Molecular dynamics study of melting and freezing of sn

The Journal of Physical Chemistry 91, 4950-4963

DOI: 10.1021/j100303a014

Citation Report

#	Article	IF	Citations
3	Melting and freezing of Lennard-Jones clusters on a surface. Physical Review B, 1987, 36, 8447-8455.	1.1	49
4	Carbon monoxide clusters: critical size and magic numbers. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1988, 10, 295-301.	1.0	18
5	Icosahedral Ordering in the Lennard-Jones Liquid and Glass. Physical Review Letters, 1988, 60, 2295-2298.	2.9	497
6	Fluxional nature of gas-phase clusters. Surface Science, 1988, 197, L233-L236.	0.8	14
7	The interplay of structure and dynamics in the melting of small clusters. Journal of Chemical Physics, 1988, 88, 3910-3922.	1.2	204
8	Structure and energetics of Xeâ^'n. Journal of Chemical Physics, 1988, 88, 4516-4525.	1.2	45
9	Gas-Phase Clusters: Spanning the States of Matter. Science, 1988, 241, 36-42.	6.0	124
10	Physics of microclusters. Reports on Progress in Physics, 1988, 51, 883-921.	8.1	65
11	Mass spectrometric evidence for icosahedral structure in large rare gas clusters: Ar, Kr, Xe. Journal of Chemical Physics, 1989, 91, 5940-5952.	1.2	186
12	Phenomenological model of melting in Lennard-Jones clusters. Physical Review B, 1989, 40, 4749-4759.	1.1	42
13	The quantum mechanics of cluster melting. Journal of Chemical Physics, 1989, 90, 5651-5656.	1.2	66
14	Multistate Isomerization of Size-Selected Clusters. Physical Review Letters, 1989, 62, 140-143.	2.9	83
15	Wetting-nonwetting transitions in argon solvent clusters. Physical Review Letters, 1989, 62, 3058-3061.	2.9	50
16	Energetic and thermodynamic size effects in molecular clusters. Journal of Chemical Physics, 1989, 91, 1631-1642.	1.2	162
17	Dynamical correlations in dense metastable fluids. Physical Review A, 1989, 39, 5877-5886.	1.0	54
18	Experimental evidence for quasimelting in small particles. Physical Review Letters, 1989, 63, 279-282.	2.9	210
19	Polytetrahedral Order in Condensed Matter. Solid State Physics, 1989, 42, 1-90.	1.3	241
20	Percolation cluster statistics of Lennard-Jones fluids. Molecular Physics, 1989, 66, 1057-1074.	0.8	38

#	Article	IF	CITATIONS
21	Energy barriers and structural transitions of small Al clusters. Zeitschrift FÃ $\frac{1}{4}$ r Physik D-Atoms Molecules and Clusters, 1989, 12, 73-75.	1.0	O
22	Magic numbers of large rare gas clusters. Zeitschrift F $\tilde{A}\frac{1}{4}$ r Physik D-Atoms Molecules and Clusters, 1989, 12, 273-274.	1.0	14
23	Model potential for beryllium clusters. Zeitschrift FÃ $\frac{1}{4}$ r Physik D-Atoms Molecules and Clusters, 1989, 12, 77-79.	1.0	1
24	Dynamic and quantum size effects in molecular clusters. Zeitschrift Fýr Physik D-Atoms Molecules and Clusters, 1989, 12, 167-171.	1.0	8
25	More on the melting of Lennard-Jones clusters. Zeitschrift FÃ $^1\!\!/_4$ r Physik D-Atoms Molecules and Clusters, 1989, 12, 181-183.	1.0	2
26	Computer simulation of crystal nucleation of parallel hard spherocylinders. Physica A: Statistical Mechanics and Its Applications, 1989, 156, 599-612.	1.2	3
27	Hierarchical isomerization of molecular clusters. Chemical Physics Letters, 1989, 156, 138-144.	1.2	27
28	Theoretical studies of the energetics and structures of atomic clusters. Journal of Chemical Physics, 1989, 91, 612-619.	1.2	116
29	Isomers and saddle point configurations of small AI clusters. Surface Science, 1989, 215, 272-280.	0.8	11
30	Comparison between icosahedral, decahedral and crystalline Lennard-Jones models containing 500 to 6000 atoms. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1989, 60, 881-906.	0.6	151
31	Metastability of the folded states of globular proteins Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 3526-3529.	3.3	296
32	Observation of Melting in 30 ÃDiameter CdS Nanocrystals. Materials Research Society Symposia Proceedings, 1990, 206, 271.	0.1	2
33	Dynamic properties of supercooled Lennard-Jones liquids: a molecular-dynamics study. Journal of Physics Condensed Matter, 1990, 2, 4991-5003.	0.7	9
34	New insight into experimental probes of cluster melting. Journal of Chemical Physics, 1990, 93, 1358-1368.	1.2	69
35	Extensions to the instantaneous normal mode analysis of cluster dynamics: Diffusion constants and the role of rotations in clusters. Journal of Chemical Physics, 1990, 93, 1632-1640.	1.2	51
36	Computational study of transition dynamics in 55â€etom clusters. Journal of Chemical Physics, 1990, 93, 6013-6024.	1.2	56
37	Instantaneous normal mode analysis as a probe of cluster dynamics. Journal of Chemical Physics, 1990, 93, 1332-1346.	1.2	92
38	Spectral shifts and structural classes in microsolutions of rare gas clusters containing a molecular chromophore. Journal of Chemical Physics, 1990, 93, 4884-4897.	1.2	95

#	Article	IF	CITATIONS
39	Selective spectroscopy of rigid and fluxional carbazole–argon clusters. Journal of Chemical Physics, 1990, 92, 4686-4697.	1.2	63
40	Dynamics of diffusion in small cluster systems. Journal of Chemical Physics, 1990, 93, 1347-1357.	1.2	41
41	Correlated walk model of the melting transition in small clusters. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 2351.	1.7	3
42	Hardâ€sphere clusterâ€ion structures. Journal of Chemical Physics, 1990, 93, 1995-2003.	1.2	24
43	Phase instabilities in small particles. Phase Transitions, 1990, 24-26, 229-258.	0.6	43
44	On the infrared spectroscopy of SiF4 and SF6 in Ar clusters: Location of the solute. Journal of Chemical Physics, 1990, 93, 4898-4906.	1.2	81
45	Magic numbers in mass spectra of large van der Waals clusters. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 2411.	1.7	49
46	The energetics and structure of nickel clusters: Size dependence. Journal of Chemical Physics, 1991, 94, 7376-7396.	1.2	359
47	Packing schemes for Lennard-Jones clusters of 13 to 150 atoms: minima, transition states and rearrangement mechanisms. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 215.	1.7	54
48	Order–disorder transitions in quasiâ€ŧwoâ€dimensional argon solvent clusters. Journal of Chemical Physics, 1991, 94, 5098-5114.	1.2	33
49	Icosahedral order and defects in metallic liquids and glasses. Physical Review B, 1991, 44, 884-887.	1.1	148
50	Crystal Nucleation in Liquids and Glasses. Solid State Physics, 1991, 45, 75-177.	1.3	646
51	Melting of small gold particles: Mechanism and size effects. Physical Review Letters, 1991, 66, 911-914.	2.9	442
52	Packet Annealing: A Deterministic Method for Global Minimization. Application to Molecular Conformation., 1991,, 433-477.		14
53	Isomer- and ?phase?-selective spectroscopy of van der Waals solvent clusters. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1991, 20, 209-214.	1.0	8
54	The quantum mechanics of clusters: The lowâ€temperature equilibrium and dynamical behavior of rareâ€gas systems. Journal of Chemical Physics, 1991, 95, 6658-6667.	1.2	32
55	Icosahedral clustering in a supercooled liquid and glass. Journal of Chemical Physics, 1991, 94, 8220-8226.	1.2	35
56	Real temperature of nanoparticles in electron microscope beams. Philosophical Magazine Letters, 1991, 63, 275-279.	0.5	37

#	Article	IF	CITATIONS
57	Superfluidity in clusters of p-H2molecules. Physical Review Letters, 1991, 67, 1871-1874.	2.9	217
58	Behavior of point defects in a model crystal near melting. Physical Review B, 1991, 44, 477-488.	1.1	8
59	On the phase transitions of binary Al0.86V0.14glass. Journal of Physics Condensed Matter, 1992, 4, 6729-6734.	0.7	10
60	Minimizing the Lennard-Jones potential function on a massively parallel computer. , 1992, , .		15
61	Structures of small metal clusters. II. Phase transitions and isomerization. Journal of Chemical Physics, 1992, 96, 6891-6901.	1.2	27
62	Nonexponential behavior in the vibrational predissociation dynamics of I2(B,ν)–Ar13. Journal of Chemical Physics, 1992, 97, 7234-7241.	1.2	27
63	Thermal stability and structural transition in Be microclusters. Physical Review B, 1992, 46, 7841-7845.	1.1	24
64	Pathâ€integral Monte Carlo studies ofparaâ€hydrogen clusters. Journal of Chemical Physics, 1992, 97, 3590-3599.	1.2	73
65	Subpeaks of structure factors for rapidly quenched metals. Physical Review B, 1992, 45, 451-453.	1.1	65
66	A global optimization approach for Lennardâ€Jones microclusters. Journal of Chemical Physics, 1992, 97, 7667-7678.	1.2	128
67	A discrete-continuous algorithm for molecular energy minimization. , 0, , .		6
68	Spectroscopic interrogation of heterocluster isomerization. I. Simulations of nuclear dynamics and electronic spectroscopy. Journal of Chemical Physics, 1992, 97, 5988-6010.	1.2	21
69	Glass formation and crystallization of liquid and glass rubidium: A constantâ€pressure molecularâ€dynamics study. Journal of Chemical Physics, 1992, 97, 1313-1319.	1.2	9
70	Spectroscopy and nuclear dynamics of tetracene–rareâ€gas heteroclusters. Journal of Chemical Physics, 1992, 97, 5296-5315.	1.2	50
71	Timeâ€resolved dynamics of cluster isomerization. Journal of Chemical Physics, 1992, 97, 197-210.	1.2	31
72	Solid-liquid transitions in argon clusters. Physical Review Letters, 1992, 69, 297-300.	2.9	32
73	Nonstationary time-series analysis of many-body dynamics. Physical Review A, 1992, 45, 6914-6917.	1.0	10
74	Molecularâ€dynamics simulations on supercooled metallic liquids. Journal of Chemical Physics, 1992, 97, 2694-2698.	1.2	6

#	Article	IF	Citations
75	Anomalies in the structure factor for some rapidly quenched metals. Physical Review B, 1992, 46, 12001-12003.	1.1	26
76	Molecular dynamics study of liquid-solid transition of dense Lennard-Jones liquid. Molecular Physics, 1992, 75, 1329-1344.	0.8	22
77	Structure and energetics of model metal clusters. Journal of Chemical Physics, 1992, 96, 8520-8534.	1.2	130
78	Electronic spectra of NaAr4and NaAr6: Isomerization and melting. Journal of Chemical Physics, 1992, 96, 7977-7991.	1.2	25
79	Crystallization properties of a supercooled metallic liquid. Journal of Chemical Physics, 1992, 96, 513-516.	1.2	20
80	Monte Carlo simulation of the melting behaviour of A12B Lennard-Jones heteroclusters. Molecular Physics, 1992, 77, 797-802.	0.8	5
81	Application of the renormalization group to deterministic global minimization of molecular conformation energy functions. Journal of Global Optimization, 1992, 2, 281.	1.1	38
82	Melting in Semiconductor Nanocrystals. Science, 1992, 256, 1425-1427.	6.0	969
83	Glass formation in a simple monatomic liquid with icosahedral inherent local order. Physical Review A, 1992, 46, R2984-R2987.	1.0	190
84	Metastable phase formation in particle-bombarded metallic systems. Rivista Del Nuovo Cimento, 1992, 15, 1-96.	2.0	21
85	The nature of folded states of globular proteins. Biopolymers, 1992, 32, 695-709.	1.2	356
86	Isotope effect on the melting of para-hydrogen and ortho-deuterium clusters. Chemical Physics Letters, 1992, 197, 231-235.	1.2	36
87	Microcanonical Monte Carlo simulation of the melting behaviour of small clusters. Chemical Physics Letters, 1992, 195, 92-96.	1.2	13
88	An efficient algorithm for nucleation studies of particles using the octree data structure. Computer Physics Communications, 1993, 76, 281-293.	3.0	4
89	Global optimization for molecular conformation problems. Annals of Operations Research, 1993, 42, 85-117.	2.6	35
90	Transformations in quasimelting. Zeitschrift Fýr Physik D-Atoms Molecules and Clusters, 1993, 26, 70-72.	1.0	9
91	Molecular dynamics simulation of gold cluster collisions. Zeitschrift Fýr Physik D-Atoms Molecules and Clusters, 1993, 26, 165-167.	1.0	3
92	An analytic model for atomic clusters. Zeitschrift Fþr Physik D-Atoms Molecules and Clusters, 1993, 26, 373-376.	1.0	17

#	Article	IF	Citations
93	Monatomic model of icosahedrally ordered metallic glass formers. Journal of Non-Crystalline Solids, 1993, 156-158, 173-176.	1.5	12
94	Structural changes accompanying densification of random hard-sphere packings. Physical Review E, 1993, 47, 3975-3984.	0.8	360
95	Coexistence in small inert gas clusters. Molecular Physics, 1993, 78, 151-171.	0.8	198
96	Classical dynamics of hydrogen bonded systems: Water clusters. Journal of Chemical Physics, 1993, 98, 4059-4075.	1.2	81
97	Molecular solvation in atomic clusters studied by means of molecular beam infrared spectroscopy. Accounts of Chemical Research, 1993, 26, 123-130.	7.6	32
98	Molecular-dynamics simulation of rapid solidification of aluminum. Acta Metallurgica Et Materialia, 1993, 41, 2291-2295.	1.9	16
99	Melting of copper clusters. Computational Materials Science, 1993, 1, 123-134.	1.4	36
100	Quasicrystals: structure and stability. International Materials Reviews, 1993, 38, 105-137.	9.4	96
101	Parallel two-level simulated annealing. , 1993, , .		6
102	Effect of impurity mass on the microstructure of rapidly quenched aluminium. Journal of Physics Condensed Matter, 1993, 5, 6139-6148.	0.7	0
103	C60and Beyond: From Magic Numbers to New Materials. Japanese Journal of Applied Physics, 1993, 32, 1428-1432.	0.8	9
104	Rearrangements of model (H2O)8 and (H2O)20 clusters. Journal of Chemical Physics, 1993, 98, 7257-7268.	1.2	99
105	Structure, dynamics, and thermodynamics of model (H2O)8 and (H2O)20 clusters. Journal of Chemical Physics, 1993, 98, 7245-7256.	1.2	169
106	Molecularâ€dynamics simulation of mechanical alloying for the Al50Ti50alloy. Journal of Applied Physics, 1993, 74, 902-904.	1.1	4
107	Generic dimer-buckling model for semiconductor surfaces: Dynamical simulations. Physical Review B, 1993, 48, 15047-15056.	1.1	3
108	Freezing, melting, nonwetting, and coexistence in (KCl)32. Journal of Chemical Physics, 1993, 98, 3246-3261.	1.2	95
109	Molecular dynamic simulations for crystallization of metallic liquids under different pressures. Journal of Chemical Physics, 1993, 99, 8948-8952.	1.2	7
110	Structure and dynamics of model metal clusters. Journal of Chemical Physics, 1993, 98, 5720-5733.	1.2	35

#	Article	IF	Citations
111	Icosahedral, decahedral, fcc, and defectâ€fcc structural models for ArNclusters,N≳500: How plausible are they?. Journal of Chemical Physics, 1993, 98, 4909-4919.	1.2	66
112	Structure and dynamics of binary clusters. Physical Review Letters, 1993, 70, 3283-3286.	2.9	30
113	Use of the histogram and jumpâ€walking methods for overcoming slow barrier crossing behavior in Monte Carlo simulations: Applications to the phase transitions in the (Ar)13 and (H2O)8 clusters. Journal of Chemical Physics, 1993, 99, 6957-6970.	1.2	141
114	Structure of rapidly quenched Ga metal. Physical Review B, 1993, 48, 5945-5948.	1.1	21
115	Copper clusters simulated by a many-body tight-binding potential. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1993, 68, 903-911.	0.6	17
116	Computational studies of halogen chemistry on rareâ€gas surfaces. III. Photodissociation in submonolayer chlorine films on Ar(111) and Xe(111). Journal of Chemical Physics, 1994, 101, 4433-4444.	1.2	3
117	Quantum Monte Carlo studies of small B(H2)nclusters. Journal of Chemical Physics, 1994, 101, 2577-2591.	1.2	26
118	Simulated annealing using the classical density distribution. Journal of Chemical Physics, 1994, 101, 533-541.	1.2	70
119	Free energy barriers to melting in atomic clusters. Journal of Chemical Physics, 1994, 101, 1460-1476.	1.2	121
120	Global orientational order in model polar clusters. Journal of Chemical Physics, 1994, 101, 7856-7867.	1.2	35
121	Relation between the \hat{l}^2 and rapidly quenched liquid phases of gallium. Physical Review B, 1994, 50, 103-107.	1.1	14
122	Ground state configurations of model molecular clusters. Journal of Chemical Physics, 1994, 100, 2213-2219.	1.2	35
123	Multiple phase coexistence in finite systems. Physical Review E, 1994, 49, 1895-1908.	0.8	117
124	Hierarchical characterization of energy landscapes using Gaussian packet states. Journal of Chemical Physics, 1994, 101, 9844-9857.	1.2	38
125	Optimization methods for computing global minima of nonconvex potential energy functions. Journal of Global Optimization, 1994, 4, 117-133.	1.1	69
126	Molecular conformation on the CM-5 by parallel two-level simulated annealing. Journal of Global Optimization, 1994, 4, 187-208.	1.1	39
127	Improvement on the northby algorithm for molecular conformation: Better solutions. Journal of Global Optimization, 1994, 4, 425-440.	1.1	60
128	Structure of diatomic clusters. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 178, 19-22.	2.6	11

#	Article	IF	CITATIONS
129	System-size effects in the molecular-dynamics simulation of metallic crystallization. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 192, 374-378.	0.9	6
130	Monte Carlo simulation of acetonitrile clusters [CH3CN]N, N=2–256: Melting transitions and even/odd character of small clusters (N=2–9), heat capacities, density profiles, fractal dimension, intracluster dimerization, and dipole orientation. Journal of Chemical Physics, 1994, 100, 3791-3802.	1.2	25
131	Coexistence in Finite Systems. Physical Review Letters, 1994, 73, 2875-2878.	2.9	198
132	Fragmentation of atomic clusters: A theoretical study. Physical Review A, 1994, 50, 1445-1458.	1.0	76
133	When is a potential accurate enough for structure prediction? Theory and application to a random heteropolymer model of protein folding. Journal of Chemical Physics, 1994, 100, 6038-6045.	1.2	44
134	Systematic analysis of local atomic structure combined with 3D computer graphics. Computational Materials Science, 1994, 2, 279-286.	1.4	1,077
135	Anomalies in the liquid structure of Ga metal. Physical Review B, 1994, 50, 108-112.	1.1	43
136	Structure of twoâ€component clusters. Journal of Chemical Physics, 1994, 101, 2432-2445.	1.2	63
137	Symmetry loss as a criterion for cluster melting, with application to (D2)13. Chemical Physics Letters, 1995, 247, 149-153.	1.2	24
138	Ab-initio molecular dynamics studies of a Ga13 cluster. Solid State Communications, 1995, 94, 735-739.	0.9	7
139	An order parameter approach to coexistence in atomic clusters. Journal of Chemical Physics, 1995, 102, 9673-9688.	1.2	79
140	Coexistence and phase separation in clusters: From the small to the notâ€soâ€small regime. Journal of Chemical Physics, 1995, 103, 3061-3070.	1.2	84
141	Structure features in binary liquid Li–Tl alloys. Journal of Chemical Physics, 1995, 103, 9083-9090.	1.2	3
142	Molecular dynamics simulation of local structure of aluminium and copper in supercooled liquid and solid state by using EAM. Journal of Physics Condensed Matter, 1995, 7, 2379-2394.	0.7	36
143	Free energy and surface tension of arbitrarily large Mackay icosahedral clusters. Journal of Chemical Physics, 1995, 102, 3322-3330.	1.2	11
144	Calculation of thermodynamic properties of small Lennardâ€Jones clusters incorporating anharmonicity. Journal of Chemical Physics, 1995, 102, 9659-9672.	1.2	146
145	Simulation of the melting behavior of small silicon clusters. Physical Review B, 1995, 51, 13697-13704.	1.1	15
146	Orientational ordering and anisotropy in model polar clusters. Journal of Chemical Physics, 1995, 103, 1913-1921.	1.2	21

#	ARTICLE	IF	CITATIONS
147	Local orientational order in binary liquid Li-In alloys. Journal of Physics Condensed Matter, 1995, 7, 517-530.	0.7	10
148	<i>Q</i> ₄₄₆ "Shape Spectroscopy―of Local f.c.c. Structures in Computer Simulations of Crystallization. Europhysics Letters, 1995, 32, 777-782.	0.7	15
149	Evidence of amorphization in molecular-dynamics simulations on irradiated intermetallic NiAl. Physical Review B, 1995, 52, 7171-7178.	1.1	21
150	Molecular dynamics simulation on crystallization of amorphous Al. Scripta Metallurgica Et Materialia, 1995, 32, 1957-1963.	1.0	2
151	On the origin of second-peak splitting in the static structure factor of metallic glasses. Journal of Non-Crystalline Solids, 1995, 189, 118-128.	1.5	27
152	Noble gas clusters as matrices for infrared spectroscopy. From small clusters to the bulkâ€matrix limit: SF6Arn, SF6Krn, and SF6Xen with 100≲n≲10 000. Journal of Chemical Physics, 1995, 102, 2302-2314.	.1.2	48
153	The effect of the range of the potential on the structures of clusters. Journal of Chemical Physics, 1995, 103, 4234-4249.	1.2	380
154	Magic numbers for classical Lennardâ€Jones cluster heat capacities. Journal of Chemical Physics, 1995, 102, 3747-3768.	1.2	84
155	Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry. The Journal of Physical Chemistry, 1996, 100, 12142-12153.	2.9	568
156	COMPUTATIONAL STUDIES OF CLUSTERS:Methods and Results. Annual Review of Physical Chemistry, 1996, 47, 43-80.	4.8	70
157	A computational study of 13â€atom Ar–Kr cluster heat capacities. Journal of Chemical Physics, 1996, 105, 10030-10049.	1.2	25
158	Structural and vibrational analysis of amorphousAu55clusters. Physical Review B, 1996, 54, 11796-11802.	1.1	104
159	Microstructural analysis of simulated liquid and amorphous Ni. Physical Review B, 1996, 53, 8363-8368.	1.1	51
160	Structure, Dynamics, and Thermodynamics of Clusters: Tales from Topographic Potential Surfaces. Science, 1996, 271, 925-929.	6.0	150
161	Numerical calculation of the rate of crystal nucleation in a Lennardâ€Jones system at moderate undercooling. Journal of Chemical Physics, 1996, 104, 9932-9947.	1.2	679
162	Monte Carlo simulation of an argon cluster confined in zeolite NaCaA. Chemical Physics Letters, 1996, 252, 384-388.	1.2	3
163	Theory and practice of "shape spectroscopy―of local FCC structures in computer simulations of nucleation and crystallization. Physica A: Statistical Mechanics and Its Applications, 1996, 232, 662-685.	1.2	4
164	Rapid solidification of Cu25at.% Ni alloy: molecular dynamics simulations using embedded atom method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 214, 139-145.	2.6	19

#	Article	IF	Citations
165	Ion solvation in model polar clusters. Journal of Chemical Physics, 1996, 105, 3700-3714.	1.2	22
166	Local icosahedral structures in binary-alloy clusters from molecular-dynamics simulation. Physical Review B, 1996, 53, 12040-12049.	1.1	28
167	Instantaneous normal mode analysis of liquid Na. Journal of Chemical Physics, 1996, 105, 9281-9287.	1.2	25
168	The effect of charged impurities on a glass transition in a polar medium. Journal of Chemical Physics, 1996, 104, 664-668.	1.2	8
169	Structures of hard-core Yukawa clusters and the tail-range dependence of the existence of a liquidlike cluster phase: Relevance to the physics of C60. Physical Review E, 1996, 53, 2480-2487.	0.8	21
170	Thermodynamic properties and homogeneous nucleation rates for surfaceâ€melted physical clusters. Journal of Chemical Physics, 1996, 105, 7648-7663.	1.2	12
171	Short-range order in liquid Na - Cd alloys. Journal of Physics Condensed Matter, 1996, 8, 8105-8119.	0.7	4
172	Local investigation of the glass transition: Molecular dynamics and Vorono \tilde{A}^- tessellation. Europhysics Letters, 1997, 37, 547-552.	0.7	23
173	Glass transition and atomic structures in supercooled Ga0.15Zn0.15Mg0.7 metallic liquids: A constant pressure molecular dynamics study. Journal of Chemical Physics, 1997, 106, 8830-8840.	1.2	21
174	Anomalous supercooled liquid structure of Ga on \hat{l}^2 -relaxation dynamics. Physical Review E, 1997, 56, 4381-4385.	0.8	8
175	Cascade overlap induced amorphization and disordering in irradiated intermetallics nial and Ni ₃ Al: A molecular dynamic study. Radiation Effects and Defects in Solids, 1997, 141, 349-362.	0.4	19
176	Atomic simulation of amorphization and crystallization of Ni ₃ Al during rapid solidification. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 76, 75-89.	0.6	8
177	A computational study of 13-atom Ne-Ar cluster heat capacities. Journal of Chemical Physics, 1997, 107, 1992-2011.	1.2	25
178	The Glass Transition in a Simple Model Glass: Numerical Simulations. Molecular Simulation, 1997, 20, 3-15.	0.9	4
179	Melting and evaporation of argon clusters. Journal of Chemical Physics, 1997, 106, 1888-1892.	1.2	58
180	Molecular dynamics simulation of crystallization of liquid copper clusters. Journal of Physics Condensed Matter, 1997, 9, 4041-4050.	0.7	37
181	Inverse Surface Melting in Confined Clusters: Ar13in Zeolite Lâ€. Journal of Physical Chemistry B, 1997, 101, 389-395.	1.2	7
182	Applications of the embedded-atom method to glass formation and crystallization of liquid and glass transition-metal nickel. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1997, 75, 1057-1066.	0.8	36

#	ARTICLE	IF	CITATIONS
183	Global Optima of Lennard-Jones Clusters. Journal of Global Optimization, 1997, 11, 35-53.	1.1	70
184	Monte Carlo and molecular dynamics simulation of argon clusters andn-alkanes in the confined regions of zeolites. Bulletin of Materials Science, 1997, 20, 845-878.	0.8	10
185	Icosahedral symmetry in clusters. Progress in Crystal Growth and Characterization of Materials, 1997, 34, 95-131.	1.8	17
186	The local orientational orders and structures of liquid and amorphous metals Au and Ni during rapid solidification. Physica B: Condensed Matter, 1997, 239, 267-273.	1.3	24
187	Molecular dynamics study of the binding energy, sructure and melting of the isomers of Ni 8 clusters. ARI Bulletin of the Istanbul Technical University, 1998, 51, 15-19.	0.2	0
188	Collisionless fragmentation of small super-heated Ni n , n =4-6, clusters: molecular dynamics computer-simulation study. ARI Bulletin of the Istanbul Technical University, 1998, 51, 24-28.	0.2	0
189	Shape Transformation and Surface Melting of Cubic and Tetrahedral Platinum Nanocrystals. Journal of Physical Chemistry B, 1998, 102, 6145-6151.	1.2	293
190	Single-energy x-ray absorption detection: a combined electronic and structural local probe for phase transitions in condensed matter. Journal of Physics Condensed Matter, 1998, 10, 235-253.	0.7	41
191	Folding, Design, and Determination of Interaction Potentials Using Off-Lattice Dynamics of Model Heteropolymers. Physical Review Letters, 1998, 81, 3287-3290.	2.9	50
192	Ab initio molecular dynamics simulations of liquid GaAs. Journal of Chemical Physics, 1998, 109, 7312-7318.	1.2	16
193	Total and fractional densities of states from caloric relations. Physical Review E, 1998, 57, 2445-2448.	0.8	11
194	Phase diagram of argon clusters. Journal of Chemical Physics, 1998, 108, 5826-5833.	1.2	29
195	Control of Toxic Metal Emissions from Combustors Using Sorbents: A Review. Journal of the Air and Waste Management Association, 1998, 48, 113-127.	0.9	147
196	From molecular clusters to bulk matter. I. Structure and thermodynamics of small CO2, N2, and SF6 clusters. Journal of Chemical Physics, 1998, 109, 329-337.	1.2	64
197	Melting and Octupole Deformation of Na40. Physical Review Letters, 1998, 80, 3940-3943.	2.9	77
198	An Extension of the LCAO Method â€" Isothermal Dynamics. International Journal of Modern Physics C, 1998, 09, 649-666.	0.8	1
199	The development of microstructure of Ni3Al during rapid cooling and heating. Journal of Materials Research, 1998, 13, 1497-1501.	1.2	5
200	Microscopic Description of Plasticity in Computer Generated Metallic Nanophase Samples. Materials Research Society Symposia Proceedings, 1998, 538, 401.	0.1	2

#	Article	IF	Citations
201	Energy landscape and overlap distribution of binary Lennard-Jones glasses. Europhysics Letters, 1999, 47, 449-455.	0.7	14
202	Final Structures of Crystallization of Liquid Copper Studied by Molecular Dynamics Simulation. Chinese Physics Letters, 1999, 16, 850-852.	1.3	8
203	van der Waals type loop in microcanonical caloric curves of finite systems. Physical Review E, 1999, 60, 7550-7553.	0.8	20
204	The heredity and control of microstructures of liquid metals during rapid cooling processes. , 1999, , .		0
205	Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni. Acta Materialia, 1999, 47, 3117-3126.	3.8	291
206	Computation of liquid Cu70Ni30 alloy structure using EAM in rapid cooling and heating process. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 1999, 271, 116-121.	2.6	19
207	The high-temperature properties of microstructure transitions in liquid metal Al. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 57, 214-217.	1.7	16
208	Melting and multipole deformation of sodium clusters. European Physical Journal D, 1999, 9, 451-454.	0.6	20
209	Analysis of microstructure of coating suspensions. Powder Technology, 1999, 104, 50-55.	2.1	1
210	Pentagonal Symmetry and Disclinations in Small Particles. Crystal Research and Technology, 1999, 34, 1091-1119.	0.6	142
211	Structure and Mechanical Behavior of Bulk Nanocrystalline Materials. MRS Bulletin, 1999, 24, 44-53.	1.7	347
212	Phase coexistence in finite van der Waals systems. Molecular Physics, 1999, 96, 201-207.	0.8	1
213	Topological approach to melting of crystals: bcc lattices. Journal of Non-Crystalline Solids, 1999, 250-252, 591-595.	1.5	3
214	Structure of Al ₃ Fe melt at different temperatures under conditions of rapid cooling. Materials Science and Technology, 2000, 16, 249-254.	0.8	0
215	The structure of liquid clusters of Lennard-Jones atoms. Chemical Physics, 2000, 252, 337-347.	0.9	7
216	Comparison between Cooling Rate Dependence of Macroscopic and Microscopic Quantities in Simulated Aluminium Glass. Chinese Physics Letters, 2000, 17, 821-823.	1.3	2
217	The Role Played By Two Parallel Free Surfaces In The Deformation Mechanism Of Nano-crystalline Metals: A Molecular Dynamics Simulation. Materials Research Society Symposia Proceedings, 2000, 634, 141.	0.1	1
218	Different Cooling Rate Dependences of Different Microstructure Units in Aluminium Glass by Molecular Dynamics Simulation. Chinese Physics Letters, 2000, 17, 34-36.	1.3	14

#	Article	IF	Citations
219	Atomistic Studies of Plasticity in Nanophase Metals. Materials Research Society Symposia Proceedings, 2000, 634, 551.	0.1	5
220	Grain-boundary structures in polycrystalline metals at the nanoscale. Physical Review B, 2000, 62, 831-838.	1.1	333
221	Thermal Expansion in Small Metal Clusters and its Impact on the Electric Polarizability. Physical Review Letters, 2000, 84, 3827-3830.	2.9	64
222	Exact equilibrium statistical mechanics of two particles interacting via Lennard-Jones and Morse potentials. Physical Review E, 2000, 61, 7188-7191.	0.8	3
223	Structural studies of clusters in melt of FeAl compound. Journal of Chemical Physics, 2001, 114, 6413-6416.	1.2	15
224	Microstructure Transition of Liquid Metal Al During Heating and Cooling Processes. Chinese Physics Letters, 2001, 18, 1383-1385.	1.3	13
225	The cooling rate dependence of crystallization for liquid copper: A molecular dynamics study. Journal of Chemical Physics, 2001, 114, 7506-7512.	1.2	57
226	Grain-boundary sliding in nanocrystalline fcc metals. Physical Review B, 2001, 64, .	1.1	498
227	Grain boundary and triple junction enthalpies in nanocrystalline metals. Physical Review B, 2001, 63, .	1.1	59
228	Magic number behavior for heat capacities of medium-sized classical Lennard-Jones clusters. Journal of Chemical Physics, 2001, 115, 6136-6157.	1.2	96
229	Molecular dynamics computation of clusters in liquid Fe–Al alloy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 280, 325-332.	0.9	16
230	Cluster structure and dynamics in a mesoscopic solvent. Physica A: Statistical Mechanics and Its Applications, 2001, 298, 56-68.	1.2	23
231	Evolution of small nickel cluster during solidification. Solid State Communications, 2001, 120, 41-46.	0.9	8
232	Molecular dynamics computation of the liquid structure of Fe50Al50 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 298, 245-250.	2.6	6
233	Three Distinctive Melting Mechanisms in Isolated Nanoparticles. Journal of Physical Chemistry B, 2001, 105, 12857-12860.	1.2	95
234	A molecular dynamics study of polycrystalline fcc metals at the nanoscale: grain boundary structure and its influence on plastic deformation. Materials Science & Description (2001) and its influence on plastic deformation. Materials Science (2001) and its influence on plastic deformation. Materials Science (2001) and its influence on plastic deformation. Materials (2001) and its influence on plastic deformation.	2.6	124
235	Grain boundary structure and its influence on plastic deformation of polycrystalline FCC metals at the nanoscale: a molecular dynamics study. Scripta Materialia, 2001, 44, 1513-1516.	2.6	76
236	Cooling rate dependence of structural properties of aluminium during rapid solidification. Journal of Physics Condensed Matter, 2001, 13, 1873-1890.	0.7	31

#	Article	IF	CITATIONS
237	Energy Landscapes. , 2001, , 437-507.		5
238	Ab initiosimulations of liquid semiconductors using the pseudopotential-density functional method. Journal of Physics Condensed Matter, 2001, 13, R817-R854.	0.7	29
239	Molecular Dynamics Simulation of Microstructure of Nanocrystalline Copper. Chinese Physics Letters, 2001, 18, 411-413.	1.3	7
240	Structures of Liquid Aluminium under High Pressure. Chinese Physics Letters, 2001, 18, 495-497.	1.3	11
241	Local cluster formation in a cobalt melt during the cooling process. Physical Review B, 2001, 65, .	1.1	19
242	Low-Frequency Vibrational Properties of Nanocrystalline Materials. Physical Review Letters, 2001, 87, 205501.	2.9	76
243	Multicanonical ensemble with NoseÌ–Hoover molecular dynamics simulation. Journal of Chemical Physics, 2002, 116, 4782.	1.2	14
244	Intergranular fracture in nanocrystalline metals. Physical Review B, 2002, 66, .	1.1	158
245	Cluster structure and dynamics of liquid aluminum under cooling conditions. Journal of Chemical Physics, 2002, 116, 10809-10815.	1.2	31
246	Crystallization study of model tetrahedral semiconductors. Journal of Physics Condensed Matter, 2002, 14, 6627-6638.	0.7	15
247	Molecular Dynamics Simulation of Microstructure Transitions in a Large-Scale Liquid Metal Al System During Rapid Cooling Processes. Chinese Physics Letters, 2002, 19, 1144-1147.	1.3	3
248	Computer Simulation of Displacement Cascades in Nanocrystalline Ni. Physical Review Letters, 2002, 88, 125505.	2.9	190
249	Temperature effect on the local order of liquid Ni, Ag, and Pb: $\hat{a} \in f$ A molecular dynamics study. Physical Review B, 2002, 66, .	1.1	11
250	Cooperative processes during plastic deformation in nanocrystalline fcc metals: A molecular dynamics simulation. Physical Review B, 2002, 66, .	1.1	153
251	Sampling along reaction coordinates with the Wang-Landau method. Molecular Physics, 2002, 100, 3421-3427.	0.8	86
253	The role played by two parallel free surfaces in the deformation mechanism of nanocrystalline metals: A molecular dynamics simulation. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 1-15.	0.8	53
254	Atomic mechanism for dislocation emission from nanosized grain boundaries. Physical Review B, 2002, 66, .	1.1	385
255	Length scale effects in the simulation of deformation properties of nanocrystalline metals. Scripta Materialia, 2002, 47, 719-724.	2.6	95

#	Article	IF	CITATIONS
256	Formation and evolution properties of clusters in a large liquid metal system during rapid cooling processes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 94, 141-148.	1.7	35
257	On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: a molecular dynamics computer simulation. Acta Materialia, 2002, 50, 3927-3939.	3.8	207
258	Medium-range order structure in Al80Fe20 alloy during rapid solidification. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 301, 477-483.	0.9	11
259	Structural simulation of clusters in liquid Ni-Al alloy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 302, 318-324.	0.9	19
260	Structure properties of Cuî—,Ni alloys at the rapid cooling rate using embedded-atom method. Materials Science & Science & Properties, Microstructure and Processing, 2002, 326, 343-347.	2.6	16
261	Structure and dynamics of small protonated rare-gas clusters using quantum and classical methods. Computer Physics Communications, 2002, 145, 78-96.	3.0	12
262	Molecular dynamics study of icosahedral ordering and defect in the Ni3Al liquid and glasses. Chemical Physics Letters, 2002, 354, 466-473.	1.2	17
263	Formation characteristics of nano-clusters during rapid solidification process of liquid metal Al. Journal of Materials Science Letters, 2003, 22, 779-781.	0.5	4
264	MD simulation for nanocrystals. Acta Mechanica Sinica/Lixue Xuebao, 2003, 19, 485-507.	1.5	5
265	Atomistic simulations as guidance to experiments. Scripta Materialia, 2003, 49, 629-635.	2.6	108
266	Stacking fault tetrahedra formation in the neighbourhood of grain boundaries. Nuclear Instruments & Methods in Physics Research B, 2003, 202, 51-55.	0.6	29
267	Simulation of grain growth in nanocrystalline nickel induced by ion irradiation. Nuclear Instruments & Methods in Physics Research B, 2003, 202, 230-235.	0.6	54
268	Atomistic Modeling of Strength of Nanocrystalline Metals. Advanced Engineering Materials, 2003, 5, 345-350.	1.6	39
269	SIA activity during irradiation of nanocrystalline Ni. Journal of Nuclear Materials, 2003, 323, 213-219.	1.3	32
270	Mechanical behavior of nanocrystalline metals and alloys11The Golden Jubilee Issueâ€"Selected topics in Materials Science and Engineering: Past, Present and Future, edited by S. Suresh. Acta Materialia, 2003, 51, 5743-5774.	3.8	1,746
271	Structures and melting of Cun (n=13, 14, 19, 55, 56) clusters. Surface Science, 2003, 532-535, 312-316.	0.8	21
272	Medium-range order in liquid Al5Fe2 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 341, 197-201.	2.6	12
273	Molecular dynamics simulation on burst and arrest of stacking faults in nanocrystalline Cu under nanoindentation. Nanotechnology, 2003, 14, 1208-1215.	1.3	105

#	ARTICLE	IF	CITATIONS
274	Atomistic simulation of dislocation emission in nanosized grain boundaries. Philosophical Magazine, 2003, 83, 3569-3575.	0.7	90
275	Radiation damage near grain boundaries. Philosophical Magazine, 2003, 83, 3599-3607.	0.7	86
276	Local Order of Liquid and Supercooled Zirconium byAb InitioMolecular Dynamics. Physical Review Letters, 2003, 91, 195501.	2.9	180
277	Molecular dynamics study of the local order and defects in quenched states. Physical Review B, 2003, 67, .	1.1	22
278	Dislocation nucleation induced by a shock wave in a perfect crystal: Molecular dynamics simulations and elastic calculations. Physical Review B, 2003, 68, .	1.1	57
279	Criteria for formation of metallic glasses: The role of atomic size ratio. Journal of Chemical Physics, 2003, 119, 9858-9870.	1.2	81
280	Coalescence of nanoscale metal clusters: Molecular-dynamics study. Physical Review B, 2003, 68, .	1.1	65
281	Local clusters and defects in one-dimensional gold wires. Journal of Chemical Physics, 2003, 119, 9771-9776.	1.2	13
282	Density effects in a bulk binary Lennard-Jones system. Physical Review B, 2003, 68, .	1.1	6
283	Shoulder-peak formation in the process of quenching. Physical Review B, 2003, 68, .	1.1	14
284	Atomistic simulations of spherical indentations in nanocrystalline gold. Physical Review B, 2003, 67, .	1.1	84
285	Anomalies in liquid structure ofNi3Alalloys during a rapid cooling process. Physical Review B, 2003, 68, .	1.1	23
286	Local atomic structural order in the supercooled liquid and glassy Al under normal and high pressures. Journal of Chemical Physics, 2003, 118, 10707-10711.	1.2	14
287	Movement of interstitial clusters in stress gradients of grain boundaries. Physical Review B, 2003, 68, .	1.1	43
288	Vibrational properties of nanoscale materials: From nanoparticles to nanocrystalline materials. Physical Review B, 2003, 68, .	1.1	68
289	Melting of 55-atom Morse clusters. Journal of Chemical Physics, 2003, 118, 10671-10682.	1.2	16
290	Simulation study of the evolution mechanisms of clusters in a large-scale liquid Al system during rapid cooling processes. Journal of Physics Condensed Matter, 2003, 15, 743-753.	0.7	39
291	Microstructural analysis of the radial distribution function for liquid and amorphous Al. Journal of Physics Condensed Matter, 2003, 15, 2259-2267.	0.7	24

#	Article	IF	CITATIONS
292	Unconventional deformation mechanism in nanocrystalline metals?. International Journal of Materials Research, 2003, 94, 1106-1110.	0.8	24
293	Molecular dynamics investigations of elastic-plastic properties of solids. European Physical Journal Special Topics, 2003, 110, 323-328.	0.2	6
294	Surface-Induced Melting of Metal Nanoclusters. Chinese Physics Letters, 2004, 21, 2171-2174.	1.3	5
295	Structure and dynamics of gold nanocluster under cooling conditions. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 373-379.	0.8	9
296	High-Frequency Vibrational Properties of Metallic Nanocrystalline Grain Boundaries. Physical Review Letters, 2004, 92, 035505.	2.9	26
297	Melting behavior of one-dimensional zirconium nanowire. Journal of Chemical Physics, 2004, 120, 3431-3438.	1.2	37
298	Grown-in twin boundaries affecting deformation mechanisms in nc-metals. Applied Physics Letters, 2004, 85, 5863-5865.	1.5	74
299	Nanocrystalline fcc metals: bridging experiments with simulations. Materials Research Society Symposia Proceedings, 2004, 821, 152.	0.1	0
300	Molecular Dynamic Simulation of the Liquid and Amorphous Solid Phase in Al and Fe Mono-Atomic Systems. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 629-634.	0.1	2
301	Plastic Deformation in Metals with Nanosized Grains: Atomistic Simulations and Experiments. Materials Science Forum, 2004, 447-448, 3-10.	0.3	9
302	Nanocrystalline fcc metals: bridging experiments with simulations. Materials Research Society Symposia Proceedings, 2004, 819, N4.2.1/P4.2.1.	0.1	0
303	Non-classical nucleation in supercooled nickel. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 1063-1068.	0.8	33
304	Molecular dynamics study on interfaces generated between atomic clusters. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2004, 218, 607-614.	1.1	0
305	Simulation study for atomic size and alloying effects during forming processes of amorphous alloys. Science in China Series G: Physics, Mechanics and Astronomy, 2004, 47, 393.	0.2	3
306	An atomistic study of solid/liquid interfaces in binary systems. Jom, 2004, 56, 45-48.	0.9	11
307	Electronic, structural and thermodynamic properties of icosahedral free and supported Al clusters on Al surfaces from tight binding and classical molecular dynamics simulations. Surface Science, 2004, 566-568, 937-943.	0.8	8
308	Size effects on the melting of nickel nanowires: a molecular dynamics study. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 25, 47-54.	1.3	82
309	Pressure effect on the structural transition of liquid Au. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 320, 452-458.	0.9	19

#	Article	IF	CITATIONS
310	Molecular dynamic simulation studies of glass formation and atomic-level structures in Pd–Ni alloy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 327, 506-511.	0.9	32
311	Strain-induced coarsening in nanocrystalline metals under cyclic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 975-979.	2.6	76
312	Structural study of local order in quenched lead under high pressures. Chemical Physics, 2004, 304, 261-271.	0.9	16
313	Atomic plasticity: description and analysis of a one-billion atom simulation of ductile materials failure. Computer Methods in Applied Mechanics and Engineering, 2004, 193, 5257-5282.	3.4	55
314	The influence of twins on the mechanical properties of nc-Al. Acta Materialia, 2004, 52, 2259-2268.	3.8	147
315	Interaction between dislocations and grain boundaries under an indenter – a molecular dynamics simulation. Acta Materialia, 2004, 52, 2251-2258.	3.8	166
316	Molecular dynamics simulations of the preparation and deformation of nanocrystalline copper. Acta Materialia, 2004, 52, 5105-5114.	3.8	23
317	Dislocations emitted from nanocrystalline grain boundaries: nucleation and splitting distance. Acta Materialia, 2004, 52, 5863-5870.	3.8	146
318	Evidence of a melt like supercooled liquid during a solid to liquid transition of titanium nanowire. Chemical Physics Letters, 2004, 399, 20-25.	1.2	5
319	Supersonic wave propagation in Cu under high speed cluster impact. Nanotechnology, 2004, 15, 449-456.	1.3	11
320	Influence of Intermediate-Range Order on Glass Formation. Journal of Physical Chemistry B, 2004, 108, 5438-5442.	1.2	22
321	Thermal Metallization of Silver Stearate-Coated Nanoparticles Owing to the Destruction of the Shell Structure. Journal of Physical Chemistry B, 2004, 108, 15027-15032.	1.2	33
322	Organization of Coordination Polyhedra in an Amorphous Binary Alloy. Journal of Physical Chemistry B, 2004, 108, 6850-6855.	1.2	12
323	Investigation of the formation of iron nanoparticles from the gas phase by molecular dynamics simulation. Nanotechnology, 2004, 15, 525-533.	1.3	98
324	Prediction of the local structure of liquid and supercooled tantalum. Physical Review B, 2004, 70, .	1.1	69
325	Ab InitioMolecular-Dynamics Simulations of Short-Range Order in LiquidAl80Mn20andAl80Ni20Alloys. Physical Review Letters, 2004, 93, 207801.	2.9	55
326	Ab initio molecular dynamics simulations of local structure of supercooled Ni. Journal of Chemical Physics, 2004, 120, 6124-6127.	1.2	108
327	Some further applications of discrete path sampling to cluster isomerization. Molecular Physics, 2004, 102, 891-908.	0.8	190

#	Article	IF	Citations
328	Molecular dynamic simulation of glass formation in binary liquid metal: Cuâ€"Ag using EAM. Intermetallics, 2004, 12, 1191-1195.	1.8	44
329	Molecular-dynamics study of the local symmetry changes in metallic liquids. Phase Transitions, 2004, 77, 89-100.	0.6	0
330	The uniaxial tensile deformation of Ni nanowire: atomic-scale computer simulations. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 27, 113-120.	1.3	41
331	Medium-range order of liquid metal in the quenched state. Physica B: Condensed Matter, 2005, 355, 140-146.	1.3	9
332	Dislocation activity and nano-void formation near crack tips in nanocrystalline Ni. Acta Materialia, 2005, 53, 3115-3123.	3.8	106
333	Atomistic simulation studies on deformation mechanism of nanocrystalline cobalt. Acta Materialia, 2005, 53, 3893-3901.	3.8	79
334	Developing realistic grain boundary networks for use in molecular dynamics simulations. Acta Materialia, 2005, 53, 4847-4856.	3.8	58
335	Evidence for entropic effects in the dissociation of cationic sodium fluoride clusters. Chemical Physics Letters, 2005, 405, 26-31.	1.2	6
336	A simulation study of rapid solidification and crystal configuration of Cu70Ni30 alloy. Science in China Series G: Physics, Mechanics and Astronomy, 2005, 48, 687.	0.2	0
337	Melting Behaviors of Nanocrystalline Ag. Journal of Physical Chemistry B, 2005, 109, 20339-20342.	1.2	68
338	Molecular-dynamics study of liquid nickel above and below the melting point. Journal of Chemical Physics, 2005, 123, 244512.	1.2	43
339	Structural and energetic properties of unsupported Cu nanoparticles from room temperature to the melting point: Molecular dynamics simulations. Physical Review B, 2005, 72, .	1.1	95
340	Simulation studies on structural evolution of gold clusters during solidification. Materials Letters, 2005, 59, 676-681.	1.3	5
341	Molecular dynamics modeling of diffusion bonding. Scripta Materialia, 2005, 52, 1135-1140.	2.6	50
342	Vicinal twin boundaries providing dislocation sources in nanocrystalline Al. Scripta Materialia, 2005, 54, 477-477.	2.6	11
343	Twinning in Nanocrystalline fcc Metals. Advanced Engineering Materials, 2005, 7, 16-20.	1.6	81
344	Molecular Dynamics Study of the Effect of Dopant Atoms on Grain Boundary Sliding. Materials Research Society Symposia Proceedings, 2005, 903, 1.	0.1	0
345	Simulations of structures of liquid copper under pressure. Modelling and Simulation in Materials Science and Engineering, 2005, 13, 753-758.	0.8	3

#	Article	IF	CITATIONS
346	Simulating the photoelectron spectra of rare-gas clusters. Journal of Chemical Physics, 2005, 122, 244717.	1.2	29
347	Shock waves in materials with Dzugutov-potential interactions. Physical Review B, 2005, 72, .	1.1	9
348	Variational Monte Carlo study of local order in liquid and solidHe4with shadow wave functions. Physical Review B, 2005, 71, .	1.1	6
349	Structure analysis methods for crystalline solids and supercooled liquids. Physical Review E, 2005, 72, 051202.	0.8	18
350	Transition from Icosahedral to Decahedral Structure in a Coexisting Solid-Liquid Nickel Cluster. Physical Review Letters, 2005, 95, 116101.	2.9	35
351	Static, transient, and dynamic phase coexistence in metal nanoclusters. Journal of Chemical Physics, 2005, 123, 104701.	1.2	34
352	Nucleation and crystallization process of silicon using the Stillinger-Weber potential. Physical Review B, 2005, 71, .	1.1	36
353	Calculation of x-ray spectra for nanocrystalline materials. Physical Review B, 2005, 71, .	1.1	64
354	Atomic-scale simulations of strain localization in a single-component three-dimensional model amorphous solid. Materials Research Society Symposia Proceedings, 2005, 903, 1.	0.1	1
355	ATOMISTIC MODELING OF THE EFFECT OF TWINS ON PLASTIC DEFORMATION IN NANOCRYSTALLINE COBALT. International Journal of Nanoscience, 2005, 04, 651-658.	0.4	0
356	Structural Transition from Icosahedra to Decahedra of Large Lennard-Jones Clusters. Journal of Physical Chemistry A, 2005, 109, 5193-5197.	1.1	29
357	Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Reviews of Modern Physics, 2005, 77, 371-423.	16.4	1,609
358	Molecular dynamics investigation of homogeneous nucleation and cluster growth of platinum clusters from supersaturated vapour. Nanotechnology, 2005, 16, 2870-2877.	1.3	37
359	Impact of ion irradiation on the thermal, structural, and mechanical properties of metallic glasses. Physical Review B, 2005, 71, .	1.1	49
360	Chemical and icosahedral short-range orders in liquid and undercooled Al80Mn20 and Al80Ni20 alloys: A first-principles-based approach. Journal of Chemical Physics, 2005, 123, 104508.	1.2	29
361	Formation and description of nano-clusters formed during rapid solidification processes in liquid metals. Journal of Non-Crystalline Solids, 2005, 351, 612-617.	1.5	62
362	Molecular dynamics study of the binaryCu46Zr54metallic glass motivated by experiments: Glass formation and atomic-level structure. Physical Review B, 2005, 71, .	1.1	227
363	Molecular dynamics investigations of the coalescence of iron clusters embedded in an inert-gas heat bath. Physical Review B, 2005, 71, .	1.1	37

#	Article	IF	CITATIONS
364	Crystallization of amorphous alloy during isothermal annealing: a molecular dynamics study. Journal of Physics Condensed Matter, 2005, 17, 1493-1504.	0.7	45
365	Defect-Mediated Melting in Superheated Noble Gas Crystals. Journal of Physical Chemistry B, 2005, 109, 20295-20302.	1.2	4
366	Multiscale Modeling for the Analysis of Grain-Scale Fracture Within Aluminum Microstructures. , 2005, , .		2
367	Stability of phase coexistence in atomic clusters. Physical Review B, 2005, 71, .	1.1	27
368	Computer simulations of the condensation of nanoparticles from the gas phase. Phase Transitions, 2005, 78, 35-46.	0.6	32
369	Defect-induced anisotropy in mechanical properties of nanocrystalline metals by molecular dynamics simulations. Modelling and Simulation in Materials Science and Engineering, 2005, 13, 1217-1231.	0.8	12
370	Melting temperature: From nanocrystalline to amorphous phase. Journal of Chemical Physics, 2006, 125, 184504.	1.2	35
371	A molecular dynamics study on intermediate structures during transition from amorphous to crystalline state. Molecular Simulation, 2006, 32, 443-449.	0.9	9
372	Molecular dynamics simulations of the initial stages of spall in nanocrystalline copper. Physical Review B, 2006, 74, .	1.1	55
374	Size Effects in Plasticity: Experiments and Simulations. Materials Science Forum, 2006, 503-504, 193-200.	0.3	7
375	Multiscale Modeling of Grain-Boundary Fracture: Cohesive Zone Models Parameterized from Atomistic Simulations. , 2006, , .		4
376	Kinetic details of the nucleation in supercooled liquid metals. Applied Physics Letters, 2006, 89, 031903.	1.5	27
377	Atomic simulation on evolution of nano-crystallizaion in amorphous metals. Transactions of Nonferrous Metals Society of China, 2006, 16, s327-s331.	1.7	5
378	Mechanistic Aspects of Homogeneous and Heterogeneous Melting Processes. Journal of Physical Chemistry B, 2006, 110, 12645-12652.	1.2	38
379	LOCAL ORDER OF LIQUID AND UNDERCOOLED TRANSITION METAL BASED SYSTEMS: AB INITIO MOLECULAR DYNAMICS STUDY. Modern Physics Letters B, 2006, 20, 655-674.	1.0	38
380	Signature of nearly icosahedral structures in liquid and supercooled liquid copper. Physical Review B, 2006, 74, .	1.1	127
381	Energy landscapes: calculating pathways and rates. International Reviews in Physical Chemistry, 2006, 25, 237-282.	0.9	169
382	Structure of Dense Liquid Water by Neutron Scattering to 6.5ÂGPa and 670ÂK. Physical Review Letters, 2006, 96, 067801.	2.9	102

#	Article	IF	CITATIONS
383	Cooperative Atomic Displacements and Melting at the Limit of Superheating. Journal of Physical Chemistry B, 2006, 110, 3281-3287.	1.2	10
384	Atomic-scale simulations of strain localization in three-dimensional model amorphous solids. Physical Review B, 2006, 73, .	1.1	154
385	Influence of the carrier gas on the formation of iron nano-particles from the gas phase: A molecular dynamics simulation study. Computational Materials Science, 2006, 35, 210-215.	1.4	18
386	Pressure effect on the formation and the thermal stability of glassy Cu. Computational Materials Science, 2006, 37, 234-238.	1.4	12
387	Applications of local crystal structure measures in experiment and simulation. Physical Review B, 2006, 73, .	1.1	393
388	Ab initiomolecular-dynamics simulations of the structural properties of liquidln20Sn80in the temperature range798–1193K. Physical Review B, 2006, 73, .	1.1	16
389	The microstructural evolution of Al12Mg17 alloy during the quenching processes. Journal of Non-Crystalline Solids, 2006, 352, 2880-2884.	1.5	13
390	A case for local icosahedral order in undercooled metallic liquids and the influence on the nucleation barrier. Journal of Non-Crystalline Solids, 2006, 352, 5318-5324.	1.5	46
391	Mechanical Properties of Amorphous Metal with Dispersed Nanocrystalline Particles: Molecular Dynamics Study on Crystal Volume Fraction and Size Effects. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2006, 49, 513-521.	0.4	3
392	Deformation in nanocrystalline metals. Materials Today, 2006, 9, 24-31.	8.3	338
393	Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Materialia, 2006, 54, 1975-1983.	3.8	345
394	Atomistic simulations of mechanical deformation of high-angle and low-angle nanocrystalline copper at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 423, 97-101.	2.6	12
395	Improving grain boundary sliding resistance with segregated dopants. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 431, 92-99.	2.6	48
396	Relating nucleation to dynamical and structural heterogeneity in supercooled liquid metal. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 350, 69-74.	0.9	16
397	Medium-range structural order in liquid Ni20Al80 alloy: Experimental and molecular dynamics studies. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 350, 405-409.	0.9	11
398	Structural transition of sheared-liquid metal in quenching state. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 355, 142-147.	0.9	14
399	Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum. Journal of the Mechanics and Physics of Solids, 2006, 54, 1899-1928.	2.3	196
400	Molecular dynamics simulations of grain growth in nanocrystalline Ag. Journal of Crystal Growth, 2006, 286, 512-517.	0.7	16

#	Article	IF	CITATIONS
401	Freezing behavior of one-dimensional copper nanowires. Solid State Communications, 2006, 138, 399-403.	0.9	5
402	Molecular dynamics simulations of homogeneous and heterogeneous melting scenarios in metals: Volume scaling and concentration of defects. Physical Review B, 2006, 73, .	1.1	33
403	Size dependence of freezing temperature and structure instability in simulated Lennard-Jones clusters. European Physical Journal D, 2006, 40, 231-242.	0.6	13
404	X-ray diffraction study of the structure of Al-Co melts. Journal of Structural Chemistry, 2006, 47, S167-S172.	0.3	6
405	Size distributions and magic number characteristics of cluster configurations formed during solidification processes of liquid metal Al. Science in China Series D: Earth Sciences, 2006, 49, 172-187.	0.9	4
406	Molecular dynamics simulation of thermal stability of nanocrystalline vanadium. Science in China Series D: Earth Sciences, 2006, 49, 400-407.	0.9	1
407	Grain size dependence of the bulk modulus of nanocrystalline nickel. Scripta Materialia, 2006, 55, 473-476.	2.6	47
408	Coupling of structural and energetic fluctuations in Co nanometre-sized particles. Nanotechnology, 2006, 17, 2027-2031.	1.3	7
409	Homogeneous melting of metals with different crystalline structure. Journal of Physics Condensed Matter, 2006, 18, 5639-5653.	0.7	14
410	Localized magnetism in liquid Al 80 Mn 20 alloys: A first-principles investigation. Europhysics Letters, 2006, 74, 275-280.	0.7	3
411	Shadow wave function variational calculation of bond orientational order and disclination in liquid and solid 4 He. Europhysics Letters, 2006, 73, 76-82.	0.7	0
412	The effect of added oversized elements on the microstructure of binary alloy nanoparticles. Nanotechnology, 2006, 17, 4748-4757.	1.3	3
413	Vitrification and crystallization of metallic liquid under pressures. Journal of Physics Condensed Matter, 2006, 18, 7559-7568.	0.7	12
414	Comparative study of microstructural evolution during melting and crystallization. Journal of Chemical Physics, 2006, 125, 014503.	1.2	31
415	Molecular Dynamics Study of Icosahedral Clusters in Ni–Zr Amorphous Alloys. Chinese Physics Letters, 2006, 23, 915-918.	1.3	8
416	Surface identification, meshing and analysis during large molecular dynamics simulations. Modelling and Simulation in Materials Science and Engineering, 2006, 14, 229-251.	0.8	8
417	Size and volume-fraction effects of dispersed nano-crystalline particles on the elastic constants and flow stress of metallic glass. Modelling and Simulation in Materials Science and Engineering, 2006, 14, S47-S54.	0.8	7
418	Collective grain deformation of nanocrystalline metals by molecular dynamics simulations. Modelling and Simulation in Materials Science and Engineering, 2006, 14, S63-S72.	0.8	5

#	Article	IF	CITATIONS
419	Growth study of nanocrystalline Ni and Ni3Al using molecular dynamics. Materials Research Society Symposia Proceedings, 2006, 978, .	0.1	0
420	Deformation Mechanisms of Nanocrystalline Hexagonal Close-Packed Metals. Materials Research Society Symposia Proceedings, 2006, 924, 1.	0.1	1
421	Bond-orientational analysis of hard-disk and hard-sphere structures. Journal of Chemical Physics, 2006, 124, 204508.	1.2	17
422	Atomistic simulations of the mechanical behavior of fivefold twinned nanowires. Physical Review B, 2006, 74, .	1.1	93
423	Solid-liquid phase coexistence and structural transitions in palladium clusters. Physical Review B, 2006, 73, .	1.1	40
424	Structure of small clusters of parahydrogen molecules. Physical Review A, 2006, 74, .	1.0	39
425	Formation of fivefold deformation twins in nanocrystalline face-centered-cubic copper based on molecular dynamics simulations. Applied Physics Letters, 2006, 89, 041919.	1.5	67
426	TENSILE FAILURE OF SINGLE-CRYSTAL AND NANOCRYSTALLINE LENNARD-JONES SOLIDS UNDER UNIAXIAL STRAIN. International Journal of Modern Physics C, 2006, 17, 1551-1561.	0.8	10
427	Molecular Dynamics Analysis on Initial Texture and Processing Route Influences on Grain Refinement Behavior of α-Fe by Equal Channel Angular Pressing. Key Engineering Materials, 2007, 340-341, 967-972.	0.4	0
428	Formation mechanism of critical nucleus during nucleation process of liquid metal sodium. Journal of Chemical Physics, 2007, 127, 174503.	1.2	28
429	A Molecular Dynamics Study of the Effect of Voids on the Deformation Behavior of Nanocrystalline Copper. Journal of Nanomaterials, 2007, 2007, 1-6.	1.5	4
430	Nanoscale defect clusters in metallic glasses. Journal of Physics Condensed Matter, 2007, 19, 376217.	0.7	3
431	Demixing phenomena in NiAl nanometre-sized particles. Nanotechnology, 2007, 18, 065708.	1.3	21
432	Dynamics of atomic species involved in shear-induced displacements at sliding symmetrical grain boundaries: a numerical study. Journal of Physics Condensed Matter, 2007, 19, 096008.	0.7	4
433	Atomic vibrations in iron nanoclusters: Nuclear resonant inelastic x-ray scattering and molecular dynamics simulations. Physical Review B, 2007, 76, .	1.1	31
434	Atomistic simulations of the hcp-to-fcc transition in nanometer-sized Co domains embedded in a Cu matrix under different pressure and stress conditions. Physical Review B, 2007, 76, .	1.1	1
435	Accelerating the molecular time steps for nanomechanical simulations: Hybrid Monte Carlo method. Journal of Applied Physics, 2007, 101, 103512.	1.1	7
436	Atomic structure evolution of Zr-Ni during severe deformation by HA pair analysis. Physical Review B, 2007, 76, .	1.1	12

#	Article	IF	Citations
437	General-stacking-fault energies in highly strained metallic environments: <i>Ab initio</i> calculations. Physical Review B, 2007, 76, .	1.1	79
438	Tensile deformation accommodation in microscopic metallic glasses via subnanocluster reconstructions. Applied Physics Letters, 2007, 91, .	1.5	71
439	Modeling the structural, dynamical, and magnetic properties of liquidAl1â^xMnx(x=0.14, 0.2, and 0.4): A first-principles investigation. Physical Review B, 2007, 76, .	1.1	11
440	Formation of NiZr 2 Binary Metallic Glass: Experimental and Molecular Dynamics Analyses. Chinese Physics Letters, 2007, 24, 2319-2322.	1.3	5
441	Structural modification of a multiply twinned nanoparticle by ion irradiation: A molecular dynamics study. Journal of Applied Physics, 2007, 102, 124304.	1.1	14
442	Molecular dynamics simulation of plastic deformation of nanotwinned copper. Journal of Applied Physics, 2007, 102, .	1.1	72
443	Tuning Oxygen Packing in Silica by Nonhydrostatic Pressure. Physical Review Letters, 2007, 99, 215504.	2.9	34
444	Interaction mechanism between edge dislocations and asymmetrical tilt grain boundaries investigated via quasicontinuum simulations. Physical Review B, 2007, 75, .	1.1	61
445	Atomistic simulations of crack nucleation and intergranular fracture in bulk nanocrystalline nickel. Physical Review B, 2007, 76, .	1.1	70
446	Low-frequency vibrational properties of nanocrystalline materials: Molecular dynamics simulations of two-dimensional systems. Physical Review B, 2007, 76, .	1.1	10
447	Void nucleation in biaxially strained ultrathin films of face-centered cubic metals. Applied Physics Letters, 2007, 90, 221907.	1.5	12
448	Atomic Simulations on the Grain Subdivision of a Crystalline Metal. Materials Science Forum, 2007, 561-565, 1983-1986.	0.3	0
449	Molecular Dynamics Analysis for Deformation and Fracture Behavior of Copper Thin Films. Key Engineering Materials, 2007, 340-341, 979-984.	0.4	2
450	Molecular Dynamics Study on Characteristics of Misfit Dislocations in Ni-Based Superalloys. Key Engineering Materials, 2007, 345-346, 951-954.	0.4	2
451	Evolution Mechanisms of Nano-Clusters in a Large-Scale System of 10 ⁶ Liquid Metal Atoms During Rapid Cooling Processes. Solid State Phenomena, 2007, 121-123, 1049-1052.	0.3	1
452	Formation and Magic Number Characteristics of Cluster Configurations During Rapid Cooling Processes of Liquid Metals. Solid State Phenomena, 2007, 121-123, 1139-1142.	0.3	2
453	Formation and magic number characteristics of clusters formed during solidification processes. Journal of Physics Condensed Matter, 2007, 19, 196103.	0.7	49
454	Vibrational properties of metallic nanoparticles. Zeitschrift Fur Kristallographie - Crystalline Materials, 2007, 222, 646-649.	0.4	6

#	Article	IF	CITATIONS
455	Local structure changes of Cu 55 cluster during heating. Chinese Physics B, 2007, 16, 77-82.	1.3	10
456	Chapter 3 Physics of undercooled liquids. Pergamon Materials Series, 2007, , 57-111.	0.2	0
457	Solid-Liquid Phase Behavior in Microclusters. Advances in Chemical Physics, 2007, , 75-138.	0.3	128
458	Nucleation rate isotherms of argon from molecular dynamics simulations. Journal of Chemical Physics, 2007, 127, 154515.	1.2	69
459	Relationship between excess entropy and microstructure of undercooled liquid metals. Journal of Non-Crystalline Solids, 2007, 353, 2157-2162.	1.5	1
460	First-principle molecular dynamics study of the structural and electronic properties of liquid and amorphous Ni–Al alloys. Journal of Non-Crystalline Solids, 2007, 353, 2638-2645.	1.5	21
461	Local order in undercooled liquid metals: A tight binding molecular dynamics approach. Journal of Non-Crystalline Solids, 2007, 353, 3679-3683.	1.5	2
462	Short-range order of liquid and undercooled metals: Ab initio molecular dynamics study. Journal of Non-Crystalline Solids, 2007, 353, 3684-3688.	1.5	25
463	Lowest-energy structures of 13-atom binary clusters: Do icosahedral clusters exist in binary liquid alloys?. Journal of Non-Crystalline Solids, 2007, 353, 3698-3703.	1.5	5
464	MD study of the glass transition in binary liquid metals: Ni6Cu4 and Ag6Cu4. Intermetallics, 2007, 15, 1361-1366.	1.8	6
465	Visual Verification and Analysis of Cluster Detection for Molecular Dynamics. IEEE Transactions on Visualization and Computer Graphics, 2007, 13, 1624-1631.	2.9	25
466	Crystallization of amorphous Ni-Zr alloys during heating with molecular dynamics simulations. International Journal of Minerals, Metallurgy, and Materials, 2007, 14, 73-76.	0.2	1
467	Structural study of supercooled liquid transition metals. Journal of Chemical Physics, 2007, 126, 054513.	1.2	66
468	Common neighbour analysis for binary atomic systems. Modelling and Simulation in Materials Science and Engineering, 2007, 15, 319-334.	0.8	33
469	Homogeneous nucleation and growth in supersaturated zinc vapor investigated by molecular dynamics simulation. Journal of Chemical Physics, 2007, 127, 234509.	1.2	38
470	Homogeneous nucleation and growth from highly supersaturated vapor by molecular dynamics simulation. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 351-377.	0.1	0
471	Structural studies of a Ti–Zr–Ni quasicrystal-forming liquid. Journal of Physics Condensed Matter, 2007, 19, 455212.	0.7	18
472	Lattice orientation effect on the nanovoid growth in copper under shock loading. Physical Review B, 2007, 75, .	1.1	44

#	Article	IF	CITATIONS
473	Applied Computational Materials Modeling., 2007,,.		8
474	Simulation study on the formation and evolution properties of nano-clusters in rapid solidification structures of sodium. Modelling and Simulation in Materials Science and Engineering, 2007, 15, 911-922.	0.8	12
475	Composition dependence of structural evolution of Ni–Zr alloys during cooling. Journal of Physics Condensed Matter, 2007, 19, 086212.	0.7	5
476	Slip transfer through a general high angle grain boundary in nanocrystalline aluminum. Applied Physics Letters, 2007, 91, .	1.5	30
477	Size-dependent effects on equilibrium stress and strain in nickel nanowires. Physical Review B, 2007, 76, .	1.1	24
478	Local order and phase selection in undercooled transition metal based systems: ab initio molecular dynamics study. Phase Transitions, 2007, 80, 369-384.	0.6	8
479	Formation of metal nano-particles on and in polymer films investigated by molecular dynamics simulation. Nanotechnology, 2007, 18, 165706.	1.3	8
480	Glass transition in metallic glasses: A microscopic model of topological fluctuations in the bonding network. Physical Review B, 2007, 76, .	1.1	152
481	A simulation study of microstructure evolution during solidification process of liquid metal Ni. Chinese Physics B, 2007, 16, 3747-3753.	1.3	17
482	Equilibrium and Dynamical Fourier Path Integral Methods. Advances in Chemical Physics, 2007, , 61-127.	0.3	165
483	Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries. Applied Physics Letters, 2007, 90, 151909.	1.5	150
484	Thermodynamic, dynamic and structural relaxation in supercooled liquid and glassy Ni below the critical temperature. Journal of Physics Condensed Matter, 2007, 19, 196106.	0.7	25
485	Role of defective icosahedra in undercooled copper. Physical Review B, 2007, 75, .	1.1	24
486	Structure and Motion of Misfit Dislocations at Ni/Ni3Al Interface: Molecular Dynamics Study. Zairyo/Journal of the Society of Materials Science, Japan, 2007, 56, 439-444.	0.1	1
487	Structural characterization of deformed crystals by analysis of common atomic neighborhood. Computer Physics Communications, 2007, 177, 518-523.	3.0	567
488	Size dependent melting mechanisms of iron nanoclusters. Chemical Physics, 2007, 333, 57-62.	0.9	36
489	Crystal instability in nanocrystalline materials. Acta Materialia, 2007, 55, 5464-5472.	3.8	22
490	Molecular dynamics simulation of radiation damage in bcc tungsten. Nuclear Instruments & Methods in Physics Research B, 2007, 255, 27-31.	0.6	42

#	ARTICLE	IF	Citations
491	Colloidal submicron-palladium particles stabilized with acetate. Electrochimica Acta, 2007, 52, 2485-2491.	2.6	10
492	Icosahedral binary clusters of glass-forming Lennard–Jones binary alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 975-978.	2.6	5
493	The development of microstructure in a rapidly solidified Cu. Materials Science & Department of microstructure in a rapidly solidified Cu. Materials Science & Department of Microstructure and Processing, 2007, 452-453, 103-109.	2.6	13
494	Elementary atomistic mechanism of crystal plasticity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 367, 250-253.	0.9	32
495	Analyses of tensile deformation of nanocrystalline \hat{l}_{\pm} -Fe2O3+fcc-Al composites using molecular dynamics simulations. Journal of the Mechanics and Physics of Solids, 2007, 55, 1053-1085.	2.3	37
496	Nanomechanical analyses of nanocrystalline Ni using accelerated molecular timesteps. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3340-3348.	0.8	3
497	Modified Lennard-Jones potentials for Cu and Ag based on the dense gaslike model of viscosity for liquid metals. Physical Review B, 2007, 75, .	1.1	9
498	Structure formation of metallic nano-particles in the vapour phase and in disperse materials. European Physical Journal: Special Topics, 2007, 149, 57-70.	1.2	4
499	Dynamics of nanoscale grain-boundary decohesion in aluminum by molecular-dynamics simulation. Journal of Materials Science, 2007, 42, 1466-1476.	1.7	21
500	Homogeneous and heterogeneous melting behavior of bulk and nanometer-sized Cu systems: a numerical study. Journal of Materials Science, 2007, 42, 6672-6683.	1.7	15
501	Spaceâ \in "time multiresolution atomistic visualization of MgO and MgSiO3 liquid data. Visual Geosciences, 2007, 11, 1-11.	0.5	9
502	Numerical simulations of the melting behavior of bulk and nanometer-sized Cu systems. Physica B: Condensed Matter, 2007, 392, 288-297.	1.3	15
503	Molecular dynamics simulation of irradiation damage in tungsten. Nuclear Instruments & Methods in Physics Research B, 2007, 265, 547-552.	0.6	30
504	Short-to-medium-range order in Mg65Cu25Y10 metallic glass. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 3078-3084.	0.9	28
505	Atomic structures of Zr-based metallic glasses. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51, 400-413.	0.2	17
506	Strengthening mechanisms and dislocation dynamics in twinned metal nanowires. Jom, 2008, 60, 85-88.	0.9	5
507	Vibrational properties in nanocrystalline nickels: temperature effects and composite model for thermodynamics. Physica Status Solidi (B): Basic Research, 2008, 245, 1527-1533.	0.7	4
508	Glass formation and local structure evolution in rapidly cooled PdNi alloy melt under high pressure. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 708-711.	0.9	10

#	Article	IF	CITATIONS
509	Structural evolution of Cu during rapid quenching by ab initio molecular dynamics. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5831-5837.	0.9	26
510	The strength limit in a bio-inspired metallic nanocomposite. Journal of the Mechanics and Physics of Solids, 2008, 56, 1086-1104.	2.3	31
511	Williamson–Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations. Acta Materialia, 2008, 56, 165-176.	3.8	100
512	Tensile properties of nanocrystalline tantalum from molecular dynamics simulations. Acta Materialia, 2008, 56, 3470-3480.	3.8	100
513	Atomistic simulations of diffusional creep in a nanocrystalline body-centered cubic material. Acta Materialia, 2008, 56, 3688-3698.	3.8	52
514	Atomistic study of hydrogen distribution and diffusion around a $\{1\ 1\ 2\}$ < $1\ 1\ 4$ > edge dislocation in alpha iron. Acta Materialia, 2008, 56, 3761-3769.	3.8	129
515	The stress–strain response of nanocrystalline metals: A statistical analysis of atomistic simulations. Acta Materialia, 2008, 56, 4846-4857.	3.8	63
516	Sample shape and temperature strongly influence the yield strength of metallic nanopillars. Acta Materialia, 2008, 56, 4816-4828.	3.8	80
517	Adlayer deposition induced surface crystallization of Cu46Zr54 bulk metallic glass. Surface Science, 2008, 602, 1486-1491.	0.8	6
518	Cooling rate effects on structure and thermodynamics of amorphous nanoparticles. Applied Surface Science, 2008, 254, 7531-7534.	3.1	6
519	Glasses of simple liquids with double-well interaction potential. Physica B: Condensed Matter, 2008, 403, 3910-3915.	1.3	21
520	Footprints of plastic deformation in nanocrystalline metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 483-484, 33-39.	2.6	48
521	Molecular dynamics simulations of the martensitic phase transition process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 11-17.	2.6	28
522	The relation between shock-state particle velocity and free surface velocity: A molecular dynamics study on single crystal Cu and silica glass. Journal of Applied Physics, 2008, 103, .	1.1	45
523	Grain boundary effects on plastic deformation and fracture mechanisms in Cu nanowires: Molecular dynamics simulations. Physical Review B, 2008, 77, .	1.1	87
524	Molecular dynamics simulations of simple monatomic amorphous nanoparticles. Physical Review B, 2008, 77, .	1.1	19
525	An adaptive template method for analyzing crystal structures and defects in molecular dynamics simulations of high-rate deformations. Russian Journal of Physical Chemistry B, 2008, 2, 238-245.	0.2	15
526	Analysis of gas-phase condensation of nickel nanoparticles. Journal of Experimental and Theoretical Physics, 2008, 107, 712-722.	0.2	17

#	ARTICLE	IF	CITATIONS
527	Alternating starvation of dislocations during plastic yielding in metallic nanowires. Scripta Materialia, 2008, 59, 219-222.	2.6	27
528	Dislocation-assisted grain growth in nanocrystalline copper under large deformation. Scripta Materialia, 2008, 59, 792-795.	2.6	5
529	Atomic structure evolution of Zr–Ti and pure Zr during accumulated roll bonding by HA pair analysis. Materials Chemistry and Physics, 2008, 112, 466-471.	2.0	4
530	Ordered clusters and free volume in a Zr–Ni metallic glass. Applied Physics Letters, 2008, 93, .	1.5	56
531	Dislocation Cross-Slip in Nanocrystalline fcc Metals. Physical Review Letters, 2008, 100, 235501.	2.9	62
532	Numerical investigation of the stability of Ag-Cu nanorods and nanowires. Physical Review B, 2008, 78,	1.1	13
533	Atomistic Simulations of Dislocations in FCC Metallic Nanocrystalline Materials. Dislocations in Solids, 2008, , 1 -42.	1.6	24
534	Cooling-rate effects in simple monatomic amorphous nanoparticles. Philosophical Magazine, 2008, 88, 1461-1475.	0.7	4
535	Structural study of supercooled liquid silicon. Philosophical Magazine, 2008, 88, 171-179.	0.7	11
536	Simulations of Laser-Induced Glass Formation in Agâ^'Cu Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 3283-3293.	1.5	10
537	Formation and Evolution of Metastable bcc Phase during Solidification of Liquid Ag: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry A, 2008, 112, 12326-12336.	1.1	45
538	Local structure of equilibrium and supercooled Ti-Zr-Ni liquids. Physical Review B, 2008, 77, .	1.1	60
539	New Developments in the Embedded Statistical Coupling Method: Atomistic/Continuum Crack Propagation. , 2008, , .		1
540	Structure of liquid Al80Mn20 alloy by Reverse Monte Carlo simulation. Journal of Non-Crystalline Solids, 2008, 354, 1736-1739.	1.5	13
541	Molecular dynamics simulation for cooling rate dependence of solidification microstructures of silver. Journal of Non-Crystalline Solids, 2008, 354, 3705-3712.	1.5	75
542	Structure and relaxation about the compound Cu3Au during rapid cooling process. Journal of Alloys and Compounds, 2008, 455, 398-406.	2.8	3
543	Strain localization in metallic amorphous/amorphous composites. Intermetallics, 2008, 16, 904-909.	1.8	5
544	<i>Ab initio</i> simulations of geometrical frustration in supercooled liquid Fe and Fe-based metallic glass. Physical Review B, 2008, 77, .	1.1	124

#	Article	IF	CITATIONS
545	Temperature-dependent mechanisms of homogeneous crystal nucleation in quenched Lennard-Jones liquids: Molecular dynamics simulations. Physical Review B, 2008, 78, .	1.1	15
546	Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects. Computational Materials Science, 2008, 41, 553-560.	1.4	121
547	Freezing of silver cluster and nanowire: A comparison study by molecular dynamics simulation. Computational Materials Science, 2008, 42, 517-524.	1.4	14
548	Glass formation and local structure evolution in rapidly cooled Pd55Ni45 alloy melt: Molecular dynamics simulation. Computational Materials Science, 2008, 42, 713-716.	1.4	13
549	The effect of the size and bonding strength of the added element on the microstructure of the binary alloy. Computational Materials Science, 2008, 43, 462-468.	1.4	0
550	Cluster evolution in the rapid cooling process of Cu–Ag melts under high pressure: Molecular-dynamics simulation. Computational Materials Science, 2008, 43, 732-735.	1.4	30
551	Ab initio molecular dynamics simulation for structural transition of Zr during rapid quenching processes. Computational Materials Science, 2008, 43, 1123-1129.	1.4	34
552	Application of modified Lennard–Jones potentials to structural and dynamical studies for liquid Al. Journal of Non-Crystalline Solids, 2008, 354, 4970-4974.	1.5	2
553	Formation and evolution properties of clusters in liquid metal copper during rapid cooling processes. Transactions of Nonferrous Metals Society of China, 2008, 18, 33-39.	1.7	23
554	Molecular dynamics simulation of Ni3Al melting. International Journal of Minerals, Metallurgy, and Materials, 2008, 15, 425-429.	0.2	2
555	Growth of Ag nanometre-sized particles in solution: molecular dynamics simulations. Nanotechnology, 2008, 19, 295703.	1.3	2
556	Local order and dynamic properties of liquid and undercooled Cux Zr1 \hat{a} xalloys by a binitiom olecular dynamics. Physical Review B, 2008, 78, .	1.1	91
557	Atomic-scale analysis of defect dynamics and strain relaxation mechanisms in biaxially strained ultrathin films of face-centered cubic metals. Journal of Applied Physics, 2008, 103, .	1.1	21
558	Ab-initio Molecular Dynamics Simulations of Molten Ni-Based Superalloys. , 2008, , .		3
559	Hydrogen and self-interstitial interactions with edge dislocations in Ni: atomistic and elasticity comparisons. Modelling and Simulation in Materials Science and Engineering, 2008, 16, 045002.	0.8	5
560	Excitation levels and magic numbers of small parahydrogen clusters (Nâ@ $1/240$). Journal of Chemical Physics, 2008, 128, 144303.	1.2	12
561	Protodefect as a Basis of Multilevel Nanoscale Plasticity of Crystal Materials. AIP Conference Proceedings, 2008, , .	0.3	0
562	Predictions of melting, crystallization, and local atomic arrangements of aluminum clusters using a reactive force field. Journal of Chemical Physics, 2008, 129, 244506.	1.2	47

#	ARTICLE	IF	CITATIONS
563	Local structure of liquid Ti: <i>Ab initio</i> molecular dynamics study. Journal of Chemical Physics, 2008, 129, 024711.	1.2	16
564	The elastic properties and energy characteristics of Au nanowires: an atomistic simulation study. Chinese Physics B, 2008, 17, 2621-2626.	0.7	17
565	Molecular dynamics study of the hcp–bcc phase transformation in nanocrystalline zirconium. International Journal of Materials Research, 2008, 99, 626-631.	0.1	2
566	Solidification kinetics of mmi:math xmins:mmi="http://www.w3.org/1998/Math/Math/Mith/Mith/Mith/Mith/Mith/Mith/Mith/Mi	1.1	5
567	in an Arcarrier gas. Molecular dynamics simulations. Physical Review B, 2008, 77 Molecular dynamics simulations of grain boundary migration during recrystallization employing tilt and twist dislocation boundaries to provide the driving pressure. Modelling and Simulation in Materials Science and Engineering, 2008, 16, 065002.	0.8	19
568	Time scale for point-defect equilibration in nanostructures. Applied Physics Letters, 2008, 93, .	1.5	16
569	Glass forming ability and short-range order in a binary bulk metallic glass by <i>ab initio</i> molecular dynamics. Applied Physics Letters, 2008, 93, .	1.5	84
570	Icosahedral ordering in Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass. Applied Physics Letters, 2008, 92, 201913.	1.5	33
571	Two-order-parameter description of liquid Al under five different pressures. Physical Review B, 2008, 78, .	1.1	6
572	Short- and medium-range order in a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mtext>Zr</mml:mtext></mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	<mml:mn< td=""><td> >73< mm </td></mml:mn<>	 > 73 < mm
573	Molecular dynamics simulations of martensitic fcc-to-hcp phase transformations in strained ultrathin metallic films. Physical Review B, 2008, 78, .	1.1	19
574	Heterophasic oscillations in nanoscale systems. Physical Review E, 2008, 78, 041106.	0.8	3
575	Phase transformation of iron under shock compression: Effects of voids and shear stress. Physical Review B, 2008, 78, .	1.1	31
576	Atomic bond fluctuations and crossover to potential-energy-landscape-influenced regime in supercooled liquid. Physical Review E, 2008, 78, 041202.	0.8	13
577	Atomistic Simulations of Dislocation - Crack Interaction. Journal of Solid Mechanics and Materials Engineering, 2008, 2, 1348-1359.	0.5	10
578	Relationship between Grain Boundary Structures and Mechanical Properties of Nanocrystalline Metals with Different Stacking Fault Energy Using Atomic Scale Computational Experiments. Zairyo/Journal of the Society of Materials Science, Japan, 2008, 57, 761-767.	0.1	O
579	EFFECT OF NANO-VOID ON THE PHASE TRANSFORMATION OF SINGLE CRYSTAL IRON UNDER SHOCK COMPRESSION. , 2008, , .		0
580	Comparative study of the mechanical behavior under biaxial strain of prestrained face-centered cubic metallic ultrathin films. Applied Physics Letters, 2009, 94, 101911.	1.5	12

#	Article	IF	CITATIONS
581	Shear response of the Σ11, ⟹1 1 0⟩{1 3 1} symmetric tilt grain boundary studied by molec Modelling and Simulation in Materials Science and Engineering, 2009, 17, 045008.	cular dynai	miçs. 28
582	Experimental and <i>ab initio </i> molecular dynamics simulation studies of liquid <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext> Al </mml:mtext> </mml:mrow> <mml:mrow> <mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	<1.1 <111ml:mn>	>68€/mmla
583	Atomic scale simulations of ductile failure micromechanisms in nanocrystalline Cu at high strain rates. Physical Review B, 2009, 80, .	1.1	71
584	Irradiation-induced densification of cluster-assembled thin films. Physical Review B, 2009, 79, .	1.1	17
585	Canonical molecular dynamics simulations for crystallization of metallic nanodroplets on MgO(100). Physical Review B, 2009, 79, .	1,1	8
586	Spall damage of copper under supported and decaying shock loading. Journal of Applied Physics, 2009, 106, .	1.1	73
587	Theoretical study of hierarchical structures and heredity effect of silicon solidifying on carbon nanotube. Applied Physics Letters, 2009, 95, 063106.	1.5	11
588	Twin Cu nanowires using energetic beams. Applied Physics Letters, 2009, 95, 111914.	1.5	6
589	SIMULATIONS OF COLLISION CASCADES IN Cu â€" Nb LAYERED COMPOSITES USING AN EAM INTERATOMIC POTENTIAL. International Journal of Applied Mechanics, 2009, 01, 421-442.	1.3	80
590	Simulation study on the evolution of thermodynamic, structural and dynamic properties during the crystallization process of liquid Na. Modelling and Simulation in Materials Science and Engineering, 2009, 17, 035001.	0.8	6
591	A MOLECULAR DYNAMICS SIMULATION STUDY OF THE POLYHEDRAL STRUCTURE OF LIQUID ARGON DURING GLASS TRANSITION. Modern Physics Letters B, 2009, 23, 1069-1075.	1.0	0
592	Phase transitions in clusters. Low Temperature Physics, 2009, 35, 256-264.	0.2	11
593	The role of grain boundary structure in stress-induced phase transformation in UO2. Modelling and Simulation in Materials Science and Engineering, 2009, 17, 064001.	0.8	6
594	Reverse Monte Carlo study on structural order in liquid and glassy AlFe alloys. Chinese Physics B, 2009, 18, 4949-4954.	0.7	10
595	Molecular dynamics simulations of nanoparticles. International Journal of Nanotechnology, 2009, 6, 274.	0.1	1
596	The reversibility of phase transitions in Ti/Co core/shell nanometre-sized particles. Nanotechnology, 2009, 20, 015702.	1.3	1
597	Molecular dynamics studies of the interaction of <i>a</i> /i>/6 ⟠112⟠© Shockley dislocations with stacking fault tetrahedra in copper. Part I: Intersection of SFT by an isolated Shockley. Philosophical Magazine, 2009, 89, 623-640.	0.7	26
598	Size Dependence of Dislocation-Mediated Plasticity in Ni Single Crystals: Molecular Dynamics Simulations. Journal of Nanomaterials, 2009, 2009, 1-10.	1.5	3

#	Article	IF	CITATIONS
599	Melting of defective Cu with stacking faults. Journal of Chemical Physics, 2009, 130, 024508.	1.2	16
600	Noncrystalline compact packings of hard spheres of two sizes: Bipyramids and the geometry of common neighbors. Journal of Chemical Physics, 2009, 130, 114505.	1.2	6
601	Molecular-dynamics simulations of stacking-fault-induced dislocation annihilation in prestrained ultrathin single-crystalline copper films. Journal of Applied Physics, 2009, 105, .	1.1	26
602	Atomistic analysis of strain relaxation in $[11\hat{A}^{-}0]$ -oriented biaxially strained ultrathin copper films. Journal of Applied Physics, 2009, 106, 103519.	1.1	2
603	Atomistic simulation of a dislocation shear loop interacting with grain boundaries in nanocrystalline aluminium. Modelling and Simulation in Materials Science and Engineering, 2009, 17, 055008.	0.8	27
604	Gravity Packing of Same Size Spheres and Investigation of Wall Ordering. International Journal of Chemical Reactor Engineering, 2009, 7, .	0.6	3
605	Stress-induced phase transformation in nanocrystalline UO2. Scripta Materialia, 2009, 60, 878-881.	2.6	23
606	Molecular dynamics study of stable and undercooled liquid zirconium based on MEAM interatomic potential. Materials Chemistry and Physics, 2009, 116, 489-496.	2.0	19
607	A nucleation mechanism of deformation twins in pure aluminum. Acta Materialia, 2009, 57, 4500-4507.	3.8	68
608	Formation of a pentagonal particle structure from copper nanoclusters. Russian Physics Journal, 2009, 52, 138-143.	0.2	4
609	Thermodynamic Stability of Transition States inÂNanosystems. Journal of Statistical Physics, 2009, 136, 117-130.	0.5	3
610	Do Twin Boundaries Always Strengthen Metal Nanowires?. Nanoscale Research Letters, 2009, 4, 34-38.	3.1	70
611	Multi-scale method study of nano-void under the shock wave. Applied Physics A: Materials Science and Processing, 2009, 94, 987-993.	1.1	8
612	Structural transitions in small nickel clusters. JETP Letters, 2009, 89, 364-369.	0.4	24
613	Collision-induced dissociation of protonated nanodroplets. International Journal of Mass Spectrometry, 2009, 279, 32-36.	0.7	7
614	Molecular-dynamics investigation of structural transformations of a Cu201 cluster in its melting process. Physica B: Condensed Matter, 2009, 404, 205-209.	1.3	13
615	Local icosahedral order and thermodynamics of simulated amorphous Fe. Physica B: Condensed Matter, 2009, 404, 340-346.	1.3	28
616	Molecular dynamics investigation of shape effects on thermal characteristics of platinum nanoparticles. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 272-276.	0.9	42

#	Article	IF	Citations
617	Freezing structures of free silver nanodroplets: A molecular dynamics simulation study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1667-1671.	0.9	33
618	Atomistic visualization: Space–time multiresolution integration of data analysis and rendering. Journal of Molecular Graphics and Modelling, 2009, 27, 951-968.	1.3	22
619	Formation mechanism of atomic cluster structures in Al–Mg alloy during rapid solidification processes. Annals of Physics, 2009, 324, 332-342.	1.0	24
620	A molecular dynamics study of shape transformation and melting of tetrahexahedral platinum nanoparticle. Chemical Physics Letters, 2009, 471, 295-299.	1.2	37
621	Nano-scale phase separation in amorphous Fe–B alloys: Atomic and cluster ordering. Acta Materialia, 2009, 57, 171-181.	3.8	48
622	Atomic structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass alloy. Acta Materialia, 2009, 57, 376-391.	3.8	108
623	Atomistic origin of microstrain broadening in diffraction data of nanocrystalline solids. Acta Materialia, 2009, 57, 1648-1654.	3.8	79
624	Molecular dynamics simulation of fast dislocations in copper. Acta Materialia, 2009, 57, 1843-1855.	3.8	47
625	Variable-charge method applied to study coupled grain boundary migration in the presence of oxygen. Acta Materialia, 2009, 57, 1988-2001.	3.8	45
626	lcosahedral Order, Frustration, and the Glass Transition: Evidence from Time-Dependent Nucleation and Supercooled Liquid Structure Studies. Physical Review Letters, 2009, 102, 057801.	2.9	151
627	Simulation of the processes of structuring of copper nanoclusters in terms of the tight-binding potential. Journal of Experimental and Theoretical Physics, 2009, 108, 784-799.	0.2	25
628	Entropy behavior in cluster melting. Journal of Chemical Physics, 2009, 130, 064302.	1.2	17
629	Orientation and Rate Dependence of Wave Propagation in Shocked Beta-SiC from Atomistic Simulations. Chinese Physics Letters, 2009, 26, 076202.	1.3	0
630	Orientation-Dependent Structural Transition and Melting of Au Nanowires. Journal of Physical Chemistry C, 2009, 113, 20611-20617.	1.5	66
631	Experimental observation of the crystallization of hard-sphere colloidal particles by sedimentation onto flat and patterned surfaces. Physical Review E, 2009, 79, 011403.	0.8	28
632	Phase transitions in various kinds of clusters. Physics-Uspekhi, 2009, 52, 137-164.	0.8	60
633	Molecular dynamics investigations of structural changes accompanying with freezing a molten Cu135 cluster on cooling. Computational Materials Science, 2009, 47, 162-167.	1.4	16
634	Recent progress in metallic glasses in Taiwan. Intermetallics, 2009, 17, 973-987.	1.8	90

#	ARTICLE	IF	CITATIONS
635	Structure and dynamics of liquid Al1â^'xSix alloys by ab initio molecular dynamics simulations. Journal of Non-Crystalline Solids, 2009, 355, 340-347.	1.5	18
636	Simulation study of size distributions and magic number sequences of clusters during the solidification process in liquid metal Na. Journal of Non-Crystalline Solids, 2009, 355, 541-547.	1.5	17
637	Structural characteristics of CuxZr100â^'x metallic glasses by Molecular Dynamics Simulations. Journal of Alloys and Compounds, 2009, 483, 658-661.	2.8	42
638	Molecular dynamics simulation of liquid and amorphous Fe nanoparticles. Nanotechnology, 2009, 20, 295703.	1.3	22
639	Experimental and <i>ab initio</i> structural studies of liquid <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Zr</mml:mtext></mml:mrow><mml:mn>2<physical .<="" 2009,="" 79,="" b,="" review="" td=""><td>:/<mark>1.1</mark> :/mml:mn:</td><td>> </td></physical></mml:mn></mml:msub></mml:mrow></mml:math>	:/ <mark>1.1</mark> :/mml:mn:	>
640	Atomistic simulations of tension properties for bi-crystal copper with twist grain boundary. Journal Physics D: Applied Physics, 2009, 42, 035404.	1.3	22
641	Molecular dynamics simulations of hcp/fcc nucleation and growth in bcc iron driven by uniaxial compression. Journal of Physics Condensed Matter, 2009, 21, 495702.	0.7	20
642	Dynamic Order-Disorder in Atomistic Models of Structural Glass Formers. Science, 2009, 323, 1309-1313.	6.0	333
643	Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions. Journal of Physics Condensed Matter, 2009, 21, 055301.	0.7	10
644	Chapter 88 Dislocation–Obstacle Interactions at the Atomic Level. Dislocations in Solids, 2009, 15, 1-90.	1.6	123
645	From multiply twinned to fcc nanoparticles via irradiation-induced transient amorphization. Europhysics Letters, 2009, 85, 26001.	0.7	23
646	Development of an EAM potential for zinc and its application to the growth of nanoparticles. Physical Chemistry Chemical Physics, 2009, 11, 4039.	1.3	10
647	Vibrational properties of grain boundaries in nanocrystalline Ni using second moment potentials. Philosophical Magazine, 2009, 89, 3511-3529.	0.7	3
649	Determination of the pressure dependent melting temperatures of Al and Ni using molecular dynamics. Journal of Applied Physics, 2009, 106, .	1.1	37
650	Shock-induced spall in solid and liquid Cu at extreme strain rates. Journal of Applied Physics, 2009, 106, .	1.1	156
651	Multiscale Analysis across Atoms/Continuum by a Generalized Particle Dynamics Method. Multiscale Modeling and Simulation, 2009, 8, 228-253.	0.6	12
652	Grain-boundary source/sink behavior for point defects: An atomistic simulation study. International Journal of Materials Research, 2009, 100, 550-555.	0.1	28
653	Development of a method to determine Burgers vectors from atomistic data. Journal of Physics: Conference Series, 2010, 240, 012010.	0.3	3

#	Article	IF	CITATIONS
654	The effect of attractions on the local structure of liquids and colloidal fluids. Journal of Chemical Physics, 2010, 133, 244901.	1.2	30
655	Molecular Dynamics Study of Extraordinary Elastic Deformation Found in Gold Atomic Cluster. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2010, 4, 405-415.	0.3	5
656	Atomistic Simulation on the Relation between Amorphization and Crystalline Transformation in Ni-Ti Alloy. Journal of Solid Mechanics and Materials Engineering, 2010, 4, 1061-1070.	0.5	0
657	Phase transition in nanocrystalline iron: Atomistic-level simulations. International Journal of Materials Research, 2010, 101, 1361-1368.	0.1	7
658	Changes in the structure of nanoclusters of nickel and copper under the action of temperature. Bulletin of the Russian Academy of Sciences: Physics, 2010, 74, 1077-1079.	0.1	0
659	Heterogeneous nucleation of solid Al from the melt by <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3<mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3</mml:mn>3333<td>:/111:mn</td><td>> </td></mml:math>	:/ 11 1:mn	>
660	Stiffness of the crystal-liquid interface in a hard-sphere colloidal system measured from capillary fluctuations. Physical Review E, 2010, 82, 041603.	0.8	20
661	Atomistic cluster alignment method for local order mining in liquids and glasses. Physical Review B, 2010, 82, .	1.1	120
662	Kinetic details of nucleation in supercooled liquid Na: A simulation tracing study. Chemical Physics Letters, 2010, 491, 172-176.	1.2	17
663	Simulation of plastic deformation initiation in crystal materials under dynamic loading. Procedia Engineering, 2010, 2, 1579-1587.	1.2	O
664	Temperature-dependent structural and transport properties of liquid transition metals. Metals and Materials International, 2010, 16, 921-929.	1.8	1
665	Simulation of molecular dynamics of silver subcritical nuclei and crystal clusters during solidification. Science China Technological Sciences, 2010, 53, 3203-3208.	2.0	10
666	High pressure effect on structural transition of Fe cluster during rapid quenching processes. Science China: Physics, Mechanics and Astronomy, 2010, 53, 2037-2041.	2.0	3
667	Ultra-elastic and inelastic impact of Cu nanoparticles. Materials Letters, 2010, 64, 2230-2232.	1.3	17
668	On the microstructure of the Cu65Zr35 and Cu35Zr65 metallic glasses. Scripta Materialia, 2010, 62, 33-36.	2.6	53
669	Quasicontinuum study on formation of fivefold deformation twin in nanocrystalline aluminum. Scripta Materialia, 2010, 62, 419-422.	2.6	23
670	Pressure effects on icosahedral short range order in undercooled copper. Solid State Sciences, 2010, 12, 179-182.	1.5	1
671	Simulations of Metal Cu in Heating Process. Chinese Journal of Chemistry, 2004, 22, 148-151.	2.6	14

#	Article	IF	CITATIONS
673	Atomistic study of deposition process of Al thin film on Cu substrate. Applied Surface Science, 2010, 256, 5993-5997.	3.1	26
674	Molecular-dynamics simulation of structural changes of a molten Cu555 cluster during freezing. Physica B: Condensed Matter, 2010, 405, 632-637.	1.3	15
675	Compressive mechanical behavior of Au nanowires. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 2949-2952.	0.9	23
676	Atomistic study of the effect of hydrogen on dislocation emission from a mode II crack tip in alpha iron. International Journal of Mechanical Sciences, 2010, 52, 334-338.	3.6	68
677	Local and bulk melting of Cu at grain boundaries. Physica B: Condensed Matter, 2010, 405, 748-753.	1.3	18
678	Glass of monatomic Lennard–Jones system at nanoscale. Physica B: Condensed Matter, 2010, 405, 1908-1914.	1.3	17
679	Atomic mechanism of glass formation in supercooled monatomic liquids. Solid State Communications, 2010, 150, 1971-1975.	0.9	12
680	Effects of grain size and grain boundaries on defect production in nanocrystalline 3C–SiC. Acta Materialia, 2010, 58, 2843-2853.	3.8	84
681	Accommodation processes during deformation of nanocrystalline palladium. Acta Materialia, 2010, 58, 5491-5501.	3.8	39
682	Las Palmeras Molecular Dynamics: A flexible and modular molecular dynamics code. Computer Physics Communications, 2010, 181, 2126-2139.	3.0	24
683	Molecular dynamics study on different melting behaviors of Cu _{<i>N</i>} (<i>N</i> = 51–5 clusters. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1178-1182.	3).8	8
684	Substrate-enhanced supercooling in AuSi eutectic droplets. Nature, 2010, 464, 1174-1177.	13.7	117
686	Mechanical Behavior of Nanometer Ni by MD Simulation. , 2010, , .		2
687	Lamellar nanostructures of silicon heterogeneously solidified on graphite sheets. Applied Physics Letters, 2010, 96, 163113.	1.5	10
688	Simulation Study of Microstructure Transition of Liquid Ge during Rapid Cooling Solidification. Materials Science Forum, 2010, 663-665, 1306-1309.	0.3	0
689	Molecular Dynamics Investigation of Relaxation and Local Structure Changes in a Quenched Molten TiAl Alloy Film. Materials Science Forum, 2010, 650, 324-329.	0.3	0
690	Local structure of the Zr–Al metallic glasses studied by proposed <i>n</i> -body potential through molecular dynamics simulation. Journal of Materials Research, 2010, 25, 1679-1688.	1.2	9
691	Influences of Strain Rate on Copper Nanowire in Tension. Key Engineering Materials, 2010, 450, 153-156.	0.4	O

#	Article	IF	CITATIONS
692	A crossover in the mechanical response of silicon carbide due to the accumulation of chemical disorder. Journal of Applied Physics, 2010, 107, .	1.1	8
693	The effect of deposition temperature on the intermixing and microstructure of Fe/Ni thin film. Chinese Physics B, 2010, 19, 126801.	0.7	1
694	Diffusion activation energy versus the favourable energy in two-order-parameter model: A molecular dynamics study of liquid Al. Chinese Physics B, 2010, 19, 086104.	0.7	2
695	Tracing Nucleation and Growth on Atomic Level in Amorphous Sodium by Molecular Dynamics Simulation. Chinese Physics Letters, 2010, 27, 036101.	1.3	3
696	Coalescence between Cu 57 and Cu 58 clusters at a room temperature: molecular dynamics simulations. Chinese Physics B, 2010, 19, 073601.	0.7	7
697	Atomistic simulation of dislocation–void interactions under cyclic loading. Modelling and Simulation in Materials Science and Engineering, 2010, 18, 025006.	0.8	13
698	<i>Ab initio</i> simulations of molten Ni alloys. Journal of Applied Physics, 2010, 107, .	1.1	33
699	Equation of state and topological transitions in amorphous solids under hydrostatic compression. Journal of Applied Physics, 2010, 108, 113510. Atomic size and chemical effects on the local order of mml:math	1.1	11
700	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mtext>Zr</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow>	<td>> {/mml:msu</td>	> {/mml:msu
701	Nanotwinned fcc metals: Strengthening versus softening mechanisms. Physical Review B, 2010, 82, .	1.1	120
702	Atomistic study of xenon crystal growth via low-temperature atom beam deposition. Physical Review B, 2010, 82, .	1,1	8
703	HETEROGENEOUS SOLIDIFICATION OF ALUMINUM ON BORON-NITRIDE NANOTUBE. Nano, 2010, 05, 361-367.	0.5	1
704	Nucleation of hcp and fcc phases in bcc iron under uniform compression: classical molecular dynamics simulations. Journal of Physics Condensed Matter, 2010, 22, 435404.	0.7	17
705	FORMATION OF ICOSAHEDRAL CLUSTERS IN AMORPHOUS Ni - Zr ALLOY. International Journal of Modern Physics B, 2010, 24, 2332-2337.	1.0	0
706	Investigations on the deformation behavior of polycrystalline Cu nanowires and some factors affecting the modulus and yield strength. Modelling and Simulation in Materials Science and Engineering, 2010, 18, 055011.	0.8	5
707	Short-range and medium-range order in Ca7Mg3 metallic glass. Journal of Applied Physics, 2010, 107, 083511.	1.1	37
708	A path-integral Monte Carlo study of a small cluster: The Ar trimer. Journal of Chemical Physics, 2010, 132, 244303.	1.2	15
709	Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modelling and Simulation in Materials Science and Engineering, 2010, 18, 085001.	0.8	815

#	Article	IF	CITATIONS
710	Revisiting anomalous structures in liquid Ga. Journal of Chemical Physics, 2010, 132, 034502.	1.2	32
711	Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2010, 18, 015012.	0.8	8,805
712	Mechanical Behavior of Nanometer Ni by Simulating Nanoindentation. Chinese Physics Letters, 2010, 27, 026104.	1.3	3
713	The shock-front structure of nanocrystalline aluminum. Applied Physics Letters, 2010, 97, .	1.5	26
714	Determining Burgers vectors and geometrically necessary dislocation densities from atomistic data. Modelling and Simulation in Materials Science and Engineering, 2010, 18, 045007.	0.8	25
715	Experimental and computer simulation determination of the structural changes occurring through the liquid–glass transition in Cu–Zr alloys. Philosophical Magazine, 2010, 90, 3795-3815.	0.7	48
716	Molecular Dynamics Simulation of a Coreâ^'Shell Structured Metallic Nanoparticle. Journal of Physical Chemistry C, 2010, 114, 8688-8696.	1.5	49
717	Crystalline to Amorphous Transition and Relative Stability of Amorphous Phase versus Solid Solution in the Cu–Ti System Studied by Molecular Dynamics Simulations. Journal of the Physical Society of Japan, 2010, 79, 064603.	0.7	2
718	Structure and Stability of Fe Nanocrystals: An Atomistic Study. Journal of Physical Chemistry C, 2010, 114, 18841-18846.	1.5	25
719	Structural and dynamic evolution in liquid Au-Si eutectic alloy by <i>ab initio</i> molecular dynamics. Physical Review B, 2010, 81, .	1.1	79
720	Atomistic simulation of the fcc–hcp transition in single-crystal Al under uniaxial loading. New Journal of Physics, 2010, 12, 033011.	1.2	11
721	Dislocation detection algorithm for atomistic simulations. Modelling and Simulation in Materials Science and Engineering, 2010, 18, 025016. Heterogeneous nucleation of solid Al from the melt by <mml:math< td=""><td>0.8</td><td>139</td></mml:math<>	0.8	139
722	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mtext>TiB</mml:mtext></mml:mrow><mml:mn>2xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mrow></mml:mrow></mml:mn></mml:msub></mml:mrow>	1.1	00
723	An <i>ab initio</i> molecular dynamics study. Physical Review B, 2010, 82, . Athermal critical stresses for dislocation propagation in nanocrystalline aluminium. Philosophical Magazine, 2010, 90, 977-989.	0.7	4
724	A numerical investigation of the stability of nanometer-sized amorphous structures. Intermetallics, 2010, 18, 809-814.	1.8	1
725	Structural relaxation and self-repair behavior in nano-scaled Zr–Cu metallic glass under cyclic loading: Molecular dynamics simulations. Intermetallics, 2010, 18, 954-960.	1.8	36
726	Temperature-evolution of structure and diffusion properties of liquid transition metals. Journal of Non-Crystalline Solids, 2010, 356, 1061-1069.	1.5	8
727	Ab initio molecular dynamics to designing structural and dynamic properties in metallic glass-forming alloys. Computational Materials Science, 2010, 49, S210-S213.	1.4	11

#	Article	IF	CITATIONS
728	Orientation-dependent mechanical properties of Au nanowires under uniaxial loading. Computational Materials Science, 2010, 48, 513-519.	1.4	31
729	Tension–compression asymmetry in nanocrystalline Cu: High strain rate vs. quasi-static deformation. Computational Materials Science, 2010, 49, 260-265.	1.4	26
730	Onset of failure in argon by the effect of a shockwave: A molecular dynamics study. Computational Materials Science, 2010, 49, 582-587.	1.4	4
731	Tensile properties of ultrathin copper films and their temperature dependence. Computational Materials Science, 2010, 50, 319-330.	1.4	29
732	Strain-driven phase transition of molybdenum nanowire under uniaxial tensile strain. Computational Materials Science, 2010, 50, 373-377.	1.4	15
733	On reliability of molecular statics simulations of plasticity in crystals. Computational Materials Science, 2010, 50, 771-775.	1.4	8
734	Short- and medium-range order in amorphous <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Zr</mml:mtext></mml:mrow><mml:mn>2< alloy. Physical Review B, 2010, 81, .</mml:mn></mml:msub></mml:mrow></mml:math>	:/mml:mn>	्री mml:msul
735	Simulation of the growth of metal nanoclusters on the MgO(100) surface. Physical Review B, 2010, 81, .	1.1	15
736	Tailoring the Structural Motif of AgCo Nanoalloys: Core/Shell versus Janus-like. Journal of Physical Chemistry C, 2010, 114, 1504-1511.	1.5	95
737	An Examination on Atomic-level Stress Calculations by Nanoindentation Simulation via the Quasicontinuum Method. Journal of Materials Science and Technology, 2010, 26, 56-64.	5.6	3
738	On the deposition mechanisms and the formation of glassy Cu–Zr thin films. Journal of Applied Physics, 2010, 107, .	1.1	26
739	Geometry of Slow Structural Fluctuations in a Supercooled Binary Alloy. Physical Review Letters, 2010, 104, 105701.	2.9	100
740	Geometric methods for microstructure rendition and atomic characterization of poly- and nano-crystalline materials. Philosophical Magazine, 2010, 90, 2191-2222.	0.7	24
741	A parameter-free prediction of simulated crystal nucleation times in the Lennard-Jones system: From the steady-state nucleation to the transient time regime. Journal of Chemical Physics, 2010, 133, 084505.	1.2	14
742	Modeling of crystal nucleation and growth in athermal polymers: self-assembly of layered nano-morphologies. Soft Matter, 2010, 6, 2160.	1.2	39
743	The influence of the simulation box geometry in solid-state molecular simulations: phase behaviour of lithium iodide in a dynamic Monte Carlo simulation. Molecular Simulation, 2010, 36, 364-372.	0.9	5
744	Dynamic response of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow> <mml:mrow> <mml:mrow> <mml:mtext> Cu</mml:mtext> </mml:mrow> <mml:mrow> glass to high-strain-rate shock loading: Plasticity, spall, and atomic-level structures. Physical Review B, 2010, 81, .</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	> {mml:mn 1.1	>46
745	Atomic scale studies of spall behavior in nanocrystalline Cu. Journal of Applied Physics, 2010, 108, .	1.1	71

#	Article	IF	CITATIONS
746	Predicting the self-assembly of a model colloidal crystal. Soft Matter, 2011, 7, 6294.	1.2	35
747	Effects of epitaxial strain on the melting of supported nickel nanoparticles. Physical Review B, 2011, 84,	1.1	9
748	Dislocation mediated plasticity in nanocrystalline Al: the strongest size. Modelling and Simulation in Materials Science and Engineering, 2011, 19, 074005.	0.8	20
749	Composition Dependence of Glass Forming Propensity in Alâ^'Ni Alloys. Journal of Physical Chemistry C, 2011, 115, 2320-2331.	1.5	18
750	Local order and dynamic properties in liquid Au-Ge eutectic alloys by <i> ab initio </i> molecular dynamics. Physical Review B, 2011, 84, .	1.1	23
751	Signature of Al ₁₁ Sm ₃ fragments in undercooled Al ₉₀ Sm ₁₀ liquid from <i>ab initio</i> molecular dynamics simulations. Journal of Physics Condensed Matter, 2011, 23, 235104.	0.7	6
752	On the Lindemann Criterion for Quantum Clusters at Very Low Temperature. Journal of Physical Chemistry A, 2011, 115, 6843-6850.	1.1	7
753	Ordering effects in disordered systems: the Au–Si system. Journal of Physics Condensed Matter, 2011, 23, 404205.	0.7	12
754	Fluctuation between icosahedral and body-centered-cube short-range orders in undercooled Zr liquid. Journal of Applied Physics, $2011,110,110$	1.1	16
755	Vibrational Properties and Specific Heat of Ultrananocrystalline Diamond: Molecular Dynamics Simulations, Journal of Physical Chemistry C, 2011, 115, 21691-21699. Structure and dynamics of liquid Nicommimath xmins:mmil=http://www.w3.org/1998/Math/MathML"	1.5	20
756	display="inline"> <mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:mrow> Zr <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow< td=""><td>1.1</td><td>48</td></mml:mrow<></mml:msub></mml:mrow></mml:math>	1.1	48
757	/> <mml:mrow><mml:mn>64</mml:mn></mml:mrow> by <i>ab initi Characterizing Structure Through Shape Matching and Applications to Self-Assembly. Annual Review of Condensed Matter Physics, 2011, 2, 263-285.</i>	5.2	59
758	Thermal stability of platinum nanowires: a comparison study between single-crystalline and twinned structures. Journal of Materials Chemistry, 2011, 21, 18998.	6.7	16
759	Processes involving clusters and small particles in a buffer gas. Physics-Uspekhi, 2011, 54, 691-721.	0.8	55
760	Glass Formation and Thermodynamics of Supercooled Monatomic Liquids. Journal of Physical Chemistry B, 2011, 115, 6946-6956.	1.2	32
761	High-temperature high-pressure phases of lithium from electron force field (eFF) quantum electron dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15101-15105.	3.3	23
762	Testing of Frank's hypothesis on a containerless packing of macroscopic soft spheres and comparison with mono-atomic metallic liquids. Journal of Alloys and Compounds, 2011, 509, S60-S63.	2.8	1
763	Heteroepitaxial structure of Zn atoms deposit on graphene, Si (001) and graphene/Si (001) substrates for ZnO nanostructure growth. Journal of Crystal Growth, 2011, 336, 32-39.	0.7	2

#	Article	IF	CITATIONS
764	Atomistic structural evolution with cooling rates during the solidification of liquid nickel. Intermetallics, 2011, 19, 630-635.	1.8	12
765	Atomic cluster arrangements in Reverse Monte Carlo and Molecular Dynamics structural models of binary Cu–Zr Metallic Glasses. Intermetallics, 2011, 19, 657-661.	1.8	19
766	Short-range and medium-range order in rapidly quenched Al50Mg50 alloy. Journal of Non-Crystalline Solids, 2011, 357, 1430-1436.	1.5	22
767	Role of the substrate dynamics: Iron clusters deposited on an iron slab. Surface Science, 2011, 605, 2061-2066.	0.8	3
768	Formation and evolution characteristics of bcc phase during isothermal relaxation processes of supercooled liquid and amorphous metal Pb. Transactions of Nonferrous Metals Society of China, 2011, 21, 588-597.	1.7	11
769	Structural and Electronic Properties of Si _{<i>n</i>} , Ge _{<i>n</i>} , and Si _{<i>n</i>} Ge _{<i>n</i>} Clusters. Journal of Physical Chemistry A, 2011, 115, 2005-2015.	1.1	22
770	High energy x-ray scattering studies of the local order in liquid Al. Journal of Chemical Physics, 2011, 135, 044502.	1.2	46
771	A new method for analyzing the local structures of disordered systems. Europhysics Letters, 2011, 96, 36001.	0.7	102
772	Deformation and Failure Mechanisms in Ceramic-Reinforced Metal-Matrix Composites at Atomic Scales. , 2011, , .		1
774	Molecular dynamics investigation of incipient plasticity during nanomachining of Cu (111) surface. International Journal of Nanomanufacturing, 2011, 7, 559.	0.3	1
775	Spatially Resolved Distribution Function and the Medium-Range Order in Metallic Liquid and Glass. Scientific Reports, 2011, 1, 194.	1.6	69
776	Investigating the crystallization process of a ternary alloy system with a new nano-cluster analysis by using molecular dynamics method. Solid State Sciences, 2011, 13, 959-965.	1.5	4
777	Coupled grain boundary motion in a nanocrystalline grain boundary network. Scripta Materialia, 2011, 65, 151-154.	2.6	64
778	Melting of copper under high pressures by molecular dynamics simulation. Chemical Physics Letters, 2011, 515, 217-220.	1.2	28
779	Melting and Freezing of Metal Clusters. Annual Review of Physical Chemistry, 2011, 62, 151-172.	4.8	105
780	A molecular dynamics study to investigate the local atomic arrangements during martensitic phase transformations. Molecular Simulation, 2011, 37, 421-429.	0.9	4
781	Structural Signature of Plastic Deformation in Metallic Glasses. Physical Review Letters, 2011, 106, 135503.	2.9	242
782	Free surface effects on thermodynamics and glass formation in simple monatomic supercooled liquids. Physical Review B, 2011, 84, .	1.1	21

#	Article	IF	CITATIONS
783	Molecular dynamics simulations of Ni/NiAl interfaces. European Physical Journal B, 2011, 82, 133-141.	0.6	10
784	Influence of carbon nanotube on the structure evolution of Ni–Cu alloy nanorod. European Physical Journal D, 2011, 61, 621-625.	0.6	3
785	Atomic mechanism of vitrification process in simple monatomic nanoparticles *. European Physical Journal D, 2011, 61, 627-635.	0.6	15
786	Detecting hidden spatial and spatio-temporal structures in glasses and complex physical systems by multiresolution network clustering. European Physical Journal E, 2011, 34, 105.	0.7	57
787	Molecular dynamics characterization of icosahedral short range order in undercooled copper. European Physical Journal: Special Topics, 2011, 196, 35-43.	1.2	4
788	Atomic mechanism of glass-to-liquid transition in simple monatomic glasses. Philosophical Magazine, 2011, 91, 3443-3455.	0.7	17
789	Coarsening by network restructuring in model nanoporous gold. Acta Materialia, 2011, 59, 7645-7653.	3.8	76
790	Structural and thermodynamic properties of Au2–20 clusters. Theoretical Chemistry Accounts, 2011, 130, 1001-1008.	0.5	10
791	Dynamical study of metallic clusters using the statistical method of time series clustering. Computer Physics Communications, 2011, 182, 1013-1026.	3.0	5
792	Characterizing complex particle morphologies through shape matching: Descriptors, applications, and algorithms. Journal of Computational Physics, 2011, 230, 6438-6463.	1.9	62
793	Atomic-level structure and structure–property relationship in metallic glasses. Progress in Materials Science, 2011, 56, 379-473.	16.0	1,364
794	Atomic packing and short-to-medium range order evolution of Zr-Pd metallic glass. Science Bulletin, 2011, 56, 3908-3911.	1.7	10
795	Thermal effects on small paraâ€hydrogen clusters. International Journal of Quantum Chemistry, 2011, 111, 463-471.	1.0	16
796	SearchFill: A stochastic optimization code for detecting atomic vacancies in crystalline and non-crystalline systems. Computer Physics Communications, 2011, 182, 1105-1110.	3.0	7
797	Atomistic processes of dislocation generation and plastic deformation during nanoindentation. Acta Materialia, 2011, 59, 934-942.	3.8	134
798	Plastic deformation of nanocrystalline Pd–Au alloys: On the interplay of grain boundary solute segregation, fault energies and grain size. Acta Materialia, 2011, 59, 2957-2968.	3.8	47
799	Effect of uniaxial loading on the structural anisotropy and the dynamics of atoms of Cu50Zr50 metallic glasses within the elastic regime studied by molecular dynamics simulation. Acta Materialia, 2011, 59, 4303-4313.	3.8	29
800	Molecular dynamics investigation of structural evolution of fcc Fe nanoparticles under heating process. Chemical Physics Letters, 2011, 502, 207-210.	1.2	21

#	Article	IF	CITATIONS
801	Molecular dynamics simulations on local structure and diffusion in liquid TixAl1 \hat{a} °x alloys. Physica B: Condensed Matter, 2011, 406, 3938-3941.	1.3	6
802	Atomic structure and diffusivity in liquid Al80Ni20 by ab initio molecular dynamics simulations. Physica B: Condensed Matter, 2011, 406, 3089-3097.	1.3	38
803	Atomic mechanism of the heating-induced phase transitions of the simple monatomic glasses. Physica B: Condensed Matter, 2011, 406, 3653-3659.	1.3	9
804	Molecular dynamics study of structural evolution of aluminum during rapid quenching under different pressures. Physica B: Condensed Matter, 2011, 406, 3745-3751.	1.3	11
805	Molecular dynamics study showing the effect of quenching temperature on structural changes of a molten Cu411cluster. Physica Scripta, 2011, 84, 045303.	1.2	7
806	Finite-size effects in the phonon density of states of nanostructured germanium: A comparative study of nanoparticles, nanocrystals, nanoglasses, and bulk phases. Physical Review B, 2011, 83, .	1.1	49
807	Impact of medium-range order on the glass transition in liquid Ni-Si alloys. Physical Review B, 2011, 84, . Short- and medium-range order in Zrxmml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.1	11
808	display="inline"> <mml:mrow><mml:msub><mml:mrow ><mml:mrow><mml:mn>80</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:mrow> Pt <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow< td=""><td>1.1</td><td>89</td></mml:mrow<></mml:msub></mml:mrow></mml:math 	1.1	89
809	Roles of grain boundaries in improving fracture toughness of ultrafine-grained metals. Physical Review B, 2011, 83, .	1.1	43
810	Preparation and Relaxation of Very Stable Glassy States of a Simulated Liquid. Physical Review Letters, 2011, 107, 275702 Rapid chemical and topological ordering in supercooled liquid Cu <mml:math< td=""><td>2.9</td><td>48</td></mml:math<>	2.9	48
811	display="inline"> <mml:mrow><mml:msub><mml:mrow /><mml:mrow>46</mml:mrow></mml:mrow </mml:msub></mml:mrow> Zr <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math 	1.1	75
812	display="inline">< mml:mrow>< mml:ms.ub>< mml:mrow>< mml:ms.ub>< mml:mine">< mml:mrow>< mml:msub>< mml:mine">< mml:mrow>< mml:msub>< mml:mine">< mml:mrow>< mml:msub>< mml:mine">< mml:msub>< mml:msub	ub> <mml< td=""><td>:mi :math>alloy</td></mml<>	:mi :math>alloy
813	A highly modular beamline electrostatic levitation facility, optimized for <i>in situ</i> high-energy x-ray scattering studies of equilibrium and supercooled liquids. Review of Scientific Instruments, 2011, 82, 035114.	0.6	67
814	Temperature sensitivity of void nucleation and growth parameters for single crystal copper: a molecular dynamics study. Modelling and Simulation in Materials Science and Engineering, 2011, 19, 025007.	0.8	30
815	Icosahedral medium-range order formed in Mg ₇₀ Zn ₃₀ metallic glass: a larger-scale molecular dynamics simulation. Chinese Physics B, 2011, 20, 066102.	0.7	10
816	Molecular Dynamics Simulation of Aluminium Thin Film Surface Activated Bonding. Key Engineering Materials, 2011, 486, 127-130.	0.4	0
817	Atomistic study of the competitive relationship between edge dislocation motion and hydrogen diffusion in alpha iron. Journal of Materials Research, 2011, 26, 1269-1278.	1.2	35
818	Molecular Dynamics Simulation of Relaxation and Local Structure Change of a Molten Cu ₁₃₅ Cluster during Rapidly Quenching. Materials Science Forum, 2011, 694, 908-913.	0.3	1

#	Article	IF	CITATIONS
819	Evaluation of Crack Growth Retardation Effect Due to Nano-scale Voids Based on Molecular Dynamics Method. Materials Research Society Symposia Proceedings, 2011, 1297, 23.	0.1	1
820	Orientation dependence of structural transition in fcc Al driven under uniaxial compression by atomistic simulations. Chinese Physics B, 2011, 20, 046402.	0.7	5
821	Favored composition region for metallic glass formation and atomic configurations in the ternary Ni–Zr–Ti system derived from n-body potential through molecular dynamics simulations. Journal of Materials Research, 2011, 26, 2050-2064.	1.2	6
822	Atomic-scale structural evolution from disorder to order in an amorphous metal. Journal of Applied Physics, 2011, 110, 123508.	1.1	5
823	Molecular dynamics study of configuration and stability of vacancy clusters in fcc Ag. Philosophical Magazine, 2011, 91, 3793-3809.	0.7	2
824	Melting of iron at the Earth's core conditions by molecular dynamics simulation. AIP Advances, 2011, 1, 032122.	0.6	6
825	Strengthening Behavior and Tension–Compression Strength–Asymmetry in Nanocrystalline Metal–Ceramic Composites. Journal of Engineering Materials and Technology, Transactions of the ASME, 2012, 134, .	0.8	9
826	Radiation interaction with tilt grain boundaries in \hat{I}^2 -SiC. Journal of Applied Physics, 2012, 111, .	1.1	20
827	Molecular Dynamics Based Study on Ductility Enhancement Effect of Nano-scale Void in Fine-grained Metallic Materials. Materials Research Society Symposia Proceedings, 2012, 1470, 27.	0.1	0
828	A scheme to combine molecular dynamics and dislocation dynamics. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 045001.	0.8	11
829	Elongation behavior and local amorphization of metallic nanowire with glassy shell and crystalline core. Europhysics Letters, 2012, 97, 26005.	0.7	4
830	Nanosize icosahedral quasicrystal in Mg90Ca10 glass: An ab initio molecular dynamics study. Journal of Chemical Physics, 2012, 137, 034503.	1.2	4
831	Shock loading and release of a small angle tilt grain boundary in CU., 2012,,.		1
832	Local atomic structure in equilibrium and supercooled liquid Zr75.5Pd24.5. Journal of Chemical Physics, 2012, 137, 044501.	1.2	26
833	Local order and dynamic properties of liquid Au $\langle i \rangle x \langle i \rangle Si1\hat{a}^{\circ} \langle i \rangle x \langle i \rangle$ alloys by molecular dynamics simulations. Journal of Chemical Physics, 2012, 137, 204504.	1.2	12
834	Melting behavior of Ag14 cluster: An order parameter by instantaneous normal modes. Journal of Chemical Physics, 2012, 137, 244304.	1.2	5
835	Atomistic investigation of scratching-induced deformation twinning in nanocrystalline Cu. Journal of Applied Physics, 2012, 112, .	1.1	21
836	Seamless elastic boundaries for atomistic calculations. Physical Review B, 2012, 86, .	1.1	46

#	ARTICLE	IF	CITATIONS
837	Molecular dynamics simulations of He bubble nucleation at grain boundaries. Journal of Physics Condensed Matter, 2012, 24, 305005.	0.7	15
838	Length-dependent mechanical properties of gold nanowires. Journal of Applied Physics, 2012, 112, 114314.	1.1	28
839	SPATIAL CONFIGURATION OF ATOMS WITH HIGH-ENERGY ATOMIC DISPLACEMENT CASCADE IN α- Fe . Modern Physics Letters B, 2012, 26, 1250192.	1.0	0
840	Brittle-ductile behavior of a nanocrack in nanocrystalline Ni: A quasicontinuum study. Chinese Physics B, 2012, 21, 093104.	0.7	5
841	Singular orientations and faceted motion of dislocations in body-centered cubic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15174-15178.	3.3	80
842	Nanoscale icosahedral packing in amorphous Mg 50 Ni 50 : An ab initio study. Europhysics Letters, 2012, 100, 26002.	0.7	2
843	Atomistic modeling of penny-shaped and through-thickness cracks in bcc iron. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 075004.	0.8	31
844	Atomistic simulation of fcc—bcc phase transition in single crystal Al under uniform compression. Chinese Physics B, 2012, 21, 026402.	0.7	4
845	Grain boundary effects on defect production and mechanical properties of irradiated nanocrystalline SiC. Journal of Applied Physics, 2012, 111, .	1.1	15
846	Investigation of grain boundary activity in nanocrystalline Al under an indenter by using a multiscale method. Chinese Physics B, 2012, 21, 083101.	0.7	4
847	Does an icosahedral short-range order prevail in glass-forming Zr-Cu melts?. Europhysics Letters, 2012, 100, 56002.	0.7	37
848	The non-classical nucleation of crystals: microscopic mechanisms and applications to molecular crystals, ice and calcium carbonate. International Materials Reviews, 2012, 57, 328-356.	9.4	181
849	Unique Melting Characteristics of Truncated Icosahedral Cu135 Cluster. Current Nanoscience, 2012, 8, 38-41.	0.7	3
850	Synthesis of single-component metallic glasses by thermal spray of nanodroplets on amorphous substrates. Applied Physics Letters, 2012, 100, .	1.5	23
851	Twin boundary spacing-dependent friction in nanotwinned copper. Physical Review B, 2012, 85, .	1.1	34
852	Microstructure Evolution in Polycrystalline Metal under Severe Plastic Deformation by Strain-Controlled Molecular Dynamics. Journal of Solid Mechanics and Materials Engineering, 2012, 6, 48-60.	0.5	1
853	Interatomic Potential Development. , 2012, , 267-291.		7
854	Effects of Composition on Atomic Structure, Diffusivity, and Viscosity of Liquid Al-Zr Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3471-3480.	1.1	21

#	Article	IF	Citations
855	Atomic-Level Dislocation Dynamics in Irradiated Metals., 2012, , 333-356.		7
856	Icosahedral short-range order in amorphous Cu80Si20 by ab initio molecular dynamics simulation study. Intermetallics, 2012, 30, 122-126.	1.8	18
857	Improving the understanding of the melting curve of tantalum at extreme pressures through the pressure dependence of fusion volume and entropy. Physica B: Condensed Matter, 2012, 407, 2784-2789.	1.3	7
858	Crystal growth velocity in deeply undercooled Ni–Si alloys. Philosophical Magazine Letters, 2012, 92, 56-66.	0.5	9
859	Effects of reactive elements on the structure and diffusivity of liquid chromia: An <i>ab initio</i> molecular dynamics study. Physical Review B, 2012, 85, .	1.1	19
860	Microstructural evolution and martensitic transformation mechanisms during solidification processes of liquid metal Pb. Philosophical Magazine, 2012, 92, 571-585.	0.7	10
861	Structural phase transitions of FeCo and FeNi nanoparticles: A molecular dynamics study. Journal of Applied Physics, 2012, 111, 024303.	1.1	21
862	Persistent Medium-Range Order and Anomalous Liquid Properties ofAl1â^'xCuxAlloys. Physical Review Letters, 2012, 108, 115901.	2.9	29
863	Detection of hidden structures for arbitrary scales in complex physical systems. Scientific Reports, 2012, 2, 329.	1.6	40
864	Structural properties of ZrxCu90â^'xAl10 metallic glasses investigated by molecular dynamics simulations. Journal of Alloys and Compounds, 2012, 510, 107-113.	2.8	44
865	Crystallization of liquid Cu nanodroplets on single crystal Cu substrates prefers closest-packed planes regardless of the substrate orientations. Journal of Crystal Growth, 2012, 345, 34-38.	0.7	6
866	The formation of FeZn13 phase from atomic cluster during hot dip galvanizing. Computational Materials Science, 2012, 63, 214-217.	1.4	3
867	Mechanical properties of platinum nanowires: An atomistic investigation on single-crystalline and twinned structures. Computational Materials Science, 2012, 55, 205-210.	1.4	25
868	Shock response of copper bicrystals with a â [*] 3 asymmetric tilt grain boundary. Computational Materials Science, 2012, 59, 94-100.	1.4	25
869	Embedded-atom potential for hcp and fcc cobalt. Physical Review B, 2012, 86, .	1.1	65
870	Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 045021.	0.8	1,065
871	Simulation of Cluster Sintering, Dipolar Chain Formation, and Ferroelectric Nanoparticulate Systems. Nanoscience and Technology, 2012, , 139-159.	1.5	0
872	An angular-dependent embedded atom method (A-EAM) interatomic potential to model thermodynamic and mechanical behavior of Al/Si composite materials. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 035007.	0.8	21

#	Article	IF	CITATIONS
873	Theoretical Studies of UNCD Properties. , 2012, , 85-102.		1
874	Competing deformation mechanisms in nanocrystalline metals and alloys: Coupled motion versus grain boundary sliding. Acta Materialia, 2012, 60, 6076-6085.	3.8	67
875	Deformation twins in nanocrystalline body-centered cubic Mo as predicted by molecular dynamics simulations. Acta Materialia, 2012, 60, 6421-6428.	3.8	36
876	Orientation- and microstructure-dependent deformation in metal nanowires under bending. Acta Materialia, 2012, 60, 7112-7122.	3.8	23
877	Growth and properties of Cu thin film deposited on Si(001) substrate: A molecular dynamics simulation study. Applied Surface Science, 2012, 261, 690-696.	3.1	57
878	Ab initio modeling of metallic Pd80Si20 glass. Computational Materials Science, 2012, 65, 44-47.	1.4	29
879	Amorphous nanoparticles â€" Experiments and computer simulations. Physics Reports, 2012, 518, 81-140.	10.3	63
880	Crack tip plasticity in single crystal UO2: Atomistic simulations. Journal of Nuclear Materials, 2012, 430, 96-105.	1.3	29
882	On the elastic–plastic decomposition of crystal deformation at the atomic scale. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 035012.	0.8	78
883	Automated identification and indexing of dislocations in crystal interfaces. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 085007.	0.8	1,412
884	Molecular dynamics study of the milling-induced allotropic transformation in cobalt. Philosophical Magazine, 2012, 92, 2117-2129.	0.7	9
885	First principle molecular dynamic simulation of the rapid solidification process of Ca50Mg20Cu30 alloy. Journal of Applied Physics, 2012, 112, 073517.	1.1	6
886	Development of EAM Potential for Fe with Pseudo-Hydrogen Effects and Molecular Dynamics Simulation of Hydrogen Embrittlement. Zairyo/Journal of the Society of Materials Science, Japan, 2012, 61, 175-182.	0.1	10
887	The Method of Microscopic Strain Analysis Based on Evolution of Atomic Configuration for the Simulation of Nanostructured Materials. Zairyo/Journal of the Society of Materials Science, Japan, 2012, 61, 162-168.	0.1	2
888	Formation and Evolution Characteristics of Nano-Clusters (For Large-Scale Systems of 106 Liquid) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50
889	Decoding the energy landscape: extracting structure, dynamics and thermodynamics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 2877-2899.	1.6	65
890	Self-assembly of model amphiphilic Janus particles. Journal of Chemical Physics, 2012, 136, 174901.	1.2	52
891	A novel structural motif for free CoPt nanoalloys. Nanoscale, 2012, 4, 1160-1166.	2.8	22

#	Article	IF	CITATIONS
892	Melting of Simple Monatomic Amorphous Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 14728-14735.	1.5	12
893	Yielding behavior of copper nanowire in the presence of vacancies. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1010-1017.	2.0	7
894	Stabilization and strengthening of nanocrystalline copper by alloying with tantalum. Acta Materialia, 2012, 60, 2158-2168.	3.8	151
895	Deformation-twin-induced grain boundary failure. Scripta Materialia, 2012, 66, 117-120.	2.6	54
896	Influence of solutes on the competition between mesoscopic grain boundary sliding and coupled grain boundary motion. Scripta Materialia, 2012, 66, 315-317.	2.6	45
897	Atomistic study of grain boundary sink strength under prolonged electron irradiation. Journal of Nuclear Materials, 2012, 422, 69-76.	1.3	40
898	Kinetic details of crystallization in supercooled liquid Pb during the isothermal relaxation. Physica B: Condensed Matter, 2012, 407, 240-245.	1.3	13
899	Atomic mechanism of homogeneous melting of bcc Fe at the limit of superheating. Physica B: Condensed Matter, 2012, 407, 978-984.	1.3	17
900	A molecular dynamics study of structural transition of Ti during the rapid quenching process. Physica B: Condensed Matter, 2012, 407, 2112-2118.	1.3	4
901	Orientation dependence of the nucleation and growth of partial dislocations and possible twinning mechanisms in aluminum. Journal of the Mechanics and Physics of Solids, 2012, 60, 277-294.	2.3	23
902	A novel approach to study dislocation density tensors and lattice rotation patterns in atomistic simulations. Journal of the Mechanics and Physics of Solids, 2012, 60, 711-722.	2.3	73
903	Molecular-dynamics simulation of the heat capacity for nickel and copper clusters: Shape and size effects. Journal of Experimental and Theoretical Physics, 2012, 114, 428-439.	0.2	22
904	Molecular dynamics study on the nano-void growth and coalescence at grain boundary. Science China: Physics, Mechanics and Astronomy, 2012, 55, 86-93.	2.0	9
905	Welding of gold nanowires with different joining procedures. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	11
906	Dynamic properties of liquid and undercooled aluminum. Journal of Physics Condensed Matter, 2013, 25, 285103.	0.7	15
907	The investigation of solid–solid phase transformation at CuAlNi alloy using molecular dynamics simulation. Journal of Physics and Chemistry of Solids, 2013, 74, 1836-1841.	1.9	6
908	Cascade Overlap in hcp Zirconium: Defect Accumulation and Microstructure Evolution with Radiation using Molecular Dynamics Simulations. Materials Research Society Symposia Proceedings, 2013, 1514, 37-42.	0.1	3
909	Size dependence and phase transition during melting of fcc-Fe nanoparticles: A molecular dynamics simulation. Applied Surface Science, 2013, 277, 7-14.	3.1	47

#	ARTICLE	IF	CITATIONS
910	Molecular dynamics simulation on microstructure evolution during solidification of copper nanoparticles. Journal of the Korean Physical Society, 2013, 62, 1645-1651.	0.3	12
911	Formation of the structure of gold nanoclusters during crystallization. Journal of Experimental and Theoretical Physics, 2013, 116, 252-265.	0.2	8
912	Ab initio molecular dynamics study of the structure of undercooled Ni melt. Journal of Non-Crystalline Solids, 2013, 376, 216-220.	1.5	12
913	Molecular simulation of freestanding amorphous nickel thin films. Thin Solid Films, 2013, 545, 584-591.	0.8	10
914	Ab initio molecular dynamics simulation of the liquid and amorphous structure of Mg65Cu25Gd10 alloy. Physica B: Condensed Matter, 2013, 426, 65-70.	1.3	3
915	Nanoscale Plasticity at Grain Boundaries in Face-centered Cubic Copper Under Shock Loading. Jom, 2013, 65, 410-418.	0.9	15
916	Local structure of Co55Ta10B35 amorphous alloy investigated by ab-initio molecular dynamics. Science China: Physics, Mechanics and Astronomy, 2013, 56, 904-909.	2.0	3
917	MD simulations of loading rate dependence of detwinning deformation in nanocrystalline Ni. Science China: Physics, Mechanics and Astronomy, 2013, 56, 491-497.	2.0	6
918	Detwinning-induced reduction in ductility of twinned copper nanowires. Science Bulletin, 2013, 58, 684-688.	1.7	16
919	Neural networks for local structure detection in polymorphic systems. Journal of Chemical Physics, 2013, 139, 164105.	1.2	115
920	Molecular dynamics simulation of the structure of aluminum in the liquid and supercooled states. Russian Metallurgy (Metally), 2013, 2013, 367-374.	0.1	0
921	On the role of Icosahedral-like clusters in the solidification and the mechanical response of Cu–Zr metallic glasses by Molecular Dynamics simulations and Density Functional Theory computations. Intermetallics, 2013, 43, 138-141.	1.8	14
922	Formation of quasi-icosahedral structures with multi-conjoint fivefold deformation twins in fivefold twinned metallic nanowires. Applied Physics Letters, 2013, 103, .	1.5	11
923	High-pressure melting of tantalum from the modified Z method. Journal of Applied Physics, 2013, 114, .	1.1	5
924	Template-assisted nanostructure fabrication by glancing angle deposition: a molecular dynamics study. Nanoscale Research Letters, 2013, 8, 312.	3.1	7
925	On the behavior of indicators of melting: Lennard-Jones system in the vicinity of the phase transition. JETP Letters, 2013, 98, 259-265.	0.4	15
926	A Molecular Dynamics Simulation of Fracture in Nanocrystalline Copper. Journal of Nano Research, 0, 23, 50-56.	0.8	2
927	Revised Basin-Hopping Monte Carlo Algorithm for Structure Optimization of Clusters and Nanoparticles. Journal of Chemical Information and Modeling, 2013, 53, 2282-2298.	2.5	94

#	Article	IF	CITATIONS
928	Enhancing the plasticity of metallic glasses: Shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations. Mechanics of Materials, 2013, 67, 94-103.	1.7	171
929	A Local Statistical Structural Model for Amorphous Solids. Chinese Physics Letters, 2013, 30, 126102.	1.3	6
930	On the conditions of strain localization and microstructure fragmentation under high-rate loading. Physical Mesomechanics, 2013, 16, 191-199.	1.0	10
931	Lifetimes and lengthscales of structural motifs in a model glassformer. Faraday Discussions, 2013, 167, 405.	1.6	57
932	Structural evolution of five-fold twins during the solidification of Fe5601 nanoparticle: a molecular dynamics simulation. Journal of Molecular Modeling, 2013, 19, 751-755.	0.8	15
933	Atomistic interpretation of microstrain in diffraction line profile analysis. Thin Solid Films, 2013, 530, 40-43.	0.8	10
934	Mechanical Properties of Metallic Glasses. Metals, 2013, 3, 77-113.	1.0	112
935	Atomic structure of amorphous Mg40Cu35Ti25 alloy: An ab initio molecular dynamics study. Solid State Communications, 2013, 154, 30-33.	0.9	3
936	On the heredity and evolution of icosahedral clusters during the rapid solidification of liquid Cu50Zr50 alloys. Journal of Non-Crystalline Solids, 2013, 378, 61-70.	1.5	27
937	Simulation of formation and evolution of nano-clusters during rapid solidification of liquid Ca70Mg30 alloy. Transactions of Nonferrous Metals Society of China, 2013, 23, 2354-2360.	1.7	8
938	Cooling rate dependence of the icosahedral order of amorphous CuNi alloy: A molecular dynamics simulation. Vacuum, 2013, 97, 30-35.	1.6	30
939	A molecular dynamics study on the orientation, size, and dislocation confinement effects on the plastic deformation of Al nanopillars. International Journal of Plasticity, 2013, 43, 116-127.	4.1	79
940	Effects of refractory elements on the structure and dynamics of molten Ni: An ab initio molecular dynamics study. Computational Materials Science, 2013, 77, 254-259.	1.4	11
941	A molecular dynamics study of the Si-nanowire@carbon-nanotube nanocomposite with sp3 interfacial bonding. Computational Materials Science, 2013, 79, 650-655.	1.4	6
942	Ab initio molecular dynamics study of temperature dependent structure properties of liquid lead–bismuth eutectic alloy. Physica B: Condensed Matter, 2013, 429, 6-11.	1.3	12
943	Effect of voids on the tensile properties of vanadium nanowires. Nuclear Instruments & Methods in Physics Research B, 2013, 303, 14-17.	0.6	6
944	Molecular dynamics study of the effect of hydrogen on the mechanical properties of tungsten. Journal of Nuclear Materials, 2013, 441, 324-330.	1.3	24
945	Effect of incident angle on thin film growth: A molecular dynamics simulation study. Thin Solid Films, 2013, 544, 496-499.	0.8	16

#	Article	IF	CITATIONS
946	Crystallization analysis and determination of Avrami exponents of CuAlNi alloy by molecular dynamics simulation. Physica B: Condensed Matter, 2013, 409, 63-70.	1.3	21
947	The crystal structures of sintered copper nanoparticles: A molecular dynamics study. International Journal of Plasticity, 2013, 47, 65-79.	4.1	40
948	Evolutions of lamellar structure during melting and solidification of Fe9577 nanoparticle from molecular dynamics simulations. Chemical Physics Letters, 2013, 564, 41-46.	1.2	20
949	Atomic insight into copper nanostructures nucleation on bending graphene. Physical Chemistry Chemical Physics, 2013, 15, 9163.	1.3	13
950	Structure and shear deformation of metallic crystalline–amorphous interfaces. Acta Materialia, 2013, 61, 3600-3611.	3.8	77
951	Molecular dynamics simulation of melting of fcc Lennard-Jones nanoparticles. European Physical Journal D, 2013, 67, 1.	0.6	14
952	Configurational transitions in processes involving metal clusters. Physics Reports, 2013, 527, 205-250.	10.3	26
953	Density-Functional Theory of Free and Supported Metal Nanoclusters and Nanoalloys. Nanostructure Science and Technology, 2013, , 29-79.	0.1	7
954	Local order evolution of liquid Cu during glass transition under different pressures: A molecular dynamics study. Physica B: Condensed Matter, 2013, 408, 6-11.	1.3	1
955	Molecular dynamics based study and characterization of deformation mechanisms near a crack in a crystalline material. Journal of the Mechanics and Physics of Solids, 2013, 61, 1670-1690.	2.3	64
956	Energetic and kinetic behaviors of small vacancy clusters near a symmetric $\hat{1}$ 5(310)/[001] tilt grain boundary in bcc Fe. Journal of Nuclear Materials, 2013, 440, 250-256.	1.3	23
957	Thermally induced solid-solid structural transition of copper nanoparticles through direct geometrical conversion. Journal of Chemical Physics, 2013, 138, 164314.	1.2	12
958	Mapping between finite temperature classical and zero temperature quantum systems: Quantum critical jamming and quantum dynamical heterogeneities. Physical Review B, 2013, 87, .	1.1	16
959	Influence of ion irradiation induced defects on mechanical properties of copper nanowires. Nuclear Instruments & Methods in Physics Research B, 2013, 307, 158-164.	0.6	16
960	Multiscale simulations on the reversible plasticity of Al (001) surface under a nano-sized indenter. Computational Materials Science, 2013, 67, 346-352.	1.4	13
961	Three-dimensional crack initiation mechanisms in bcc-Fe under loading modes I, II and III. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 306-314.	2.6	55
962	Insight into the Melting Behavior of Au–Pt Core–Shell Nanoparticles from Atomistic Simulations. Journal of Physical Chemistry C, 2013, 117, 4278-4286.	1.5	62
963	First-principles prediction and experimental verification of glass-forming ability in Zr-Cu binary metallic glasses. Scientific Reports, 2013, 3, 2124.	1.6	34

#	Article	IF	CITATIONS
964	Structural evolution in Ni–Nb and Ni–Nb–Ta liquids and glasses — A measure of liquid fragility?. Journal of Non-Crystalline Solids, 2013, 362, 237-245.	1.5	33
965	Atomistic Simulations of Fatigue Crack Growth in Single Crystal Aluminum., 2013, , .		0
966	Effects of strontium impurity on the structure and dynamics of Al88Si12liquid. Journal of Physics Condensed Matter, 2013, 25, 245102.	0.7	6
967	Controlling crystal self-assembly using a real-time feedback scheme. Journal of Chemical Physics, 2013, 138, 094502.	1.2	26
968	Chemical and topological short-range orders in the ternary Ni–Zr–Al metallic glasses studied by Monte Carlo simulations. Journal of Physics Condensed Matter, 2013, 25, 095005.	0.7	9
969	The evolution of structural and electronic properties during the glass transition process of Al–Ni–Nd alloy. Journal Physics D: Applied Physics, 2013, 46, 105303.	1.3	4
970	Molecular Dynamics Simulation of Structural Changes of Ag ₉₆₅ Clusters during Freezing. Advanced Materials Research, 0, 683, 348-352.	0.3	0
971	MD Simulation on Evolution of Micro Structure and Failure Mechanism around Interactional Voids in Pure Al. Applied Mechanics and Materials, 2013, 444-445, 183-190.	0.2	2
972	Structure Relaxations during the Isothermal Annealing of Amorphous Ca ₇ Mg ₃ Alloy. Advanced Materials Research, 2013, 813, 51-54.	0.3	0
973	Mechanisms of anisotropic friction in nanotwinned Cu revealed by atomistic simulations. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 065001.	0.8	18
974	Indenter Size Effect on the Incipient Plasticity of Al (001) Surface. Materials Science Forum, 0, 749, 510-517.	0.3	1
975	Molecular-Dynamics Simulation of Structure Change for a Molten Cu ₂₉₇ Nanocluster during Rapidly Quenching. Advanced Materials Research, 0, 652-654, 267-271.	0.3	1
976	Molecular Dynamics Simulations of Atomic Structure in Cu ₄₆ Zr ₄₆ Al ₈ Metallic Liquid and Glass. Advanced Materials Research, 2013, 773, 380-385.	0.3	0
977	The Study of Structural Transformation Induced by Cu Concentration Variation in the Frozen (CoCu) < sub > 309 < /sub > Clusters. Advanced Materials Research, 2013, 773, 589-594.	0.3	3
978	Molecular Dynamics Simulation on Plastic Deformation of Nanocrystalline Copper. Conference Proceedings of the Society for Experimental Mechanics, 2013, , 203-213.	0.3	0
979	Hydrogen-induced change in core structures of $\{110\}[111]$ edge and $\{110\}[111]$ screw dislocations in iron. Scientific Reports, 2013, 3, 2760.	1.6	26
980	Simulations of Structural Transition of Ti ₇₅ Al ₂₅ under High Pressure. Applied Mechanics and Materials, 0, 401-403, 708-712.	0.2	0
981	Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics. Scientific Reports, 2013, 3, 3135.	1.6	88

#	Article	IF	CITATIONS
982	Identification of structure in condensed matter with the topological cluster classification. Journal of Chemical Physics, 2013, 139, 234506.	1.2	112
983	Hierarchical dislocation nucleation controlled by internal stress in nanocrystalline copper. Applied Physics Letters, 2013, 102, 241910.	1.5	10
984	A comparative study on shock compression of nanocrystalline Al and Cu: Shock profiles and microscopic views of plasticity. Journal of Applied Physics, 2013, 114, .	1.1	11
985	Elucidating asymmetric yield behavior of copper nano-wires during tensile and compressive load. Journal of Applied Physics, 2013, 114, 143503.	1.1	0
986	On the hierarchy of deformation processes in nanocrystalline alloys: Grain boundary mediated plasticity vs. dislocation slip. Journal of Applied Physics, 2013, 114, .	1.1	8
987	Why does the second peak of pair correlation functions split in quasi-two-dimensional disordered films?. Applied Physics Letters, 2013, 102, .	1.5	14
988	Grain Boundary Motion under Dynamic Loading: Mechanism and Large-Scale Molecular Dynamics Simulations. Materials Research Letters, 2013, 1, 220-227.	4.1	9
989	Local order and dynamic properties of liquid and undercooled Cu55Hf45 and Cu62Hf38 alloys by ab initio molecular dynamics. Journal of Applied Physics, 2013, 114, 063514.	1.1	8
990	Multiscale simulations in face-centered cubic metals: A method coupling quantum mechanics and molecular mechanics. Chinese Physics B, 2013, 22, 027101.	0.7	1
991	Modeling the Freezing of Molten Copper Nanoclusters: The Effect of Quenching Temperature and Cluster Size. Journal of the Physical Society of Japan, 2013, 82, 054601.	0.7	6
992	Molecular dynamics simulations of the size effect of titanium single-crystal nanopillars orientated for double prismatic slips. Philosophical Magazine Letters, 2013, 93, 583-590.	0.5	9
993	STRUCTURAL EVOLUTIONS AND PROPERTIES OF GERMANIUM CLUSTERS DURING RAPID COOLING PROCESSES. Modern Physics Letters B, 2013, 27, 1350241.	1.0	0
994	Molecular Dynamics Analyses of Deformation Behavior of Long-Period-Stacking-Ordered Structures. Materials Transactions, 2013, 54, 686-692.	0.4	39
995	Activation Free Energy of Nucleation of a Dislocation Pair in Magnesium. Materials Transactions, 2013, 54, 680-685.	0.4	8
996	Plasticity of nanocrystalline alloys with chemical order: on the strength and ductility of nanocrystalline Ni–Fe. Beilstein Journal of Nanotechnology, 2013, 4, 542-553.	1.5	3
997	Molecular dynamic simulation for nanometric cutting of single-crystal face-centered cubic metals. Nanoscale Research Letters, 2014, 9, 622.	3.1	12
998	Mechanical properties of self-irradiated single-crystal copper. Chinese Physics B, 2014, 23, 036101.	0.7	5
999	Interplay between the structure and dynamics in liquid and undercooled boron: An <i>ab initio</i> molecular dynamics simulation study. Journal of Chemical Physics, 2014, 141, 234504.	1.2	4

#	Article	IF	Citations
1000	Origins of Folding Instabilities on Polycrystalline Metal Surfaces. Physical Review Applied, 2014, 2, .	1.5	63
1001	The Structure Transition of (AgCu) < sub > 309 < /sub > Clusters during the Freezing Process: A Molecular Dynamics Simulation. Applied Mechanics and Materials, 2014, 556-562, 67-71.	0.2	O
1002	Phase stability and in situ growth stresses in Ti/Nb thin films. Acta Materialia, 2014, 80, 490-497.	3.8	16
1003	Short range orders in molten Al: An ab initio molecular dynamics study. Computational Materials Science, 2014, 93, 97-103.	1.4	5
1004	The Pressure Effect on Glass Formation and Cluster Structure Evolution during Cooling Process of PdNi Alloy: A Molecular Dynamics Study. Acta Physica Polonica A, 2014, 125, 49-53.	0.2	5
1005	Microstructure Evolution Characteristics during Rapid Solidification of Ca-Mg Alloys with Different Mg Contents. Applied Mechanics and Materials, 0, 651-653, 252-255.	0.2	O
1006	Molecular Dynamics Simulation of Two-Phase Structures of Copper Formed by Laser Grooving. Applied Mechanics and Materials, 2014, 597, 242-248.	0.2	0
1007	Formation and Magic Number Characteristic of Clusters during Rapid Solidification of Mg ₂ Ca. Advanced Materials Research, 2014, 997, 438-441.	0.3	1
1008	Microstructure Transition during Rapid Solidification of Liquid Metal Zn. Advanced Materials Research, 2014, 997, 574-577.	0.3	0
1009	Glass formation and icosahedral medium-range order in liquid Ti–Al alloys. Computational Materials Science, 2014, 95, 502-508.	1.4	17
1010	First-principles calculation of elastic moduli of early-late transition metal alloys. Physical Review B, 2014, 89, .	1.1	8
1011	How to identify dislocations in molecular dynamics simulations?. Science China: Physics, Mechanics and Astronomy, 2014, 57, 2177-2187.	2.0	66
1012	Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation. Applied Physics Letters, 2014, 104, 121907.	1.5	14
1013	Two softening stages in nanotwinned Cu. Philosophical Magazine, 2014, 94, 4037-4052.	0.7	21
1014	Spatial Averaging: Sampling Enhancement for Exploring Configurational Space of Atomic Clusters and Biomolecules. Journal of Chemical Theory and Computation, 2014, 10, 4284-4296.	2.3	1
1015	Structure of Cu64.5Zr35.5 metallic glass by reverse Monte Carlo simulations. Journal of Applied Physics, 2014, 115, 053522.	1.1	6
1016	Wall-induced phase transition controlled by layering freezing. Physical Review E, 2014, 89, 032412.	0.8	9
1017	Effects of spin orbital coupling on atomic and electronic structures in Al2Cu and Al2Au crystal and liquid phases via ab initio molecular dynamics simulations. Journal of Alloys and Compounds, 2014, 613, 55-61.	2.8	7

#	Article	IF	CITATIONS
1018	Modeling of nanostructuring burnishing on different scales. Physical Mesomechanics, 2014, 17, 243-249.	1.0	19
1019	The hydrogen diffusion in liquid aluminum alloys from <i>ab initio</i> molecular dynamics. Journal of Chemical Physics, 2014, 141, 094504.	1.2	4
1020	Nanoindentation of NiAl and Ni3Al crystals on (100), (110), and (111) surfaces: A molecular dynamics study. Applied Physics Letters, 2014, 104, .	1.5	18
1021	Damage nucleation from repeated dislocation absorption at a grain boundary. Computational Materials Science, 2014, 93, 206-209.	1.4	45
1022	Molecular Dynamics Simulation of Solidification of Pd-Ni Clusters with Different Nickel Content. Advances in Materials Science and Engineering, 2014, 2014, 1-7.	1.0	4
1023	A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding. Applied Surface Science, 2014, 303, 331-343.	3.1	125
1024	A metric to gauge local distortion in metallic glasses and supercooled liquids. Acta Materialia, 2014, 72, 229-238.	3.8	9
1025	Molecular dynamics investigation of plastic deformation mechanism in bulk nanotwinned copper with embedded cracks. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 736-740.	0.9	18
1026	Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study. Acta Materialia, 2014, 68, 1-8.	3.8	34
1027	Predicted atomic arrangement of Mg67Zn28Ca5 and Ca50Zn30Mg20 bulk metallic glasses by atomic simulation. Journal of Non-Crystalline Solids, 2014, 388, 23-31.	1.5	16
1028	Local fivefold symmetry in liquid and undercooled Ni probed by x-ray absorption spectroscopy and computer simulations. Physical Review B, 2014, 89, .	1.1	37
1029	Comparative Study on Plastic Deformation of Nanocrystalline Al and Ni. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 1631-1638.	1.1	7
1030	Plastic activity in nanoscratch molecular dynamics simulations of pure aluminium. International Journal of Plasticity, 2014, 53, 90-106.	4.1	57
1031	Determination of the threshold of nanoparticle behavior: Structural and electronic properties study of nano-sized copper. Physica B: Condensed Matter, 2014, 436, 74-79.	1.3	11
1032	Kinetics of a fast moving twin boundary in nickel. Acta Materialia, 2014, 68, 82-92.	3.8	33
1033	Sluggish mobility and strong icosahedral ordering in Mg–Zn–Ca liquid and glassy alloys. Acta Materialia, 2014, 67, 266-277.	3.8	21
1034	Tetrahexahedral Pt–Pd alloy nanocatalysts with high-index facets: an atomistic perspective on thermodynamic and shape stabilities. Journal of Materials Chemistry A, 2014, 2, 1375-1382.	5.2	15
1035	Effect of loading direction on grain boundary failure under shock loading. Acta Materialia, 2014, 64, 113-122.	3.8	82

#	ARTICLE	IF	CITATIONS
1036	Computational Analysis Methods in Atomistic Modeling of Crystals. Jom, 2014, 66, 399-407.	0.9	356
1037	Atomistic simulation of the deformation of nanocrystalline palladium: the effect of voids. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 025011.	0.8	15
1038	Atomic structure evolution during solidification of liquid niobium from <i>ab initio </i> molecular dynamics simulations. Journal of Physics Condensed Matter, 2014, 26, 055004.	0.7	16
1039	Wang-Landau sampling with logarithmic windows for continuous models. Physical Review E, 2014, 89, 013311.	0.8	3
1040	Algorithm Development in Computational Materials Science. Jom, 2014, 66, 397-398.	0.9	1
1041	Role of surface on the size-dependent mechanical properties of copper nano-wire under tensile load: A molecular dynamics simulation. Applied Surface Science, 2014, 289, 47-52.	3.1	13
1042	Molecular Dynamics Simulations of Plastic Damage in Metals. , 2014, , 1-30.		1
1043	Binding of He <i>n</i> V clusters to α-Fe grain boundaries. Journal of Applied Physics, 2014, 115, .	1.1	16
1044	Twinnability of hcp metals at the nanoscale. Journal of Applied Physics, 2014, 115, 224902.	1.1	17
1045	Dynamic properties and local order in liquid Al-Ni alloys. Applied Physics Letters, 2014, 105, .	1.5	29
1046	Binding energetics of substitutional and interstitial helium and di-helium defects with grain boundary structure in \hat{l}_{\pm} -Fe. Journal of Applied Physics, 2014, 115, .	1.1	31
1047	Influence of coherent twin boundaries on three-point bending of gold nanowires. Journal Physics D: Applied Physics, 2014, 47, 195301.	1.3	12
1048	Modern Simulations by the Molecular Dynamics Method. , 2014, , 245-299.		0
1049	Orbital free <i>ab initio</i> simulations of liquid alkaline earth metals: from pseudopotential construction to structural and dynamic properties. Journal of Physics Condensed Matter, 2014, 26, 465102.	0.7	13
1050	Nanothermodynamics of metal nanoparticles. Chemical Science, 2014, 5, 2605-2624.	3.7	89
1051	Atomistic modelling of the plastic deformation of helium bubbles and voids in aluminium under shock compression. Radiation Effects and Defects in Solids, 2014, 169, 109-116.	0.4	23
1052	Network connectivity in icosahedral medium-range order of metallic glass: A molecular dynamics simulation. Journal of Non-Crystalline Solids, 2014, 406, 31-36.	1.5	16
1053	Coarse Graining and Localized Plasticity between Sliding Nanocrystalline Metals. Physical Review Letters, 2014, 113, 036101.	2.9	37

#	Article	IF	Citations
1054	Information-Theoretic Measurements of Coupling between Structure and Dynamics in Glass Formers. Physical Review Letters, 2014, 113, 095703.	2.9	69
1055	Structural and electronic properties of tungsten nanoclusters by DFT and basin-hopping calculations. RSC Advances, 2014, 4, 24286-24294.	1.7	4
1056	Tunable thermodynamic stability of Au–CuPt core–shell trimetallic nanoparticles by controlling the alloy composition: insights from atomistic simulations. Physical Chemistry Chemical Physics, 2014, 16, 22754-22761.	1.3	34
1057	An adaptive immune optimization algorithm with dynamic lattice searching operation for fast optimization of atomic clusters. Chemical Physics, 2014, 440, 94-98.	0.9	8
1058	Liquid–liquid phase transition in quasi-two-dimensional supercooled silicon. Physical Chemistry Chemical Physics, 2014, 16, 18023-18028.	1.3	14
1059	Bergman-type medium-range order in rapidly quenched Ag0.74Ge0.26 eutectic alloy studied by ab initio molecular dynamics simulation. Acta Materialia, 2014, 80, 498-504.	3.8	17
1060	Single-crystalline and multiple-twinned gold nanoparticles: an atomistic perspective on structural and thermal stabilities. RSC Advances, 2014, 4, 7528.	1.7	25
1061	Size-dependent of compression yield strength and deformation mechanism in titanium single-crystal nanopillars orientated [0001] and [1121,0]. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 615, 22-28.	2.6	24
1062	Investigating Amorphous Order in Stable Glasses by Random Pinning. Physical Review Letters, 2014, 112, 255701.	2.9	17
1063	The relation of mechanical properties and local structures in bulk Mg 54 (Cu 1â^' x Ag x) 35 Y 11 metallic glasses: Ab initio molecular dynamics simulations. Computational Materials Science, 2014, 92, 313-317.	1.4	6
1064	Thermal activation analysis of enthalpic and entropic contributions to the activation free energy of basal and prismatic slips in Mg. Physical Review B, 2014, 89, .	1.1	11
1065	Freezing of Lennard-Jones fluid on a patterned substrate. Physical Review E, 2014, 89, 062410.	0.8	9
1066	Comparative study of embedded atom potentials for atomistic simulations of fracture $ x + x $	0.8	49
1067	Molecular Simulation of Ag Nanoparticle Nucleation from Solution: Redox-Reactions Direct the Evolution of Shape and Structure. Nano Letters, 2014, 14, 4913-4917.	4.5	31
1068	Atomic structure of Pd81Si19 glassy alloy under high pressure. Acta Materialia, 2014, 81, 420-427.	3.8	33
1069	Influence of the isothermal process at glass transition temperature on growths of Frank–Kasper polyhedral clusters in TiAl3 alloy. Journal of Non-Crystalline Solids, 2014, 406, 95-101.	1.5	7
1070	Investigations on the deformation mechanisms of single-crystalline Cu nanowires under bending and torsion. Computational Materials Science, 2014, 83, 250-254.	1.4	12
1071	Evolution of icosahedral clusters during the rapid solidification of liquid TiAl alloy. Physica B: Condensed Matter, 2014, 440, 130-137.	1.3	14

#	Article	IF	CITATIONS
1072	Numerical study of the effect of hydrogen on the crack propagation behavior of single crystal tungsten. Fusion Engineering and Design, 2014, 89, 1096-1100.	1.0	13
1073	Materials properties measurements and particle beam interactions studies using electrostatic levitation. Materials Science and Engineering Reports, 2014, 76, 1-53.	14.8	101
1074	Molecular dynamics simulation of fatigue crack propagation in bcc iron under cyclic loading. International Journal of Fatigue, 2014, 68, 253-259.	2.8	60
1075	The effect of cooling rates on hereditary characteristics of icosahedral clusters in rapid solidification of liquid Cu56Zr44 alloys. Journal of Non-Crystalline Solids, 2014, 388, 75-85.	1.5	16
1076	Effects of orientation and vacancy defects on the shock Hugoniot behavior and spallation of single-crystal copper. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 035012.	0.8	25
1077	The atomic and electronic level structure of an In–Cu supercooled alloy at the peritectic point. Journal of Alloys and Compounds, 2014, 611, 386-388.	2.8	4
1078	Local atomic structures in grain boundaries of bulk nanocrystalline aluminium: A molecular dynamics simulation study. Computational Materials Science, 2014, 92, 199-205.	1.4	18
1079	Molecular dynamics simulations of intergranular fracture in UO2 with nine empirical interatomic potentials. Journal of Nuclear Materials, 2014, 452, 296-303.	1.3	37
1080	Phase transformation behavior in titanium single-crystal nanopillars under [0 0 0 1] orientation tension: A molecular dynamics simulation. Computational Materials Science, 2014, 92, 8-12.	1.4	70
1081	Pressure and cooling rate effect on polyhedron clusters in Cu–Al alloy by using molecular dynamics simulation. Physica B: Condensed Matter, 2014, 450, 71-76.	1.3	15
1082	Molecular dynamics simulation of polyhedron analysis of Cu–Ag alloy under rapid quenching conditions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2151-2156.	0.9	25
1083	Correlation Between Local Atomic Symmetry and Mechanical Properties in Metallic Glasses. Journal of Materials Science and Technology, 2014, 30, 551-559.	5.6	36
1084	Influence of icosahedral order on the second peak splitting of pair distribution function for Mg70Zn30 metallic glass. Journal of Alloys and Compounds, 2014, 597, 269-274.	2.8	45
1085	Deformation and failure mechanisms of nanotwinned copper films with a pre-existing crack. Materials Science & Science & Properties, Microstructure and Processing, 2014, 606, 334-345.	2.6	21
1086	Dislocation Multiplication from the Frank–Read Source in Atomic Models. Materials Transactions, 2014, 55, 58-63.	0.4	22
1087	Influence of non-glide stresses on the peierls energy of screw dislocations. Transactions of the JSME (in Japanese), 2014, 80, CM0018-CM0018.	0.1	2
1088	Molecular dynamics simulations of crystallization of Lennard-Jones nanoparticles. EPJ Applied Physics, 2014, 67, 10402.	0.3	1
1089	Thermodynamic modelling of liquids: CALPHAD approaches and contributions from statistical physics. Physica Status Solidi (B): Basic Research, 2014, 251, 33-52.	0.7	28

#	Article	IF	Citations
1090	Effect of segregated Al on and twinning in Mg. Journal of Materials Research, 2015, 30, 3629-3641.	1.2	13
1091	A size-dependent structural evolution of ZnS nanoparticles. Scientific Reports, 2015, 5, 14267.	1.6	32
1092	Solid-state amorphization of Cu nanolayers embedded in a < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" > < mml:mrow > < mml:msub > < mml:mi > Cu < / mml:mi > < mml:mi > Cu < / mml:mi > < mml:mi > < mml:mi > Cu < / mml:mi > < mml:mi > < mml:mi > Cu < / mml:mi > <	n ኔ.6 4 <td>ոևտո></td>	ո ևտ ո>
1093	Stress-driven crystallization via shear-diffusion transformations in a metallic glass at very low temperatures. Physical Review B, 2015, 91, .	1.1	25
1094	Modification of Pt/Co/Pt film properties by ion irradiation. Physical Review B, 2015, 92, .	1.1	9
1095	Rich collision dynamics of soft and sticky crystalline nanoparticles: Numerical experiments. Physical Review E, 2015, 92, 032403.	0.8	9
1096	<i>Ab initio</i> study of the structure and dynamics of bulk liquid Fe. Physical Review B, 2015, 92, .	1.1	31
1097	Effect of tool geometry in nanometric cutting of nanotwinned Cu: a molecular dynamics study. International Journal of Nanomanufacturing, 2015, 11, 138.	0.3	5
1098	Melting of sodium under high pressure. An ab-initio study. AIP Conference Proceedings, 2015, , .	0.3	2
1099	Molecular Dynamics and Monte Carlo simulations in the microcanonical ensemble: Quantitative comparison and reweighting techniques. Journal of Chemical Physics, 2015, 143, 134114.	1.2	11
1100	Correlation between dynamic slowing down and local icosahedral ordering in undercooled liquid Al80Ni20 alloy. Journal of Chemical Physics, 2015, 143, 084508.	1.2	15
1101	Deformation Analysis of the Long-Period Stacking-Ordered Phase by Using Molecular Dynamics Simulations: Kink Deformation under Compression and Kink Boundary Migration under Tensile Strain. Materials Transactions, 2015, 56, 957-962.	0.4	21
1102	Molecular Dynamics Simulation of Dislocation Behavior in TiAl Intermetallic Compound. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 79, 413-418.	0.2	0
1103	Metallic nanoparticles meet metadynamics. Journal of Chemical Physics, 2015, 143, 184304.	1.2	28
1104	Dissecting the Mechanism of Martensitic Transformation via Atomic-Scale Observations. Scientific Reports, 2014, 4, 6141.	1.6	87
1105	Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study. AIP Conference Proceedings, 2015, , .	0.3	0
1106	Comparative study of local atomic structures in Zr2Cu <i>x</i> Ni1â°' <i>x</i> (<i>x</i> = 0, 0.5, 1) metalli glasses. Journal of Applied Physics, 2015, 118, .	ic 1.1	11
1107	Mobility of edge dislocations in stressed iron crystals during irradiation. AIP Conference Proceedings, 2015, , .	0.3	1

#	Article	IF	CITATIONS
1108	Relationship between structure and dynamics in liquid Allâ°' <i>x</i> Ni <i>x</i> alloys. Journal of Chemical Physics, 2015, 143, 084504.	1.2	20
1109	Molecular dynamics simulation of bicrystalline metal surface treatment. AIP Conference Proceedings, 2015, , .	0.3	2
1110	The possibility of using phase transition in Ni and Cu nanoclusters for information recording processes. IOP Conference Series: Materials Science and Engineering, 2015, 81, 012030.	0.3	0
1111	Pressure-induced Structures and Structural Evolution in Iron. Materials Research, 2015, 18, 78-82.	0.6	12
1112	Molecular dynamics simulation of hollow thick-walled cylinder collapse. AIP Conference Proceedings, 2015, , .	0.3	0
1113	Experimental and Theoretical Investigation of Crystallographic Orientation Dependence of Nanoscratching of Single Crystalline Copper. PLoS ONE, 2015, 10, e0131886.	1.1	25
1114	Diverse Melting Modes and Structural Collapse of Hollow Bimetallic Core-Shell Nanoparticles: A Perspective from Molecular Dynamics Simulations. Scientific Reports, 2014, 4, 7051.	1.6	34
1115	Local structure order in Pd78Cu6Si16 liquid. Scientific Reports, 2015, 5, 8277.	1.6	26
1116	Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals. Modelling and Simulation in Materials Science and Engineering, 2015, 23, 055003.	0.8	49
1117	The role of partial mediated slip during quasi-static deformation of 3D nanocrystalline metals. Journal of the Mechanics and Physics of Solids, 2015, 78, 415-426.	2.3	36
1118	Indenter Size Effect on the Reversible Incipient Plasticity of Al (001) Surface Studied via Quasicontinuum Simulations. Materials Science Forum, 2015, 817, 706-711.	0.3	0
1119	Role of grain size on the martensitic transformation and ultra-fast superelasticity in shape memory alloys. Acta Materialia, 2015, 95, 37-43.	3 . 8	28
1120	The local structure of molten Ni $1\hat{a}^*$ x Al x: An ab initio molecular dynamics study. Journal of Non-Crystalline Solids, 2015, 425, 11-19.	1.5	11
1121	Atomistic study of chemical effect on local structure in Mg-based metallic glasses. RSC Advances, 2015, 5, 46861-46868.	1.7	0
1122	Atomistic simulation study on twin orientation and spacing distribution effects on nanotwinned Cu films. Philosophical Magazine, 2015, 95, 3467-3485.	0.7	15
1123	Atomic simulation for influence of helium atom on movement of edge dislocation in nickel. Transactions of Nonferrous Metals Society of China, 2015, 25, 2666-2674.	1.7	0
1124	Cooling rate dependence of polymorph selection during rapid solidification of liquid metal zinc. Transactions of Nonferrous Metals Society of China, 2015, 25, 4072-4079.	1.7	15
1125	Local structural evolution of Fe54C18Cr16Mo12 bulk metallic glass during tensile deformation and a temperature elevation process: a molecular dynamics study. RSC Advances, 2015, 5, 103925-103935.	1.7	3

#	Article	IF	CITATIONS
1126	Performance analysis of parallel algorithms in physics simulation for molecular dynamics simulation liquid metals solidification processes. Computers and Fluids, 2015, 110, 19-26.	1.3	4
1127	An automatic and simple method for specifying dislocation features in atomistic simulations. Computer Physics Communications, 2015, 188, 103-109.	3.0	24
1128	A molecular dynamics study on bubble growth in tungsten under helium irradiation. Journal of Nuclear Materials, 2015, 463, 1071-1074.	1.3	56
1129	Hydrogen diffusion and trapping in nanocrystalline tungsten. Journal of Nuclear Materials, 2015, 458, 233-239.	1.3	42
1130	Molecular dynamics simulation of tension–compression asymmetry in plasticity of fivefold twinned Ag nanopillars. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 603-606.	0.9	4
1131	Impact of W on structural evolution and diffusivity of Ni–W melts: an ab initio molecular dynamics study. Journal of Materials Science, 2015, 50, 1071-1081.	1.7	11
1132	Effect of cooling rates on clustering towards icosahedra in rapidly solidified Cu56Zr44 alloy. Transactions of Nonferrous Metals Society of China, 2015, 25, 533-543.	1.7	6
1133	Estimated partial pair correlation functions in Cu–Zr liquids. Journal of Non-Crystalline Solids, 2015, 412, 66-71.	1.5	3
1134	The alloying processes in solid–solid and liquid–solid Li–Pb interfaces with atomistic simulations. Journal of Alloys and Compounds, 2015, 632, 467-472.	2.8	5
1135	Atomic-scale intergranular crack-tip plasticity in tilt grain boundaries acting as an effective dislocation source. Acta Materialia, 2015, 87, 233-247.	3.8	35
1136	The investigation of nucleation rate and Johnson–Mehl–Avrami model of Pt–Pd alloy using molecular dynamics simulation during heat treatment processes. Journal of Alloys and Compounds, 2015, 632, 116-121.	2.8	16
1137	Composition-Dependent Structural and Electronic Properties of Mg95–xZnxCa5Metallic Glasses: An Ab Initio Molecular Dynamics Study. Journal of Physical Chemistry B, 2015, 119, 3608-3618.	1.2	9
1138	Amorphization and thermal stability of aluminum-based nanoparticles prepared from the rapid cooling of nanodroplets: effect of iron addition. Physical Chemistry Chemical Physics, 2015, 17, 6511-6522.	1.3	11
1139	A DFT study on the heredity-induced coalescence of icosahedral basic clusters in the rapid solidification. Computational Materials Science, 2015, 99, 156-163.	1.4	13
1140	The mechanism of bcc α′ nucleation in single hcp ε laths in the fcc γ → hcp ε → bcc α′ martensitic phase transformation. Acta Materialia, 2015, 95, 264-273.	² 3.8	112
1141	Atomic structure of shear bands in Cu64Zr36 metallic glasses studied by molecular dynamics simulations. Acta Materialia, 2015, 95, 236-243.	3.8	104
1142	Amorphous intergranular films as toughening structural features. Acta Materialia, 2015, 89, 205-214.	3.8	105
1143	On the role of entropy in determining transport properties in metallic melts. Journal of Physics Condensed Matter, 2015, 27, 325104.	0.7	16

#	Article	IF	CITATIONS
1144	Stress-induced formation mechanism of stacking fault tetrahedra in nano-cutting of single crystal copper. Applied Surface Science, 2015, 355, 1153-1160.	3.1	46
1145	Grain-size dependent mechanical behavior of nanocrystalline metals. Materials Science & Description of Processing A: Structural Materials: Properties, Microstructure and Processing, 2015, 646, 101-134.	2.6	172
1146	Application of data science tools to quantify and distinguish between structures and models in molecular dynamics datasets. Nanotechnology, 2015, 26, 344006.	1.3	35
1147	The local order and structural evolution of amorphous PdAg alloy during isothermal annealing under high pressure: A molecular dynamics study. Canadian Journal of Physics, 2015, 93, 7-13.	0.4	1
1148	Anomalous structural dynamics in liquid Al80Cu20: An ab initio molecular dynamics study. Acta Materialia, 2015, 97, 75-85.	3.8	62
1149	Investigation of the mechanical properties and local structural evolution of Ti ₆₀ Zr ₁₀ Ta ₁₅ Si ₁₅ bulk metallic glass during tensile deformation: a molecular dynamics study. RSC Advances, 2015, 5, 55383-55395.	1.7	15
1150	Magnetic Influence of Alloying Elements in Fe-Rich Amorphous Alloys Studied by <italic>Ab Initio</italic> Molecular Dynamics Simulations. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	1
1151	Molecular dynamics simulation-based cohesive zone representation of fatigue crack growth in a single crystal nickel. Computational Materials Science, 2015, 109, 66-75.	1.4	31
1152	Ab initio molecular dynamics simulation of the surface composition of Co 54 Ta 11 B 35 metallic glasses. Journal of Non-Crystalline Solids, 2015, 425, 199-206.	1.5	4
1153	Molecular Dynamics of Thin Mesogene Layer Covering Carbon Nanotube. Springer Proceedings in Physics, 2015, , 103-114.	0.1	0
1154	Computer Simulation of Cholesterol Molecules Embedded in High-Density Lipoprotein. Springer Proceedings in Physics, 2015, , 115-124.	0.1	0
1155	Ab initio simulation: The correlation between the local melt structure and segregation behavior of Fe, V, Ti and Si in liquid Al. Computational Materials Science, 2015, 109, 41-48.	1.4	11
1156	Mechanism of crack healing at room temperature revealed by atomistic simulations. Acta Materialia, 2015, 95, 291-301.	3.8	23
1157	Molecular dynamics simulation of twin boundary effect on deformation of Cu nanopillars. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1902-1905.	0.9	43
1158	The general mechanisms of Cu cluster formation in the processes of condensation from the gas phase. Bulletin of Materials Science, 2015, 38, 701-706.	0.8	5
1159	Annealing recovery of nanoscale silicon surface damage caused by Ga focused ion beam. Applied Surface Science, 2015, 343, 56-69.	3.1	41
1160	Crystallographic orientation-dependent pattern replication in direct imprint of aluminum nanostructures. Nanoscale Research Letters, 2015, 10, 96.	3.1	6
1161	Finite-temperature non-equilibrium quasi-continuum analysis of nanovoid growth in copper at low and high strain rates. Mechanics of Materials, 2015, 90, 253-267.	1.7	34

#	Article	IF	CITATIONS
1162	Molecular dynamics simulations of shock compressed heterogeneous materials. I. The porous case. Journal of Applied Physics, 2015, 117, .	1.1	24
1163	Molecular dynamics simulations of shock compressed heterogeneous materials. II. The graphite/diamond transition case for astrophysics applications. Journal of Applied Physics, 2015, 117, .	1.1	12
1164	Cohesive zone representation of crack and void growth in single crystal nickel via molecular dynamics simulation. Computational Materials Science, 2015, 104, 212-218.	1.4	26
1165	Structural and dynamical properties of liquid Ag74Ge26 alloy studied by experiments and ab initio molecular dynamics simulation. Acta Materialia, 2015, 92, 109-116.	3.8	31
1166	Deformation mechanisms of Cu nanowires with planar defects. Journal of Applied Physics, 2015, 117, .	1.1	5
1167	Non-linear effects of initial melt temperatures on microstructures and mechanical properties during quenching process of liquid Cu46Zr54 alloy. Physica B: Condensed Matter, 2015, 465, 81-88.	1.3	4
1168	Influence of Composition and Chemical Arrangement on the Kinetic Stability of 147-Atom Au–Ag Bimetallic Nanoclusters. Journal of Physical Chemistry C, 2015, 119, 23685-23697.	1.5	29
1169	Computation assisted design of favored composition for ternary Mg–Cu–Y metallic glass formation. Physical Chemistry Chemical Physics, 2015, 17, 14879-14889.	1.3	3
1170	Simulation of the interaction of nanoclusters with metal films. Journal of Surface Investigation, 2015, 9, 1026-1030.	0.1	7
1171	Investigations on the mechanical behavior of nanowires with twin boundaries by atomistic simulations. AIP Conference Proceedings, 2015, , .	0.3	0
1172	Effects of Schmid factor and slip nucleation on deformation mechanism in columnar-grained nanotwinned Ag and Cu. Journal of Applied Physics, 2015, 117, .	1.1	17
1173	Mechanical and dynamical behaviors of ZrSi and ZrSi2 bulk metallic glasses: A molecular dynamics study. Journal of Applied Physics, 2015, 117, 105103.	1.1	8
1174	Study of the effects of metalloid elements (P, C, B) on Fe-based amorphous alloys by $\langle i \rangle$ ab initio $\langle i \rangle$ molecular dynamics simulations. Journal of Applied Physics, 2015, 117, .	1.1	15
1175	Deformation behavior of metallic glass composites reinforced with shape memory nanowires studied via molecular dynamics simulations. Applied Physics Letters, 2015, 106, .	1.5	57
1176	Structural properties of coal metallic glasses investigated by molecular dynamics simulations. Modern Physics Letters B, 2015, 29, 1450267.	1.0	0
1177	Short-range structural signature of transport properties of Al–Ni melts. Journal of Non-Crystalline Solids, 2015, 425, 176-182.	1.5	22
1178	Atomistic pathways of the pressure-induced densification of quartz. Physical Review B, 2015, 92, .	1.1	6
1179	Topological framework for local structure analysis in condensed matter. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5769-76.	3.3	94

#	ARTICLE	IF	CITATIONS
1180	Rate-limited plastic deformation in nanocrystalline Ni. Journal of Applied Physics, 2015, 117, 244301.	1.1	14
1181	Crystallization and arrest mechanisms of model colloids. Soft Matter, 2015, 11, 9307-9320.	1.2	22
1182	Correlation of the heredity of icosahedral clusters with the glass forming ability of rapidly solidified Cu x Zr 100â^'x alloys. Journal of Non-Crystalline Solids, 2015, 427, 199-207.	1.5	24
1183	Molecular dynamics study of creep mechanisms in nanotwinned metals. Computational Materials Science, 2015, 110, 254-260.	1.4	37
1184	Fractal atomic-level percolation in metallic glasses. Science, 2015, 349, 1306-1310.	6.0	114
1185	Stability of iron crystal structures at 0.3–1.5 TPa. Earth and Planetary Science Letters, 2015, 409, 299-306.	1.8	23
1186	Formation of prismatic loops from C15 Laves phase interstitial clusters in body-centered cubic iron. Scripta Materialia, 2015, 98, 5-8.	2.6	44
1187	The effect of rough surface on nanoscale high speed grinding by a molecular dynamics simulation. Computational Materials Science, 2015, 98, 252-262.	1.4	61
1188	Substrate effects on glass formation in simple monatomic supercooled liquids. Chemical Physics, 2015, 447, 1-9.	0.9	1
1189	Molecular dynamics simulation of nanocrystal formation and deformation behavior of Ti3Al alloy. Computational Materials Science, 2015, 98, 245-251.	1.4	16
1190	The role of local structure in dynamical arrest. Physics Reports, 2015, 560, 1-75.	10.3	338
1191	Scratching of copper with rough surfaces conducted by diamond tip simulated using molecular dynamics. International Journal of Advanced Manufacturing Technology, 2015, 77, 1057-1070.	1.5	29
1192	Atomic simulation of fatigue crack propagation in Ni3Al. Applied Physics A: Materials Science and Processing, 2015, 118, 1399-1406.	1.1	16
1193	Formation and evolution of nano-clusters in a large-scale system of Cu–Zr alloy during rapid solidification process. Computational Materials Science, 2015, 98, 1-9.	1.4	15
1194	Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations. Applied Surface Science, 2015, 324, 464-474.	3.1	114
1195	Monte Carlo simulations of densely-packed athermal polymers in the bulk and under confinement. Chemical Engineering Science, 2015, 121, 118-132.	1.9	13
1196	Using a scalar parameter to trace dislocation evolution in atomistic modeling. Computational Materials Science, 2015, 96, 85-89.	1.4	10
1197	Interference effect on friction behavior of asperities on single crystal copper. Tribology International, 2015, 81, 169-178.	3.0	9

#	Article	IF	CITATIONS
1198	Strong geometric frustration in model glassformers. Journal of Non-Crystalline Solids, 2015, 407, 34-43.	1.5	55
1199	Investigation of the local structural rearrangement of Mg67Zn28Ca5 bulk metallic glasses during tensile deformation: A molecular dynamics study. Computational Materials Science, 2015, 96, 56-62.	1.4	15
1200	Structural and Dynamical Properties of Metallic Glassy Films. , 0, , .		0
1201	Molecular Dynamics Study on Ductile Behavior of SiC during Nanoindentation. Tribology Online, 2016, 11, 183-188.	0.2	6
1202	Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation. Beilstein Journal of Nanotechnology, 2016, 7, 228-235.	1.5	2
1203	Short-to-Medium-Range Order and Atomic Packing in Zr48Cu36Ag8Al8 Bulk Metallic Glass. Metals, 2016, 6, 240.	1.0	9
1204	Homogeneous Nucleation and Inner Structure Evolution in Nucleus Fe from Classic Molecular Dynamics Simulation., 0,, 317-326.		0
1205	Simulation of a nonequilibrium phase transition initiated by the volumetric heat source using a molecular dynamics method. AIP Conference Proceedings, 2016, , .	0.3	3
1206	Minimum energy path for the nucleation of misfit dislocations in Ge/Si(0 0 1) heteroepitaxy. Modelling and Simulation in Materials Science and Engineering, 2016, 24, 035007.	0.8	7
1207	Electrodynamicsâ€"molecular dynamics simulations of the stability of Cu nanotips under high electric field. Journal Physics D: Applied Physics, 2016, 49, 215301.	1.3	19
1208	Local symmetry in liquid metals probed by x-ray absorption spectroscopy. Journal of Physics: Conference Series, 2016, 712, 012038.	0.3	3
1209	Tensile mechanical properties of Ni-based superalloy of nanophases using molecular dynamics simulation. Physica Status Solidi (B): Basic Research, 2016, 253, 726-732.	0.7	23
1210	A comparative study on local atomic configurations characterized by cluster-type-index method and Voronoi polyhedron method. Computational Materials Science, 2016, 123, 214-223.	1.4	35
1211	Dominant mechanisms of the sintering of copper nano-powders depending on the crystal misalignment. Computational Materials Science, 2016, 123, 164-175.	1.4	16
1212	Plastic deformation behaviour of layer-grained silver polycrystalline from atomistic simulation. Philosophical Magazine, 2016, 96, 2397-2411.	0.7	2
1213	Structure of inactive states of a binary Lennard-Jones mixture. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016, 074012.	0.9	15
1214	Effect of Strain Field on Threshold Displacement Energy of Tungsten Studied by Molecular Dynamics Simulation. Chinese Physics Letters, 2016, 33, 096102.	1.3	12
1215	Transport properties and Stokes-Einstein relation in Al-rich liquid alloys. Journal of Chemical Physics, 2016, 144, 244502.	1.2	33

#	ARTICLE	IF	Citations
1216	Molecular dynamics simulation of primary radiation damage in Fe–Cr alloy. Journal of Physics: Conference Series, 2016, 774, 012130.	0.3	6
1217	Dislocation evolution and peak spall strengths in single crystal and nanocrystalline Cu. Journal of Applied Physics, 2016, $119, \ldots$	1.1	77
1218	Influence of stacking fault energy on friction of nanotwinned metals. Materials Research Express, 2016, 3, 125018.	0.8	2
1219	Relationship between structural and dynamic properties of Al-rich Al-Cu melts: Beyond the Stokes-Einstein relation. Physical Review B, 2016, 94, .	1.1	30
1220	Synthesis of Cu nanopowders by condensation from the gas phase. IOP Conference Series: Materials Science and Engineering, 2016, 110, 012020.	0.3	0
1221	Shock wave propagation and spall failure in single crystal Mg at atomic scales. Journal of Applied Physics, 2016, 119, .	1.1	42
1222	Structural origins of the boson peak in metals: From high-entropy alloys to metallic glasses. Physical Review B, 2016, 94, .	1.1	41
1223	Condensation of Cu nanoparticles from the gas phase. Physics of Metals and Metallography, 2016, 117, 1003-1012.	0.3	10
1224	A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids. Journal of Chemical Physics, 2016, 144, 094504.	1.2	14
1225	Local structure, composition, and crystallization mechanism of a model two-phase "composite nanoglassâ€. Journal of Chemical Physics, 2016, 144, 064503.	1.2	3
1226	Free surface damage induced by irradiation of BCC iron. AIP Conference Proceedings, 2016, , .	0.3	1
1227	Local Structural Arrangement of Amorphous Al-Ni-Co Alloy during Uniaxial Tension: A Molecular Dynamics Study. Materials Transactions, 2016, 57, 1505-1508.	0.4	4
1228	Grain Subdivision Mechanism Related to Partial Disclinations in Severe Plastic Deformation: A Molecular Dynamics Study. Materials Transactions, 2016, 57, 1392-1398.	0.4	6
1229	Energy landscapes and persistent minima. Journal of Chemical Physics, 2016, 144, 054109.	1.2	10
1230	A liquid-liquid transition can exist in monatomic transition metals with a positive melting slope. Scientific Reports, 2016, 6, 35564.	1.6	7
1231	Martensitic transformation of pure iron at a grain boundary: Atomistic evidence for a two-step Kurdiumov-Sachs–Pitsch pathway. AIP Advances. 2016. 6, Tensiona€"compression asymmetry in uniaxial deformation of a magnesium bicrystal with <mml:math< td=""><td>0.6</td><td>13</td></mml:math<>	0.6	13
1232	xmins:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow> <mml:mrow> <mml:mo stretchy="false"> [</mml:mo> <mml:mover accent="true"> <mml:mrow> <mml:mn> 1 </mml:mn> </mml:mrow> <mml:mrow> <mml:mo> \hat{A}^ </mml:mo> <mml:mn> 1 </mml:mn> <mml:mspace <="" td="" width="0.12em"><td>nro1⊌4> <td>ml:mover><m< td=""></m<></td></td></mml:mspace></mml:mrow></mml:mover></mml:mrow></mml:mrow>	nro 1⊌4> <td>ml:mover><m< td=""></m<></td>	ml : mover> <m< td=""></m<>
1233	/> <mml:mn>0</mml:mn> <mml:mspace width="0.12em"></mml:mspace> <mml:mn>0</mml:mn> <mml:mo 118,="" 2016,="" 236-244.<="" alloy="" at="" by="" computational="" cu="" different="" dynamics="" feâ€"cuâ€"ni="" influence="" materials="" molecular="" of="" on="" precipitation="" properties="" science,="" simulation.="" stretchy="false" td="" temperatures="" tensile="" ternary=""><td>1.4</td><td>17</td></mml:mo>	1.4	17

#	Article	IF	CITATIONS
1234	Atomic self-assembly of the random system into a stably triangular lattice. European Physical Journal Plus, 2016, 131, 1.	1.2	0
1235	Time-, stress-, and temperature-dependent deformation in nanostructured copper: Creep tests and simulations. Journal of the Mechanics and Physics of Solids, 2016, 94, 191-206.	2.3	54
1236	On the transition from plastic deformation to crack initiation in the high- and very high-cycle fatigue regimes in plain carbon steels. International Journal of Fatigue, 2016, 93, 281-291.	2.8	23
1237	Homogeneous hydride formation path in \hat{l} ±-Zr: Molecular dynamics simulations with the charge-optimized many-body potential. Acta Materialia, 2016, 111, 357-365.	3.8	35
1238	Energetic and kinetic dataset on interaction of the vacancy and self-interstitial atom with the grain boundary in \hat{l} ±-iron. Data in Brief, 2016, 7, 798-813.	0.5	5
1239	Global transition path search for dislocation formation in Ge on Si(001). Computer Physics Communications, 2016, 205, 13-21.	3.0	299
1240	Molecular dynamics study of lattice rearrangement under mechanically activated diffusion. Physical Mesomechanics, 2016, 19, 77-85.	1.0	31
1241	Effects of stacking fault energy on defect formation process in face-centered cubic metals. Philosophical Magazine, 2016, 96, 1579-1597.	0.7	18
1242	Improved ductility of Cu ₆₄ Zr ₃₆ metallic glass/Cu nanocomposites via phase and grain boundaries. Nanotechnology, 2016, 27, 175701.	1.3	29
1243	Molecular dynamics simulations of tensile tests of Ni-, Cu-, Mg- and Ti-alloyed aluminium nanopolycrystals. Computational Materials Science, 2016, 116, 32-43.	1.4	9
1244	Atomistic simulation of mechanical properties and crack propagation of irradiated nickel. Computational Materials Science, 2016, 120, 21-28.	1.4	7
1245	Atomistic Study of Deformation and Failure Behavior in Nanocrystalline Mg. MRS Advances, 2016, 1, 3859-3864.	0.5	1
1246	Notch insensitive strength and ductility in gold nanowires. Acta Materialia, 2016, 108, 317-324.	3.8	9
1247	Accelerated molecular dynamics simulations for characterizing plastic deformation in crystalline materials with cracks. Computational Materials Science, 2016, 121, 23-34.	1.4	18
1248	Robust structural identification via polyhedral template matching. Modelling and Simulation in Materials Science and Engineering, 2016, 24, 055007.	0.8	580
1249	Visualization and Analysis Strategies for Atomistic Simulations. Springer Series in Materials Science, 2016, , 317-336.	0.4	9
1250	The effects of pore and second-phase particle on the mechanical properties of machining copper matrix from molecular dynamic simulation. Applied Surface Science, 2016, 384, 419-431.	3.1	33
1251	Glass formation and cluster evolution in the rapidly solidified monatomic metallic liquid Ta under high pressure. Physica A: Statistical Mechanics and Its Applications, 2016, 463, 174-181.	1.2	21

#	Article	IF	Citations
1252	Hydrogen Storage in Palladium Hollow Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 23836-23841.	1.5	24
1253	Impurity effects on solid–solid transitions in atomic clusters. Nanoscale, 2016, 8, 18326-18340.	2.8	14
1254	Local atomic structures of single-component metallic glasses. European Physical Journal B, 2016, 89, 1.	0.6	21
1255	Atomistic investigation of the influence of hydrogen on dislocation nucleation during nanoindentation in Ni and Pd. Acta Materialia, 2016, 116, 364-369.	3.8	28
1256	Structural entropy of glassy systems from graph isomorphism. Soft Matter, 2016, 12, 7281-7288.	1.2	3
1257	Dislocation Structure and Mobility in hcpHe4. Physical Review Letters, 2016, 117, 045301.	2.9	17
1258	Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation. RSC Advances, 2016, 6, 76409-76419.	1.7	109
1259	Multiscale Materials Modeling for Nanomechanics. Springer Series in Materials Science, 2016, , .	0.4	20
1260	Influence of stacking fault energies on the size distribution and character of defect clusters formed by collision cascades in face-centered cubic metals. Nuclear Materials and Energy, 2016, 9, 587-591.	0.6	12
1261	A molecular dynamics study of the shock-induced defect microstructure in single crystal Cu. Computational Materials Science, 2016, 124, 304-310.	1.4	27
1262	Irradiation deformation near different atomic grain boundaries in \hat{l} ±-Zr: An investigation of thermodynamics and kinetics of point defects. Scientific Reports, 2016, 6, 23333.	1.6	36
1263	Correlation between the Local Melt Structure and the Dynamical Properties of Mn, Zn and Si in Liquid Al: An <i>Ab Initio</i> Molecular Dynamics Study. Materials Science Forum, 2016, 850, 319-327.	0.3	0
1264	Structural evolution of nanoscale metallic glasses during high-pressure torsion: A molecular dynamics analysis. Scientific Reports, 2016, 6, 36627.	1.6	21
1265	Interactions between displacement cascades and Σ3ã€^110〉 tilt grain boundaries in Cu. Journal of Nuclear Materials, 2016, 481, 46-52.	1.3	12
1266	A computational insight into void-size effects on strength properties of nanoporous materials. Mechanics of Materials, 2016, 101, 102-117.	1.7	21
1267	Effect of grain boundary character on segregation-induced structural transitions. Physical Review B, 2016, 93, .	1.1	62
1268	Structure and dynamics of high-pressure Na close to the melting line: An <i>ab initio</i> molecular dynamics study. Physical Review B, 2016, 94, .	1.1	16
1269	Size effects in Cu50Zr50 metallic glass films revealed by molecular dynamics simulations. Journal of Alloys and Compounds, 2016, 688, 88-95.	2.8	43

#	Article	IF	CITATIONS
1270	Study for the Effect of Continuously Applied Load on a Compressed Ag Nanoparticle at Room Temperature by Atomic Scale Simulations. Journal of the Physical Society of Japan, 2016, 85, 054602.	0.7	6
1271	Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science, 2016, 354, 1414-1419.	6.0	1,292
1272	Numerical study of the process of plastic deformation localization by an example of high-speed compression of a hollow single crystal cylinder. Technical Physics, 2016, 61, 1619-1625.	0.2	0
1273	Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals. Modelling and Simulation in Materials Science and Engineering, 2016, 24, 085017.	0.8	55
1274	Proposed correlation of structure network inherited from producing techniques and deformation behavior for Ni-Ti-Mo metallic glasses via atomistic simulations. Scientific Reports, 2016, 6, 29722.	1.6	14
1275	A computational intelligence based dislocation recognition during molecular dynamics simulation. , 2016, , .		0
1277	Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materials. Scientific Reports, 2016, 6, 19535.	1.6	18
1278	Fluctuations of the electromagnetic local density of states as a probe for structural phase switching. Physical Review A, 2016, 94, .	1.0	8
1279	Crystallization characteristics in supercooled liquid zinc during isothermal relaxation: A molecular dynamics simulation study. Scientific Reports, 2016, 6, 31653.	1.6	15
1280	The role of fivefold symmetry in suppressing crystallization. Nature Communications, 2016, 7, 13225.	5.8	51
1281	â€~Crystal Genes' in Metallic Liquids and Glasses. Scientific Reports, 2016, 6, 23734.	1.6	52
1282	Locally adaptive method to define coordination shell. Journal of Chemical Physics, 2016, 145, 084108.	1.2	19
1283	Strengthening mechanism of super-hard nanoscale Cu/Al multilayers with negative enthalpy of mixing. APL Materials, $2016, 4, .$	2.2	12
1284	Evolution of atomic displacement cascades in Fe-Cr alloy. AIP Conference Proceedings, 2016, , .	0.3	2
1285	Cooling rate dependence of solidification for liquid aluminium: a large-scale molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2016, 18, 17461-17469.	1.3	78
1286	Structure and transport properties of the liquid Al80Cu20 alloy – A molecular dynamics study. Computational Materials Science, 2016, 122, 341-352.	1.4	24
1287	Atomic structure and thermal stability of Ptâ€"Fe bimetallic nanoparticles: from alloy to core/shell architectures. Physical Chemistry Chemical Physics, 2016, 18, 17010-17017.	1.3	18
1288	Wedge-shaped twins and pseudoelasticity in fcc metallic nanowires under bending. Extreme Mechanics Letters, 2016, 8, 140-150.	2.0	15

#	Article	IF	CITATIONS
1289	BDA: A novel method for identifying defects in body-centered cubic crystals. MethodsX, 2016, 3, 279-288.	0.7	17
1290	Cold welding of copper nanowires with single-crystalline and twinned structures: A comparison study. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 83, 329-332.	1.3	13
1291	Analysis of welding Au nanowires into T junctions. Molecular Simulation, 2016, 42, 1029-1034.	0.9	9
1292	Structural evolution of TiAl during rapid solidification processing revealed by molecular dynamics simulations. RSC Advances, 2016, 6, 54763-54767.	1.7	18
1293	Structural evaluation and deformation features of interface of joint between nano-crystalline Fe–Ni–Cr alloy and nano-crystalline Ni during creep process. Materials and Design, 2016, 108, 168-182.	3.3	37
1294	Twin-induced template effect on the inelastic deformation of hierarchically nanotwinned copper under indentation and scratch. International Journal of Damage Mechanics, 2016, 25, 56-68.	2.4	6
1295	Pressure-induced changes in structural and dynamic properties of liquid Fe close to the melting line. An <i>ab initio</i> study. Journal of Physics Condensed Matter, 2016, 28, 075101.	0.7	18
1296	Structural feature of Cu64Zr36 metallic glass on nanoscale: Densely-packed clusters with loosely-packed surroundings. Scripta Materialia, 2016, 115, 57-61.	2.6	40
1297	Atomistic Activation Energy Criteria for Multi-Scale Modeling of Dislocation Nucleation in FCC Metals. International Journal of Computational Methods, 2016, 13, 1641006.	0.8	6
1298	Information Science for Materials Discovery and Design. Springer Series in Materials Science, 2016, , .	0.4	67
1299	Molecular dynamics simulation of nanoindentation of nanocrystalline Al/Ni multilayers. Computational Materials Science, 2016, 112, 175-184.	1.4	22
1300	Structural transition region of liquid Mg–Li alloys. Computational Materials Science, 2016, 117, 259-265.	1.4	9
1301	Effect of quenching temperature and size on atom movement and local structural change for small copper clusters containing 51–54 atoms during quenching processes. Indian Journal of Physics, 2016, 90, 9-20.	0.9	6
1302	Molecular dynamics simulations of the atom packing characteristics of three deformed silver nanoparticles at room temperature. Physical Chemistry Chemical Physics, 2016, 18, 7310-7317.	1.3	9
1303	Ab initiomolecular dynamics simulations of short-range order in Zr50Cu45Al5and Cu50Zr45Al5metallic glasses. Journal of Physics Condensed Matter, 2016, 28, 085102.	0.7	14
1304	Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading. Composites Part B: Engineering, 2016, 91, 119-125.	5.9	145
1305	Self-diffusion and structural properties of confined fluids in dynamic coexistence. Journal of Physics Condensed Matter, 2016, 28, 135101.	0.7	7
1306	Radiation resistance of nano-crystalline iron: Coupling of the fundamental segregation process and the annihilation of interstitials and vacancies near the grain boundaries. Acta Materialia, 2016, 109, 115-127.	3.8	61

#	Article	IF	CITATIONS
1307	Molecular dynamics study of structure and glass forming ability of Zr70Pd30 alloy. European Physical Journal B, 2016, 89, 1.	0.6	22
1308	Atomic-scale insights into structural and thermodynamic stability of Pd–Ni bimetallic nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 9847-9854.	1.3	13
1309	Fatigue Deformation of Polycrystalline Cu Using Molecular Dynamics Simulations. Transactions of the Indian Institute of Metals, 2016, 69, 489-493.	0.7	10
1310	Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations. Applied Surface Science, 2016, 364, 190-200.	3.1	94
1311	Effects of quenching rate on crack propagation in NiAl alloy using molecular dynamics. Computational Materials Science, 2016, 114, 13-17.	1.4	4
1312	Irradiation-initiated plastic deformation in prestrained single-crystal copper. Nuclear Instruments & Methods in Physics Research B, 2016, 368, 60-65.	0.6	10
1313	Atomistic study on mixed-mode fracture mechanisms of ferrite iron interacting with coherent copper and nickel nanoclusters. Journal of Nuclear Materials, 2016, 472, 20-27.	1.3	10
1314	A highly-efficient technique for evaluating bond-orientational order parameters. Computer Physics Communications, 2016, 198, 128-138.	3.0	8
1315	An energetic and kinetic investigation of the role of different atomic grain boundaries in healing radiation damage in nickel. Journal of Materials Science, 2016, 51, 1017-1031.	1.7	23
1316	Effects of flow defects on hypothetical ZrCu metallic glasses microstructure and plasticity: A molecular dynamics analysis. Journal of Alloys and Compounds, 2016, 656, 518-523.	2.8	10
1317	Effects of iron and chromium on the dynamic properties of oxygen in liquid lead–bismuth eutectic alloy. Corrosion Science, 2017, 118, 1-11.	3.0	20
1318	Molecular dynamics sliding simulations of amorphous Ni, Ni-P and nanocrystalline Ni films. Computational Materials Science, 2017, 129, 231-238.	1.4	29
1319	The effects of metalloid elements (P, C, B) on the properties of Co-based amorphous alloys studied by ab initio molecular dynamics simulations. Computational Materials Science, 2017, 130, 76-83.	1.4	6
1320	Glass formation and structural properties of Zr50Cu50-xAlx bulk metallic glasses investigated by molecular dynamics simulations. Intermetallics, 2017, 84, 62-73.	1.8	41
1321	Evolution of displacement cascades in Fe–Cr structures with different [001] tilt grain boundaries. Radiation Effects and Defects in Solids, 2017, 172, 364-378.	0.4	3
1322	Effect of icosahedral clusters on \hat{I}^2 -relaxations in metallic glasses. Chinese Physics B, 2017, 26, 016101.	0.7	2
1323	Annihilation of edge dislocation loops via climb during nanoindentation. Acta Materialia, 2017, 127, 351-358.	3.8	22
1324	A DFT study on the competition and evolution characteristics between icosahedra and FCC clusters in rapid solidification of liquid Ag. Journal of Molecular Liquids, 2017, 230, 271-279.	2.3	7

#	Article	IF	CITATIONS
1325	<i>Ab initio</i> study of several static and dynamic properties of bulk liquid Ni near melting. Journal of Chemical Physics, 2017, 146, 034501.	1.2	16
1326	Fluctuational parameters based on the Bhatia–Thornton theory for supercritical solutions: Application to a supercritical aqueous solution of n -pentane. Chemical Physics, 2017, 487, 30-36.	0.9	8
1327	The migration behavior of the fourth period transition metals in liquid Al: An ab initio molecular dynamics study. Computational Materials Science, 2017, 130, 183-190.	1.4	7
1328	Analysis of the applicability of Ni, Cu, Au, Pt, and Pd nanoclusters for data recording. Physics of the Solid State, 2017, 59, 413-422.	0.2	3
1329	Computational Modeling for the Ag Nanoparticle Coalescence Process: A Case of Surface Plasmon Resonance. Journal of Physical Chemistry C, 2017, 121, 7030-7036.	1.5	16
1330	Melting of large Pt@MgO(1 0 0) icosahedra. Journal of Physics Condensed Matter, 2017, 29, 145402.	0.7	14
1331	Stiff phase nucleation in a phase-transforming bar due to the collision of non-stationary waves. Archive of Applied Mechanics, 2017, 87, 1019-1036.	1.2	2
1332	Structural evolutions and hereditary characteristics of icosahedral nano-clusters formed in Mg70Zn30 alloys during rapid solidification processes. Scientific Reports, 2017, 7, 43111.	1.6	11
1333	Dislocation cross-slip in fcc solid solution alloys. Acta Materialia, 2017, 128, 135-148.	3.8	68
1334	Spatial variation of short-range order in amorphous intergranular complexions. Computational Materials Science, 2017, 131, 62-68.	1.4	10
1335	Ab initio molecular dynamics simulation on the glass forming ability of Ni-metalloid amorphous alloys. Journal of Non-Crystalline Solids, 2017, 461, 87-92.	1.5	2
1336	Effects of vertical confinement on gelation and sedimentation of colloids. Soft Matter, 2017, 13, 3230-3239.	1.2	18
1337	The effect of pressure on the crystallization of rapidly supercooled zirconium melts. Physical Chemistry Chemical Physics, 2017, 19, 12310-12320.	1.3	28
1338	Pseudoelasticity and shape memory effects in cylindrical FCC metal nanowires. Acta Materialia, 2017, 132, 49-56.	3.8	23
1339	Statistical and image analysis for characterizing simulated atomic-scale damage in crystals. Computational Materials Science, 2017, 135, 119-126.	1.4	2
1340	A microscopic continuum model for defect dynamics in metallic glasses. Journal of the Mechanics and Physics of Solids, 2017, 104, 1-11.	2.3	5
1341	Atomistic simulations of thermodynamic properties of Xe gas bubbles in U10Mo fuels. Journal of Nuclear Materials, 2017, 490, 49-58.	1.3	26
1342	Influence of phase stability on the in situ growth stresses in Cu/Nb multilayered films. Acta Materialia, 2017, 132, 149-161.	3.8	15

#	Article	IF	CITATIONS
1343	Investigation of machining mechanism of monocrystalline silicon in nanometric grinding. AIP Advances, 2017, 7, .	0.6	7
1344	Thermal resistance of twist boundaries in silicon nanowires by nonequilibrium molecular dynamics. AIP Advances, 2017, 7, 045105.	0.6	7
1345	Mechanistic study of bending creep behaviour of bicrystal nanobeam. Computational Materials Science, 2017, 136, 36-43.	1.4	18
1346	Atomistic simulation of crack propagation in single crystal tungsten under cyclic loading. Journal of Materials Research, 2017, 32, 1474-1483.	1.2	14
1347	Evolution pattern of collision cascades in bcc V with different grain boundary structures: an atomic scale study. Philosophical Magazine, 2017, 97, 1803-1823.	0.7	5
1348	The torsional mechanical properties of copper nanowires supported by carbon nanotubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 481-488.	0.9	8
1349	Formation of ordered and disordered interfacial films in immiscible metal alloys. Scripta Materialia, 2017, 130, 91-95.	2.6	26
1350	Au@Void@Ag Yolk–Shell Nanoclusters Visited by Molecular Dynamics Simulation: The Effects of Structural Factors on Thermodynamic Stability. Journal of Physical Chemistry Letters, 2017, 8, 2990-2998.	2.1	27
1351	Machine learning for autonomous crystal structure identification. Soft Matter, 2017, 13, 4733-4745.	1.2	86
1352	Influence of grain boundary structure and topology on the plastic deformation of nanocrystalline aluminum as studied by atomistic simulations. International Journal of Plasticity, 2017, 97, 107-125.	4.1	36
1353	Molecular dynamics study of microscopic structures, phase transitions and dynamic crystallization in Ni nanoparticles. RSC Advances, 2017, 7, 25406-25413.	1.7	49
1354	Effect of applied force and atomic organization of copper on its adhesion to a graphene substrate. RSC Advances, 2017, 7, 25118-25131.	1.7	15
1355	Atomistic simulation of structural damage during ion irradiation of iron single crystals. Journal of Physics: Conference Series, 2017, 830, 012067.	0.3	1
1356	Plastic deformation behaviours of CuZr amorphous/crystalline nanolaminate: a molecular dynamics study. Molecular Simulation, 2017, 43, 1116-1124.	0.9	18
1357	Effects of pressure on microstructure evolution and mechanical properties of liquid Ni64Zr36 alloy during rapid solidification: A molecular dynamics simulation study. Computational Materials Science, 2017, 137, 30-38.	1.4	8
1358	Disorder-induced metal-insulator transition in cooled silver and copper nanoparticles: A statistical study. Chemical Physics Letters, 2017, 681, 22-28.	1.2	2
1359	Influence of Cr on local order and dynamic properties of liquid and undercooled Al–Zn alloys. Journal of Chemical Physics, 2017, 146, .	1.2	16
1360	An atomistic study of Y segregation at a $\{101 \hat{A}^-1\}\hat{a}\in \{101 \hat{A}^-2\}$ double twin in Mg. AIP Advances, 2017, 7, .	0.6	3

#	Article	IF	Citations
1361	Thermal Stability of Platinum–Cobalt Bimetallic Nanoparticles: Chemically Disordered Alloys, Ordered Intermetallics, and Core–Shell Structures. ACS Applied Materials & Disordered, 2017, 9, 12486-12493.	4.0	21
1362	The effect of chemical ordering and lattice mismatch on structural transitions in phase segregating nanoalloys. Physical Chemistry Chemical Physics, 2017, 19, 11057-11063.	1.3	16
1363	Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations. Applied Surface Science, 2017, 416, 470-481.	3.1	81
1364	How predictable is plastic damage at the atomic scale?. Applied Physics Letters, 2017, 110, .	1.5	2
1365	Coupled experimental and computational investigation of omega phase evolution in a high misfit titanium-vanadium alloy. Acta Materialia, 2017, 130, 215-228.	3.8	75
1366	Modeling pseudo-elasticity in NiTi: Why the MEAM potential outperforms the EAM-FS potential. Computational Materials Science, 2017, 134, 145-152.	1.4	25
1367	Five-fold local symmetry in metallic liquids and glasses. Chinese Physics B, 2017, 26, 016104.	0.7	19
1368	Vibration and acoustic emission monitoring the stability of peakless tool turning: Experiment and modeling. Journal of Materials Processing Technology, 2017, 246, 224-234.	3.1	55
1369	Comparative study of crystallization process in metallic melts using <i>ab initio </i> molecular dynamics simulations. Journal of Physics Condensed Matter, 2017, 29, 185401.	0.7	6
1370	Effect of temperature and stress on creep behavior of ultrafine grained nanocrystalline Ni-3 at% Zr alloy. Metals and Materials International, 2017, 23, 272-282.	1.8	6
1371	Molecular dynamics simulations of strengthening due to silver precipitates in copper matrix. Physica Status Solidi (B): Basic Research, 2017, 254, 1600479.	0.7	5
1372	Atomistic simulation study of tensile deformation in nanocrystalline and single-crystal Au. Journal of Molecular Modeling, 2017, 23, 114.	0.8	8
1373	Molecular dynamics simulation on the micro-structural evolution in heat-affected zone during the preparation of bulk metallic glasses with selective laser melting. Journal of Alloys and Compounds, 2017, 697, 443-449.	2.8	25
1374	Mesoscale Particle-Based Model of Electrophoretic Deposition. Langmuir, 2017, 33, 652-661.	1.6	24
1375	Molecular dynamics study of strain rate effects on tensile behavior of single crystal titanium nanowire. Computational Materials Science, 2017, 128, 348-358.	1.4	52
1376	Effects of solutes on dislocation nucleation from grain boundaries. International Journal of Plasticity, 2017, 90, 146-155.	4.1	47
1377	Morphology and mechanical properties of nanocrystalline Cu/Ag alloy. Journal of Materials Science, 2017, 52, 4555-4567.	1.7	33
1378	Grain-resolved kinetics and rotation during grain growth of nanocrystalline Aluminium by molecular dynamics. Computational Materials Science, 2017, 128, 207-222.	1.4	19

#	Article	IF	Citations
1379	Mg fragments and Al bonded networks in liquid Mg–Al alloys. Computational Materials Science, 2017, 129, 115-122.	1.4	13
1380	Relation of cooling rate, undercooling and structure for rapid solidification of iron melt. Computational Materials Science, 2017, 128, 98-102.	1.4	21
1381	Defect character at grain boundary facet junctions: Analysis of an asymmetric ΣÂ=Â5 grain boundary in Fe. Acta Materialia, 2017, 124, 383-396.	3.8	49
1382	Simulation accuracy of crack-tip parameters with extended GP methods. Engineering Fracture Mechanics, 2017, 170, 87-106.	2.0	3
1383	Entropy based fingerprint for local crystalline order. Journal of Chemical Physics, 2017, 147, 114112.	1.2	92
1384	Formation of gold composite nanowires using cold welding: a structure-based molecular dynamics simulation. CrystEngComm, 2017, 19, 6347-6354.	1.3	17
1385	Melting and thermal ablation of a silver film induced by femtosecond laser heating: a multiscale modeling approach. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	21
1386	The Quasi-Coarse-Grained Dynamics Method to Unravel the Mesoscale Evolution of Defects/Damage during Shock Loading and Spall Failure of Polycrystalline Al Microstructures. Scientific Reports, 2017, 7, 12376.	1.6	22
1387	Dislocation dynamics in Al0.1CoCrFeNi high-entropy alloy under tensile loading. Intermetallics, 2017, 91, 31-34.	1.8	59
1388	Atomic simulations of the effect of Y and Al segregation on the boundary characteristics of a double twin in Mg. Journal of Applied Physics, 2017, 122, .	1.1	5
1389	Ni-Co bimetallic nanoparticles with core-shell, alloyed, and Janus structures explored by MD simulation. Journal of Molecular Liquids, 2017, 248, 1078-1095.	2.3	23
1390	Scaling laws and mechanical properties of nanoporous copper. Journal of Iron and Steel Research International, 2017, 24, 1041-1047.	1.4	0
1391	Molecular Dynamics Simulations of the Formation Processes of Zinc Oxide Nanoclusters in Oxygen Environment. Springer Proceedings in Physics, 2017, , 145-156.	0.1	19
1392	Molecular dynamic simulation of nanocrystal formation and tensile deformation of TiAl alloy. RSC Advances, 2017, 7, 48315-48323.	1.7	21
1393	A comparative study of mechanical properties of Ni <001> nanowires from atomistic calculations. Journal of Mechanical Science and Technology, 2017, 31, 4887-4893.	0.7	3
1394	Structure and Thermodynamics of Metal Clusters on Atomically Smooth Substrates. Journal of Physical Chemistry Letters, 2017, 8, 5402-5407.	2.1	8
1395	Interplay between structural and atomic transport properties of undercooled Al-Cu binary alloys. AIP Advances, 2017, 7, 105212.	0.6	5
1396	Thermal Stability of Co–Pt and Co–Au Core–Shell Structured Nanoparticles: Insights from Molecular Dynamics Simulations. Journal of Physical Chemistry Letters, 2017, 8, 4273-4278.	2.1	23

#	Article	IF	CITATIONS
1397	Magnetic structure of [0Â0Â1] tilt grain boundaries in bcc Fe studied via magnetic potentials. Philosophical Magazine, 2017, 97, 3027-3041.	0.7	4
1398	Martensitic transformation to monoclinic phase in bulk B2â€"CuZr. Intermetallics, 2017, 91, 16-21.	1.8	16
1399	Single-Walled Carbon Nanotube Engendered Pseudo-1D Morphologies of Silver Nanowire. Journal of Physical Chemistry C, 2017, 121, 20468-20480.	1.5	10
1400	Size-dependent deformation mechanism transition in titanium nanowires under high strain rate tension. Materials and Design, 2017, 134, 320-330.	3.3	19
1401	Effect of high pressure on the formation and evolution of clusters during the rapid solidification of zirconium melts. Computational Materials Science, 2017, 140, 275-283.	1.4	21
1402	Nanograin size effects on the strength of biphase nanolayered composites. Scientific Reports, 2017, 7, 11251.	1.6	13
1403	Local segregation versus irradiation effects in high-entropy alloys: Steady-state conditions in a driven system. Journal of Applied Physics, 2017, 122, .	1.1	61
1404	Understanding the structure and reactivity of NiCu nanoparticles: an atomistic model. Physical Chemistry Chemical Physics, 2017, 19, 26812-26820.	1.3	14
1405	Graphene engendered 2-D structural morphology of aluminium atoms: Molecular dynamics simulation study. Materials Chemistry and Physics, 2017, 202, 329-339.	2.0	17
1406	Atomic-scale structural signature of dynamic heterogeneities in metallic liquids. Npj Computational Materials, 2017, 3, .	3.5	24
1407	Perspective on Structural Evolution and Relations with Thermophysical Properties of Metallic Liquids. Advanced Materials, 2017, 29, 1703136.	11.1	11
1408	Multi-atom pattern analysis for binary superlattices. Soft Matter, 2017, 13, 6803-6809.	1.2	13
1409	Effects of twin orientation and spacing on the mechanical properties of Cu nanowires. Scientific Reports, 2017, 7, 10056.	1.6	14
1410	Identifying deformation mechanisms in molecular dynamics simulations of laser shocked matter. Journal of Computational Physics, 2017, 350, 16-24.	1.9	2
1411	Presence of retained crystalline seed necessary for bicrystal-liquid-bicrystal phase transformation. Journal of Crystal Growth, 2017, 475, 307-315.	0.7	4
1412	Machine-learning approach for local classification of crystalline structures in multiphase systems. Physical Review E, 2017, 96, 011301.	0.8	44
1413	The relationship between atomic structure and magnetic property of amorphous Fe 78 Si 9 B 13 alloy at different pressures. Journal of Magnetism and Magnetic Materials, 2017, 443, 216-221.	1.0	15
1414	Chemically induced structural heterogeneities and their relationship with component dynamics in a binary metallic liquid. Applied Physics Letters, 2017, 110, .	1.5	8

#	Article	IF	CITATIONS
1415	Hard particle effect on surface generation in nano-cutting. Applied Surface Science, 2017, 425, 1020-1027.	3.1	35
1416	Shear and shuffling accomplishing polymorphic fcc γÂ→Âhcp εÂ→Âbct α martensitic phase transformation. Ac Materialia, 2017, 136, 347-354.	cta _{.8}	81
1417	Monte Carlo Study of the Crystalline and Amorphous NaK Alloy. Procedia Computer Science, 2017, 108, 1215-1221.	1.2	1
1418	Effects of temperature and velocity of uniaxial tension of Au/Cu/Au/Cu nanofilms investigated using molecular dynamics. , 2017, , .		O
1419	Crystallization kinetics in AlxCrCoFeNi (0 â‰ໝ â‰ໝ0) high-entropy alloys. Scripta Materialia, 2017, 141, 54-57.	2.6	42
1420	Dumbbell-like, core–shell and Janus-like configurations in Pd@Au@Pd three-shell nanoalloys: a molecular dynamics study. Inorganic Chemistry Frontiers, 2017, 4, 1551-1561.	3.0	19
1421	Atomistic simulation of effects of temperature and velocity on tensile-deformed Au/Cu/Au/Cu films. Thin Solid Films, 2017, 638, 258-263.	0.8	7
1422	Molecular dynamics studies on the grain growth of nanocrystalline Ni and Ni ₃ Al. Modern Physics Letters B, 2017, 31, 1750237.	1.0	0
1423	First principles determination of static, dynamic and electronic properties of liquid Ti near melting. Computational Materials Science, 2017, 139, 243-251.	1.4	14
1424	New molecular insights into the stability of Ni–Pd hollow nanoparticles. Inorganic Chemistry Frontiers, 2017, 4, 1679-1690.	3.0	18
1425	Thermodynamics of the melting process in Au nano-clusters: Phenomenology, energy, entropy and quasi-chemical modeling. Journal of Physics and Chemistry of Solids, 2017, 111, 286-293.	1.9	10
1426	Computational assisted design of the favored composition for metallic glass formation in a Ca–Mg–Cu system. RSC Advances, 2017, 7, 39082-39088.	1.7	O
1427	Size effect on atomic structure in low-dimensional Cu-Zr amorphous systems. Scientific Reports, 2017, 7, 7291.	1.6	11
1428	Uncovering heterogeneous interactions in online commercial networks. Scientific Reports, 2017, 7, 17209.	1.6	O
1429	Molecular dynamics study of plastic deformation mechanism in Cu/Ag multilayers. Chinese Physics B, 2017, 26, 126802.	0.7	9
1430	Shock wave propagation and spall failure of nanocrystalline Cu/Ta alloys: Effect of Ta in solid-solution. Journal of Applied Physics, 2017, 122, .	1.1	29
1431	Molecular dynamics study of silicon carbide properties under external dynamic loading. AIP Conference Proceedings, 2017, , .	0.3	6
1432	Microstructural properties and evolution of nanoclusters in liquid Si during a rapid cooling process. JETP Letters, 2017, 106, 667-671.	0.4	2

#	Article	IF	CITATIONS
1433	Extraction of effective solid-liquid interfacial free energies for full 3D solid crystallites from equilibrium MD simulations. Journal of Chemical Physics, 2017, 147, 194704.	1.2	19
1434	The Application and Practice of Matlab in Solid State Physics Teaching. , 2017, , .		0
1435	Shock-induced compaction of nanoparticle layers into nanostructured coating. Journal of Applied Physics, 2017, 122, .	1.1	18
1436	Evolution of irradiation-induced strain in an equiatomic NiFe alloy. Scripta Materialia, 2017, 140, 35-39.	2.6	27
1437	Molecular dynamics simulations of cascade damage near the Y 2 Ti 2 O 7 nanocluster/ferrite interface in nanostructured ferritic alloys. Chinese Physics B, 2017, 26, 076106.	0.7	0
1438	Elastic crack propagation model for crystalline solids using a self-consistent coupled atomistic–continuum framework. International Journal of Fracture, 2017, 208, 171-189.	1.1	7
1439	Evolution of stacking fault tetrahedral and work hardening effect in copper single crystals. Applied Surface Science, 2017, 422, 413-419.	3.1	34
1440	Coupling between dynamic slowing down and chemical heterogeneity in a metallic undercooled liquid. Physical Review B, 2017, 95, .	1.1	14
1441	Enhancing Entropy and Enthalpy Fluctuations to Drive Crystallization in Atomistic Simulations. Physical Review Letters, 2017, 119, 015701.	2.9	74
1442	Comparatively studying the local atomic structures of metallic glasses upon cyclic-loading by computer simulations. RSC Advances, 2017, 7, 18358-18365.	1.7	8
1443	Vibration-Induced Property Change in the Melting and Solidifying Process of Metallic Nanoparticles. Nanoscale Research Letters, 2017, 12, 308.	3.1	5
1444	Modeling the thermodynamic behavior and shock response of Ti systems at the atomic scales and the mesoscales. Journal of Materials Science, 2017, 52, 10853-10870.	1.7	19
1445	A comparison of interatomic potentials for modeling tungsten nanocluster structures. Nuclear Instruments & Methods in Physics Research B, 2017, 393, 180-185.	0.6	4
1446	Glide mobility of the $1/2[1\ 1\ 0](0\ 0\ 1)$ edge dislocation in UO2 from molecular dynamics simulation. International Journal of Plasticity, 2017, 89, 85-95.	4.1	26
1447	Kinetic and structural fragility—a correlation between structures and dynamics in metallic liquids and glasses. Journal of Physics Condensed Matter, 2017, 29, 023002.	0.7	42
1448	Molecular dynamics simulations of glass formation and atomic structures in Zr60Cu20Fe20 ternary bulk metallic alloy. Vacuum, 2017, 136, 20-27.	1.6	34
1449	Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys. Acta Materialia, 2017, 123, 90-101.	3.8	161
1450	Temperature and strain rate effect of the deformation-induced phase transformation in pure titanium nanopillars oriented along [0 0 0 1]. Computational Materials Science, 2017, 126, 66-73.	1.4	21

#	Article	IF	Citations
1451	The effect of inclination angle on the plastic deformation behavior of bicrystalline silver nanowires with $\hat{1}\pm3$ asymmetric tilt grain boundaries. Applied Surface Science, 2017, 392, 1153-1164.	3.1	9
1452	Identification of crystal structures in atomistic simulation by predominant common neighborhood analysis. Computational Materials Science, 2017, 126, 182-190.	1.4	25
1453	Effect of Li on the deformation mechanisms of nanocrystalline hexagonal close packed magnesium. Computational Materials Science, 2017, 126, 252-264.	1.4	21
1454	Friction behavior of nanocrystalline nickel near the Hall-Petch breakdown. Tribology International, 2017, 107, 18-24.	3.0	19
1455	Nanopowder synthesis based on electric explosion technology. AIP Conference Proceedings, 2017, , .	0.3	2
1456	Molecular Dynamics Modeling and Simulation of Diamond Cutting of Cerium. Nanoscale Research Letters, 2017, 12, 464.	3.1	19
1457	Thermal stability of Pt nanoclusters interacting to carbon sublattice. Physics of the Solid State, 2017, 59, 2512-2518.	0.2	6
1458	Fragmentation features of vanadium crystallite at deformation in constrained conditions. AIP Conference Proceedings, 2017, , .	0.3	0
1459	Atomistic study of inelastic deformation in aluminium grain boundary fractures. Philosophical Magazine Letters, 2017, 97, 476-485.	0.5	2
1460	Medium Range Ordering realized in Zr ₈₀ Pt ₂₀ Amorphous Alloy. Journal of Physics: Conference Series, 2017, 809, 012005.	0.3	6
1461	Influence of vibration on acoustic emission during mechanical treatment. Molecular dynamics study. AIP Conference Proceedings, 2017, , .	0.3	0
1462	Molecular dynamics study of acoustic emission from individual lattice defects. AIP Conference Proceedings, 2017, , .	0.3	0
1463	Modification of grain structure of the near-surface layer in aluminum under high energy impact. AIP Conference Proceedings, 2017, , .	0.3	0
1464	Structure of bicomponent particles synthesized from colliding metal clusters. AIP Conference Proceedings, 2017, , .	0.3	0
1465	Molecular Statics Simulation of the Effect of Hydrogen Concentration on {112}<111> Edge Dislocation Mobility in Alpha Iron. ISIJ International, 2017, 57, 2058-2064.	0.6	28
1466	Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization. Frontiers in Materials, 2017, 4, .	1.2	54
1467	Features of structural response of vanadium crystallite under deformation in different crystallographic directions. AIP Conference Proceedings, 2017, , .	0.3	0
1468	Features of structural changes in the near-surface aluminum layer under various schemes of ion implantation. AIP Conference Proceedings, 2017, , .	0.3	O

#	Article	IF	CITATIONS
1469	The effect of size and composition on structural transitions in monometallic nanoparticles. European Physical Journal B, 2018, 91, 1.	0.6	20
1470	Identifying interatomic potentials for the accurate modeling of interfacial segregation and structural transitions. Computational Materials Science, 2018, 148, 10-20.	1.4	15
1471	Strength and failure mechanisms of cnt-reinforced copper nanocomposite. Composites Part B: Engineering, 2018, 145, 108-120.	5.9	39
1472	Effects of high pressure on microstructure evolution and crystallization mechanisms during solidification of nickel. Materials Research Express, 2018, 5, 036507.	0.8	4
1473	Recent Advances in Micro/Nano-cutting: Effect of Tool Edge and Material Properties. Nanomanufacturing and Metrology, 2018, 1, 4-31.	1.5	85
1474	Study on the structural transition of CoNi nanoclusters using molecular dynamics simulations. International Journal of Modern Physics B, 2018, 32, 1850133.	1.0	0
1475	The characterisation of atomic structure and glass-forming ability of the Zr–Cu–Co metallic glasses studied by molecular dynamics simulations. Philosophical Magazine, 2018, 98, 783-802.	0.7	23
1476	A Linear Scaling Relation for CO Oxidation on CeO ₂ -Supported Pd. Journal of the American Chemical Society, 2018, 140, 4580-4587.	6.6	126
1477	On the chemical effects in molten Nilâ^'xMx alloy. Computational Materials Science, 2018, 146, 158-175.	1.4	4
1478	Stability Control of AgPd@Pt Trimetallic Nanoparticles via Ag–Pd Core Structure and Composition: A Molecular Dynamics Study. Industrial & Engineering Chemistry Research, 2018, 57, 6236-6245.	1.8	9
1479	Embedded atom method potential for studying mechanical properties of binary Cu–Au alloys. Modelling and Simulation in Materials Science and Engineering, 2018, 26, 055006.	0.8	17
1480	Molecular Dynamics Simulations of Nanopolycrystals. , 2018, , 1-30.		0
1481	Molecular dynamics study on cold-welding of 3D nanoporous composite structures. Physical Chemistry Chemical Physics, 2018, 20, 12288-12294.	1.3	16
1482	Molecular dynamics study of melting properties of gold nanorods. Journal of Molecular Liquids, 2018, 261, 402-410.	2.3	13
1483	Role of five-fold symmetry in undercooled Al-Cu binary alloys. Journal of Applied Physics, 2018, 123, 145103.	1.1	8
1484	Effects of Al addition on atomic structure of Cu-Zr metallic glass. Journal of Applied Physics, 2018, 123, .	1.1	6
1485	DEM simulation of packing mono-sized pebbles into prismatic containers through different filling strategies. Fusion Engineering and Design, 2018, 127, 259-266.	1.0	29
1486	Interatomic Potentials Transferability for Molecular Simulations: A Comparative Study for Platinum, Gold and Silver. Scientific Reports, 2018, 8, 2424.	1.6	30

#	Article	IF	CITATIONS
1487	Using molecular dynamics to unravel phase composition behavior of nano-size pores in frozen soils: Does Young–Laplace equation apply in low temperature range?. Canadian Geotechnical Journal, 2018, 55, 1144-1153.	1.4	7
1488	Local atomic structure of Co B-based glassy alloys: Ab initio molecular dynamics simulations. Journal of Non-Crystalline Solids, 2018, 483, 118-125.	1.5	7
1489	AgPd@Pt nanoparticles with different morphologies of cuboctahedron, icosahedron, decahedron, octahedron, and Marks-decahedron: insights from atomistic simulations. Inorganic Chemistry Frontiers, 2018, 5, 870-878.	3.0	18
1490	Contact mechanics of graphene-covered metal surfaces. Applied Physics Letters, 2018, 112, .	1.5	16
1491	High-order hierarchical nanotwins with superior strength and ductility. Acta Materialia, 2018, 149, 397-406.	3.8	85
1492	A domain specific language for performance portable molecular dynamics algorithms. Computer Physics Communications, 2018, 224, 119-135.	3.0	6
1493	Balancing strength, hardness and ductility of Cu ₆₄ Zr ₃₆ nanoglasses via embedded nanocrystals. Nanotechnology, 2018, 29, 025701.	1.3	19
1494	MgCu metallic glass. Philosophical Magazine, 2018, 98, 633-645.	0.7	1
1495	Atomic-scale simulations of the local structures of molten Ni1-xCox and Ni1-xFex. Journal of Non-Crystalline Solids, 2018, 481, 470-478.	1.5	5
1496	A scalable parallel framework for microstructure analysis of large-scale molecular dynamics simulations data. Computational Materials Science, 2018, 144, 322-330.	1.4	3
1497	Defect and damage evolution during spallation of single crystal Al: Comparison between molecular dynamics and quasi-coarse-grained dynamics simulations. Computational Materials Science, 2018, 145, 68-79.	1.4	39
1498	Au–Fe nanoparticles visited by MD simulation: structural and thermodynamic properties affected by chemical composition. New Journal of Chemistry, 2018, 42, 9666-9675.	1.4	9
1499	Nanoindentation and Indentation Size Effects: Continuum Model and Atomistic Simulation. , 2018, , 1-36.		0
1500	Lattice induced crystallization of nanodroplets: the role of finite-size effects and substrate properties in controlling polymorphism. Nanoscale, 2018, 10, 4921-4926.	2.8	9
1501	Molecular Dynamics Study of Nonequilibrium [112] Tilt Grain Boundaries in Ni and their Relaxation under Cyclic Deformation. Journal of Metastable and Nanocrystalline Materials, 2018, 30, 1-10.	0.1	1
1502	Nanoparticle activated and directed assembly of graphene into a nanoscroll. Carbon, 2018, 134, 43-52.	5.4	29
1503	Rattle, Porous, and Dense Cores and Discontinuous Porous, Continuous Porous, and Dense Shells in Pt@Au Core–Shell Nanoparticles. Industrial & Engineering Chemistry Research, 2018, 57, 4923-4934.	1.8	4
1504	The correlation between mechanical properties and structure of Fe-Ni-P-B amorphous alloys: Ab initio molecular dynamics simulations. Journal of Non-Crystalline Solids, 2018, 491, 1-6.	1.5	7

#	ARTICLE Atomic-scale simulation of structure and mechanical properties of <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
1505	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:mi mathvariant="normal"></mml:mi><mml:mi><mml:mi><a^^< mml:mo=""><a^^< mml:mi=""></a^^<></a^^<></mml:mi>></mml:mi><</mml:mrow>	3.8 nl:mi> <td>17 ml:mrow> </td>	17 ml:mrow>
1506	Atomistic simulation of tension-compression asymmetry and its mechanism in titanium single-crystal nanopillars oriented along the [1â€⁻2Â⁻â€⁻0] direction. Computational Materials Science, 2018, 147, 272-281	l. ^{1.4}	2
1507	Influence of Grain Boundary Complexion on Deformation Mechanism of High Temperature Bending Creep Process of Cu Bicrystal. Transactions of the Indian Institute of Metals, 2018, 71, 1721-1734.	0.7	12
1508	Orientation and strain rate dependent tensile behavior of single crystal titanium nanowires by molecular dynamics simulations. Journal of Materials Science and Technology, 2018, 34, 864-877.	5.6	33
1509	Evolution of spherical nanovoids within copper polycrystals during plastic straining: Atomistic investigation. International Journal of Plasticity, 2018, 100, 122-141.	4.1	32
1510	Deformation of Heterogeneous Nanocrystalline Lamella with a Preexisting Crack. Jom, 2018, 70, 60-65.	0.9	4
1511	Twin-interface interactions in nanostructured Cu/Ag: Molecular dynamics study. Acta Materialia, 2018, 144, 314-324.	3.8	32
1512	A multilevel-skin neighbor list algorithm for molecular dynamics simulation. Computer Physics Communications, 2018, 222, 59-69.	3.0	0
1513	Atomistic simulations of plasticity in heterogeneous nanocrystalline Ni lamella. Computational Materials Science, 2018, 141, 229-234.	1.4	4
1514	Atomistic study on the super-elasticity of single crystal bulk NiTi shape memory alloy under adiabatic condition. Computational Materials Science, 2018, 142, 38-46.	1.4	28
1515	The effect of enthalpy of mixing on the atomic level structure and plasticity of amorphous alloys: A molecular dynamics simulation study in a binary model system. Intermetallics, 2018, 92, 25-35.	1.8	4
1516	Structural connection between gallium crystals and near-T liquids under ambient pressure. Scripta Materialia, 2018, 143, 86-89.	2.6	4
1517	Molecular dynamics investigation of c-axis deformation of single crystal Ti under uniaxial stress conditions: Evolution of compression twinning and dislocations. Computational Materials Science, 2018, 141, 19-29.	1.4	30
1518	Effects of cooling rate on the atomic structure of Cu64Zr36 binary metallic glass. Computational Materials Science, 2018, 141, 59-67.	1.4	30
1519	AACSD: An atomistic analyzer for crystal structure and defects. Computer Physics Communications, 2018, 222, 229-239.	3.0	23
1520	Metal Nanoparticles and Clusters. , 2018, , .		14
1521	Local identification of chemical ordering: Extension, implementation, and application of the common neighbor analysis for binary systems. Computational Materials Science, 2018, 143, 195-205.	1.4	8
1522	Formation of Ag nanoparticles under electron beam irradiation: Atomistic origins from firstâ€principles calculations. International Journal of Quantum Chemistry, 2018, 118, e25551.	1.0	21

#	Article	IF	CITATIONS
1523	Molecular dynamics simulation of the melting behavior of copper nanorod. Computational Materials Science, 2018, 143, 248-254.	1.4	26
1524	Structure, thermodynamics, and rearrangement mechanisms in gold clusters—insights from the energy landscapes framework. Nanoscale, 2018, 10, 2004-2016.	2.8	36
1525	<i>VoroTop</i> : Voronoi cell topology visualization and analysis toolkit. Modelling and Simulation in Materials Science and Engineering, 2018, 26, 015011.	0.8	30
1526	Atomistic investigation into the mechanical properties of the ferrite-cementite interface: The Bagaryatskii orientation. Acta Materialia, 2018, 144, 656-665.	3.8	33
1527	Pt-Pd nanoalloys with crown-jewel structures: How size of the mother Pt cluster affects on thermal and structural properties of Pt-Pd nanoalloys?. Journal of Molecular Liquids, 2018, 249, 477-485.	2.3	9
1528	Simulation of Metal Clusters and Nanostructures. , 2018, , 289-326.		3
1529	Radiation tolerance of nanotwinned metals $\hat{a} \in$ An atomistic perspective. Computational Materials Science, 2018, 142, 290-296.	1.4	6
1530	Numerical Analysis of Effects of Compressive Strain on the Evolution of Interfacial Strength of Steel/Nickel Solid-State Bonding. Materials Transactions, 2018, 59, 568-574.	0.4	3
1531	A large-scale molecular dynamics simulation study on the microstructure evolutions of Ca7Mg3 alloy during rapid solidification. IOP Conference Series: Materials Science and Engineering, 2018, 439, 022027.	0.3	1
1532	Atomic mechanisms of plasticity nucleation in nanocrystalline vanadium. AIP Conference Proceedings, 2018, , .	0.3	0
1533	Features of plasticity nucleation in deformed vanadium crystallite under irradiation. Journal of Physics: Conference Series, 2018, 1115, 032015.	0.3	0
1534	Molecular-dynamic study the influence of size parameter and temperature of the system on adhesive wear mechanisms. AIP Conference Proceedings, 2018, , .	0.3	0
1535	Formation of defect structure at the atomic level under mechanical loading of CoCrFeMnNi high-entropy alloys. AIP Conference Proceedings, 2018, , .	0.3	3
1536	Influence of the Crystal Surface on the Austenitic and Martensitic Phase Transition in Pure Iron. Crystals, 2018, 8, 469.	1.0	11
1537	Structural change of aluminum thin film in the temperature range from 300 K to 1000 K. MATEC Web of Conferences, 2018, 197, 02016.	0.1	8
1538	Topologically close-packed characteristic of amorphous tantalum. Physical Chemistry Chemical Physics, 2018, 20, 28088-28104.	1.3	46
1539	Mechanical Properties and Deformation Behaviors of Metallic Glasses Investigated by Atomic-Level Simulations. , 0, , .		0
1540	Peculiarities of plastic deformation nucleation in nanocrystalline vanadium under shear loading. AIP Conference Proceedings, 2018, , .	0.3	О

#	Article	IF	CITATIONS
1541	Molecular dynamics simulation of the effect of cyclic stresses on nanocrystals with nonequilibrium grain boundaries: the role of the grain size. IOP Conference Series: Materials Science and Engineering, 0, 447, 012003.	0.3	1
1542	Peculiarities of structural transformations in metal nanoparticles at high speed collisions. Journal of Physics: Conference Series, 2018, 946, 012049.	0.3	1
1543	Nanoscale Assembly of Copper Bearing-Sleeve via Cold-Welding: A Molecular Dynamics Study. Nanomaterials, 2018, 8, 785.	1.9	13
1544	Molecular-dynamics simulations of solid phase epitaxy in silicon: Effects of system size, simulation time, and ensemble. Japanese Journal of Applied Physics, 2018, 57, 095503.	0.8	4
1545	Unsupervised machine learning for detection of phase transitions in off-lattice systems. I. Foundations. Journal of Chemical Physics, 2018, 149, 194109.	1.2	36
1546	Atomic-scale modeling of elementary processes during the fatigue of metallic materials: from crack initiation to crack-microstructure interactions., 2018,, 25-48.		0
1547	Ferrite-to-Austenite and Austenite-to-Martensite Phase Transformations in the Vicinity of a Cementite Particle: A Molecular Dynamics Approach. Metals, 2018, 8, 837.	1.0	9
1548	Molecular dynamics study of size and cooling rate effects on physical properties of Niobium nanoclusters. Chinese Journal of Physics, 2018, 56, 2710-2717.	2.0	10
1549	Growth of beryllium thin films on beryllium (0001) surface: Influence of incident energy and incident angle by molecular dynamics simulation. Journal of Applied Physics, 2018, 124, .	1.1	6
1550	Investigation of acoustic emission produced by individual structural defects in FCC lattice. AIP Conference Proceedings, 2018, , .	0.3	O
1551	Effect of pentagonal-coordinated surface on crystal nucleation of an undercooled melt. Scientific Reports, 2018, 8, 14314.	1.6	3
1552	Molecular dynamics study of the behavior of single- and polycrystals of BCC Fe under shear loading conditions. AIP Conference Proceedings, 2018, , .	0.3	O
1553	The Impact of Pt Concentration on Crystal Growth Mechanism in Pt-Pd Binary Alloy System in the Context of Molecular Dynamics. Metals, 2018, 8, 926.	1.0	2
1554	Self-assembly of granular spheres under one-dimensional vibration. Soft Matter, 2018, 14, 9856-9869.	1.2	28
1555	Dynamic evolution of microstructure during laser shock loading and spall failure of single crystal Al at the atomic scales. Journal of Applied Physics, 2018, 124, .	1.1	30
1556	Coupling of sedimentation and liquid structure: Influence on hard sphere nucleation. Journal of Chemical Physics, 2018, 149, 204506.	1.2	10
1557	Silicon carbide at high-velocity impact: Influence of cluster size. , 2018, , .		1
1558	Atomic Structure and Magnetic Properties of the Fe78B13Si9 Amorphous Alloy Surface. Journal of Physical Chemistry C, 2018, 122, 28613-28618.	1.5	6

#	Article	IF	CITATIONS
1559	A neutron tomography study: probing the spontaneous crystallization of randomly packed granular assemblies. Scientific Reports, 2018, 8, 17637.	1.6	5
1560	Features of primary radiation damage in Fe–Cr alloy near free surfaces. Journal of Physics: Conference Series, 2018, 946, 012015.	0.3	1
1561	Generation of Frenkel defects above the Debye temperature by proliferation of phonons near the Brillouin zone edge. New Journal of Physics, 2018, 20, 093013.	1.2	45
1562	Atomistic Investigation of Anisotropic Nanoindentation Behavior of Nanotwinned Aluminum Containing Inclined Twin Boundaries. Nanomaterials, 2018, 8, 695.	1.9	5
1563	Materials structure genealogy and high-throughput topological classification of surfaces and 2D materials. Npj Computational Materials, 2018, 4, .	3.5	10
1564	Molecular Dynamics Study on Deformation Mechanism of Grain Boundaries in Magnesium Crystal: Based on Coincidence Site Lattice Theory. Journal of Materials, 2018, 2018, 1-10.	0.1	4
1565	Pressure-Induced Phase Engineering of Gold Nanostructures. Journal of the American Chemical Society, 2018, 140, 15783-15790.	6.6	68
1566	Hidden order in amorphous structures: Extraction of nearest neighbor networks of amorphous Nd–Fe alloys with Gabriel graph analyses. Journal of Chemical Physics, 2018, 149, 154502.	1.2	5
1567	Quantifying and connecting atomic and crystallographic grain boundary structure using local environment representation and dimensionality reduction techniques. Acta Materialia, 2018, 161, 431-443.	3.8	26
1568	Dislocation Analysis Tool for Atomistic Simulations. , 2018, , 1-14.		2
1569	Effects of stacking fault energies on formation of irradiation-induced defects at various temperatures in face-centred cubic metals. Philosophical Magazine, 2018, 98, 3034-3047.	0.7	9
1570	Unveiling the role of super-jogs and dislocation induced atomic-shuffling on controlling plasticity in magnesium. Acta Materialia, 2018, 161, 182-193.	3.8	18
1571	Influence of dislocations, twins, and stacking faults on the fracture behavior of nanocrystalline Ni nanowire under constant bending load: a molecular dynamics study. Journal of Molecular Modeling, 2018, 24, 277.	0.8	17
1572	Analysis of deformation behaviour of Al–Ni–Co thin film coated aluminium during nano-indentation: a molecular dynamics study. Molecular Simulation, 2018, 44, 1393-1401.	0.9	21
1573	Role of compression metallization in UO2 fission-product energy cascade track: Multiscale electron-phonon analyses. Journal of Nuclear Materials, 2018, 511, 148-163.	1.3	4
1574	Anisotropy of plasticity and structural transformations under uniaxial tension of iron crystallites. Computational Materials Science, 2018, 155, 312-319.	1.4	22
1575	Development of a semi-empirical potential for simulation of Ni solute segregation into grain boundaries in Ag. Modelling and Simulation in Materials Science and Engineering, 2018, 26, 075004.	0.8	25
1576	Solute aggregation in Ca72Zn28 metallic glass. Journal of Non-Crystalline Solids, 2018, 500, 410-416.	1.5	1

#	Article	IF	CITATIONS
1577	Texture of nanocrystalline solids: atomic scale characterization and applications. Journal of Applied Crystallography, 2018, 51, 124-132.	1.9	7
1578	Molecular dynamics study on nano-sized wiredrawing: possible atomistic process and application to pearlitic steel wire. IOP Conference Series: Materials Science and Engineering, 2018, 307, 012039.	0.3	1
1579	Spreading and orientation of silver nano-drops over a flat graphene substrate: An atomistic investigation. Carbon, 2018, 138, 26-41.	5.4	10
1580	Structural and bonding transformation of Al0.67CrCoCuFeNi high-entropy alloys during quenching. Journal of Alloys and Compounds, 2018, 753, 636-641.	2.8	15
1581	Effects of Strain Rate, Temperature and Grain Size on the Mechanical Properties and Microstructure Evolutions of Polycrystalline Nickel Nanowires: A Molecular Dynamics Simulation. Wuhan University Journal of Natural Sciences, 2018, 23, 251-258.	0.2	11
1582	Effects of Ag and Zr solutes on dislocation emission from \hat{l} £11(332)[110] symmetric tilt grain boundaries in Cu: Bigger is not always better. International Journal of Plasticity, 2018, 109, 79-87.	4.1	23
1583	Solute effects on interfacial dislocation emission in nanomaterials: Nucleation site competition and neutralization. Scripta Materialia, 2018, 154, 12-15.	2.6	17
1584	Dynamic coupling of a finite element solver to large-scale atomistic simulations. Journal of Computational Physics, 2018, 367, 279-294.	1.9	18
1585	Direct observation of deformation twinning under stress gradient in body-centered cubic metals. Acta Materialia, 2018, 155, 56-68.	3.8	37
1586	Icosahedral Ir, Rh, Pt, and Cu nanoclusters into gold vapor environment: Thermodynamic and structural analysis of the formed core@shell nanoclusters using MD simulations. Journal of Alloys and Compounds, 2018, 764, 323-332.	2.8	11
1587	HPC simulations of shock front evolution for a study of the shock precursor decay in a submicron thick nanocrystalline aluminum. Modelling and Simulation in Materials Science and Engineering, 2018, 26, 055008.	0.8	5
1588	The deformation and transformation of icosahedron in Mg70Zn30 metallic glasses. Chemical Physics Letters, 2018, 703, 39-43.	1.2	7
1589	Absence of 2.5 power law for fractal packing in metallic glasses. Journal of Physics Condensed Matter, 2018, 30, 255402.	0.7	3
1590	Mechanochemical formation of heterogeneous diamond structures during rapid uniaxial compression in graphite. Physical Review B, 2018, 97, .	1.1	20
1591	SHS in Ni/Al Nanofoils: A Review of Experiments and Molecular Dynamics Simulations. Advanced Engineering Materials, 2018, 20, 1800091.	1.6	38
1592	Molecular dynamics simulations of displacement cascades in nanotwinned Cu. Computational Materials Science, 2018, 152, 38-42.	1.4	13
1593	Molecular dynamics studies on the strengthening mechanism of Al matrix composites reinforced by grapnene nanoplatelets. Computational Materials Science, 2018, 153, 48-56.	1.4	35
1594	Atomistic simulation of phosphorus segregation to $\hat{1}$ £3 (111) symmetrical tilt grain boundary in <i>$\hat{1}$±</i> -iron. Modelling and Simulation in Materials Science and Engineering, 2018, 26, 065005.	0.8	5

#	Article	IF	CITATIONS
1595	Evolution of nanostructure and mechanical properties of silver nano-particle in the confined region between graphene sheets: An atomistic investigation. Computational Materials Science, 2018, 152, 393-407.	1.4	8
1596	Self-healing mechanism of irradiation defects in nickel–graphene nanocomposite: An energetic and kinetic perspective. Journal of Alloys and Compounds, 2018, 765, 253-263.	2.8	27
1597	The reassessment of the structural transition regions along the liquidus of Fe–Si alloys and a possible liquid–liquid structural transition in FeSi2 alloy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2655-2661.	0.9	8
1598	Effect of cooling rate on structures and mechanical behavior of Cu50Zr50 metallic glass: A molecular-dynamics study. Physica B: Condensed Matter, 2018, 547, 48-54.	1.3	27
1599	Questioning the structure of Sr+Arn clusters. European Physical Journal D, 2018, 72, 1. Existence of fractal packing in metallic glasses: Molecular dynamics simulations of mml:math	0.6	5
1600	xmins:mmi="http://www.w3.org/1998/Math/Math/Mith/Mith/Mith/Mith/Mith/Mith/Mith/Mi	1.1	8
1601	A molecular dynamics study: Structures and thermal stability of PdmPt(13â^'m)Ag42 ternary nanoalloys. International Journal of Modern Physics C, 2018, 29, 1850084.	0.8	11
1602	Molecular Dynamics Simulation of Local Structure Evolution in Cu Amorphous during Uniaxial Tension and Compression. Materials Transactions, 2018, 59, 172-175.	0.4	3
1603	Abnormal grain coarsening mechanism in conical nickel. Journal of Alloys and Compounds, 2018, 768, 613-617.	2.8	10
1604	Structure and dynamical properties of liquid Ni64Zr36 and Ni65Hf35 alloys: an ab initio molecular dynamics study. Journal of Physics Condensed Matter, 2018, 30, 365401.	0.7	2
1605	Particle Shape Control <i>via</i> Etching of Core@Shell Nanocrystals. ACS Nano, 2018, 12, 9186-9195.	7.3	11
1606	Dislocation Structure and Mobility in Hcp Rare-Gas Solids: Quantum versus Classical. Crystals, 2018, 8, 64.	1.0	2
1607	Atomistic and Experimental Investigation of the Effect of Depth of Cut on Diamond Cutting of Cerium. Micromachines, 2018, 9, 26.	1.4	14
1608	Precipitation strengthening in Cu–Ni–Si alloys modeled with ab initio based interatomic potentials. Journal of Chemical Physics, 2018, 149, 024701.	1.2	5
1609	Deformation of metals under dynamic loading: Characterization via atomic-scale orientation mapping. Computational Materials Science, 2018, 153, 338-347.	1.4	12
1610	An in-depth investigation of Mg-Zn-Ca metallic glasses: A first principles study. Computational Materials Science, 2018, 153, 326-337.	1.4	3
1611	The nature of liquid structure and liquid-liquid phase transition via the atoms loyalty model. Physica B: Condensed Matter, 2018, 545, 433-437.	1.3	2
1612	Assembly of three-dimensional binary superlattices from multi-flavored particles. Soft Matter, 2018, 14, 6303-6312.	1.2	15

#	Article	IF	CITATIONS
1613	Transient Melting at the Nanoscale: A Continuum Heat Transfer and Nonequilibrium Molecular Dynamics Approach. Journal of Physical Chemistry C, 2018, 122, 17481-17489.	1.5	13
1614	Dynamic and thermodynamic crossover scenarios in the Kob-Andersen mixture: Insights from multi-CPU and multi-GPU simulations. European Physical Journal E, 2018, 41, 62.	0.7	23
1615	Molecular dynamics study of Hugoniot relation in shocked nickel single crystal. Journal of Mechanical Science and Technology, 2018, 32, 3273-3281.	0.7	10
1616	Local atomic structure correlating to phase selection in undercooled liquid Ni-Zr peritectic alloy. Journal of Applied Physics, 2018, 124, .	1.1	20
1617	Effect of wetting on nucleation and growth of D2 in confinement. Journal of Chemical Physics, 2018, 148, 134708.	1.2	2
1618	Melting of graphene supported Pd-Pt core-shell nanoparticles: A molecular dynamics study. Computational Materials Science, 2018, 151, 132-143.	1.4	6
1619	Nonequilibrium grain boundaries and their relaxation under oscillating stresses in columnar nickel nanocrystals studied by molecular dynamics. Computational Materials Science, 2018, 151, 204-213.	1.4	19
1620	Origin of deflection of precipitates during interaction with a migrating twin boundary in magnesium alloys. Computational Materials Science, 2018, 154, 472-480.	1.4	12
1621	Metallic glass nanolaminates with shape memory alloys. Acta Materialia, 2018, 159, 344-351.	3.8	38
1622	Local atomic structures of amorphous Pd ₈₀ Si ₂₀ alloys and their configuration heredity in the rapid solidification. Philosophical Magazine, 2018, 98, 2861-2877.	0.7	9
1623	Molecular dynamics study on deformation and mechanics of nanoscale Au/Cu multilayers under indentation. Journal of Molecular Modeling, 2018, 24, 253.	0.8	5
1624	Understanding the structural, mechanical, thermal, and electronic properties of MgCa bulk metallic glasses by molecular dynamics simulation and density functional theory calculation. Computational Materials Science, 2018, 154, 256-265.	1.4	6
1625	Tensile and nanoindentation deformation of amorphous/crystalline nanolaminates: Effects of layer thickness and interface type. Computational Materials Science, 2018, 154, 225-233.	1.4	28
1626	Rejuvenation by weakening the medium range order in Zr46Cu46Al8 metallic glass with pressure preloading: A molecular dynamics simulation study. Materials and Design, 2018, 158, 248-255.	3.3	52
1627	Multiscale Investigation of Femtosecond Laser Pulses Processing Aluminum in Burst Mode. Nanoscale and Microscale Thermophysical Engineering, 2018, 22, 324-347.	1.4	12
1628	A Cumulative Approach to Crystalline Structure Characterization in Atomistic Simulations. Journal of Physical Chemistry C, 2018, 122, 13156-13165.	1.5	5
1629	Nanoindentation and nanoscratching of a ferrite/austenite iron bi-crystal: An atomistic study. Tribology International, 2018, 127, 231-239.	3.0	18
1630	Structural covariance in the hard sphere fluid. Journal of Chemical Physics, 2018, 148, 204511.	1,2	4

#	Article	IF	CITATIONS
1631	Atomistic simulations of effect of hydrogen atoms on mechanical behaviour of an \hat{l}_{\pm} -Fe with symmetric tilt grain boundaries. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2464-2469.	0.9	5
1632	Atomic study of effects of crystal structure and temperature on structural evolution of Au nanowires under torsion. Journal of Applied Physics, 2018, 123, 214304.	1.1	6
1633	Thermodynamic and dynamical properties and structural evolution of binary Zr80Pt20 metallic liquids and glasses: Molecular dynamics simulations. Journal of Non-Crystalline Solids, 2018, 498, 32-41.	1.5	23
1634	Atomistic simulation study of influence of Al2O3–Al interface on dislocation interaction and prismatic loop formation during nano-indentation on Al2O3-coated aluminum. Journal of Molecular Modeling, 2018, 24, 167.	0.8	8
1635	Scratching an Al/Si Interface: Molecular Dynamics Study of a Composite Material. Tribology Letters, 2018, 66, 1.	1.2	17
1636	A machine perspective of atomic defects in scanning transmission electron microscopy. InformaÄnÃ-Materiály, 2019, 1, 359-375.	8.5	37
1637	Modellierung des Aufschwimmverhaltens hydrodynamischer Linearführungen bei konstanter Geschwindigkeit. Forschung Im Ingenieurwesen/Engineering Research, 2019, 83, 267-272.	1.0	1
1638	MD study on topologically close-packed and configuration entropy of Mg40Al60 metallic glasses under rapid solidification. Journal of Non-Crystalline Solids, 2019, 522, 119578.	1.5	5
1639	Invariant theory and orientational phase transitions. Physical Review E, 2019, 100, 012145.	0.8	1
1640	Nano-rolling: Roller Speed-Dependent Morphological Evolution and Mechanical Properties Enhancement in Nanoscale Mg. Jom, 2019, 71, 3407-3416.	0.9	6
1641	Size Effect in the Uniaxial Compression of Polycrystalline Ni Nanopillars with Small Number of Grains. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4462-4479.	1.1	4
1642	Effective design space exploration of gradient nanostructured materials using active learning based surrogate models. Materials and Design, 2019, 183, 108085.	3.3	23
1643	A molecular dynamics study on cooling rate effect on atomic structure of solidified silver nanoparticles. European Physical Journal D, 2019, 73, 1.	0.6	3
1644	Tensile mechanical performance of Ni–Co alloy nanowires by molecular dynamics simulation. RSC Advances, 2019, 9, 25817-25828.	1.7	20
1645	Simulation of phase transformations in titanium nanoalloy at different cooling rates. Materials Chemistry and Physics, 2019, 238, 121895.	2.0	11
1646	Molecular dynamics simulation based investigation of strain induced crystallization of nickel metallic glass. Materials Chemistry and Physics, 2019, 237, 121831.	2.0	8
1647	Surface induced anomalous glassy relaxation in phase separated Lennard-Jones liquid. AIP Conference Proceedings, 2019, , .	0.3	0
1648	Molecular dynamics factors affecting on the structure, phase transition of Al bulk. Physica B: Condensed Matter, 2019, 570, 116-121.	1.3	19

#	Article	IF	Citations
1649	Reactivity-Controlled Aggregation of Graphene Nanoflakes in Aluminum Matrix: Atomistic Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2019, 123, 18017-18027.	1.5	10
1650	Structural properties in single-component metallic nanoparticle: Insights from the simulation study. Chemical Physics, 2019, 526, 110441.	0.9	4
1651	On the role of Cu-Zr amorphous intergranular films on crack growth retardation in nanocrystalline Cu during monotonic and cyclic loading conditions. Computational Materials Science, 2019, 169, 109122.	1.4	16
1652	Shape-dependent structural and magnetic properties of Fe nanoparticles studied through simulation methods. RSC Advances, 2019, 9, 22057-22063.	1.7	20
1653	Machine-Learning Informed Representations for Grain Boundary Structures. Frontiers in Materials, 2019, 6, .	1.2	22
1654	The influence of lamellar twins on deformation mechanism in nanocrystalline magnesium under uniaxial compression. Journal of Materials Science, 2019, 54, 12623-12642.	1.7	5
1655	Structural and magnetic properties of iron nanoparticles: insights from Monte-Carlo and molecular-statics simulations. Materials Research Express, 2019, 6, 095097.	0.8	11
1656	A generalized deep learning approach for local structure identification in molecular simulations. Chemical Science, 2019, 10, 7503-7515.	3.7	55
1657	Molecular Dynamics Simulations of Nanopolycrystals. , 2019, , 301-330.		1
1658	Pressure evolution of transverse collective excitations in liquid Al along the melting line. Journal of Chemical Physics, 2019, 151, 034506.	1.2	15
1659	Atomistic simulation of the stacking fault energy and grain shape on strain hardening behaviours of FCC nanocrystalline metals. Philosophical Magazine, 2019, 99, 2818-2840.	0.7	8
1660	Molecular dynamics simulation of the tensile mechanical behaviors of axial torsional copper nanorod. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	2
1661	Atomistic design favored compositions and atomic-level structure of Mg–Ca–Ag ternary metallic glasses. AIP Advances, 2019, 9, .	0.6	3
1662	Bimodal self-assembly of granular spheres under vertical vibration. Soft Matter, 2019, 15, 5933-5944.	1.2	23
1663	Dynamic facilitation theory: a statistical mechanics approach to dynamic arrest. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 084015.	0.9	14
1664	Effect of microstructure on crack behavior in nanocrystalline nickel using molecular dynamics simulation. Theoretical and Applied Fracture Mechanics, 2019, 104, 102390.	2.1	9
1665	Effects of Re, W and Co on dislocation nucleation at the crack tip in the $\langle i \rangle \hat{I}^3 \langle j i \rangle$ -phase of Ni-based single-crystal superalloys by atomistic simulation. Royal Society Open Science, 2019, 6, 190441.	1.1	6
1666	Electron beam induced rejuvenation in a metallic glass film during in-situ TEM tensile straining. Acta Materialia, 2019, 181, 148-159.	3.8	9

#	Article	IF	Citations
1667	Longitudinal Associations Between Income Changes and Incident Cardiovascular Disease. JAMA Cardiology, 2019, 4, 1203.	3.0	33
1668	Unsupervised learning for local structure detection in colloidal systems. Journal of Chemical Physics, 2019, 151, 154901.	1.2	57
1669	Research on intelligent near-power early warning system for mechanical vehicles. Journal of Physics: Conference Series, 2019, 1187, 032026.	0.3	0
1670	Effect of Fluid Media on Material Removal and Subsurface Defects Evolution of Monocrystal Copper in Nano-Cutting Process. Nanoscale Research Letters, 2019, 14, 239.	3.1	10
1671	Intensification of shock damage through heterogeneous phase transition and dislocation loop formation due to presence of pre-existing line defects in single crystal Cu. Journal of Applied Physics, 2019, 126, .	1.1	4
1672	Effect of void defect on <i> c < i > -axis deformation of single-crystal Ti under uniaxial stress conditions: Evolution of tension twinning and dislocations. Journal of Materials Research, 2019, 34, 3699-3706.</i>	1.2	3
1673	Machine learning-aided analysis for complex local structure of liquid crystal polymers. Scientific Reports, 2019, 9, 16370.	1.6	27
1674	Thermally activated phase transitions in Fe-Ni core-shell nanoparticles. Frontiers of Physics, 2019, 14, 1.	2.4	0
1675	Intrinsic dissipation mechanisms in metallic glass resonators. Journal of Chemical Physics, 2019, 151, 144506.	1,2	7
1676	Vitrification and nanocrystallization of pure liquid Ni studied using molecular-dynamics simulation. Journal of Chemical Physics, 2019, 151, 124502.	1.2	14
1677	Formation of Point Defect Clusters in Metals with Grain Boundaries under Irradiation. Physical Mesomechanics, 2019, 22, 355-364.	1.0	30
1678	Restriction of grain growth of nano-crystalline Ni-Zr alloy by Zr atoms segregated at grain boundary under high temperature intermittent stressing. Molecular Simulation, 2019, 45, 1465-1479.	0.9	1
1679	Deformation characteristics of nanocrystalline TWIP steel under uniaxial tension and compression. Mechanics of Materials, 2019, 138, 103147.	1.7	11
1680	5-Fluorocytosine–Sugar Conjugates for Glucose Transporter-Mediated Tumor Targeting: Synthesis, Cytotoxicity, and Cellular Uptake Mechanism. Transactions of Tianjin University, 2019, 25, 611-617.	3.3	0
1681	Anisotropic Phase Transformation in B2 Crystalline CuZr Alloy. Nanoscale Research Letters, 2019, 14, 283.	3.1	18
1682	Influence of silver inclusions on the mechanical behavior of Cu-Ag nanocomposite during nanoindentation: Molecular dynamics study. Results in Physics, 2019, 15, 102672.	2.0	8
1683	Influence of Irradiation on Mechanical Properties of Nickel. Advances in Materials Science and Engineering, 2019, 2019, 1-6.	1.0	0
1684	Evidencing the relationship between isomer spectra and melting: the 20- and 55-atom silver and gold cluster cases. Physical Chemistry Chemical Physics, 2019, 21, 24857-24866.	1.3	7

#	Article	IF	CITATIONS
1685	Atomistic Study of the Role of Defects on $\hat{l}\pm\hat{a}\dagger'\hat{l}\mu$ Phase Transformations in Iron under Hydrostatic Compression. Metals, 2019, 9, 1040.	1.0	15
1686	Correlations among atomic mobility, microstructure and local stress of shear bands and necking regions in notched Cu50Zr50 metallic glasses. Journal of Applied Physics, 2019, 126, .	1.1	4
1687	Dynamic formation and destruction process of stacking fault tetrahedra in single-crystal Ni during nanoscale cryo-rolling. Philosophical Magazine Letters, 2019, 99, 253-260.	0.5	10
1688	Molecular dynamics investigation of the local structure in iron melts and its role in crystal nucleation during rapid solidification. Physical Chemistry Chemical Physics, 2019, 21, 4122-4135.	1.3	29
1689	Interface-governed nanometric machining behaviour of Cu/Ag bilayers using molecular dynamics simulation. RSC Advances, 2019, 9, 1341-1353.	1.7	17
1690	Simulating the NaK Eutectic Alloy with Monte Carlo and Machine Learning. Scientific Reports, 2019, 9, 704.	1.6	5
1691	Investigation of tool geometry in nanoscale cutting single-crystal copper by molecular dynamics simulation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2019, 233, 1208-1220.	1.0	13
1692	Successful test of the classical nucleation theory by molecular dynamic simulations of BaS. Computational Materials Science, 2019, 161, 99-106.	1.4	30
1693	Scratching Cu Au Nanolaminates. Lubricants, 2019, 7, 44.	1.2	3
1694	The composition effect for the thermal properties of Pd _n Ag _(42-n) Pt ₁₃ ternary nanoalloys: a molecular dynamics study. Molecular Simulation, 2019, 45, 1004-1013.	0.9	12
1695	High performance computing simulations of spall phenomenon in a submicron thick nanocrystalline aluminum. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 065015.	0.8	8
1696	Fracture resistance of Cu/Nb metallic nanolayered composite. Journal of Materials Research, 2019, 34, 1533-1541.	1.2	5
1697	Study on subsurface damage of wafer silicon containing through silicon via in thinning. European Physical Journal Plus, 2019, 134, 1.	1.2	4
1698	Short-range order structure motifs learned from an atomistic model of a Zr50Cu45Al5 metallic glass. Acta Materialia, 2019, 175, 35-45.	3.8	29
1699	Atomic-resolution imaging of surface and core melting in individual size-selected Au nanoclusters on carbon. Nature Communications, 2019, 10, 2583.	5.8	48
1700	A molecular dynamics study: structural and thermal evolution of 147 atom ComAun nanoalloys. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	8
1701	Atomistic simulations of basal dislocations in Mg interacting with Mg17Al12 precipitates. Materialia, 2019, 7, 100355.	1.3	31
1702	Near-ideal compressive strength of nanoporous silver composed of nanowires. Acta Materialia, 2019, 173, 163-173.	3.8	12

#	Article	IF	CITATIONS
1703	Dynamics of dislocation loops in radiation-damaged Fe-10Cr crystallites. Journal of Physics: Conference Series, 2019, 1147, 012084.	0.3	O
1704	Atomic-level crystallization in selective laser melting fabricated Zr-based metallic glasses. Physical Chemistry Chemical Physics, 2019, 21, 12406-12413.	1.3	20
1705	Atomic simulations of packing patterns and thermal behavior in Ti clusters. Progress in Natural Science: Materials International, 2019, 29, 237-243.	1.8	6
1706	Bond-breaking analyses on the characteristics of flow defects in metallic glasses under plastic deformation. Journal of Alloys and Compounds, 2019, 799, 450-461.	2.8	9
1707	Peculiarities of chemical element redistribution near free surfaces in CoCrFeMnNi high-entropy alloys. IOP Conference Series: Materials Science and Engineering, 2019, 511, 012024.	0.3	0
1708	Structure–Property Relationships in Shape Memory Metallic Glass Composites. Materials, 2019, 12, 1419. Resolving the FCC/HCP interfaces of the <mml:math< td=""><td>1.3</td><td>22</td></mml:math<>	1.3	22
1709	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> <mml:mrow>^3<mml:mo>'</mml:mo></mml:mrow> (<mml:math)="" 0="" 10="" 492="" 50="" etqq0="" overlock="" rgbt="" td="" td<="" tf="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td> (altimg='</td><td>'si2.svg"><m< td=""></m<></td></mml:math>	(altimg='	'si2.svg"> <m< td=""></m<>
1710	precipitate phase in aluminium. Acta Materialia, 2019, 174, 116-130. Misfit strain induced phase transformation at a basal/prismatic twin boundary in deformation of magnesium. Computational Materials Science, 2019, 164, 186-194.	1.4	16
1711	Revealing key structural features hidden in liquids and glasses. Nature Reviews Physics, 2019, 1, 333-348.	11.9	134
1712	Analysis of plastic strain-enhanced diffusivity in nanocrystalline iron by atomistic simulation. Journal of Applied Physics, 2019, 125, 135103.	1.1	8
1713	Critical operating stress of persistent slip bands in Cu. Computational Materials Science, 2019, 165, 114-120.	1.4	12
1714	In-depth characterization of icosahedral ordering in liquid copper. Computational Materials Science, 2019, 166, 57-74.	1.4	6
1715	Features of structural rearrangements at onset of plasticity in bcc iron with free surfaces of different orientation. Journal of Physics: Conference Series, 2019, 1147, 012031.	0.3	0
1716	The effect of atomic concentration on the structural evolution of Zr100-xCox alloys during rapid solidification process. Journal of Non-Crystalline Solids, 2019, 513, 84-96.	1.5	15
1717	Dynamic Probing of Structural Evolution of Single Crystal Fe during Rolling Process Using Atomistic Simulation. Steel Research International, 2019, 90, 1800636.	1.0	12
1718	Assessing the utility of structure in amorphous materials. Journal of Chemical Physics, 2019, 150, 114502.	1.2	34
1719	Liquid-glass transition in monoatomic vanadium: A first-principles study. Physical Review B, 2019, 99, .	1.1	6
1720	Key role of excess atomic volume in structural rearrangements at the front of moving partial dislocations in copper nanocrystals. Scientific Reports, 2019, 9, 3867.	1.6	36

#	ARTICLE	IF	CITATIONS
1721	IMD – the ITAP molecular dynamics simulation package. European Physical Journal: Special Topics, 2019, 227, 1831-1836.	1.2	3
1722	Dislocations Help Initiate the α–γ Phase Transformation in Iron—An Atomistic Study. Metals, 2019, 9, 90.	1.0	16
1723	Structural evolution and dislocation behaviour during nano-rolling process of FCC metals: A molecular dynamics simulation based investigation. Journal of Applied Physics, 2019, 125, .	1.1	11
1724	Bergman-type medium range order in amorphous Zr77Rh23 alloy studied by ab initio molecular dynamics simulations. Journal of Alloys and Compounds, 2019, 790, 675-682.	2.8	22
1725	Plastic Deformation Behavior of Bi-Crystal Magnesium Nanopillars with a	1.3	3
1726	Rapid solidification of cobalt melt by molecular dynamics simulation. Journal of Thermal Analysis and Calorimetry, 2019, 138, 287-296.	2.0	3
1727	Understanding grain boundaries – The role of crystallography, structural descriptors and machine learning. Computational Materials Science, 2019, 162, 281-294.	1.4	28
1728	Molecular dynamics simulation and micropillar compression of deformation behavior in iridium single crystals. Rare Metals, 2019, , 1.	3.6	O
1729	Deformation Twinning in Polycrystalline Mg Microstructures at High Strain Rates at the Atomic Scales. Scientific Reports, 2019, 9, 3550.	1.6	21
1730	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:mo stretchy="true">{</mml:mo><mml:mn>10</mml:mn><mml:mrow><mml:mover< td=""><td>3.8</td><td>43</td></mml:mover<></mml:mrow></mml:mrow>	3.8	43
1731	accent="true"> <mml:mn>1</mml:mn> <mml:mo>¬</mml:mo> <mml:mn>2<td>1.1</td><td>11</td></mml:mn>	1.1	11
1732	Dislocation content in random high angle grain boundaries. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 045005.	0.8	12
1733	Receiving Copper Nanoparticles: Experiment and Modelling. Solid State Phenomena, 0, 288, 140-147.	0.3	4
1734	Atomic-scale mechanisms of single crystal plasticity in CoCrFeMnNi high-entropy alloys. Journal of Physics: Conference Series, 2019, 1147, 012013.	0.3	3
1735	Precipitation, planar defects and dislocations in alloys: Simulations on Ni3Si and Ni3Al precipitates. European Physical Journal: Special Topics, 2019, 227, 1559-1574.	1.2	6
1736	Carbon solubility in liquid silicon: A computational analysis across empirical potentials. Journal of Chemical Physics, 2019, 150, 144503.	1.2	7
1737	Correlations between dislocation density evolution and spall strengths of Cu/Ta multilayered systems at the atomic scales: The role of spacing of KS interfaces. Materialia, 2019, 5, 100192.	1.3	25
1738	Connecting Theory with Experiment to Understand the Sintering Processes of Ag Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 11310-11318.	1.5	16

#	Article	IF	CITATIONS
1739	The short-range order in liquid and A15 crystal of zirconium. Journal of Non-Crystalline Solids, 2019, 513, 111-119.	1.5	32
1740	Ductility enhancement of tungsten after plastic deformation. Journal of Alloys and Compounds, 2019, 787, 801-814.	2.8	30
1741	Structural behavior of Tantalum monatomic metallic glass. Journal of Non-Crystalline Solids, 2019, 510, 81-92.	1.5	27
1742	The medium-range orders transition in liquid Fe–Al alloys. Computational Materials Science, 2019, 161, 199-208.	1.4	6
1743	Deformation behavior of core–shell nanowire structures with coherent and semi-coherent interfaces. Journal of Materials Research, 2019, 34, 1093-1102.	1.2	6
1744	Nanoindentation into a metastable austenite triggers the martensitic phase transformation—An atomistic study. AIP Advances, 2019, 9, .	0.6	3
1745	Molecular dynamics study on the Burgers vector transition of nanometric dislocation loops induced by cascade in bcc-iron. Journal of Nuclear Materials, 2019, 519, 322-331.	1.3	8
1746	Microcanonical thermodynamics of three and four atoms. Journal of Chemical Physics, 2019, 150, 074303.	1.2	4
1747	Influence of grain boundaries on the austenitic and martensitic phase transitions in iron. European Physical Journal B, 2019, 92, 1.	0.6	5
1748	High-throughput simulations for insight into grain boundary structure-property relationships and other complex microstructural phenomena. Computational Materials Science, 2019, 161, 244-254.	1.4	13
1749	Role of misorientation angle in twinning and dislocation slip for nano Mg bicrystals with [2-1-10] symmetric tilt grain boundaries under uniaxial compression and tension. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 035004.	0.8	7
1750	Construction of response functions of Cu, Fe and C mesoparticles in MCA method based on molecular dynamics calculations. AIP Conference Proceedings, 2019, , .	0.3	1
1751	Enhanced tensile properties of weight-reduced nanoporous carbon nanotube-aluminum composites. Materials Express, 2019, 9, 801-807.	0.2	5
1752	Particularities of changes in internal structure of nanocrystalline Ni under mechanical loading. EPJ Web of Conferences, 2019, 221, 01025.	0.1	0
1753	Melting of gold nanoparticle: study on structural evolution. Journal of Physics: Conference Series, 2019, 1402, 066009.	0.3	0
1754	Size dependencies on melting of Gold nanoparticle: A Molecular Dynamics study. Journal of Physics: Conference Series, 2019, 1402, 066002.	0.3	0
1755	Large-Scale Molecular Dynamics Simulations of Homogeneous Nucleation of Pure Aluminium. Metals, 2019, 9, 1217.	1.0	21
1756	Indentation response of \hat{I}^3 -TiAl(111) and influence of True-twin interface. Procedia Manufacturing, 2019, 37, 190-194.	1.9	3

#	Article	IF	CITATIONS
1757	Features of defect nucleation in nanosized crystals with BCC lattice. AIP Conference Proceedings, $2019, , .$	0.3	0
1758	Atomistic analysis of nanoextrusion process for fabrication of gold nanowires. Journal of Applied Physics, 2019, 126, 205104.	1.1	2
1759	Atomic mechanisms of plasticity nucleation and development in nanocrystalline Ni. AIP Conference Proceedings, 2019, , .	0.3	0
1760	Capturing the dynamics of Wigner crystals within the phase-field crystal method. Physical Review B, 2019, 100, .	1.1	2
1761	Continuous strengthening in nanotwinned diamond. Npj Computational Materials, 2019, 5, .	3.5	32
1762	Reactive nanotemplates for synthesis of highly efficient electrocatalysts: beyond simple morphology transfer. Nanoscale, 2019, 11, 20392-20410.	2.8	11
1763	Investigation of acoustic emission produced during processing by sliding indenter: Molecular dynamics study. AIP Conference Proceedings, 2019, , .	0.3	0
1764	Molecular-dynamic investigation of the influence of initial temperature on the character of shock-wave processes in silicon carbide nanocluster. EPJ Web of Conferences, 2019, 221, 01050.	0.1	0
1765	Melting curve of vanadium up to 470 GPa simulated by <i>ab initio</i> molecular dynamics. Journal of Applied Physics, 2019, 126, .	1.1	10
1766	Numerical study of the effect of configurational ordering in Ti-Al-N atomic cells on the mechanical properties of resulting coating. AIP Conference Proceedings, 2019, , .	0.3	0
1767	Molecular dynamics simulation of polycrystalline metal surface treatment. AIP Conference Proceedings, 2019, , .	0.3	1
1768	The influence of polishing parameters on acoustic emission: Molecular dynamics study. AIP Conference Proceedings, 2019, , .	0.3	0
1769	Structural Transformations in the Grain Boundary Region of Nanocrystalline Metals Under Mechanical Loading. Russian Physics Journal, 2019, 62, 1357-1362.	0.2	10
1770	Molecular dynamic investigation of acoustic emission during mechanical treatment. AIP Conference Proceedings, 2019, , .	0.3	0
1771	Studying Stability of Atom Packing for Ti Nanoparticles on Heating by Molecular Dynamics Simulations. Advanced Engineering Materials, 2019, 21, 1800531.	1.6	12
1772	Melting of bcc crystal Ta without the Lindemann criterion. Journal of Physics Condensed Matter, 2019, 31, 095402.	0.7	11
1773	Fundamentals of Nanometric Cutting of Nanotwinned Copper. Springer Tracts in Mechanical Engineering, 2019, , 1-22.	0.1	1
1774	Investigation into Plastic Deformation and Machining-Induced Subsurface Damage of High-Entropy Alloys. Springer Tracts in Mechanical Engineering, 2019, , 23-52.	0.1	1

#	Article	IF	CITATIONS
1775	Atomistic structure and collective dynamics in liquid Pb along the melting line up to 70 GPa: A first-principles molecular dynamics study. Physical Review B, 2019, 99, .	1.1	12
1776	Near-Nash Equilibrium Control Strategy for Discrete-Time Nonlinear Systems With Round-Robin Protocol. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 2478-2492.	7.2	17
1777	Nucleation, coalescence, thermal evolution, and statistical probability of formation of Au/Ir/Pd nanoalloys in gas-phase condensation process. Journal of Molecular Liquids, 2019, 274, 434-446.	2.3	5
1778	Glass formation by severe plastic deformation of crystalline Cu Zr nano-layers. Acta Materialia, 2019, 165, 577-586.	3.8	15
1779	Interfacial-dislocation-controlled deformation and fracture in nanolayered composites: Toward higher ductility of drawn pearlite. Acta Materialia, 2019, 164, 602-617.	3.8	40
1780	Effects of grain boundary disorder on dislocation emission. Materials Letters, 2019, 237, 303-305.	1.3	13
1781	Atomistic modeling of interfacial segregation and structural transitions in ternary alloys. Journal of Materials Science, 2019, 54, 3975-3993.	1.7	21
1782	Effect of similar element substitution on Fe-B-Si-Mo bulk metallic glasses studied by experiment and ab initio molecular dynamics simulation. Journal of Alloys and Compounds, 2019, 784, 1139-1144.	2.8	19
1783	Transformations of body-centered cubic crystals composed of hard or soft spheres to liquids or face-centered cubic crystals. Journal of Chemical Physics, 2019, 150, 014504.	1.2	2
1784	Low temperature dependence of mechanical process of ultrathin aluminium films: molecular dynamics simulations. International Journal of Nanomanufacturing, 2019, 15, 148. Dislocation absorption and transmutation at <mml:math< td=""><td>0.3</td><td>0</td></mml:math<>	0.3	0
1785	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:mrow><mml:mo stretchy="true">{</mml:mo><mml:mrow><mml:mn>10</mml:mn><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><td>3.8 n><td>64 nrow><mml:< td=""></mml:<></td></td></mml:mrow>	3.8 n> <td>64 nrow><mml:< td=""></mml:<></td>	64 nrow> <mml:< td=""></mml:<>
1786	stretchy="true">} twin boundaries in deformation Dynamic characterization of shock response in crystalline-metallic glass nanolaminates. Acta Materialia, 2019, 164, 347-361.	3.8	48
1787	The effect of Mo addition on structure and glass forming ability of Ni-Zr alloys. Journal of Alloys and Compounds, 2019, 775, 1184-1198.	2.8	30
1788	overflow="scroll"> <mml:mrow><mml:mo stretchy="true">ã€^<mml:mrow><mml:mrow><mml:mn>01</mml:mn></mml:mrow><mml:moo></mml:moo>boundaries between <mml:math< td=""><td>าrอิมชิ><mn< td=""><td>กเลดท>0</td></mn<></td></mml:math<></mml:mrow></mml:mo </mml:mrow>	า rอิม ชิ> <mn< td=""><td>กเลดท>0</td></mn<>	ก เลด ท>0
1789	Fatigue-driven acceleration of abnormal grain growth in nanocrystalline wires. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 025008.	0.8	6
1790	Numerical study of atomic scale deformation mechanisms of Ti grains with different crystallographic orientation subjected to scratch testing. Applied Surface Science, 2019, 471, 318-327.	3.1	36
1791	Simulation of Solidification Process of Metallic Gallium and Its Application in Preparing 99.99999% Pure Gallium. Jom, 2019, 71, 737-743.	0.9	6
1792	Nucleation of dislocations and twins in fcc nanocrystals: Dynamics of structural transformations. Journal of Materials Science and Technology, 2019, 35, 201-206.	5. 6	46

#	Article	IF	CITATIONS
1793	Atomistic insight into the dislocation nucleation at crystalline/crystalline and crystalline/amorphous interfaces without full symmetry. Acta Materialia, 2019, 162, 255-267.	3.8	18
1794	Liquid structure of Al-Si alloy: A molecular dynamics simulation. Journal of Non-Crystalline Solids, 2019, 503-504, 182-185.	1.5	12
1795	Structure of liquid In20Sn80 at high temperature: a XAS study. Radiation Physics and Chemistry, 2020, 175, 108089.	1.4	1
1796	Effect of Y on the structure-property relationship of Mg65Cu25Y10 metallic glass. Computational Materials Science, 2020, 171, 109285.	1.4	3
1797	Influence of micro grooves of diamond tool on silicon cutting: a molecular dynamic study. Molecular Simulation, 2020, 46, 92-101.	0.9	4
1798	The structural evolution and abnormal bonding ways of the Zr80Pt20 metallic liquid during rapid solidification under high pressure. Computational Materials Science, 2020, 172, 109327.	1.4	22
1799	Mesoscale modeling of jet initiation behavior and microstructural evolution during cold spray single particle impact. Acta Materialia, 2020, 182, 197-206.	3.8	48
1800	AADIS: An atomistic analyzer for dislocation character and distribution. Computer Physics Communications, 2020, 247, 106857.	3.0	18
1801	Deformation of copper particles upon impact: A molecular dynamics study of cold spray. Computational Materials Science, 2020, 171, 109219.	1.4	52
1802	Interatomic Potential Development. , 2020, , 544-572.		5
1803	Molecular dynamics simulations on nanocrystalline super-elastic NiTi shape memory alloy by addressing transformation ratchetting and its atomic mechanism. International Journal of Plasticity, 2020, 125, 374-394.	4.1	53
1804	Shock velocity-dependent elastic-plastic collapse of pre-existing stacking fault tetrahedron in single crystal Cu. Computational Materials Science, 2020, 172, 109390.	1.4	12
1805	The relationship between viscosity and local structure in liquid zirconium via electromagnetic levitation and molecular dynamics simulations. Journal of Molecular Liquids, 2020, 298, 111992.	2.3	18
1806	Dislocation nucleation and evolution at the ferrite-cementite interface under cyclic loadings. Acta Materialia, 2020, 186, 267-277.	3.8	30
1807	Dislocation â†" twin transmutations during interaction between prismatic slip and <mml:math altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:mrow><td>3.8 w> < mml:m</td><td>25 10>}</td></mml:mrow></mml:math>	3.8 w> < mml:m	25 10>}
1808	twin in magnesium. Acta Materialia, 2020, 186, 291-307. Deep learning for automated classification and characterization of amorphous materials. Soft Matter, 2020, 16, 435-446.	1.2	35
1809	Microstructure characteristics and failure mechanisms of Ti-48Al-2Nb-2Cr titanium aluminide intermetallic alloy fabricated by directed energy deposition technique. Additive Manufacturing, 2020, 32, 101007.	1.7	14
1810	Probing the indentation induced nanoscale damage of rhenium. Materials and Design, 2020, 186, 108362.	3.3	8

#	Article	IF	CITATIONS
1811	Effect of twin boundary spacing on the deformation behaviour of Au nanowire. Physica B: Condensed Matter, 2020, 581, 411952.	1.3	6
1812	Interdependence of shape and magnetic properties in Al-nanoparticles doped with Ni and Pt. Journal of Materials Chemistry C, 2020, 8, 2533-2541.	2.7	1
1813	First-Order Phase Transition in Liquid Ag to the Heterogeneous G-Phase. Journal of Physical Chemistry Letters, 2020, 11, 632-645.	2.1	20
1814	A stable cardinality distance for topological classification. Advances in Data Analysis and Classification, 2020, 14, 611-628.	0.9	3
1815	Molecular dynamics simulations of amorphous Ni–P alloy formation by rapid quenching and atomic deposition. Journal of Physics Condensed Matter, 2020, 32, 154001.	0.7	3
1816	Atomistic simulations of helium, hydrogen, and self-interstitial diffusion inside dislocation cores in tungsten. Nuclear Fusion, 2020, 60, 026013.	1.6	10
1817	Effect of relative tool sharpness on subsurface damage and material recovery in nanometric cutting of mono-crystalline silicon: A molecular dynamics approach. Materials Science in Semiconductor Processing, 2020, 108, 104868.	1.9	18
1818	Atomistic modeling of dislocations in a random quinary high-entropy alloy. Computational Materials Science, 2020, 173, 109366.	1.4	35
1819	The effect of point defects caused by particle bombardment on the deformation behaviours of alpha-iron: A molecular dynamics simulation. Materials Chemistry and Physics, 2020, 241, 122414.	2.0	6
1820	High pressure atomic structure of Zr–Cu metallic glass via EXAFS spectroscopy and molecular dynamics simulations. High Pressure Research, 2020, 40, 54-64.	0.4	7
1821	Shock deformation and spallation of Cu bicrystals with (1 $1\ 1$) twist grain boundaries. Computational Materials Science, 2020, 173, 109411.	1.4	11
1822	Atomic insight into the solidification of Cu melt confined in graphene nanoslits. Journal of Crystal Growth, 2020, 532, 125382.	0.7	11
1823	Bimetallic Ag–Cu nanoparticles interaction with lipid and lipopolysaccharide membranes. Computational Materials Science, 2020, 173, 109396.	1.4	9
1824	Molecular Dynamics simulation based investigation of possible enhancement in strength and ductility of nanocrystalline aluminum by CNT reinforcement. Materials Chemistry and Physics, 2020, 243, 122593.	2.0	25
1825	Pressure effect on the icosahedral order of Pd50Si50 alloy: A molecular dynamics study. Materials Today Communications, 2020, 25, 101454.	0.9	1
1826	Computer-Aided Drug Design. , 2020, , .		13
1827	Effects of grain size and temperature on mechanical properties of nano-polycrystalline Nickel-cobalt alloy. Journal of Materials Research and Technology, 2020, 9, 13161-13173.	2.6	26
1828	Structural evolution and fusion behavior of gold supercrystals under stress: Insights from atomistic simulations. Journal of Applied Physics, 2020, 128, .	1.1	4

#	Article	IF	CITATIONS
1829	Atomistic simulations of the face-centered-cubic-to-hexagonal-close-packed phase transformation in the equiatomic CoCrFeMnNi high entropy alloy under high compression. Computational Materials Science, 2020, 184, 109864.	1.4	24
1830	Size-dependent formation and thermal stability of high-order twins in hierarchical nanotwinned metals. International Journal of Plasticity, 2020, 128, 102685.	4.1	21
1831	Effects of porosity and pore microstructure on the mechanical behavior of nanoporous silver. Materials Today Communications, 2020, 24, 101236.	0.9	12
1832	Atomistic Simulation of Short Crack Growth in Correlation with Fatigue Indicator Parameter. Journal of Aerospace Engineering, 2020, 33, .	0.8	3
1833	A novel displacement cascade driven irradiation creep mechanism in \hat{l}_{\pm} -zirconium: A molecular dynamics study. Journal of Nuclear Materials, 2020, 541, 152336.	1.3	11
1834	Nano-cutting mechanical properties and microstructure evolution mechanism of amorphous/single crystal alloy interface. Computational Materials Science, 2020, 184, 109915.	1.4	10
1835	Identification of Local Structure in 2-D and 3-D Atomic Systems through Crystallographic Analysis. Crystals, 2020, 10, 1008.	1.0	8
1836	Performance of Cu–Ag Thin Films as Diffusion Barrier Layer. Coatings, 2020, 10, 1087.	1.2	2
1837	Molecular Dynamics Simulation of Dislocation Plasticity Mechanism of Nanoscale Ductile Materials in the Cold Gas Dynamic Spray Process. Coatings, 2020, 10, 1079.	1.2	7
1838	Crystallization of FCC and BCC Liquid Metals Studied by Molecular Dynamics Simulation. Metals, 2020, 10, 1532.	1.0	18
1839	Molecular dynamics simulation of carbon nanotubes and silicon nanowire composites. Modern Physics Letters B, 2020, 34, 2050355.	1.0	0
1840	Different structural transitions of rapidly supercooled tantalum melt under pressure. Physical Chemistry Chemical Physics, 2020, 22, 18078-18090.	1.3	9
1841	Shock response of metal-ceramic nanolayered composites. Composites Part B: Engineering, 2020, 199, 108272.	5.9	13
1842	Influence of anisotropy of nickel-based single crystal superalloy in atomic and close-to-atomic scale cutting. Precision Engineering, 2020, 66, 347-362.	1.8	13
1843	Influence of rolling temperature on the structural evolution and residual stress generation of nanocrystalline Nickel during nano-rolling process. Computational Materials Science, 2020, 184, 109935.	1.4	7
1844	Influence of chemical composition of the surface layer on the nucleation of plasticity in CoCrFeMnNi high-entropy alloys. Journal of Physics: Conference Series, 2020, 1556, 012049.	0.3	1
1845	Material Properties of Zr–Cu–Ni–Al Thin Films as Diffusion Barrier Layer. Crystals, 2020, 10, 540.	1.0	2
1846	A New Interaction Force Model of Gold Nanorods Derived by Molecular Dynamics Simulation. Nanomaterials, 2020, 10, 1293.	1.9	1

#	Article	IF	CITATIONS
1847	Effects of Langevin friction and time steps in the molecular dynamics simulation of nanoindentation. Molecular Simulation, 2020, 46, 911-922.	0.9	3
1848	Review and comparison of equations of state for the Lennard-Jones fluid. Fluid Phase Equilibria, 2020, 523, 112772.	1.4	58
1849	Molecular dynamic investigation of the effect of atomic polyhedrons on crystallization mechanism for Cu-based Cu-Pd and Cu-Pt alloys. Journal of Molecular Liquids, 2020, 314, 113636.	2.3	8
1850	Nucleation of Plasticity in Alpha-Iron Nanowires. Russian Physics Journal, 2020, 63, 947-953.	0.2	15
1851	Wear-induced microstructural evolution of nanocrystalline aluminum and the role of zirconium dopants. Acta Materialia, 2020, 200, 432-441.	3.8	20
1852	Lithium Cluster Segregation in Coherent Contraction Twin Boundaries of Magnesium Alloys. Acta Materialia, 2020, 201, 477-487.	3.8	13
1853	Thermal Stability of Hollow Porous Gold Nanoparticles: A Molecular Dynamics Study. Journal of Chemical Information and Modeling, 2020, 60, 6204-6210.	2.5	7
1854	Effects of grain boundary structures on primary radiation damage and radiation-induced segregation in austenitic stainless steel. Journal of Applied Physics, 2020, 128, .	1.1	3
1855	Dynamics of growth and collapse of nanopores in copper. International Journal of Solids and Structures, 2020, 202, 418-433.	1.3	9
1856	Molecular dynamics simulation of effects of microstructure and loading mode on mechanical properties of Au nanowires. Molecular Simulation, 2020, 46, 1291-1297.	0.9	1
1857	Nucleation of {1012} Twins in Magnesium through Reversible Martensitic Phase Transformation. Metals, 2020, 10, 1030.	1.0	8
1858	Quasi-Icosahedral Clusters in Zr-Based Metallic Glasses. Metals, 2020, 10, 1135.	1.0	6
1859	Indenter Shape Dependent Dislocation Actives and Stress Distributions of Single Crystal Nickel during Nanoindentation: A Molecular Dynamics Simulation., 0,,.		0
1860	Characteristic Curves of the Lennard-Jones Fluid. International Journal of Thermophysics, 2020, 41, 147.	1.0	20
1861	Atomistic Simulation of Nano-Rolling Process for Nanocrystalline Tungsten. Jom, 2020, 72, 3977-3986.	0.9	4
1862	Out-of-Equilibrium Polymorph Selection in Nanoparticle Freezing. Journal of Physical Chemistry Letters, 2020, 11, 8060-8066.	2.1	8
1863	Ultrastable Metallic Glasses <i>InÂSilico</i> . Physical Review Letters, 2020, 125, 085505.	2.9	20
1864	Study on topologically close-packed and crystal clusters of Cu ₁₀ Ag ₉₀ alloy at the critical crystalline cooling rate. CrystEngComm, 2020, 22, 7888-7895.	1.3	7

#	ARTICLE	IF	CITATIONS
1865	Deformation Behavior of Nanocrystalline Body-Centered Cubic Iron with Segregated, Foreign Interstitial: A Molecular Dynamics Study. Materials, 2020, 13, 5351.	1.3	4
1866	Glass-forming ability of elemental zirconium. Physical Review B, 2020, 102, .	1.1	17
1867	Heterogeneous solute segregation suppresses strain localization in nanocrystalline Ag-Ni alloys. Acta Materialia, 2020, 200, 91-100.	3.8	15
1868	Characterizing the Tensile Strength of Metastable Grain Boundaries in Silicon Carbide Using Machine Learning. Journal of Physical Chemistry C, 2020, 124, 24809-24821.	1.5	9
1869	An ab initio molecular dynamics exploration of associates in Ba-Bi liquid with strong ordering trends. Acta Materialia, 2020, 190, 81-92.	3.8	13
1870	Observation of phase transitions in shocked tin by molecular dynamics. Journal of Applied Physics, 2020, 127, .	1.1	11
1871	In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loops. Nature Communications, 2020, 11, 2367.	5.8	23
1872	Evolution of local atomic structure during solidification of Fe-RE (RE=La, Ce) alloy. Journal of Non-Crystalline Solids, 2020, 542, 120109.	1.5	1
1873	Formation of two glass phases in binary Cu-Ag liquid. Acta Materialia, 2020, 195, 274-281.	3.8	23
1874	Molecular dynamic study of temperature dependence of mechanical properties and plastic inception of CoCrCuFeNi high-entropy alloy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126516.	0.9	43
1875	Z-AXIS deformation method to investigate the influence of system size, structure phase transition on mechanical properties of bulk nickel. Materials Chemistry and Physics, 2020, 252, 123275.	2.0	15
1876	A simulation study on the orientational phase transformation behavior of Au-Pt alloy for different concentration of Pt. Solid State Communications, 2020, 316-317, 113940.	0.9	1
1877	Selective laser melting of aluminum nano-powder particles, a molecular dynamics study. Additive Manufacturing, 2020, 35, 101272.	1.7	15
1878	Atomic elastic stiffness analysis to predict twinning in Fe single crystal under shear. Computational Materials Science, 2020, 183, 109804.	1.4	3
1879	Understanding the heterogeneous kinetics of Al nanoparticles by simulations method. Journal of Molecular Structure, 2020, 1218, 128498.	1.8	12
1880	$\{1\hat{a}\in\%.0\hat{a}\in\%\hat{a}^*1\hat{a}\in\%.2\}$ twin boundaries migration accompanied by void in magnesium. Computational Materia Science, 2020, 184, 109857.	ls 1.4	4
1881	Atomic-level understanding of crystallization in the selective laser melting of Fe50Ni50 amorphous alloy. Additive Manufacturing, 2020, 34, 101369.	1.7	10
1882	Grain boundary structure search by using an evolutionary algorithm with effective mutation methods. Computational Materials Science, 2020, 184, 109812.	1.4	12

#	Article	IF	CITATIONS
1883	The correlation between chemical effect and segregation behavior in metallic Al liquid. Computational Materials Science, 2020, 175, 109611.	1.4	1
1884	Atomic simulation of crystal orientation effect on coating surface generation mechanisms in cold spray. Computational Materials Science, 2020, 184, 109859.	1.4	18
1885	Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation*. Chinese Physics B, 2020, 29, 048701.	0.7	6
1886	Interplay of Chemistry and Faceting at Grain Boundaries in a Model Al Alloy. Physical Review Letters, 2020, 124, 106102.	2.9	25
1887	Research on microstructure deformation mechanism of crack tip in titanium under tension along different orientations. Molecular Simulation, 2020, 46, 440-447.	0.9	2
1888	The effects of yttrium on the {10-12} twinning behaviour in magnesium alloys: a molecular dynamics study. Philosophical Magazine Letters, 2020, 100, 224-234.	0.5	4
1889	Effects of solutes on dislocation nucleation and interface sliding of bimetal semi-coherent interface. International Journal of Plasticity, 2020, 131, 102725.	4.1	18
1890	Properties of bulk liquid Pd and Pt and their free liquid surface studied with first principles techniques. Modelling and Simulation in Materials Science and Engineering, 2020, 28, 045002.	0.8	0
1891	Thickness-dependent shear localization in Cu/Nb metallic nanolayered composites. Scripta Materialia, 2020, 187, 323-328.	2.6	21
1892	Origins of strengthening and failure in twinned Au nanowires: Insights from inâ^'situ experiments and atomistic simulations. Acta Materialia, 2020, 187, 166-175.	3.8	15
1893	Machine learning approach to automated analysis of atomic configuration of molecular dynamics simulation. Computational Materials Science, 2020, 184, 109880.	1.4	22
1894	Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy. Npj Computational Materials, 2020, 6, .	3.5	111
1895	Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage. Acta Materialia, 2020, 196, 133-143.	3.8	124
1896	freud: A software suite for high throughput analysis of particle simulation data. Computer Physics Communications, 2020, 254, 107275.	3.0	133
1897	Effects of interfacial defect on deformation and mechanical properties of Cu/Ni bilayerâ€"A molecular dynamics study. Thin Solid Films, 2020, 707, 138050.	0.8	8
1898	Solute/twin boundary interaction as a new atomic-scale mechanism for dynamic strain aging. Acta Materialia, 2020, 188, 711-719.	3.8	15
1899	Structural evaluation and deformation features of polycrystalline BCC Fe with carbides during creep process. Journal of Materials Research and Technology, 2020, 9, 2969-2982.	2.6	3
1900	Thermal-pressure treatment for tuning the atomic structure of metallic glass Cu-Zr. Journal of Non-Crystalline Solids, 2020, 535, 119963.	1.5	15

#	ARTICLE	IF	CITATIONS
1901	Topological analysis of pattern formation in cooling granular gases confined by elastic wall. Journal of Physics Communications, 2020, 4, 015023.	0.5	2
1902	Molecular dynamic simulation of tool groove wear in nanoscale cutting of silicon. AIP Advances, 2020, 10, 015327.	0.6	6
1903	AtomicNet: a novel approach to identify the crystal structure of each simulated atom. Modelling and Simulation in Materials Science and Engineering, 2020, 28, 035005.	0.8	2
1904	Molecular Dynamics Simulations of Phosphorus Migration in a Grain Boundary of $\hat{l}\pm$ -Iron. Minerals, Metals and Materials Series, 2020, , 995-1002.	0.3	0
1905	Effects of temperature and strain rate on plastic deformation mechanisms of nanocrystalline high-entropy alloys. Intermetallics, 2020, 120, 106741.	1.8	51
1906	Structural Screening and Design of Platinum Nanosamples for Oxygen Reduction. ACS Catalysis, 2020, 10, 3911-3970 Interactions between hydrogen and the <mml:math< th=""><th>5.5</th><th>26</th></mml:math<>	5. 5	26
1907	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> <mml:mrow><mml:mrow><mml:mo< td=""><td></td><td></td></mml:mo<></mml:mrow></mml:mrow>		

#	Article	IF	CITATIONS
1919	Compression Behavior of Al-Mg Phases, Molecular Dynamics Simulation. International Journal of Engineering Research in Africa, 0, 46, 15-31.	0.7	4
1920	Atomistic investigation on effect of Ca doping ratio on mechanical behaviors of nanocrystalline Mg-Ca alloys. Journal of Molecular Modeling, 2020, 26, 103.	0.8	3
1921	Accumulative roll bonding of Cu–Zr nanolaminate: Atomistic-scale investigation of structural evolution and grain orientation scatter dependence on rolling parameters. Journal of Applied Physics, 2020, 127, .	1.1	8
1922	Understanding the atomistic deformation mechanisms of polycrystalline Î ³ -TiAl under nanoindentation: Effect of lamellar structure. Journal of Alloys and Compounds, 2020, 828, 154443.	2.8	17
1923	Grain size-dependent energy partition in phase transition of NiTi shape memory alloys studied by molecular dynamics simulation. International Journal of Solids and Structures, 2021, 221, 31-41.	1.3	37
1924	Atomistic study of metallurgical bonding upon the high velocity impact of fcc core-shell particles. Computational Materials Science, 2021, 186, 110045.	1.4	14
1925	Molecular dynamics simulation of the combination effect of the tip inclination and scratching direction on nanomachining of single crystal silicon. Computational Materials Science, 2021, 186, 110014.	1.4	14
1926	Molecular simulation of microstructure evolution and plastic deformation of nanocrystalline CoCrFeMnNi high-entropy alloy under tension and compression. Journal of Alloys and Compounds, 2021, 851, 156923.	2.8	59
1927	Molecular dynamics study of dislocation-twin boundary interaction in titanium subjected to scratching. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 800, 140327.	2.6	9
1928	Inconsistency of neighborhood based on Voronoi tessellation and Euclidean distance. Journal of Alloys and Compounds, 2021, 854, 156983.	2.8	27
1929	Collision cascade effects near an edge dislocation dipole in alpha-Fe: Induced dislocation mobility and enhanced defect clustering. Journal of Nuclear Materials, 2021, 543, 152459.	1.3	4
1930	Modeling the damage evolution and recompression behavior during laser shock loading of aluminum microstructures at the mesoscales. Journal of Materials Science, 2021, 56, 4446-4469.	1.7	19
1931	Microscopic Deformation Modes and Impact of Network Anisotropy on the Mechanical and Electrical Performance of Five-fold Twinned Silver Nanowire Electrodes. ACS Nano, 2021, 15, 362-376.	7.3	23
1932	Impact of local chemical order on the structure evolution of dual-phase high-entropy alloy during solidification process. Vacuum, 2021, 184, 109953.	1.6	10
1933	A Quantum-Based Approach to Predict Primary Radiation Damage in Polymeric Networks. Journal of Chemical Theory and Computation, 2021, 17, 463-473.	2.3	8
1934	Hierarchical fivefold symmetry in CuZr metallic glasses. Journal of Non-Crystalline Solids, 2021, 555, 120548.	1.5	3
1935	Atomistic simulation of deformation behaviors polycrystalline CoCrFeMnNi high-entropy alloy under uniaxial loading. International Journal of Refractory Metals and Hard Materials, 2021, 95, 105415.	1.7	9
1936	Effects of Ag or Al addition to CuZr-based metallic alloys on glass formation and structural evolution: A molecular dynamics simulation study. Intermetallics, 2021, 128, 107023.	1.8	17

#	Article	IF	CITATIONS
1937	Classification of atomic environments via the Gromov–Wasserstein distance. Computational Materials Science, 2021, 188, 110144.	1.4	2
1938	Molecular dynamics studies of the grain-size dependent hydrogen diffusion coefficient of nanograined Fe. International Journal of Hydrogen Energy, 2021, 46, 5842-5851.	3.8	24
1939	Molecular dynamics simulation of strengthening of nanocrystalline Cu alloyed with Zr. Materials Today Communications, 2021, 26, 101963.	0.9	5
1940	Nano-tribological behavior of high-entropy alloys CrMnFeCoNi and CrFeCoNi under different conditions: A molecular dynamics study. Wear, 2021, 476, 203583.	1.5	41
1941	Deep learning for characterizing the self-assembly of three-dimensional colloidal systems. Soft Matter, 2021, 17, 989-999.	1.2	16
1942	Study on deformation behaviors of nanopillar textured AlN in nanoindentation using molecular dynamics. Ceramics International, 2021, 47, 4166-4177.	2.3	9
1943	Associating GB characteristics with its sink efficiency in absorbing Frank loops in Cu. Scripta Materialia, 2021, 192, 61-66.	2.6	7
1944	Phenomenology of the heating, melting and diffusion processes in Au nanoparticles. Physical Chemistry Chemical Physics, 2021, 23, 1298-1307.	1.3	5
1945	The role of non-equilibrium grain boundary in micro-deformation and failure mechanisms of Bicrystal structural tungsten. International Journal of Refractory Metals and Hard Materials, 2021, 94, 105376.	1.7	3
1946	Nano mechanical property analysis of single crystal copper using Berkovich nano indenter and molecular dynamic simulation. Computational Materials Science, 2021, 188, 110237.	1.4	6
1947	Effect of vibration mode on self-assembly of granular spheres under three-dimensional vibration. Powder Technology, 2021, 380, 47-58.	2.1	8
1948	Origin of structural heterogeneity in Zr-Co-Al metallic glasses from the point of view of liquid structures. Journal of Non-Crystalline Solids, 2021, 553, 120501.	1.5	8
1949	A molecular dynamic study of the effects of high pressure on the structure formation of liquid metallic Ti62Cu38 alloy during rapid solidification. Computational Materials Science, 2021, 187, 110089.	1.4	8
1950	Molecular dynamics simulation-based study of creep–ratcheting behavior of nanocrystalline aluminum. Applied Nanoscience (Switzerland), 2021, 11, 565-581.	1.6	15
1951	Obtaining, structure and gas sensor properties of nanopowder metal oxides. Materials Today: Proceedings, 2021, 35, 588-594.	0.9	11
1952	Atomistic simulation of the preheating treatment and crystal orientation influences in the hardness of cold gas dynamic sprayed nickel coating unto the copper substrate. Materials Today: Proceedings, 2021, 44, 2173-2178.	0.9	0
1953	The Structure and Crystallizing Process of NiAu Alloy: A Molecular Dynamics Simulation Method. Journal of Composites Science, 2021, 5, 18.	1.4	14
1954	Molecular Dynamics Simulation-Based Investigation of Mechanical Behavior of CNT Embedded Nanocrystalline Al at Cryogenic Temperature. Springer Proceedings in Materials, 2021, , 211-221.	0.1	1

#	Article	IF	CITATIONS
1955	A Comparative Nanoindentation Study on HEA Coated FCC Metals and Stacking Fault Tetrahedra Evolution in HEA Coated Single Crystal Al: A MD Simulation Study. Springer Proceedings in Materials, 2021, , 325-347.	0.1	0
1956	Local Stress Field in Wafer Thinning Simulations with Phase Space Averaging. Computers, Materials and Continua, 2021, 68, 743-759.	1.5	O
1957	Transformation-induced plasticity in omega titanium. Journal of Applied Physics, 2021, 129, .	1.1	10
1958	The role of grain boundary character in solute segregation and thermal stability of nanocrystalline Pt–Au. Nanoscale, 2021, 13, 3552-3563.	2.8	35
1959	A universal signature in the melting of metallic nanoparticles. Nanoscale, 2021, 13, 1172-1180.	2.8	23
1960	An augmented (multi-descriptor) grouping algorithm to optimize chemical ordering in nanoalloys. Physical Chemistry Chemical Physics, 2021, 23, 23075-23089.	1.3	2
1961	Molecular dynamics simulation of shock-induced microscopic bubble collapse. Physical Chemistry Chemical Physics, 2021, 23, 8446-8455.	1.3	15
1962	Elastic–plastic deformation decomposition algorithm for metal clusters at the atomic scale. Computational Mechanics, 2021, 67, 567-581.	2.2	4
1963	Pd-Au Alaşımında Au Atomunun Konsantrasyon Etkisinin Polyhedron Topakları Oluşumu Üzerine Etkisi Moleküler Dinamik Yöntemle İncelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 0, , .	nin 0.1	1
1964	Microscopic and Macroscopic Characterization of Grain Boundary Energy and Strength in Silicon Carbide via Machine-Learning Techniques. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3311-3324.	4.0	12
1965	Cholesteric mesophase based 1D photonic materials from self-assembly of liquid crystalline block and random terpolymers containing chromonic molecules. RSC Advances, 2021, 11, 14615-14623.	1.7	2
1966	Constant twist rate response of symmetric and asymmetric Σ5 aluminium tilt grain boundaries: molecular dynamics study of deformation processes. Journal of Materials Science, 2021, 56, 8544-8562.	1.7	6
1967	Peculiarities of the development of plastic deformation in a textured FeNi alloy with a gradient grain structure. IOP Conference Series: Materials Science and Engineering, 2021, 1093, 012013.	0.3	0
1968	Influence of grain size on the nucleation and development of plasticity in nanocrystalline FeNi films. IOP Conference Series: Materials Science and Engineering, 2021, 1093, 012012.	0.3	1
1969	The AuCu Phase Diagram at the Nano Scale: A Molecular Dynamics Approach. Journal of Cluster Science, 2022, 33, 785-793.	1.7	2
1970	Molecular dynamics study of UO ₂ symmetric tilt grain boundaries around [001] axis. Journal of the American Ceramic Society, 2021, 104, 2879-2893.	1.9	7
1971	Unveiling the role of hydrogen on the creep behaviors of nanograined \hat{l}_{\pm} -Fe via molecular dynamics simulations. International Journal of Hydrogen Energy, 2021, 46, 9613-9629.	3.8	11
1972	Metastable–solid phase diagrams derived from polymorphic solidification kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11

#	Article	IF	CITATIONS
1973	Molecular dynamics simulation of adsorption processes on the surface of ZnO nanoclusters. Applied Nanoscience (Switzerland), 2022, 12, 673-678.	1.6	4
1974	Grain boundary-mediated plasticity accommodating the cracking process in nanograined gold: In situ observations and simulations. Scripta Materialia, 2021, 194, 113693.	2.6	6
1975	Melting dynamics of Gold thin film: A Molecular Dynamics study. IOP Conference Series: Materials Science and Engineering, 2021, 1098, 062061.	0.3	0
1976	Crystal orientation and grain boundary effects on plastic deformation of FCC particles under high velocity impacts. Materialia, 2021, 15, 101004.	1.3	11
1977	Correlation between mixing enthalpy and structural order in liquid Mgâ^'Si system. Transactions of Nonferrous Metals Society of China, 2021, 31, 853-864.	1.7	1
1978	Nucleation and Evolution of Plasticity in Nanocrystalline Bcc-Iron under Shear Loading. Russian Physics Journal, 2021, 63, 1854-1860.	0.2	1
1979	The role of ligands in pressure-induced phase transition of gold nanoribbons. Phase Transitions, 2021, 94, 123-133.	0.6	2
1980	The first order L-G phase transition in liquid Ag and Ag-Cu alloys is driven by deviatoric strain. Scripta Materialia, 2021, 194, 113695.	2.6	8
1981	How Crystallization Affects the Oriented Attachment of Silver Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 6812-6820.	1.5	5
1982	Tensile mechanical performance of Al/Ni dissimilar metals bonded by self-propagating exothermic reaction based on molecular dynamics simulation. Materials Today Communications, 2021, 26, 102079.	0.9	3
1983	Structural Evolution of the Surface and Interface in Bimetallic High-Index Faceted Heterogeneous Nanoparticles. Journal of Physical Chemistry Letters, 2021, 12, 2454-2462.	2.1	5
1984	Atomistic simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-developed interatomic potential. Materials and Design, 2021, 202, 109560.	3.3	63
1985	Formation of <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>{</mml:mo><mml:mn>11</mml:mn><mml:mover accent="true"><mml:mn>2</mml:mn><mml:mo></mml:mo>2<mml:mo>} contraction twins in titanium through reversible martensitic phase transformation. Scripta Materialia, 2021, 195, 113694.</mml:mo></mml:mover></mml:mrow></mml:math>	< ≱n6 ml:mo	> k ømml:mro
1986	A method for directly counting and quantitatively comparing aggregated structures during cluster formation. Chinese Journal of Chemical Physics, 2021, 34, 137-148.	0.6	0
1987	Material removal and surface evolution of single crystal silicon during ion beam polishing. Applied Surface Science, 2021, 544, 148954.	3.1	21
1988	Searching local order parameters to classify water structures of ice lh, lc, and liquid. Journal of Chemical Physics, 2021, 154, 164505.	1.2	13
1989	Atomistic simulations of high-temperature creep in nanotwinned TiAl alloys. Extreme Mechanics Letters, 2021, 44, 101253.	2.0	9
1990	Melting Behavior of Bimetallic and Trimetallic Nanoparticles: A Review of MD Simulation Studies. Topics in Current Chemistry, 2021, 379, 22.	3.0	15

#	ARTICLE	IF	CITATIONS
1991	Numerical Study and Experimental Validation of Deformation of <111> FCC CuAl Single Crystal Obtained by Additive Manufacturing. Metals, 2021, 11, 582.	1.0	9
1992	Shear deformation mechanical performance of Ni–Co alloy nanoplate by molecular dynamics simulation. Modern Physics Letters B, 2021, 35, 2150323.	1.0	4
1993	Molecular Dynamics Simulations of the Effect of Temperature and Strain Rate on the Plastic Deformation of Body-Centered Cubic Iron Nanowires. Journal of Engineering Materials and Technology, Transactions of the ASME, 2021, 143, .	0.8	4
1994	Liquid Water and Interfacial, Cubic, and Hexagonal Ice Classification through Eclipsed and Staggered Conformation Template Matching. Journal of Physical Chemistry B, 2021, 125, 3909-3917.	1.2	5
1995	Development of a Structural Comparison Method to Promote Exploration of the Potential Energy Surface in the Global Optimization of Nanoclusters. Journal of Chemical Information and Modeling, 2021, 61, 1732-1744.	2.5	8
1996	Identification of critical nuclei in the rapid solidification via configuration heredity. Journal of Physics Condensed Matter, 2021, 33, 175701.	0.7	1
1997	$\mbox{\sc i}$ Ab initio $\mbox{\sc i}$ investigation of the atomic volume, thermal expansion, and formation energy of WTi solid solutions. Physical Review Materials, 2021, 5, .	0.9	4
1998	Understanding the Effect of Oxygen on the Glass-Forming Ability of Zr55Cu55Al9Be9 Bulk Metallic Glass by ab initio Molecular Dynamics Simulations. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2501-2511.	1.1	6
1999	The role of shear deformation in pure tungsten: Mechanical properties and micro-mechanism. International Journal of Modern Physics B, 2021, 35, 2150142.	1.0	0
2000	Effect of interfacial bonding on dislocation strengthening in graphene nanosheet reinforced iron composite: A molecular dynamics study. Computational Materials Science, 2021, 191, 110309.	1.4	11
2001	A hybrid topological and shape-matching approach for structure analysis. Journal of Chemical Physics, 2021, 154, 154502.	1.2	2
2002	Effect of variation in inclination angle of \mathcal{E} ©5 tilt grain boundary on the shock response of Ni bicrystals. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	4
2003	Mechanical properties and dislocation evolution of Cuâ€"Fe interfaces from molecular dynamics simulation. Materials Chemistry and Physics, 2021, 262, 124270.	2.0	12
2004	Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study*. Chinese Physics B, 2021, 30, 056101.	0.7	2
2005	The Local Rearrangement of Tension Deformation in AlSi Amorphous Alloy: A Molecular Dynamics Study. Materials Transactions, 2021, 62, 642-646.	0.4	3
2006	Laves phase crystal analysis (LaCA): Atomistic identification of lattice defects in C14 and C15 topologically close-packed phases. Journal of Materials Research, 2021, 36, 2010-2024.	1.2	7
2007	Role of pre-existing dislocations on the shock compression and spall behavior in single-crystal copper at atomic scales. Journal of Applied Physics, 2021, 129, .	1.1	14
2008	Two-dimensional clusters of colloidal tetramers via droplet emulsion templating. Journal of Physics: Conference Series, 2021, 1932, 012015.	0.3	0

#	ARTICLE	IF	CITATIONS
2009	A molecular dynamics study on tensile and low cycle fatigue behaviors of Ti single crystal nanowire. Physica Scripta, 2021, 96, 075402.	1.2	1
2010	Atomistic analyses of HCP-FCC transformation and reorientation of Ti in Al-Ti multilayers. Computational Materials Science, 2021, 192, 110329.	1.4	9
2011	Molecular dynamics study of surface nucleation and growth mechanism in Cu-based CuPtPd ternary alloy system. Solid State Communications, 2021, 332, 114307.	0.9	1
2012	A concurrent atomistic-crystal plasticity multiscale model for crack propagation in crystalline metallic materials. Computer Methods in Applied Mechanics and Engineering, 2021, 379, 113748.	3.4	13
2013	Effect of growth twins on strength and microstructural evolution of nanocrystalline aluminum. Journal of Materials Science, 2021, 56, 14587-14597.	1.7	2
2014	Saf Kalsiyum Elementinin Isıtma Sýrecinin Moleküler Dinamik Benzetim Yöntemi ile İncelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 0, , .	0.1	O
2015	Searching for local order parameters to classify water structures at triple points. Journal of Computational Chemistry, 2021, 42, 1720-1727.	1.5	6
2016	Cooperative roles of stacking fault energies on dislocation nucleation at bimetal interface through tunable potentials. Computational Materials Science, 2021, 193, 110416.	1.4	5
2017	Molecular dynamics simulation of the effect of solute atoms on the compression of magnesium alloy. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	3
2018	Investigation of the effects of point defects on the tensile strength of BCC-Fe using molecular dynamics. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	2
2019	Properties of \hat{l}_{\pm} -Brass Nanoparticles II: Structure and Composition. Journal of Physical Chemistry C, 2021, 125, 14897-14909.	1.5	9
2020	Determining neighborhood phases in hard-sphere systems using machine learning. European Physical Journal B, 2021, 94, 1.	0.6	1
2021	Comparison of anisotropic crack tip behavior in hcp titanium by two-dimensional and three-dimensional atomistic simulations. Theoretical and Applied Fracture Mechanics, 2021, 113, 102938.	2.1	4
2022	Hierarchical Clustering of Structural and Electronic Characteristics Obtained from Molecular Dynamics Simulation of Catalytic Reaction on Metal Nanoparticle. Materials Transactions, 2021, 62, 829-835.	0.4	5
2023	Ordered/disordered monodisperse dense granular flow down an inclined plane: dry versus wet media in the capillary bridge regime. Granular Matter, 2021, 23, 1.	1,1	2
2024	Strain Effects on the Diffusion Properties of Near-Surface Self-Interstitial Atoms and Adatoms in Tungsten. Frontiers in Materials, 2021, 8, .	1.2	1
2025	Atomic-scale simulation of nanojoining of Cu-Ag core-shell nanowires. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 405, 127425.	0.9	7
2026	Heredity of clusters in the rapidly cooling processes of Al-doped Zr ₅₀ Cu ₅₀ melts and its correlation with the glass-forming ability*. Chinese Physics B, 2021, 30, 076101.	0.7	4

#	ARTICLE	IF	CITATIONS
2027	Hidden State of Si ₅₀ Ge ₅₀ Nanoparticles During Rapid Solidification. Crystal Growth and Design, 2021, 21, 4746-4756.	1.4	8
2028	Nonclassical Nucleation Pathways in Stacking-Disordered Crystals. Physical Review X, 2021, 11, .	2.8	15
2029	Molecular dynamic simulations evaluating the effect of the stacking fault energy on defect formations in face-centered cubic metals subjected to high-energy particle irradiation. Computational Materials Science, 2021, 195, 110479.	1.4	10
2030	Characterization of Nucleation Behavior in Temperature-Induced BCC-to-HCP Phase Transformation for High Entropy Alloy. Acta Metallurgica Sinica (English Letters), 2021, 34, 1546-1556.	1.5	7
2031	Crystallinity characterization of white matter in the human brain. New Journal of Physics, 2021, 23, 073047.	1.2	5
2032	Effects of void and inclusion sizes on mechanical response and failure mechanism of AlCrCuFeNi2 high-entropy alloy. Engineering Fracture Mechanics, 2021, 252, 107848.	2.0	24
2033	Contribution of cold-work to the wear resistance of materials and its limitation – A study combining molecular dynamics modeling and experimental investigation. Wear, 2021, 476, 203642.	1.5	15
2034	Effects of order and disorder on the defect evolution of NiFe binary alloys from atomistic simulations. Nuclear Instruments & Methods in Physics Research B, 2021, 498, 27-33.	0.6	5
2035	Atomistic simulation of crack propagation in CNT reinforced nanocrystalline aluminum under uniaxial tensile loading. Philosophical Magazine, 2021, 101, 1942-1964.	0.7	4
2036	Deformation response of high entropy alloy nanowires. Journal of Materials Science, 2021, 56, 16447-16462.	1.7	13
2037	Molecular dynamics simulation study of interaction mechanism between grain boundaries and subgrain boundaries in nano-cutting. Journal of Manufacturing Processes, 2021, 67, 418-426.	2.8	31
2038	Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy. Chinese Physics B, O, , .	0.7	3
2039	Uncovering the mechanism of dynamics in metallic glass-forming liquids based on local symmetry entropy. Modelling and Simulation in Materials Science and Engineering, 2021, 29, 075003.	0.8	3
2040	LAMMPS implementation of rapid artificial neural network derived interatomic potentials. Computational Materials Science, 2021, 196, 110481.	1.4	14
2041	Effects of microstructure and temperature on the mechanical properties of nanocrystalline CoCrFeMnNi high entropy alloy under nanoscratching using molecular dynamics simulation. Journal of Alloys and Compounds, 2021, 871, 159516.	2.8	43
2042	Atomistic simulations of effects of Zr solute and loading mode on mechanical behavior of nanocrystalline Cu. Journal of Applied Physics, 2021, 130, 075102.	1.1	1
2043	Dynamical and structural properties of metallic liquid and glass Zr48Cu36Ag8Al8 alloy studied by molecular dynamics simulation. Journal of Non-Crystalline Solids, 2021, 566, 120890.	1.5	14
2044	Effect of Anisotropy of Potassium Dihydrogen Phosphate Crystals on Its Deformation Mechanisms Subjected to Nanoindentation. ACS Applied Materials & Subjected to Nanoindentation. ACS Applied Materials & Subjected to Nanoindentation.	4.0	18

#	Article	IF	CITATIONS
2045	Molecular Dynamics Simulations of Thermally Induced Surface and Shape Evolution of Concave Au Nanocubes: Implications for Catalysis. ACS Applied Nano Materials, 2021, 4, 9527-9535.	2.4	2
2046	Shear-strain induced structural relaxation of Cu \hat{t} 3 [110](112) symmetric tilt grain boundary: The role of foreign atoms and temperature. Current Applied Physics, 2021, 28, 19-25.	1.1	1
2047	Unsupervised learning of atomic environments from simple features. Computational Materials Science, 2021, 196, 110511. An atomistic study of defect energetics and diffusion with respect to composition and temperature in	1.4	12
2048	<pre><mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi></mml:math>U and <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi></mml:math>U-Mo allovs, Journal of Nuclear Materials, 2021, 552.</pre>	1.3	10
2049	Molecular dynamics study on the relationship between phase transition mechanism and loading direction of AZ31. Scientific Reports, 2021, 11, 17229.	1.6	1
2050	CuAu ve Cu3Au Süper Alaşımların Bazı Termal Özelliklerinin Moleküler Dinamik Çalışması. Jo Institute of Science and Technology, 0, , 1939-1947.	urnal of th	e o
2051	Impact of crystalline–amorphous interface on shock response of metallic glass Al90Sm10/crystalline Al nanolaminates. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	3
2052	Molecular Dynamics-Based Tension Simulation of Plastic Deformation of 2D Nanotwinned Copper Under Uniaxial Stress Conditions: Evolution of Dislocations and Secondary Twinning. Metals and Materials International, 2022, 28, 1611-1619.	1.8	2
2053	Enhanced mechanical performance of grain boundary precipitation-hardened high-entropy alloys via a phase transformation at grain boundaries. Journal of Materials Science and Technology, 2021, 86, 271-284.	5.6	24
2054	Molecular dynamics simulations of inelastic x-ray scattering from shocked copper. Journal of Applied Physics, 2021, 130, .	1.1	4
2055	Mechanism of Spontaneous Surface Modifications on Polycrystalline Cu Due to Electric Fields. Micromachines, 2021, 12, 1178.	1.4	1
2056	Elastic stress induced metastable local ordering in Cu-Zr-Al metallic glasses: A numerical simulation study. Materials Today Communications, 2021, 28, 102693.	0.9	1
2057	Parameter-free quantitative simulation of high-dose microstructure and hydrogen retention in ion-irradiated tungsten. Physical Review Materials, 2021, 5, .	0.9	26
2058	Microstructure Evolution of Ni-Co Alloys During Crystallization and Amorphization Process. Journal of Superconductivity and Novel Magnetism, 2021, 34, 3377-3383.	0.8	O
2059	Martensitic Transformation in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>Fe</mml:mi></mml:mrow><mml 115704.<="" 127,="" 2021,="" letters,="" physical="" review="" td=""><td>:m2:øw><n< td=""><td>nnılzmi>x</td></n<></td></mml></mml:msub></mml:mrow></mml:mrow></mml:math>	:m 2:ø w> <n< td=""><td>nnılzmi>x</td></n<>	n nıl zmi>x
2060	Materials Fingerprinting Classification. Computer Physics Communications, 2021, 266, 108019.	3.0	6
2061	Molecular Dynamics Study on Uniaxial Compression Transformation of Magnesium Alloy. Nano, 0, , 2150118.	0.5	0
2062	Microstructural evolution and mechanical properties of AlxCoCrFeNi high-entropy alloys under uniaxial tension: A molecular dynamics simulations study. Materials Today Communications, 2021, 28, 102525.	0.9	18

#	ARTICLE	IF	CITATIONS
2063	Molecular Dynamics Investigation on Thermal Stability and Shape Evolution of Pd-Au Heterostructured Nanorods: Implications for Catalysis. ACS Applied Nano Materials, 0, , .	2.4	2
2064	Three-dimensional topological structures and formation processes of dislocations in Au nanowire under tension loading. Computational Materials Science, 2021, 197, 110639.	1.4	13
2065	Segregation competition and complexion coexistence within a polycrystalline grain boundary network. Acta Materialia, 2021, 218, 117213.	3.8	18
2066	Crystal Plasticity Phase-Field Model with Crack Tip Enhancement Through a Concurrent Atomistic-Continuum Model. Journal of the Mechanics and Physics of Solids, 2021, 155, 104563.	2.3	5
2067	Nanoindentation characteristics and recovery capacity of amorphous CuxTa100-x/Cu crystalline nanolaminates. Journal of Non-Crystalline Solids, 2021, 569, 120996.	1.5	2
2068	Understanding the plasticity contributions during laser-shock loading and spall failure of Cu microstructures at the atomic scales. Computational Materials Science, 2021, 198, 110668.	1.4	16
2069	Healing of nanocracks by collision cascades in nickel. Journal of Nuclear Materials, 2021, 555, 153124.	1.3	5
2070	Machine learning to predict aluminum segregation to magnesium grain boundaries. Scripta Materialia, 2021, 204, 114150.	2.6	18
2071	Small-scale analysis of brittle-to-ductile transition behavior in pure tungsten. Journal of Materials Science and Technology, 2022, 105, 242-258.	5.6	15
2072	id="d1e768" altimg="si102.svg"> <mml:mrow><mml:mo>{</mml:mo><mml:mn>11</mml:mn><mml:mover accent="true"><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mo>i,,</mml:mo></mml:mrow><mml:mrow><mml:mo>i,,</mml:mo></mml:mrow><mml:mrow><mml:mo>i,</mml:mo>i,</mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mover></mml:mrow>	ow> <td>nl:mover><m< td=""></m<></td>	nl:mover> <m< td=""></m<>
2073	Computational Materials Science, 2022, 201, 110887. Characterising soft matter using machine learning. Soft Matter, 2021, 17, 3991-4005.	1.2	24
2074	Fine Structure of Zr ₈₀ Pt ₂₀ Amorphous Alloy Determined from Anomalous X-ray Scattering (AXS) Data by Applying Reverse Monte-Carlo (RMC) Simulation Method. Materials Transactions, 2021, 62, 20-26.	0.4	2
2075	New phase transition pattern of fivefold twins transformed into lamellar structure in Ti ₃ Al alloy. CrystEngComm, 2021, 23, 6800-6809.	1.3	2
2076	Variational design principles for nonequilibrium colloidal assembly. Journal of Chemical Physics, 2021, 154, 014107.	1.2	17
2077	Precipitate strengthening in nanocrystalline Ti/Ta composites. Philosophical Magazine Letters, 2021, 101, 115-122.	0.5	1
2078	Atomistic Simulation Study of Mechanical Deformation of Al-Mg-Si Alloys. International Journal of Engineering Research in Africa, 0, 52, 149-163.	0.7	1
2079	Simulations of Wear-Induced Microstructural Evolution in Nanocrystalline Aluminum. Minerals, Metals and Materials Series, 2021, , 132-139.	0.3	0
2080	Molecular dynamics simulation of rapid solidification of Cu64Zr36 nanodrops of different sizes. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.2	3

#	ARTICLE	IF	CITATIONS
2082	Nanoindentation in Nanocrystalline Metallic Layers: A Molecular Dynamics Study on Size Effects. Nanostructure Science and Technology, 2006, , 109-142.	0.1	5
2083	Molecular Dynamics Study on the Characteristics of Edge and Screw Dislocations in Gamma/Gamma-Prime Microstructure of Ni-Based Superalloy. Solid Mechanics and Its Applications, 2004, , 59-68.	0.1	4
2084	Microstructural Evolution in Crystalline Metal Induced by Plastic Deformation., 2007,, 25-35.		3
2085	Structural and Thermodynamic Properties of Au2–58 Clusters. Progress in Theoretical Chemistry and Physics, 2013, , 181-193.	0.2	2
2086	Inference of Hidden Structures in Complex Physical Systems by Multi-scale Clustering. Springer Series in Materials Science, 2016, , 115-138.	0.4	6
2087	Dislocation Analysis Tool for Atomistic Simulations. , 2020, , 1545-1558.		2
2088	Molecular Dynamics Study of Plastic Deformation of Nanocrystalline Palladium., 2010, , 111-122.		1
2089	Topological Extraction and Tracking of Defects in Crystal Structures. Mathematics and Visualization, 2011, , 167-178.	0.4	1
2090	Phases and Phase Changes of Small Systems. Springer Series in Cluster Physics, 1999, , 1-26.	0.3	23
2091	IR Spectroscopy of Solvated Molecules. Springer Series in Chemical Physics, 1994, , 19-43.	0.2	1
2092	Atomistic Simulation Methods and their Application on Fracture. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2010, , 1-57.	0.3	3
2094	Phases and Phase Changes of Clusters. , 1996, , 281-297.		10
2095	Effects of the Surface and Finite Temperature on the Electronic Structure of Metal Clusters. , 1996, , 47-70.		2
2096	Theoretical Predictions of Structure and Thermodynamics in the Large Cluster Regime., 1996,, 241-279.		7
2097	Phases, Phase Changes, and the Thermodynamics of Small Systems. , 2002, , 143-168.		4
2098	Size-Dependent Thermodynamic and Electronic Properties of Individual Nanometer-Size Supported Gold Clusters., 1992,, 309-322.		2
2099	Nanoalloy Simulation. , 2016, , 2293-2305.		1
2100	Molecular Docking and Structure-Based Drug Design. , 2020, , 115-131.		7

#	Article	IF	CITATIONS
2101	Short- and Long-Range Icosahedral Order in Crystals, Glass, and Quasicrystals. Aperiodicity and Order, 1988, , 59-110.	0.3	10
2102	Atomic-Level Dislocation Dynamics in Irradiated Metals. , 2020, , 663-688.		6
2103	Structural Fluctuations in Small Particles. Chemical Physics of Solid Surfaces, 1994, 7, 443-464.	0.3	1
2104	Prediction of the shear strength of aluminum with \hat{l} , phase inclusions based on precipitate statistics, dislocation and molecular dynamics. International Journal of Plasticity, 2020, 128, 102672.	4.1	37
2105	Deformation mechanisms of the subgranular cellular structures in selective laser melted 316L stainless steel. Mechanics of Materials, 2020, 148, 103478.	1.7	16
2106	Atomic simulation of the orientation effects on crack tip behavior in titanium single crystal. Theoretical and Applied Fracture Mechanics, 2020, 110, 102791.	2.1	10
2108	Solid–Liquid Coexistence in Trimetallic Heterostructured Nanoparticle Catalysts: Insights from Molecular Dynamics Simulations. ACS Applied Nano Materials, 2020, 3, 12369-12378.	2.4	10
2109	Alloy, Janus and core–shell nanoparticles: numerical modeling of their nucleation and growth in physical synthesis. Physical Chemistry Chemical Physics, 2019, 21, 22774-22781.	1.3	14
2110	Unraveling atomic-scale crystallization and microstructural evolution of a selective laser melted FeCrNi medium-entropy alloy. CrystEngComm, 2020, 22, 4136-4146.	1.3	19
2111	Hydrodynamic and frictional modulation of deformations in switchable colloidal crystallites. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12700-12706.	3.3	4
2112	The role played by two parallel free surfaces in the deformation mechanism of nanocrystalline metals: a molecular dynamics simulation. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 1-15.	0.8	4
2113	\hat{l} ± \hat{a} †" \hat{l} 3 phase transformation in iron: comparative study of the influence of the interatomic interaction potential. Modelling and Simulation in Materials Science and Engineering, 2020, 28, 055011.	0.8	10
2114	Molecular dynamics simulation of the material removal in the scratching of 4H-SiC and 6H-SiC substrates. International Journal of Extreme Manufacturing, 2020, 2, 045104.	6.3	54
2115	Mechanisms of near-surface structural evolution in nanocrystalline materials during sliding contact. Physical Review Materials, 2017, 1 , .	0.9	7
2116	Molecular dynamics studies of InGaN growth on nonpolar <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mn>11<td>np.smml:</td><td>moyer) Tj ET</td></mml:mn></mml:mrow></mml:math>	np.smml:	moyer) Tj ET
2117	convisuraces. Physical Review Materials, 2016, 2, cmml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mo>{110</mml:mo></mml:mrow>	:mn3 < mm	ll:mo>}
2118	Molecular dynamics simulations of grain interactions in shock-compressed highly textured columnar nanocrystals. Physical Review Materials, 2019, 3, .	0.9	6
2119	Correlated disorder in a model binary glass through a local SU(2) bonding topology. Physical Review Materials, 2020, 4, .	0.9	8

#	Article	IF	CITATIONS
2120	A Bayesian Framework for Persistent Homology. SIAM Journal on Mathematics of Data Science, 2020, 2, 48-74.	1.0	22
2121	Calculation of Free Volume in Computer Generated Grain Boundaries. Acta Physica Polonica A, 2005, 107, 769-775.	0.2	6
2122	Formation and evolution mechanisms of large-clusters during rapid solidification process of liquid metal Al. Science in China Series G: Physics, Mechanics and Astronomy, 2005, 48, 101.	0.2	4
2123	Multiscale Modelling of Self-Organization of Non-Equilibrium Point Defects in Irradiated \$alpha\$-Zirconium. Progress in Physics of Metals, 2017, 18, 295-400.	0.5	6
2124	Pressure Effects on the Structural Evolution of Monatomic Metallic Liquid Hafnium. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2018, 7, 144-158.	0.1	4
2125	Hızlı Soğutma Sýrecinde Dörtlü Zr48Cu36Ag8Al8 İri Hacimli Metalik Camının Atomik Yapısı Journal of Natural and Applied Sciences, 0, , 954-962.	nın Geli⁄	ÅŸjmi.
2126	Atomic Simulations of Interactions between Edge Dislocations and a Twist Grain Boundary in Mg. Materials Transactions, 2020, 61, 1063-1069.	0.4	6
2127	Atomistic Simulation Study of Cohesive Energy of Grain Boundaries in Alpha Iron under Gaseous Hydrogen Environment. Zairyo/Journal of the Society of Materials Science, Japan, 2010, 59, 589-595.	0.1	15
2128	Molecular Dynamics Simulation of Deformation Mechanism and Mechanical Properties in Au Cluster. Zairyo/Journal of the Society of Materials Science, Japan, 2010, 59, 624-630.	0.1	1
2129	Stress Singularity Analysis at an Interfacial Corner between Dissimilar Crystals and Evaluation of Mixed Modes Fracture Criteria Using Molecular Statics. Zairyo/Journal of the Society of Materials Science, Japan, 2010, 59, 908-915.	0.1	3
2130	Molecular dynamics investigation of the formation processes of Zn–ZnO core-shell nanostructures. Journal of Physical Studies, 2019, 23, .	0.2	3
2131	Atomistic study of fracture behavior of metallic glass fiber reinforced metal-matrix nanocomposite during bending creep deformation process. International Journal of Materials Research, 2019, 110, 1142-1149.	0.1	1
2133	Prediction of interface and vacancy segregation energies at silver interfaces without determining interface structures. Applied Physics Express, 2020, 13, 065504.	1.1	3
2134	Some Factors Affected on Structure, Mechanical of Ni Bulk. Advances in Materials Physics and Chemistry, 2018, 08, 177-192.	0.3	1
2135	Structure, Plastic Deformation of Polyethylene: A Molecular Dynamics Method. Advances in Materials Physics and Chemistry, 2020, 10, 125-150.	0.3	2
2136	Study of Ni/Al Interface Diffusion by Molecular Dynamics Simulation. Engineering, 2011, 03, 227-232.	0.4	1
2137	Nano-Scale Modelling and Simulation of Metal Wiredrawing by Using Molecular Dynamics Method. World Journal of Nano Science and Engineering, 2014, 04, 70-83.	0.3	4
2138	Inelastic Collisions and Hypervelocity Impacts at Nanoscopic Level: A Molecular Dynamics Study., 0,,.		1

#	Article	IF	Citations
2139	Quasicontinuum simulation of crack propagation in nanocrystalline Ni. Wuli Xuebao/Acta Physica Sinica, 2010, 59, 7258.	0.2	7
2140	Study of Cu45Zr55-xAlx (x=3, 7, 12) bulk metallic glasses by ab-initio molecular dynamics simulation. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 118101.	0.2	2
2141	Identification and tracking of different types of crystalline nucleiduring isothermal crystallization of amorphous Ag. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 076401.	0.2	3
2142	Effect of Excess Atomic Volume on Crack Evolution in a Deformed Iron Single Crystal. Materials, 2021, 14, 6124.	1.3	2
2143	Data-driven simulation and characterisation of gold nanoparticle melting. Nature Communications, 2021, 12, 6056.	5.8	29
2144	Capturing Dislocation Half-Loop Formation and Dynamics in Epitaxial Growth Atomistically at Diffusive Time Scales. Materialia, 2021, 20, 101253.	1.3	3
2145	Mining of Effective Local Order Parameters to Classify Ice Polymorphs. Journal of Physical Chemistry A, 2021, 125, 9518-9526.	1.1	6
2146	Stable nanocrystalline structure attainment and strength enhancement of Cu base alloy using bi-modal distributed tungsten dispersoids. Philosophical Magazine, 2022, 102, 189-209.	0.7	5
2147	Materials Informatics for Mechanical Deformation: A Review of Applications and Challenges. Materials, 2021, 14, 5764.	1.3	20
2148	AtomSets as a hierarchical transfer learning framework for small and large materials datasets. Npj Computational Materials, 2021, 7, .	3. 5	29
2149	Polymorph selection of magnesium under different pressures: A simulation study. Chinese Physics B, 2022, 31, 016103.	0.7	1
2150	Nanocrystalline Materials: Interfaces and Mesoscopic Correlations Studied by Neutron Scattering. Acta Physica Polonica A, 2002, 102, 109-122.	0.2	0
2151	Molecular Dynamics Study on Morphology and Strength of Copper Atomic-Cluster-Assembled Structure. Solid Mechanics and Its Applications, 2004, , 343-353.	0.1	0
2152	Deformation and Localized Necking Mechanism of Nanocrystalline Materials by Molecular Dynamics Simulation (Relationship between Intergranular Deformation and Intragranular Deformation of) Tj ETQq1 1 0.784	13 b4 1rgBT	 Overlock
2153	Molecular Dynamics Study on Grain Refinement Process of α-Iron by Equal Channel Angular Pressing under Quasi 3-Dimensional Condition. Zairyo/Journal of the Society of Materials Science, Japan, 2006, 55, 693-699.	0.1	1
2154	Molecular Dynamics Study on Morphology and Mechanical Properties of Atomic-Cluster-Assembled Structure. Zairyo/Journal of the Society of Materials Science, Japan, 2006, 55, 746-753.	0.1	1
2155	Energetic Study on Defect Structures in Nanocrystalline Aluminum and Copper by Atomic Simulations. Zairyo/Journal of the Society of Materials Science, Japan, 2007, 56, 1068-1075.	0.1	2
2156	Unstable Behavior of Nano-Polycrystalline and Amorphous Metals under Uniaxial Tension : Local Lattice Instability Analysis. Zairyo/Journal of the Society of Materials Science, Japan, 2008, 57, 112-118.	0.1	4

#	Article	IF	CITATIONS
2157	Atomistic Study of Hydrogen Occupation Sites around $\{112\}$ $\hat{a} \in 1111 \hat{a} \in Edge$ Dislocation in Alpha Iron. Zairyo/Journal of the Society of Materials Science, Japan, 2008, 57, 768-773.	0.1	1
2158	Construction of metallic nanocrystalline samples by molecular dynamics simulation. Wuli Xuebao/Acta Physica Sinica, 2010, 59, 4781.	0.2	6
2159	Molecular dynamics study of relaxation and local structure changes in a rapidly quenched molten Cu57 cluster. Wuli Xuebao/Acta Physica Sinica, 2010, 59, 2428.	0.2	3
2160	Simulation study of evolution mechanisms of microstructures during rapid solidification of liquid Mg7Zn3 alloy. Wuli Xuebao/Acta Physica Sinica, 2010, 59, 7930.	0.2	2
2161	Computational study on thermal stability of an AuCu249 alloy cluster on the atomic scale. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 083602.	0.2	2
2162	Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 016107.	0.2	7
2163	Atomic-scale study of structural change of TiAl alloy film during the cooling process. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 063104.	0.2	6
2165	Simulation study on the dynamic mechanisms of nucleation during the initial stage of supercooled liquid potassium. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 056101.	0.2	2
2166	Helicities and thermostabilities of Ni nanowires in the carbon nanotubes. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 176102.	0.2	0
2167	Size effect on the freezing behavior of aluminum nanowires. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 066101.	0.2	4
2168	Molecular dynamics simulation of isothermal crystallization dynamics in Cu nanocluster. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 146101.	0.2	3
2169	Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 136401.	0.2	1
2170	Cluster separation phenomena in liquid Ga-In alloys. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 036101.	0.2	3
2171	Effects of cooling rates on microstructural evolution during solidification process of liquid Ca50Zn50 alloy. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 246102.	0.2	1
2172	Moment method for strain analysis and its application in molecular dynamics. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 073102.	0.2	2
2173	Cooling – As a "Heat Treatment―for the Mechanical Behavior of the Bulk Metallic Glass Alloys. , 0, , .		0
2174	Structure and dynamics in the crystallization of Ni500 nanocluster. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 186101.	0.2	0
2175	A Study on Solidification and Amorphous Crystallization of Metal Ag by Molecular Dynamics Simulation. Applied Physics, 2013, 03, 109-114.	0.0	0

#	Article	IF	CITATIONS
2176	A Molecular Dynamics Study on Amorphous Formation and Crystallization of Ag-Cu Eutectic Alloys. Applied Physics, 2013, 03, 149-154.	0.0	1
2177	Temperature dependence of fatigue properties of ultrathin copper films: molecular dynamics simulations. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 107103.	0.2	1
2178	Molecular dynamics investigation of shock front in nanocrystalline copper. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 036201.	0.2	1
2179	Generation and evolution of vacancy-type defects in nano-Cu films during plastic deformation by means molecular dynamics. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 196201.	0.2	2
2180	Simulation study of effect of initial melt temperature on microstructure evolution of liquid metal Ni during solidfication process. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 166101.	0.2	1
2181	A track study on icosahedral clusters inherited from liquid in the process of rapid solidification of Cu64Zr36 alloy. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 196101.	0.2	10
2182	Molecular dynamics simulation of the critical and subcritical nuclei during solidification of nickel melt. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 056102.	0.2	3
2183	Simulation Study of Solidification Processes for a Large Scale System of Liquid Metal Al. Communications in Computer and Information Science, 2014, , 1-10.	0.4	0
2184	Analysis on Nucleation of a Dislocation Loop in a Magnesium Single Crystal -Approach from Atomistic Simulations Zairyo/Journal of the Society of Materials Science, Japan, 2014, 63, 194-199.	0.1	2
2185	Energy barriers and structural transitions of small Al clusters. , 1989, , 73-75.		0
2186	More on the melting of Lennard-Jones clusters. , 1989, , 181-183.		0
2187	Magic numbers of large rare gas clusters. , 1989, , 273-274.		0
2188	Model potential for beryllium clusters. , 1989, , 77-79.		0
2189	Dynamic and quantum size effects in molecular clusters. , 1989, , 167-171.		0
2190	STRUCTURAL FLUCTUATIONS IN ARGON MICROCLUSTERS. , 1991, , 365-370.		0
2191	Isomer- and "phases―selective spectroscopy of van der Waals solvent clusters. , 1991, , 659-664.		0
2192	Melting of gold microclusters., 1991,, 685-688.		0
2193	Monte Carlo Studies of Phase Transitions in Clusters of Tellurium Hexafluoride and Benzene. , 1992, , 393-398.		0

#	Article	IF	CITATIONS
2194	Infrared Spectroscopy of SF6 Attached to Classical and Quantum Clusters (finite size particles) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 74
2195	Structural fluctuation in microclusters. , 1993, , 29-38.		O
2196	Clusters and Nucleation., 1993,, 243-256.		0
2197	Mathématiques et Chimie. , 1994, , 451-514.		1
2198	On the Local Structure of Glasses: Icosahedra, Orientational Order and Growing Correlation Lengths., 1994,, 391-412.		0
2199	Phase Transitions in Clusters: A Bridge to Condensed Matter. NATO ASI Series Series B: Physics, 1994, , 231-249.	0.2	O
2200	Monte Carlo Studies of Argon Clusters Confined in Zeolites. , 1998, , 214-227.		0
2201	Melting and multipole deformation of sodium clusters. , 1999, , 451-454.		O
2202	Molecular Dynamics Simulations of Plastic Damage in Metals. , 2015, , 453-486.		2
2203	Nanoalloy Simulation. , 2015, , 1-13.		O
2204	Superplastic deformation mechanism of nanocrystalline copper: a molecular dynamics study. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 126201.	0.2	1
2205	Crack growth prediction and cohesive zone modeling of single crystal aluminum-a molecular dynamics study. Advances in Nano Research, 2015, 3, 143-168.	0.9	1
2206	Heredity of icosahedrons: a kinetic parameter related to glass-forming abilities of rapidly solidified Cu56Zr44 alloys. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 066401.	0.2	5
2207	Identifying icosahedron-like clusters in metallic glasses. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 096402.	0.2	1
2209	Basal Dislocation Nucleated from a Free Surface of an Elliptic Cylindrical Mg Single Crystal. Zairyo/Journal of the Society of Materials Science, Japan, 2016, 65, 135-140.	0.1	2
2210	A Study of Atomic Displacements Produced in Cascades in Irradiated \$alpha\$-Zr by Using Molecular Dynamics Simulations. Metallofizika I Noveishie Tekhnologii, 2016, 38, 1303-1320.	0.2	1
2211	Monte-Carlo tree search for stable structures of planar clusters. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 163601.	0.2	1
2212	Simulation study of effect of cooling rate on evolution of microstructures during solidification of liquid Mg. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 016101.	0.2	O

#	Article	IF	CITATIONS
2213	Five-fold local symmetries in metallic liquids and glasses. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 176107.	0.2	6
2214	First principle study on atomic structure of La65X35(X=Ni, Al) metallic glasses. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 178101.	0.2	2
2215	Atomic Simulation of Fatigue Crack Propagation in Metals of Different Structures. Material Sciences, 2018, 08, 1129-1134.	0.0	0
2216	Glass formation and thermodynamics of 3D simple system. Tap Chi Khoa Hoc = Journal of Science, 2018, 54(8), 143.	0.1	0
2217	Atomic Simulation of Basic Properties for α-SiO ₂ Crystal. Material Sciences, 2019, 09, 355-360.	0.0	2
2218	Effect of grain boundary segregations on martensitic transformation temperatures in NiTi bi-crystals. Letters on Materials, 2019, 9, 162-167.	0.2	4
2219	Nanoindentation and Indentation Size Effects: Continuum Model and Atomistic Simulation. , 2019, , 759-794.		0
2220	Activation of plastic deformation mechanisms in nanocrystalline iron. AIP Conference Proceedings, 2020, , .	0.3	1
2221	Molecular dynamic study of peculiarities of plastic deformation of anisotropic crystals. AIP Conference Proceedings, 2020, , .	0.3	0
2222	Effect of Ni–Nb Metallic Glass on Moderating the Shock Damage in Crystalline Ni-Amorphous Ni62Nb38 Nanocomposite Structure: A Molecular Dynamics Study. Minerals, Metals and Materials Series, 2020, , 909-921.	0.3	0
2223	Atomic-scale insights into structural and thermodynamic stability of spherical Al@Ni and Ni@Al core–shell nanoparticles. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	9
2224	Sıvı Vanadyumun Kristalizasyon Sýrecine Soğutma Oranı Etkisinin Moleküler Dinamik Benzetim Metocile İncelenmesi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 0, , .	^d 8.1	1
2225	Robust recognition and exploratory analysis of crystal structures via Bayesian deep learning. Nature Communications, 2021, 12, 6234.	5.8	20
2226	Anomalous Size Effect of Pt Ultrathin Nanowires on Oxygen Reduction Reaction. Nano Letters, 2021, 21, 9354-9360.	4.5	43
2227	Conjugated bilayer structure of the homogeneous solid–liquid interface of metals. Physical Chemistry Chemical Physics, 2020, 22, 11996-12006.	1.3	1
2229	Efficiency in identification of internal structure in simulated monoatomic clusters: Comparison between common neighbor analysis and coordination polyhedron method. Computational Materials Science, 2022, 201, 110882.	1.4	21
2230	Construction of machine-learning Zr interatomic potentials for identifying the formation process of c-type dislocation loops. Computational Materials Science, 2022, 202, 110865.	1.4	7
2231	Advanced imaging and simulations of precipitate interfaces in aluminium alloys and their role in phase transformations. MATEC Web of Conferences, 2020, 326, 09003.	0.1	О

#	Article	IF	CITATIONS
2232	Study of polycrystalline metal surface treatment. molecular dynamics simulation. AIP Conference Proceedings, 2020, , .	0.3	0
2233	Evolution characteristics and hereditary mechanisms of clusters in rapidly solidified Pd ₈₂ Si ₁₈ alloy. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 046401.	0.2	2
2234	Features of structural transformations under deformation of nanocrystalline BCC Fe. AIP Conference Proceedings, 2020, , .	0.3	0
2235	Atomistic study of silicon alloying in the spallation behavior of nanocrystalline aluminum systems. AIP Conference Proceedings, 2020, , .	0.3	1
2236	Mechanisms of grain growth in nanocrystalline Cu under tension. AIP Conference Proceedings, 2020, ,	0.3	0
2237	Numerical Evaluation of the Surface Energy of Polyhedral Nanoparticles. Materials Sciences and Applications, 2020, 11, 837-850.	0.3	2
2238	Handbook of Materials Modeling. , 2020, , .		1
2239	Damage initiation and evolution in Al-Si layered microstructures under shock loading conditions at atomic scales. AIP Conference Proceedings, 2020, , .	0.3	0
2240	Atomistic Aspects of Load Transfer and Fracture in CNT-Reinforced Aluminium. SSRN Electronic Journal, $0, , .$	0.4	1
2241	partycls: A Python package for structural clustering. Journal of Open Source Software, 2021, 6, 3723.	2.0	1
2242	Atomic structure of liquid refractory Nb5Si3 intermetallic compound alloy based upon deep neural network potential. Journal of Applied Physics, 2021, 130, .	1,1	20
2243	Effects of extrusion ratio and direction on extruded Au nanowires investigated using molecular dynamics simulation. Journal of Physics Communications, 2021, 5, 115008.	0.5	0
2244	Multiscale modeling of intergranular fracture in metals. , 2007, , 343-367.		0
2246	Atomistic Simulations of Dislocation â€" Crack Interaction. , 2007, , 127-135.		1
2248	Molecular Dynamics Study on Tip-Based Nanomachining: A Review. Nanoscale Research Letters, 2020, 15, 201.	3.1	9
2249	Morphological aspect of crystal nucleation in wall-confined supercooled metallic film. Journal of Physics Condensed Matter, 2021, 33, 034003.	0.7	2
2250	Regularities of Structural Rearrangements in Single- and Bicrystals Near the Contact Zone. Springer Tracts in Mechanical Engineering, 2021, , 301-322.	0.1	0
2251	Molecular dynamics study of the effect of lithium on the tensile behaviors of bcc iron. Materials Today Communications, 2020, 24, 101217.	0.9	4

#	Article	IF	CITATIONS
2252	Anisotropic strength behavior of single-crystal TATB. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 014004.	0.8	10
2253	SPaMD studio: An integrated platform for atomistic modeling, simulation, analysis, and visualization. Computational Materials Science, 2022, 210, 111027.	1.4	9
2254	Ab Initio Molecular Dynamics Study of the Structure and Properties of Nb-Doped Zr-Cu-Al Amorphous Alloys. Metals, 2021, 11, 1821.	1.0	1
2255	Interfacial plasticity mediated by lath boundaries in reduced-activation ferritic/martensitic steels. Journal of Nuclear Materials, 2022, 559, 153439.	1.3	4
2256	The role of TCP structures in glass formation of Ni50Ag50 alloys. Journal of Alloys and Compounds, 2022, 897, 162743.	2.8	8
2257	Disentangling diffusion heterogeneity in high-entropy alloys. Acta Materialia, 2022, 224, 117527.	3.8	25
2258	Predicting the crystalline phase generation effectively in monosized granular matter using machine learning. Granular Matter, 2022, 24, 1.	1.1	3
2259	Effect of confinement in the α-cages of zeolite NaCaA on the properties of Ar13 cluster: A Monte Carlo study. Journal of Chemical Sciences, 1997, 109, 189-202.	0.7	1
2260	Asymmetric $\{11\text{-}21\}$ $<$ $11\text{-}2\text{-}6$ $>$ \hat{A} Twin Boundary and Migration Mechanism in Hexagonal Close-Packed Titanium. SSRN Electronic Journal, 0, , .	0.4	0
2261	Shear strain-induced structure relaxation of Ni Σ17 [110](223) grain boundary: A molecular dynamics simulation. Modern Physics Letters B, 0, , .	1.0	0
2262	Analysis of hypervelocity impacts: the tungsten case. Nuclear Fusion, 2022, 62, 026034.	1.6	4
2263	Synergistic Size–Surface Effects on Martensitic Transformation of Shape Memory Alloy Nanorods for Micro/Nanoelectro-Mechanical Systems. ACS Applied Nano Materials, 0, , .	2.4	O
2264	A molecular dynamics study of a cascade induced irradiation creep mechanism in pure copper. Journal of Nuclear Materials, 2022, 560, 153518.	1.3	1
2265	Grain segmentation in atomistic simulations using orientation-based iterative self-organizing data analysis. Materialia, 2022, 21, 101314. Anisotropic deformation behavior of < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.3	9
2266	altimg="si1.svg"> <mml:mrow><mml:mfenced close="]" open="["><mml:mrow><mml:mn>11</mml:mn><mml:mover><mml:mn>2</mml:mn><mml:mo>-</mml:mo><mml:mrow><mml:mfenced <="" open="[" td=""><td>ml:mover</td><td>، دmml:mn > (</td></mml:mfenced></mml:mrow></mml:mover></mml:mrow></mml:mfenced></mml:mrow>	ml:mover	، دmml:mn > (
2267	Short to medium range order and atomic dynamic property within the surface of nanoscale metallic/mml:mo>glasses revealed by molecular dynamics simulations. Journal of Non-Crystalline Solids, 2022, 578, 121348.	ml:moverx	5
2268	Atomistic simulation of martensite microstructural evolution during temperature driven <mml:math altimg="si1.svg" display="inline" id="d1e1307" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>\hat{l}^2</mml:mi><mml:mi><mml:mo>\hat{l}^2</mml:mo>\hat{l}^2</mml:mi>o>\hat{l}^2<</mml:math>	v > 14/mml:n	nath>
2269	A novel work hardening mechanism of nanoscale materials by grain boundary transformation. Acta Materialia, 2022, 224, 117536.	3.8	5

#	Article	IF	CITATIONS
2270	High pressure shear induced microstructural evolution in nanocrystalline aluminum. Computational Materials Science, 2022, 203, 111105.	1.4	2
2271	Tailored tensile properties of CoCrNi medium entropy alloy by tuning the elemental distribution. Journal of Alloys and Compounds, 2022, 897, 163171.	2.8	3
2272	Grain size dependencies of intergranular solute segregation in nanocrystalline materials. Acta Materialia, 2022, 226, 117614.	3.8	19
2273	Molecular dynamics simulation of rhenium effects on creep behavior of Ni-based single crystal superalloys. Progress in Natural Science: Materials International, 2022, 32, 259-266.	1.8	15
2274	Molecular dynamics simulation of friction, lubrication, and tool wear during nanometric machining. , 2022, , 187-211.		2
2275	The impact of misorientation on the grain boundary energy in bi-crystal copper: an atomistic simulation study. Journal of Molecular Modeling, 2022, 28, 47.	0.8	7
2276	The Stability and Behavior of Cr-Rich î±' Precipitates Under Cascade Damage In Fe-15Cr-8Al Ternary Alloys: An Atomic-Scale Simulation Study. SSRN Electronic Journal, 0, , .	0.4	0
2277	The L–G phase transition in binary Cu–Zr metallic liquids. Physical Chemistry Chemical Physics, 2021, 24, 497-506.	1.3	2
2278	Investigation of nanomachining-induced plastic behavior using machine learning-assisted high-throughput molecular dynamics simulations. International Journal of Advanced Manufacturing Technology, 2022, 119, 8057-8068.	1.5	4
2279	Molecular Dynamics Study on the Crystallization Process of Cubic Cu–Au Alloy. Applied Sciences (Switzerland), 2022, 12, 946.	1.3	12
2280	The effect of ultrasonic impact treatment on deformation and fracture of electron beam additive manufactured Ti-6Al-4V under uniaxial tension. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142458.	2.6	9
2281	Molecular dynamics simulation study on nucleation mechanisms of $\$ Cu $_{3}$ \$Au superalloy. Pramana - Journal of Physics, 2022, 96, 1.	0.9	1
2282	Simulation of nucleation and evolution process of nuclei during solidification of Ti ₃ Al alloy. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 016101.	0.2	1
2283	Pressure dependent evolution of microstructures in Pd80Si20 bulk metallic glass. Journal of Non-Crystalline Solids, 2022, 576, 121290.	1.5	6
2284	Crack propagation in gradient nano-grained metals with extremely small grain size based on molecular dynamic simulations. International Journal of Fracture, 2022, 233, 71-83.	1.1	7
2285	Phase transitions of palladium under dynamic shock compression. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 037102.	0.2	2
2286	Effects of elasticity and dislocation core structure on the interaction of dislocations with embedded CNTs in aluminium: An atomistic simulation study. Materialia, 2022, 21, 101347.	1.3	7
2287	Effect of interatomic potential on modelling fracture behavior in hcp titanium: a molecular dynamics study. Journal of Materials Research and Technology, 2022, 17, 2118-2133.	2.6	3

#	Article	IF	CITATIONS
2288	Heterogeneous evolution of lattice defects leading to high strength and high ductility in harmonic structure materials through atomic and dislocation simulations. Acta Materialia, 2022, 226, 117679.	3.8	9
2289	Molecular dynamics simulation of the amorphization and alloying of a mechanically milled Fe-Cu system. Journal of Non-Crystalline Solids, 2022, 580, 121410.	1.5	3
2290	Atomic-level understanding of weakening crystallization in additive manufactured ternary Fe-based metallic glasses with Ni addition. Journal of Non-Crystalline Solids, 2022, 582, 121435.	1.5	6
2291	Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy. Journal of Materials Science and Technology, 2022, 114, 42-54.	5. 6	9
2292	Unconventional deformation mechanism in nanocrystalline metals?. International Journal of Materials Research, 2022, 94, 1106-1110.	0.1	4
2293	Molecular dynamics study of interactions between prismatic <a> slip and oxygen-segregated twin boundaries in \hat{l}_{\pm} -Ti. Materialia, 2022, 21, 101363.	1.3	3
2294	Molecular dynamics simulation of the shock response of materials: A tutorial. Journal of Applied Physics, 2022, 131, .	1.1	32
2295	Higher Damping Capacities in Gradient Nanograined Metals. Nano Letters, 2022, 22, 1491-1496.	4.5	7
2296	Effect of cutting parameters on the depth of subsurface deformed layers of single \hat{I}^3 -TiAl alloy during nano-cutting process. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	7
2297	Influence of orientation on crack propagation of aluminum by molecular dynamics. European Physical Journal B, 2022, 95, 1.	0.6	0
2298	Atomistic simulations of improved thermal stability and strength of nanocrystalline copper films by alloying with Zr. Thin Solid Films, 2022, 746, 139123.	0.8	3
2299	Atomic structure of Cu60Ti20Zr20 metallic glass under high pressures. Intermetallics, 2022, 143, 107493.	1.8	4
2300	Thermal energy evolution and mechanical deformation of monocrystalline yttria-stabilized zirconia nanoparticles in aerosol deposition processes. Applied Surface Science, 2022, 585, 152603.	3.1	9
2301	Thermally Driven Structural Evolution and Diverse Melting Modes of Metallic Heterophase Nanoparticles. SSRN Electronic Journal, 0, , .	0.4	0
2302	Influence of defects on adsorption processes in the near-surface layers of ZnO nanoclusters: MD study. Journal of Physical Studies, 2022, 26, .	0.2	1
2303	Molecular Dynamics Simulations of Plastic Damage in Metals. , 2022, , 1335-1369.		0
2304	Influence of heating and cooling rates on thermodynamic properties of aluminum thin film from 300 to 1100 K. Journal of Physics: Conference Series, 2022, 2193, 012027.	0.3	0
2305	Thermodynamic and structure properties of aluminum nanoparticle due to heat treatment: a molecular dynamics study. Journal of Physics: Conference Series, 2022, 2193, 012029.	0.3	1

#	Article	IF	CITATIONS
2306	Influence of thickness on heat treatment from 300 to $1100\mathrm{K}$ of aluminum thin film. Journal of Physics: Conference Series, 2022, 2193, 012028.	0.3	0
2307	Structure evolution due to heat treatment of aluminum nanoparticle with different sizes: a molecular dynamics study. Journal of Physics: Conference Series, 2022, 2193, 012026.	0.3	0
2308	Molecular Dynamics Simulation of the Effect of Cementite Decomposition on Yield Phenomena in Pearlite Microstructure. ISIJ International, 2022, 62, 343-352.	0.6	2
2309	The Shock Response and Spall Mechanism of Mg–Al–Zn Alloy: Molecular Dynamics Study. Acta Mechanica Solida Sinica, 2022, 35, 495-503.	1.0	9
2310	A local orientational order parameter for systems of interacting particles. Journal of Chemical Physics, 2022, 156, 091101.	1.2	2
2311	Effect of Co content and temperature on shear mechanical properties of nanoâ€polycrystalline Niâ€Co alloy. Physica Status Solidi (B): Basic Research, O, , .	0.7	1
2312	Efficient and universal characterization of atomic structures through a topological graph order parameter. Npj Computational Materials, 2022, 8, .	3.5	11
2313	Simulation on microstructure evolution and mechanical properties of Mgâ^3Y alloys: Effect of trace Y. Transactions of Nonferrous Metals Society of China, 2022, 32, 812-823.	1.7	5
2314	Deformation Mechanism of Depositing Amorphous Cu-Ta Alloy Film via Nanoindentation Test. Nanomaterials, 2022, 12, 1022.	1.9	3
2315	Descriptor-free unsupervised learning method for local structure identification in particle packings. Journal of Chemical Physics, 2022, 156, 154504.	1.2	5
2316	The Contribution of Various Plasticity Mechanisms to the Deformation Behavior of Gradient Nanograined FeNi Alloy. Metals, 2022, 12, 573.	1.0	4
2317	Unsupervised topological learning for identification of atomic structures. Physical Review E, 2022, 105, 045304.	0.8	7
2318	Data-centric framework for crystal structure identification in atomistic simulations using machine learning. Physical Review Materials, 2022, 6, .	0.9	5
2319	Dynamics of Edge Dislocation in Tiâ€O Single Crystal Alloys at the Atomic Scale. Physica Status Solidi (B): Basic Research, 0, , .	0.7	1
2320	Spinodal limits of supercooled liquid Al deduced from configuration heredity of crystal clusters. Computational Materials Science, 2022, 207, 111316.	1.4	3
2321	Atomistic aspects of load transfer and fracture in CNT-reinforced aluminium. Materialia, 2022, 22, 101376.	1.3	3
2322	Growth and annealing effect on the Cu thin film deposited on Si (001) surface. Journal of Crystal Growth, 2022, 586, 126631.	0.7	7
2323	Mechanical stability of lamellar microstructure in TiAl:an atomic-scale study. Journal of Materials Research and Technology, 2022, 18, 745-754.	2.6	1

#	ARTICLE	IF	CITATIONS
2324	Nonequilibrium, highly inhomogeneous melting in the microcanonical ensemble. Physica A: Statistical Mechanics and Its Applications, 2022, 595, 127045.	1.2	1
2325	Molecular dynamics study of fracture and plastic deformation of Cu/Cu64Zr36 crystalline/amorphous composites with a pre-existing void. Journal of Non-Crystalline Solids, 2022, 586, 121556.	1.5	6
2326	Crystallization insights revealed by simulation solidification study of Fe63Ni33Co4 alloy melt at subcritical cooling rate. Journal of Non-Crystalline Solids, 2022, 586, 121557.	1.5	3
2327	On the glass-forming ability of (Zr0.5Cu0.5)100â^'xAlx ternary alloys: A molecular dynamics study. Materials Today Communications, 2022, 31, 103474.	0.9	2
2328	Glide Mobility of a-Type Edge Dislocations in Aluminum Nitride by Molecular Dynamics Simulation. ACS Omega, 2022, 7, 2015-2022.	1.6	1
2329	Ordering in liquid and its heredity impact on phase transformation of Mg-Al-Ca alloys. Journal of Magnesium and Alloys, 2023, 11, 2006-2017.	5.5	12
2330	Understanding the phase transformation mechanisms that affect the dynamic response of Fe-based microstructures at the atomic scales. Journal of Applied Physics, 2021, 130, .	1.1	8
2331	Deformation mechanism of embedded hydride within the polycrystalline zirconium matrix. Journal of Nuclear Materials, 2022, 565, 153736.	1.3	7
2332	Atomic energy in grain boundaries studied by machine learning. Physical Review Materials, 2022, 6, .	0.9	7
2333	Molecular Dynamics Study of Phosphorus Migration in \hat{l} £3(111) and \hat{l} £5(0-13) Grain Boundaries of \hat{l} ±-Iron. Metals, 2022, 12, 662.	1.0	2
2334	Asymmetric <mml:math altimg="si2.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mn>11</mml:mn><mml:mover><mml:mo></mml:mo></mml:mover></mml:mrow></mml:mrow></mml:math>	3.8	ml:mn>22
	$stretchy="true">\hat{A}^6\hat{A}^. Acta Materialia, 2022, 232, 117943.$	ml:mo	
2335	Nanoindentation in Nanocrystalline Metallic Layers: A Molecular Dynamics Study on Size Effects. , 0, , 109-142.		О
2336	Investigating the quasi-liquid layer on ice surfaces: a comparison of order parameters. Physical Chemistry Chemical Physics, 2022, 24, 12476-12487.	1.3	9
2337	Molecular dynamics study of \hat{l}_{\pm} -Ti behavior under conditions simulating ultrasonic impact treatment. AIP Conference Proceedings, 2022, , .	0.3	O
2338	Effect of grain shape on mechanical and structural response of FeNi alloy with grain size gradient under tension. AIP Conference Proceedings, 2022, , .	0.3	0
2339	Atomic Calculations on the Diffusion Behavior, Mechanical Properties and Fracture Mechanism of \hat{l}^{ϵ} -Fe/Cu Solid-Liquid Interface. SSRN Electronic Journal, 0, , .	0.4	0
2340	Virtual texture analysis to investigate the deformation mechanisms in metal microstructures at the atomic scale. Journal of Materials Science, 2022, 57, 10549-10568.	1.7	9
2341	Structure, Properties, and Phase Transformations of Water Nanoconfined between Brucite-like Layers: The Role of Wall Surface Polarity. Materials, 2022, 15, 3043.	1.3	1

#	ARTICLE	IF	CITATIONS
2342	Molecular Dynamics Simulation of Chip Morphology in Nanogrinding of Monocrystalline Nickel. Coatings, 2022, 12, 647.	1.2	1
2343	Nanoparticle cluster formation mechanisms elucidated via Markov state modeling: Attraction range effects, aggregation pathways, and counterintuitive transition rates. Journal of Chemical Physics, 2022, 156, .	1.2	1
2344	Molecular dynamics study on the effect of temperature on HCP→FCC phase transition of magnesium alloy. Journal of Magnesium and Alloys, 2023, 11, 3749-3764.	5.5	4
2345	Hydriding pathway for Ni nanoparticles: Computational characterization provides insights into the nanoparticle size and facet effect on layer-by-layer subsurface hydride formation. Computational Materials Science, 2022, 210, 111482.	1.4	3
2346	Molecular dynamics simulation of grain size effect on mechanism of twin martensite transformation of nanocrystalline NiTi shape memory alloys. Computational Materials Science, 2022, 210, 111451.	1.4	7
2347	Melted and recrystallized holey-graphene-reinforced aluminum composites: Structure, elasticity and strength. Composite Structures, 2022, 292, 115679.	3.1	8
2348	Atomistic investigation of elementary dislocation properties influencing mechanical behaviour of Cr15Fe46Mn17Ni22 alloy and Cr20Fe70Ni10 alloy. Computational Materials Science, 2022, 211, 111508.	1.4	2
2349	Microstructure evolution in high-pressure phase transformations of CrFeNi and CoCrFeMnNi alloys. Journal of Alloys and Compounds, 2022, 918, 165383.	2.8	3
2350	Decipher the ultra-high strengthening and toughening efficiency of GNS-MgO/Mg layered composite with in-situ enhanced interface. Carbon, 2022, 196, 783-794.	5.4	5
2351	Numerical recognition of C15 unit in rapid solidification Ni ₇₀ Ag ₃₀ nanoparticles. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 176402.	0.2	3
2352	Mechanical Performance and Deformation Behavior of CoCrNi Medium-Entropy Alloy at the Atomic Scale. Crystals, 2022, 12, 753.	1.0	2
2353	Composition dependence in glass-forming ability of Cu–Ag binary alloys. Acta Materialia, 2022, 235, 118059.	3.8	4
2354	A unified model for yield strength and plastic behavior of nanovoid evolution in tungsten based on molecular dynamics simulations. Computational Materials Science, 2022, 211, 111534.	1.4	1
2355	Evaluation of structural and mechanical strength of symmetric tilt interface in W/Fe composite laminate using molecular dynamics. Journal of Physics and Chemistry of Solids, 2022, 168, 110800.	1.9	4
2356	Slip Transmutation between Basal 〈 <i>a</i> 〉 Dislocation and {11-21} Twinning Across {11-24} Twin Boundary in Titanium. SSRN Electronic Journal, 0, , .	0.4	0
2357	Small-scale deformation behaviour of the AlCoCrFeNi _{2.1} eutectic high entropy alloy. Philosophical Magazine, 2022, 102, 1708-1724.	0.7	3
2358	Dissociation of Tilt Dislocation Walls in Au. Acta Metallurgica Sinica (English Letters), 0, , .	1.5	0
2359	Interstitial hydrogen enhances the mobility of some grain boundaries in tungsten. Nuclear Fusion, 2022, 62, 086016.	1.6	4

#	Article	IF	CITATIONS
2360	Non-Isothermal Dissolutive Wetting of Al-Ni and Cu-Ni Alloy Nanodroplets on a $Cu(100)$ Substrate. Journal of Thermal Science, 0 , , .	0.9	0
2361	Phonon thermal transport in copper: The effect of size, crystal orientation, and grain boundaries. AIP Advances, 2022, 12, .	0.6	2
2362	When mechanisms of coalescence and sintering at the nanoscale fundamentally differ: Molecular dynamics study. Journal of Chemical Physics, 2022, 156, .	1.2	11
2363	Molecular dynamics determination of Two-dimensional nucleation kinetic coefficient for modeling the faceted growth of Si $(1\ 1\ 1)$ from an undercooled melt. Journal of Crystal Growth, 2022, 592, 126736.	0.7	3
2364	Thermal behavior of Bi-Ni core-shell nanoparticles with different Ni shell thicknesses: A molecular dynamics study. Computational Materials Science, 2022, 211, 111557.	1.4	5
2365	Twin boundary-assisted improvement of radiation resistance of iron: Defect evolution, mechanical properties, and deformation mechanism. Journal of Nuclear Materials, 2022, 567, 153818.	1.3	2
2366	First principles determination of static, dynamic and electronic properties of some liquid 4d transition metals near melting. International Journal of Refractory Metals and Hard Materials, 2022, 107, 105898.	1.7	2
2368	Thermally activated microstructural evolution of metallic heterophase nanoparticles: insights from molecular dynamics simulations. Nanoscale, 2022, 14, 10236-10244.	2.8	1
2369	Reassignment of magic numbers for icosahedral Au clusters: 310, 564, 928 and 1426. Nanoscale, 2022, 14, 9053-9060.	2.8	3
2370	Atomic structures and mechanical properties in Zr–Ni–Al metallic glasses studied by molecular dynamics simulations. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 055005.	0.8	1
2371	Machine learning for metallurgy V: A neural-network potential for zirconium. Physical Review Materials, 2022, 6, .	0.9	9
2372	Effects of heating rate on morphological evolution, microstructure, and mechanical properties of nanoporous gold. Journal of Applied Physics, 2022, 131, 224304.	1.1	3
2373	Analysis of fatigue crack propagation mechanism of Ni ₃ Al under supergravity at atomic size. AIP Advances, 2022, 12, 065223.	0.6	1
2374	Effects of void and temperature on fracture of Cu/Cu3Sn bilayers: A molecular dynamics study. Materials Today Communications, 2022, 31, 103833.	0.9	2
2375	Molecular dynamics simulations of displacement cascade near precipitate in zirconium alloys. Nuclear Instruments & Methods in Physics Research B, 2022, , .	0.6	0
2376	Crystal nucleation and growth processes in Cu-rich glass-forming Cu–Zr alloys. Journal of Chemical Physics, 2022, 157, .	1.2	4
2377	Ab initio study of local structures during cooling of liquid Fe-C and Fe-Cr-C alloys. Computational Materials Science, 2022, 212, 111572.	1.4	2
2378	Atomistic migration mechanisms of <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo><mml:mo><mml:mo><mml:mrow><mml:mn>1</mml:mn><mml:mover accent="true"><mml:mn>2</mml:mn><mml:mo>\hat{A}^-</mml:mo></mml:mover><mml:mn>10</mml:mn><td>ow^{3:1}cmml</td><td>:mo>]</td></mml:mrow></mml:mo></mml:mo></mml:mo></mml:mrow></mml:math>	ow ^{3:1} cmml	:mo>]

#	ARTICLE	IF	CITATIONS
2379	Dynamic compaction of aluminum with nanopores of varied shape: MD simulations and machine-learning-based approximation of deformation behavior. International Journal of Plasticity, 2022, 156, 103363.	4.1	23
2380	Revealing the synergistic effect of invisible helium clusters in helium irradiation hardening in tungsten. Scripta Materialia, 2022, 219, 114850.	2.6	6
2381	Effect of deformation conditions on compression phase transformation of AZ31. Nanotechnology Reviews, 2022, 11, 2547-2564.	2.6	0
2382	Fundamentals of molecular modeling in drug design. , 2022, , 125-155.		20
2383	Role of \$\${varvec{alpha}} o {varvec{varepsilon}} o {varvec{alpha}}\$\$ phase transformation on the spall behavior of iron at atomic scales. Journal of Materials Science, 2022, 57, 12556-12571.	1.7	5
2384	Effects of Various Cross Sections on Elastoplastic Behavior of Fe Nanowires under Tension/Compression. Journal of Materials Engineering and Performance, 2023, 32, 423-437.	1.2	2
2385	The Microstructural Evolution of Nickel Single Crystal under Cyclic Deformation and Hyper-Gravity Conditions: A Molecular Dynamics Study. Metals, 2022, 12, 1128.	1.0	3
2386	A general structural order parameter for the amorphous solidification of a supercooled liquid. Journal of Chemical Physics, 2022, 157, .	1.2	4
2387	Femtosecond laser sintering Al nanoparticles: A multiscale investigation of combined molecular dynamics simulation and two-temperature model. Powder Technology, 2022, 407, 117682.	2.1	9
2388	The chemical environment and structural ordering in liquid Mg-Y-Zn system: An ab-initio molecular dynamics investigation of melt for the formation mechanism of LPSO structure. Journal of Magnesium and Alloys, 2022, , .	5.5	1
2389	Energetically deposited cluster assembly of metallic glasses. Acta Materialia, 2022, 237, 118152.	3.8	4
2390	An in-depth investigation of the microstructural evolution and dynamic properties of Zr77Rh23 metallic liquids and glasses: A molecular dynamics simulation study. Journal of Applied Physics, 2022, 132, .	1.1	6
2391	Intrinsic stacking fault energy and mechanism for deformation twin formation of solid solution matrix in Ni-based superalloys. Vacuum, 2022, 203, 111322.	1.6	7
2392	Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O). Chinese Physics B, 2023, 32, 036801.	0.7	2
2393	Effects of interdiffusion on shear response of semi-coherent {111} interfaces in Ni/Cu. International Journal of Plasticity, 2022, 157, 103393.	4.1	5
2394	Formation of I <mml:math altimg="si6.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>1</mml:mn></mml:msub></mml:math> stacking fault by deformation defect evolution from grain boundaries in Mg. Journal of Magnesium and Alloys, 2022, 10, 2717-2729.	5.5	4
2395	Dynamic response of high-entropy alloys to ballistic impact. Science Advances, 2022, 8, .	4.7	29
2396	Effects of Number of Atoms and Doping Concentration on the Structure, Phase Transition, and Crystallization Process of Fe1-x-yNixCoy Alloy: A Molecular Dynamic Study. Applied Sciences (Switzerland), 2022, 12, 8473.	1.3	6

#	Article	IF	CITATIONS
2397	Atomic insights into effects of temperature and grain diameter on the micro-deformation mechanism, mechanical properties and sluggish diffusion of nanocrystalline high-entropy alloys. Materials Today Communications, 2022, 33, 104224.	0.9	2
2398	Effects of B substitution for P on structure and magnetic properties of FePB amorphous alloys by first-principle investigation. Intermetallics, 2022, 149, 107674.	1.8	3
2399	Graph-component approach to defect identification in large atomistic simulations. Computational Materials Science, 2022, 214, 111700.	1.4	1
2400	The stability and behavior of Cr-rich \hat{l}_{\pm} ' precipitates under cascade damage in Fe-15Cr-8Al ternary alloys: An atomic-scale simulation study. Journal of Nuclear Materials, 2022, 570, 153955.	1.3	3
2401	Microstructure evolution of Si nanoparticles during the melting process: Insights from molecular dynamics simulation. Materials Science in Semiconductor Processing, 2022, 152, 107038.	1.9	0
2402	altimg="si20.svg"> <mml:mrow><mml:mo stretchy="true">〠</mml:mo><mml:mi>a</mml:mi>aa<mml:mo><mml:mo><mml:mi>a</mml:mi></mml:mo><mml:mi>a</mml:mi></mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mm< td=""><td>2.6 mrow>∢m</td><td>5 ml:mo</td></mm<></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mrow>	2.6 mrow>∢m	5 ml:mo
2403	stretchy="true" > Å (mml:mox (mml:moxer) < mml:mox S/mml:moxer < mml:moxer <	1.3	1
2404	The concealed solid-solid structural phase transition of Fe70Ni10Cr20 under high pressure. Materials Today Communications, 2022, 33, 104499.	0.9	1
2405	Atomistic Insight into Grain Boundary Deformation Induced Strengthening in Layer-Grained Nanocrystalline Al. SSRN Electronic Journal, 0, , .	0.4	0
2406	Hydrogen Effect on the Mobility of Edge Dislocation in <i>α</i> -Iron: A Long-Timescale Molecular Dynamics Simulation. ISIJ International, 2022, 62, 2402-2409.	0.6	4
2407	Work and Thermal Fluctuations in Crystal Indentation under Deterministic and Stochastic Thermostats: The Role of System–Bath Coupling. Entropy, 2022, 24, 1309.	1.1	0
2409	Molecular dynamics analysis of friction-triggering process with spherical probe. Surface Topography: Metrology and Properties, 2022, 10, 035040.	0.9	0
2410	Effect of Interface Orientation and Loading Direction on the Mechanical Response of Cu-Nb Multilayered Nanocomposites. Journal of Materials Engineering and Performance, 0, , .	1.2	2
2411	Automated Analysis of Continuum Fields from Atomistic Simulations Using Statistical Machine Learning. Advanced Engineering Materials, 2022, 24, .	1.6	1
2412	Deformation Behavior of Two-Phase Gradient Nanograined Fe95Ni5 Alloys under Different Types of Loading. Metals, 2022, 12, 1492.	1.0	1
2413	Hybrid Nanostructures and Stabilized Mechanical Properties of Highâ€Entropy Alloy Induced by Warm Laser Shock Peening. Advanced Engineering Materials, 2023, 25, .	1.6	0
2414	Atomic Research on the Diffusion Behavior, Mechanical Properties and Fracture Mechanism of Fe/Cu Solid–Liquid Interface. Coatings, 2022, 12, 1299.	1.2	1
2415	Melting characteristics and strain-based mechanical characterization of single metal nanoparticles. Journal of Nanoparticle Research, 2022, 24, .	0.8	0

#	Article	IF	CITATIONS
2416	The role of mechanical loading in bcc-hcp phase transition: tension-compression asymmetry and twin formation. Acta Materialia, 2022, 241, 118377.	3.8	4
2417	EVOLUTION OF PLASTIC DEFORMATION AND TEMPERATURE AT THE REFLECTION OF A SHOCK PULSE FROM SUPERFICIES WITH A NANORELIEF OR WITH SUPPLIED NANOPARTICLES. Bulletin of the South Ural State University Series Mathematics Mechanics Physics, 2021, 13, 53-60.	0.2	0
2418	On the melting point depression, coalescence, and chemical ordering of bimetallic nanoparticles: the miscible Ni–Pt system. Nanoscale Advances, 2022, 4, 4819-4828.	2.2	6
2419	Molecular dynamics simulation-based representation of intergranular fracture processes in austenitic steel. Journal of Materials Research, 0, , .	1.2	2
2420	Thermally Activated Microstructural Evolution of PtIrCu Alloyed Nanorings: Insights from Molecular Dynamics Simulations. ACS Omega, 2022, 7, 37436-37441.	1.6	0
2421	Thermal behavior of different types of Au–Pt–Pd nanoparticles: Dumbbell-like, three-shell, core-shell, and random-alloy. Materials Chemistry and Physics, 2023, 294, 126955.	2.0	4
2422	Local order parameter that distinguishes crystalline and amorphous portions in polymer crystal lamellae. Journal of Chemical Physics, 0, , .	1.2	2
2423	Machine learning interatomic potentials for aluminium: application to solidification phenomena. Journal of Physics Condensed Matter, 2023, 35, 035402.	0.7	3
2424	Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation. Chinese Physics B, 2022, 31, 126402.	0.7	1
2425	Atomistic assessment of structural evolution for magnesium during hypervelocity nanoprojectile penetration. Journal of Molecular Modeling, 2022, 28, .	0.8	2
2426	Quantification of Crystal Packing Similarity from Spherical Harmonic Transform. Crystal Growth and Design, 2022, 22, 7308-7316.	1.4	1
2427	Crack growth in zirconium single crystal under cyclic loading: A molecular dynamics simulation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 455, 128506.	0.9	3
2428	Shear-band blunting governs superior mechanical properties of shape memory metallic glass composites. Acta Materialia, 2022, 241, 118422.	3.8	9
2429	Accurate interatomic potential for the nucleation in liquid Ti-Al binary alloy developed by deep neural network learning method. Computational Materials Science, 2023, 216, 111843.	1.4	6
2430	An exact measurement of nucleation incubation times in isothermal crystallizations of liquid metal Al via configuration heredity. Journal of Crystal Growth, 2023, 601, 126927.	0.7	0
2431	Anisotropic deformation mechanism of $\{110\}$ hexagonal dislocation networks in BCC Iron. Scripta Materialia, 2023, 223, 115097.	2.6	0
2432	Maximum strength and dislocation patterning in multi–principal element alloys. Science Advances, 2022, 8, .	4.7	33
2433	How the Facet Edge Controls the Overall CO Oxidation in Nanoporous Gold: Combined Atomistic Characterization/DFT Study of Residual Ag Distribution and Catalytic Activity. ACS Catalysis, 2022, 12, 14445-14458.	5.5	1

#	Article	IF	CITATIONS
2434	Molecular dynamics simulation on creep-ratcheting behavior of columnar nanocrystalline aluminum. Journal of Molecular Graphics and Modelling, 2023, 118, 108376.	1.3	3
2435	Mechanical properties and microstructural evolution of FeNiCrCoCux high-entropy alloys: A molecular dynamics simulation. Solid State Communications, 2023, 359, 115011.	0.9	6
2436	Structural evolution in Au- and Pd-based metallic glass forming liquids and the case for improved molecular dynamics force fields. Journal of Chemical Physics, 2022, 157, 194501.	1.2	0
2437	Atomic simulation of effects of $\&$ ©5 grain boundary on mechanical properties of Ni3Al. European Physical Journal B, 2022, 95, .	0.6	O
2438	Molecular cluster analysis using local order parameters selected by machine learning. Physical Chemistry Chemical Physics, 2022, 25, 658-672.	1.3	6
2439	Dislocation entangled mechanisms in cu-graphene nanocomposite fabricated by high-pressure sintering. Materials Characterization, 2023, 195, 112524.	1.9	3
2440	Effect of grain boundary atomic density and temperature on <110> symmetric tilt grain boundaries in tungsten: An atomistic study. Journal of Nuclear Materials, 2023, 574, 154198.	1.3	2
2441	Grain incompatibility determines the local structure of amorphous grain boundary complexions. Acta Materialia, 2023, 244, 118599.	3.8	3
2442	Unsupervised machine learning study on structural signature of glass transition in metallic glass-forming liquids. Acta Materialia, 2023, 245, 118608.	3.8	4
2443	Coupled effect of Cr and Al on interactions between a prismatic interstitial dislocation loop and an edge dislocation line in Fe-Cr-Al alloy. Acta Materialia, 2023, 245, 118651.	3.8	7
2444	The impact of structural units on the dislocation nucleation of bi-crystal copper grain boundary. Computational Materials Science, 2023, 218, 111900.	1.4	4
2445	ABC-FIRE: Accelerated Bias-Corrected Fast Inertial Relaxation Engine. Computational Materials Science, 2023, 218, 111978.	1.4	0
2446	Melting temperature, critical nucleus size, and interfacial free energy in single FCC metals — A Molecular Dynamics study of liquid–solid phase equilibria. Journal of Crystal Growth, 2023, 603, 126987.	0.7	1
2447	Crystallization analysis and determination of Avrami exponents during isothermal annealing and the effect of cooling rate on the evolution of the atomic structure of Pd78Si16Cu6 alloy: A molecular dynamics simulation study. Journal of Non-Crystalline Solids, 2023, 602, 122067.	1.5	2
2448	Evolution of fatigue mechanical properties and micro defects in nickel-based single crystal superalloys: A molecular dynamics research. Materials Today Communications, 2023, 34, 105044.	0.9	3
2449	Mechanisms of helium nanobubble growth and defect interactions in irradiated copper: A molecular dynamics study. Journal of Nuclear Materials, 2023, 574, 154199.	1.3	4
2450	The Mixing Enthalpy and Liquid Structural Properties of Tiâ€"Al Alloys by ab inito Molecular Dynamics Simulation. Journal of Phase Equilibria and Diffusion, 2022, 43, 585-593.	0.5	3
2451	Dimensionality reduction of local structure in glassy binary mixtures. Journal of Chemical Physics, 2022, 157, .	1.2	14

#	Article	IF	CITATIONS
2452	The Challenges of Modeling Defect Behavior and Plasticity across Spatial and Temporal Scales: A Case Study of Metal Bilayer Impact. Metals, 2022, 12, 2036.	1.0	1
2453	Effect of W Addition on Fe-P-C-B Soft-Magnetic Amorphous Alloy. Materials, 2022, 15, 8416.	1.3	1
2454	Atomistic Simulation of Ultrasonic Welding of Copper. Metals, 2022, 12, 2033.	1.0	1
2455	Molecular dynamics perspective of the effects of laser thermal configurations on the dislocation and mechanical characteristics of FeNiCrCoCu HEA through powder bed fusion process. Materials Today Communications, 2022, 33, 104998.	0.9	3
2456	Atomic structure of intermetallic compound Nb ₅ Si ₃ by new cluster transformation analysis method. Journal of Physics Condensed Matter, 2023, 35, 105401.	0.7	2
2457	Investigation of point defect evolution and Voronoi cluster analysis for magnesium during nanoindentation. Journal of Magnesium and Alloys, 2023, 11, 1029-1042.	5.5	2
2458	Simulation of deformation and growth during surfacing of aluminum bronze nanograins. Letters on Materials, 2022, 12, 354-359.	0.2	1
2459	Temperature and Crystalline Orientation-Dependent Plastic Deformation of FeNiCrCoMn High-Entropy Alloy by Molecular Dynamics Simulation. Metals, 2022, 12, 2138.	1.0	2
2460	Effect of solute atoms on grain boundary stability of nanocrystalline Ni–Co alloy. Journal of Materials Science, 2022, 57, 21352-21362.	1.7	4
2461	Optimal grain size distribution in gradient nano-grained nickel. Vacuum, 2023, 210, 111854.	1.6	8
2462	The vibrational entropy spectra of grain boundary segregation in polycrystals. Acta Materialia, 2023, 245, 118630.	3.8	10
2463	Molecular dynamics simulations of glass formation, structural evolution and diffusivity of the Pd-Si alloys during the rapid solidification process. Journal of Molecular Liquids, 2023, 372, 121163.	2.3	4
2464	Emergent failure transition of pearlitic steel at extremely high strain rates. Computational Materials Science, 2023, 219, 112005.	1.4	1
2465	Atomic scale simulations of <mml:math altimg="si12.svg" display="inline" id="d1e2335" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>v^{1.3}/mml:r</td><td>nath></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	v ^{1.3} /mml:r	nath>
2466	Cluster classification by chemi-topology. Computer Physics Communications, 2023, 286, 108659.	3.0	1
2467	The changeable coordination of structural and bonding characteristics in amorphous Cu ₂ Te from <i>ab initio</i> molecular dynamics simulations. Journal of Applied Physics, 2022, 132, 244302.	1.1	0
2468	Crystallization in single- and multicomponent neutron star crusts. Physical Review C, 2022, 106, .	1.1	4
2469	Simulation study on mechanical properties of gradient-structured nano-polycrystalline Ni. Modern Physics Letters B, O, , .	1.0	О

#	Article	IF	CITATIONS
2470	Local chemical ordering coordinated thermal stability of nanograined high-entropy alloys. Rare Metals, 2023, 42, 1645-1655.	3.6	7
2471	Molecular dynamics study on the effects of nanorolling processes on the properties of nickel-based superalloy GH4169. Materials Research Express, 2023, 10, 025002.	0.8	1
2472	The effect of kink-like defects on the twin boundaries of nanotwinned Ta under nanoindentation. Applied Surface Science, 2023, 618, 156659.	3.1	1
2473	Crack interaction with tilt grain boundaries in brittle fracture of Al. Nanoscience and Technology, 2023, , .	0.6	O
2474	Modeling shock-induced void collapse in single-crystal Ta systems at the mesoscales. International Journal of Plasticity, 2023, 164, 103596.	4.1	3
2475	Modeling laser interactions with aluminum and tantalum targets using a hybrid atomistic-continuum model. Journal of Applied Physics, 2023, 133, .	1.1	1
2476	Research on pore closure behavior and microstructure evolution during hot isostatic pressing of Ti6Al4V alloy casting. Journal of Materials Research and Technology, 2023, 24, 3628-3642.	2.6	4
2477	Tensile and Compressive Behavior of CHCâ€Reinforced Copper using Molecular Dynamics. Advanced Engineering Materials, 2023, 25, .	1.6	1
2478	Atomic-scale analysis of deformation behavior of face-centered cubic nanocrystalline high-entropy alloys with different grain sizes at high strain rates. Materials Chemistry and Physics, 2023, 300, 127556.	2.0	2
2479	Diffusion bonding of high entropy alloy and stainless steel at a relative lower temperature via surface nano-crystallization treatment. Journal of Materials Research and Technology, 2023, 24, 475-487.	2.6	6
2480	Exploring the basal/prismatic slip transfer at grain boundaries in magnesium: A molecular dynamic simulation. Vacuum, 2023, 212, 111995.	1.6	2
2481	Influence of HCP/BCC interface orientation on the tribological behavior of Zr/Nb multilayer during nanoscratch: A combined experimental and atomistic study. Acta Materialia, 2023, 249, 118832.	3.8	13
2482	Effects of pressure on microstructure evolution of liquid Fe–S–Bi alloy during rapid solidification: A molecular dynamics study. Journal of Molecular Graphics and Modelling, 2023, 121, 108456.	1.3	0
2483	Bauschinger effect on wear of cold-worked Cu and Mg – A study combining molecular dynamics modeling and experimental investigation. Wear, 2023, 522, 204726.	1.5	O
2484	Full-scale simulation and experimental verification of the phase-transition temperature of a VO2 nanofilm as smart window materials. Materials Today Communications, 2023, 35, 105758.	0.9	0
2485	Spall response of medium-entropy alloy CrCoNi under plate impact. International Journal of Mechanical Sciences, 2023, 252, 108331.	3.6	8
2486	Complex strengthening mechanisms in nanocrystalline Ni-Mo alloys revealed by a machine-learning interatomic potential. Journal of Alloys and Compounds, 2023, 952, 169964.	2.8	2
2487	Spall damage of solution-treated hot-rolled Inconel 718 superalloy under plate impact. Journal of Alloys and Compounds, 2023, 952, 170090.	2.8	4

#	Article	IF	CITATIONS
2488	Extraordinary radiation tolerance of a Ni nanocrystal-decorated carbon nanotube network encapsulated in amorphous carbon. Journal of Materials Science and Technology, 2023, 155, 253-261.	5.6	0
2489	Transfer or blockage: Unraveling the interaction between deformation twinning and grain boundary in tantalum under shock loading with molecular dynamics. Journal of Materials Science and Technology, 2023, 156, 118-128.	5.6	8
2490	Investigation of the atomic-level microstructural evolution of quadruple-fused $\hat{l}\pm/\hat{l}^2$ titanium particles during sintering. Journal of Molecular Liquids, 2023, 381, 121753.	2.3	0
2491	Effect of hydrogen on plasticity of <mml:math altimg="si15.svg" display="inline" id="d1e2764" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math> -Fe: A multi-scale assessment. International Journal of Plasticity, 2023, 165, 103613.	4.1	4
2492	Influence of High Concentration Vacancy-Type Defects on the Mobility of Edge Dislocation in <i>α</i> -Iron: An Atomistic Investigation. ISIJ International, 2024, 64, 756-764.	0.6	0
2493	Atomistic analysis of plastic deformation and shear band formation in FCC/FCC metallic nanolayered composites. Journal of Materials Research, 2023, 38, 1386-1395.	1.2	1
2494	Molecular dynamics study of the repetitive friction mechanism of nickel-based single crystals in an aqueous environment. Physica Scripta, 2023, 98, 035019.	1.2	1
2495	Automated determination of grain boundary energy and potential-dependence using the OpenKIM framework. Computational Materials Science, 2023, 220, 112057.	1.4	4
2496	Atomistic insight of torsional behavior of CNT-nanocrystalline Al nanocomposites. Diamond and Related Materials, 2023, 134, 109768.	1.8	3
2497	Structure and Dynamics in Liquid Iron at High Pressure and Temperature. A First Principles Study. Journal of Geophysical Research: Solid Earth, 2023, 128, .	1.4	3
2498	Triple junction solute segregation in Al-based polycrystals. Physical Review Materials, 2023, 7, .	0.9	1
2499	LaSCA: A Visualization Analysis Tool for Microstructure of Complex Systems. Metals, 2023, 13, 415.	1.0	9
2500	Formation and evolution of topologically closepacked crystals during the rapid solidification of liquid metal tungsten. CrystEngComm, 2023, 25, 1792-1802.	1.3	5
2501	Insights into the role of Nb segregation on grain boundary structural transition and mechanical response in a Ni–Nb system. Materials Chemistry and Physics, 2023, 299, 127531.	2.0	3
2502	Simulation on shear deformation property of nano-polycrystalline Ni-Co alloy with concentration gradient. International Journal of Modern Physics B, O, , .	1.0	0
2503	Study on the Nano-Friction Behavior of Nickel-Based Ag Film Composites Based on Molecular Dynamics. Lubricants, 2023, 11, 110.	1.2	0
2504	Mechanical Behavior and Physical Properties of Mg Binary Alloys via Y-doping: Molecular Dynamic Study. Journal of Materials Engineering and Performance, 2023, 32, 6738-6746.	1.2	0
2505	Medium Range Ordering in liquid Al-based alloys: towards a machine learning approach of solidification. IOP Conference Series: Materials Science and Engineering, 2023, 1274, 012001.	0.3	1

#	Article	IF	Citations
2506	NiAl (0 0 1) terminated surface effect on the growth of the Al thin film. Computational Materials Science, 2023, 222, 112117.	1.4	3
2507	Atomistic simulation of mechanical behavior of Cu/Cu3Sn solder interface with Kirkendall void under shear and tensile deformation. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	1
2508	Modeling anisotropic mechanical properties and creep behavior of Ni(\$\$gamma\$\$)/Ni3Al(\$\$gamma'\$\$) single crystal superalloys at high temperatures. Journal of Nanoparticle Research, 2023, 25, .	0.8	0
2509	Short- and medium-range ordering in Al ₃ Mn amorphous alloy prepared by magnetron sputtering. Journal of Physics: Conference Series, 2023, 2461, 012017.	0.3	0
2510	Atomistic modeling of pulsed laser ablation in liquid: spatially and time-resolved maps of transient nonequilibrium states and channels of nanoparticle formation. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	6
2512	The Effect of Interatomic Potentials on the Nature of Nanohole Propagation in Single-Crystal Nickel: A Molecular Dynamics Simulation Study. Crystals, 2023, 13, 585.	1.0	1
2513	Effects of void shape and location on the fracture and plastic deformation of Cu (crystalline) /Cu64Zr36 (amorphous) composites. Journal of Materials Research and Technology, 2023, 24, 4177-4189.	2.6	2
2514	Effects of location and size of Kirkendall voids on mechanical response of Cu/Sn solder joint under tension. Molecular Simulation, 2023, 49, 885-892.	0.9	0
2515	Atomistic simulation of the dislocation interactions with the Al2Ca Laves phase in Mg–Al–Ca alloy. Journal of Magnesium and Alloys, 2023, , .	5 . 5	0
2516	<i>In silico</i> characterization of nanoparticles. Physical Chemistry Chemical Physics, 2023, 25, 13228-13243.	1.3	0
2595	Molecular dynamic simulation of uniaxial constrained conditions deformation of [001]-single crystals of aluminum bronze. AIP Conference Proceedings, 2023, , .	0.3	0
2596	Molecular-dynamic calculation of the interaction parameters of meso-scale particles of dissimilar metals. AIP Conference Proceedings, 2023, , .	0.3	0
2674	Hydrogen-Induced Transformation of Dislocation Core in Fe and Its Effect on Dislocation Mobility. Minerals, Metals and Materials Series, 2024, , 1000-1007.	0.3	0
2683	Compression behavior of FeNiCrCoCu and FeNiCrCoMn high entropy alloys under varying temperatures: A molecular dynamics analysis. AIP Conference Proceedings, 2024, , .	0.3	O