polymer Chemistry, 2016, 7, 4975-4982.	3.9	21
103	A Catalytic Peterson-like Synthesis of Alkenyl Nitriles. Organic Letters, 2016, 18, 2680-2683.	4.6	25
104	Cascade Synthesis of 2 yanoacrylamides through Deacetalization and/or Knoevenagel Condensation followed by Selective Monohydration of Acetals and Aldehydes over Solid Acid Ferrites. ChemCatChem, 2016, 8, 2678-2687.	3.7	13
105	Efficient Solvent Free Knoevenagel Condensation Over Vanadium Containing Heteropolyacid Catalysts. Catalysis Letters, 2016, 146, 364-372.	2.6	31
106	Surfactant controlled magnesium oxide synthesis for base catalysis. Catalysis Science and Technology, 2016, 6, 1903-1912.	4.1	10
107	Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coordination Chemistry Reviews, 2017, 347, 48-76.	18.8	347
108	PhI(OAc) 2 mediated an efficient Knoevenagel reaction and their synthetic application for coumarin derivatives. Tetrahedron Letters, 2017, 58, 3183-3187.	1.4	25
109	Efficient microwave-assisted regioselective one pot direct ortho-formylation of phenol derivatives in the presence of nanocrystalline MgO as a solid base catalyst under solvent-free conditions. New Journal of Chemistry, 2018, 42, 4590-4595.	2.8	4
110	Oneâ€Pot Cascade Synthesis of 2â€Cyanoacrylamides via Snâ€Catalyzed Acetic Acid Free Selective Monohydration of Dinitrile. ChemistrySelect, 2018, 3, 3534-3538.	1.5	1
111	Knoevenagel Reaction Catalyzed by a Reusable Bronsted Acid Based on 1-Alkyl-1,2,4-triazolium Tetrafluoroborate. Letters in Organic Chemistry, 2018, 15, .	0.5	2
112	A simple strategy to prepare graphene oxide modified by ammonia gas catalysts for Knoevenagel condensation. Research on Chemical Intermediates, 2018, 44, 1523-1536.	2.7	4
113	Triflic acid-catalyzed metal-free synthesis of (<i>E</i>)-2-cyanoacrylamides and 3-substituted azetidine-2,4-diones. New Journal of Chemistry, 2018, 42, 6433-6440.	2.8	8
114	An efficient Knoevenagel condensation of aldehydes with active methylene compounds over novel, robust CeZrO4â^Î catalyst. Research on Chemical Intermediates, 2018, 44, 7805-7814.	2.7	7
115	Oxidative Olefination of Benzylamine with an Active Methylene Compound Mediated by Hypervalent Iodine (III). European Journal of Organic Chemistry, 2019, 2019, 6232-6239.	2.4	10
116	Valorization of the Modified Mono Ammonium Phosphate by Cobalt in the Synthesise of 3,4â€Đihydropyrano[c]chromene Derivatives. ChemistrySelect, 2019, 4, 3062-3070.	1.5	15

#	Article	IF	CITATIONS
117	Easy Scaleâ€Up Synthesis of Mo ₈ O ₂₆ (C ₅ H ₆ N) ₄ .H ₂ O Hybrid with a Rectangular Prism Morphology and Its Application as an Efficient and Highly Recyclable Biâ€functional Catalyst for Knoevenagel Condensations. ChemistrySelect, 2019, 4, 2551-2561.	1.5	7
118	Synthesis of 2-cyanoacrylamides through Pd-catalyzed monohydration of methylenemalononitriles. Synthetic Communications, 2019, 49, 662-671.	2.1	4
119	Alkaline–modified montmorillonite K10: an efficient catalyst for green condensation reaction of aromatic aldehydes with active methylene compounds. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 237-247.	1.7	6
120	Mechanistic insights into the Knoevenagel condensation reaction over ZnO catalysts: Direct observation of surface intermediates using in situ FTIR. Journal of Catalysis, 2019, 369, 157-167.	6.2	28
121	Cross-linked polystyrene-TiCl4 complex as a reusable Lewis acid catalyst for solvent-free Knoevenagel condensations of 1,3-dicarbonyl compounds with aldehydes. Catalysis Communications, 2019, 124, 24-31.	3.3	21
122	Green synthetic methodology: An evaluative study for impact of surface basicity of MnO2 doped MgO nanocomposites in Wittig reaction. Journal of Solid State Chemistry, 2019, 269, 167-174.	2.9	8
123	Nano-crystalline HoCrO4: Efficient catalyst for Knoevenagel condensation in water: First catalytic application of Cr(V) species. Nano Structures Nano Objects, 2020, 23, 100493.	3.5	7
124	Acid catalyzed Knoevenagel condensation of thiobarbituric acid and aldehyde at room temperature. Synthetic Communications, 2020, 50, 1672-1678.	2.1	6
125	Synergistic surface basicity enhancement effect for doping of transition metals in nanocrystalline MgO as catalysts towards one pot Wittig reaction. Arabian Journal of Chemistry, 2021, 14, 103134.	4.9	8
126	A Review on Solvent-free Methods in Organic Synthesis. Current Organic Chemistry, 2020, 23, 2295-2318.	1.6	55
127	Catalytic Organic Reactions on ZnO Current Organic Synthesis, 2013, 10, 697-723.	1.3	16
128	Arylidene Derivatives as Synthons in Heterocyclic Synthesis. Open Access Library Journal (oalib), 2014, 01, 1-47.	0.2	3
130	CARBON-CARBON BOND FORMING REACTIONS. , 1988, , 1-233.		0
131	Efficient Synthesis of 3-Substituted Coumarins as Potential Anti-Microbial Agents. Journal of Scientific Research, 2020, 64, 176-181.	0.2	2
132	Proline-Cu Complex Based 1,3,5-Triazine Coated on Fe ₃ O ₄ Magnetic Nanoparticles: A Nanocatalyst for the Knoevenagel Condensation of Aldehyde with Malononitrile. ACS Applied Nano Materials, 2022, 5, 1783-1797.	5.0	44
133	Arylidenemalononitriles as Versatile Synthons in Heterocyclic Synthesis. Current Organic Synthesis, 2022, 19, 591-615.	1.3	2
134	Efficient and green oneâ€pot synthesis of Knoevenagel condensation catalyzed nano Metal–Organic Frameworks in water. Applied Organometallic Chemistry, 0, , .	3.5	2
135	An efficient ZnO/AC catalyst for selective decomposition of methyl formate to methanol and CO. Catalysis Communications, 2023, 177, 106648.	3.3	1

#	Article	IF	CITATIONS
136	A Chemicalâ€Biological Relay Catalytic Method for the Synthesis of (<i>E</i>)â€2 yanoacrylamides Based on the Catalysis of Amorphous Porphyrinâ€MOFs and Nitrile Hydratase. Advanced Synthesis and Catalysis, 0, , .	4.3	0
137	Base–modified Tunisian Smectite: Efficient Catalysts for Ultrasound-Assisted Knoevenagel Condensation under Mild reaction Conditions. Letters in Organic Chemistry, 2023, 20, .	0.5	ο
138	Aqueous Extract of <i>Musa Acuminata</i> : An Ecofriendly Catalyst for Knoevenagel Condensation. ChemistrySelect, 2023, 8, .	1.5	0
139	Synthesis of acrylonitrile functionalized hydroxymethylfurfural derivatives with Mg(OH) <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow> <mml:mn>2</mml:mn> </mml:msub> under solvent-free conditions. Comptes Rendus Chimie, 2023, 26, 77-87.</mml:math 	0.5	0
140	Particle shape anisotropy in pickering interfacial catalysis for Knoevenagel condensation. Journal of Colloid and Interface Science, 2024, 659, 413-421.	9.4	0