Mouse models of insulin dependent diabetes: Lowâ€dos nonobese diabetic (NOD) mice

Diabetes/metabolism Reviews 3, 751-778 DOI: 10.1002/dmr.5610030308

Citation Report

#	Article	IF	CITATIONS
1	lmmune intervention studies in insulinâ€dependent diabetes mellitus. Diabetes/metabolism Reviews, 1987, 3, 1017-1035.	0.3	22
2	Effect of probucol on development of diabetes mellitus in BB rats. American Journal of Cardiology, 1988, 62, B27-B30.	1.6	40
3	Administration of a 60 kD molecular fraction from pancreatic islets suppresses immune mediated diabetes in mice. Journal of Autoimmunity, 1988, 1, 243-252.	6.5	2
4	Essential fatty acid deficiency prevents multiple low-dose streptozotocin-induced diabetes in CD-1 mice Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 6137-6141.	7.1	28
5	The epidemiology of diabetes in childhood with special reference to the orient: Implications for mechanism of beta cell damage. Indian Journal of Pediatrics, 1989, 56, S15-S32.	0.8	2
6	Effects of (â€)15â€Deoxyspergualin on Pancreatic Islet Bâ€Cell Function <i>in Vitro</i> and on the Development of Diabetes after Multiple Low Dose Streptozotocin Administration. Basic and Clinical Pharmacology and Toxicology, 1989, 65, 114-118.	0.0	11
7	Pathogenesis of low dose streptozotocin induced diabetes in mice: requirement for ?1-adrenoceptor activation and vasoactive amine release. Diabetologia, 1989, 32, 140-142.	6.3	12
8	Modulation of low-dose streptozotocin-induced diabetes in mice by administration of antibodies to I-A, I-E and I-J determinants. Diabetologia, 1989, 32, 173-176.	6.3	11
9	Lessons from the NOD mouse for the pathogenesis and immunotherapy of human Type 1 (insulin-dependent) diabetes mellitus. Diabetologia, 1989, 32, 703-708.	6.3	83
10	Immunological aspects of diabetes mellitus: Prospects for pharmacological modification. , 1989, 44, 351-406.		9
11	A Role for Macrophages in the Pathogenesis of Type 1 Diabetes. Autoimmunity, 1989, 3, 145-155.	2.6	36
12	Reversal of beta-cell suppression in vitro in pancreatic islets isolated from nonobese diabetic mice during the phase preceding insulin-dependent diabetes mellitus Journal of Clinical Investigation, 1990, 85, 1944-1950.	8.2	70
13	Development of cytotoxic islet cell antibodies in rats following damage of the pancreas by complete freund's adjuvant combined with a nondiabetogenic dose of streptozotocin. International Journal of Gastrointestinal Cancer, 1990, 6, 33-48.	0.4	0
14	B cell-adherent splenocytes precede the onset of diabetes in low-dose streptozotocin-treated mice. Diabetologia, 1990, 33, 9-14.	6.3	7
15	Anti-interleukin 2 receptor antibody attenuates low-dose streptozotocin-induced diabetes in mice. Diabetologia, 1990, 33, 266-271.	6.3	13
16	Autoimmune Destruction of Islets Transplanted Into RT6-Depleted Diabetes-Resistant BB/Wor Rats. Diabetes, 1990, 39, 643-645.	0.6	24
17	Immunohistochemical study of insulitis induced by multiple low doses of streptozocin in CD-1 mice. Diabetes Research and Clinical Practice, 1990, 9, 75-82.	2.8	11
18	Phagocyte oxidative metabolism in cyclosporine-or placebo-treated patients with insulin-dependent (Type I) diabetes mellitus of recent onset. Journal of Autoimmunity, 1990, 3, 201-213.	6.5	7

#	Article	IF	CITATIONS
19	Probucol attenuated hyperglycemia in multiple low-dose streptozotocin-induced diabetic mice. Life Sciences, 1991, 49, 1331-1338.	4.3	10
20	Methimazole treatment aggravates low-dose streptozotocin-induced diabetes. Diabetes Research and Clinical Practice, 1991, 11, 53-58.	2.8	2
21	Sex steroids, glucocorticoids, stress and autoimmunity. Journal of Steroid Biochemistry and Molecular Biology, 1991, 40, 619-637.	2.5	223
22	Prevention of low dose streptozotocin-induced diabetes by acetyl-homocysteine-thiolactone. Diabetes Research and Clinical Practice, 1991, 13, 95-102.	2.8	11
23	Transgenic Mice with Ectopic Expression of Alloantigenic MHC Molecules - Why Are They So Different and of How Much Help Are They?. Immunological Reviews, 1991, 122, 21-32.	6.0	8
24	The anti-diabetogenic effect of essential fatty acid deficiency in multiple low-dose streptozotocin-treated mice persists if essential fatty acid repletion occurs outside of a brief window of susceptibility. Diabetologia, 1991, 34, 709-714.	6.3	6
25	Heparin attenuates low-dose streptozotocin-induced immune diabetes in mice and inhibits the Beta-cell binding of T-splenocytes in vitro. Diabetologia, 1991, 34, 212-217.	6.3	5
26	Prediction and Prevention of IDDM—1991. Diabetes, 1991, 40, 943-947.	0.6	64
27	Prospective Investigations of Long-term Normoglycaemic BB/OK-rats: Serial Determination of Glucose Tolerance, Insulitis, B-cell Volume Density and Pancreatic Insulin Content. Experimental and Clinical Endocrinology and Diabetes, 1991, 98, 185-192.	1.2	5
28	Oral Prevention Of Type I Diabetes. Autoimmunity, 1991, 11, 133-133.	2.6	1
29	Ganglioside therapy of type I diabetes: Enhancement of hyperglycemia in the low dose streptozotocin model. Life Sciences, 1992, 51, 49-52.	4.3	4
30	Partial protection of 1α-hydroxyvitamin D3 against the development of diabetes induced by multiple low-dose streptozotocin injection in CD-1 mice. Metabolism: Clinical and Experimental, 1992, 41, 631-635.	3.4	34
31	Role of infiltrating T cells for impaired glucose metabolism in pancreatic islets isolated from non-obese diabetic mice. Diabetologia, 1992, 35, 924-931.	6.3	15
32	Low dose stretozotocin-induced diabetes in mice: Reduced IL-2 production and modulation of streptozotocin-induced hyperglycemia by IL-2. International Journal of Immunopharmacology, 1992, 14, 1037-1044.	1.1	5
33	Nitric oxide: a pathogenetic factor in autoimmunity. Trends in Immunology, 1992, 13, 157-160.	7.5	345
34	Ultrastructural observations on cytotoxic effector cells infiltrating pancreatic islets of low-dose streptozocin treated mice. Virchows Archiv A, Pathological Anatomy and Histopathology, 1992, 420, 5-10.	1.4	15
35	Human autoantibodies react with glutamic acid decarboxylase antigen in human and rat but not in mouse pancreatic islets. Diabetologia, 1993, 36, 39-46.	6.3	38
36	Animal models of human lipid metabolism. Progress in Lipid Research, 1993, 32, 1-24.	11.6	51

#	ARTICLE	IF	CITATIONS
37	The Effect of Cyclophosphamide Treatment on Lymphocyte Subsets in the Nonobese Diabetic Mouse: A Comparison of Various Lymphoid organs. Autoimmunity, 1993, 15, 1-10.	2.6	18
38	Preventive effects of azathioprine (AZA) on the onset of diabetes mellitus in NOD mice. Journal of Endocrinological Investigation, 1993, 16, 869-873.	3.3	7
39	Production of anti-cardiolipin antibody in AKR/J mice with streptozocin-induced insulitis and diabetes. Diabetes Research and Clinical Practice, 1993, 20, 29-37.	2.8	11
40	Effect of lipoic acid on cyclophosphamide-induced diabetes and insulitis in non-obese diabetic mice. International Journal of Immunopharmacology, 1994, 16, 61-66.	1.1	31
41	Effects of streptozotocin-induced diabetes on lymphocyte POMC and growth hormone gene expression in the rat. Journal of Neuroimmunology, 1994, 49, 35-44.	2.3	6
42	Free fatty acid profiles in the non-obese diabetic (NOD) mouse: Basal serum levels and effects of endocrine manipulation. Prostaglandins Leukotrienes and Essential Fatty Acids, 1994, 51, 125-131.	2.2	8
43	Latent autoimmune diabetes mellitus in adult humans with non-insulin-dependent diabetes: isPsammomys obesus a suitable animal model?. Acta Diabetologica, 1995, 32, 92-94.	2.5	14
44	Essential fatty acid deficiency prevents multiple low-dose streptozotocin-induced diabetes in naive and cyclosporin-treated low-responder murine strains. Acta Diabetologica, 1995, 32, 125-130.	2.5	12
45	Environmental risk factors in human type 1 diabetes—An epidemiological perspective. Diabetes/metabolism Reviews, 1995, 11, 37-46.	0.3	55
46	Nitric Oxide Generation during Cellular Metabolization of the Diabetogenic N-Mefhyl-N-Nitroso-Urea Streptozotozin Contributes to Islet Cell DNA Damage. Biological Chemistry Hoppe-Seyler, 1995, 376, 179-186.	1.4	180
47	Islet amyloid polypeptide (IAPP) secretion from pancreatic islets isolated from non-obese diabetic (NOD) mice. Regulatory Peptides, 1996, 63, 39-45.	1.9	7
48	Role of insulin and IGF-I in activation of muscle protein synthesis after oral feeding. American Journal of Physiology - Endocrinology and Metabolism, 1996, 270, E614-E620.	3.5	35
49	Role of the pineal gland and melatonin in the development of autoimmune diabetes in non-obese diabetic mice. Journal of Pineal Research, 1996, 20, 164-172.	7.4	39
50	Viruses and Other Perinatal Exposures as Initiating Events for β-cell Destruction. Annals of Medicine, 1997, 29, 413-417.	3.8	52
51	Postprandial stimulation of muscle protein synthesis is independent of changes in insulin. American Journal of Physiology - Endocrinology and Metabolism, 1997, 272, E841-E847.	3.5	41
52	Adaptation of intestinal nutrient transport in health and disease. Part I. Digestive Diseases and Sciences, 1997, 42, 453-469.	2.3	39
53	Adaptation of intestinal nutrient transport in health and disease. Part II. Digestive Diseases and Sciences, 1997, 42, 470-488.	2.3	21
54	Insulin-dependent diabetes mellitus: Islet changes in relation to etiology and pathogenesis. Endocrine Pathology, 1997, 8, 273-282.	9.0	11

#	Article	IF	Citations
55	Immunophenotyping of insulitis in control and essential fatty acid deficient mice treated with multiple low-dose streptozotocin. Diabetologia, 1997, 40, 1263-1268.	6.3	9
56	Antral endocrine cells in nonobese diabetic mice. Digestive Diseases and Sciences, 1998, 43, 1031-1037.	2.3	13
57	Abnormalities of Small Intestinal Endocrine Cells in Non-Obese Diabetic Mice. Journal of Diabetes and Its Complications, 1998, 12, 215-223.	2.3	20
58	Large Intestinal Endocrine Cells in Non-Obese Diabetic Mice. Journal of Diabetes and Its Complications, 1998, 12, 321-327.	2.3	26
59	Substance P in the Gastrointestinal Tract of Non-Obese Diabetic Mice. Scandinavian Journal of Gastroenterology, 1998, 33, 394-400.	1.5	25
60	Insulin-Dependent Diabetes Mellitus, Experimental Models. , 1998, , 1390-1398.		17
61	Preserved Pulsatile Insulin Release from Prediabetic Mouse Islets1. Endocrinology, 1999, 140, 3999-4004.	2.8	8
62	Early prophylaxis with recombinant human interleukin-11 prevents spontaneous diabetes in NOD mice. Diabetes, 1999, 48, 2333-2339.	0.6	18
63	Interleukin-13 prevents autoimmune diabetes in NOD mice. Diabetes, 1999, 48, 1522-1528.	0.6	80
64	In vivo microscopy of murine islets of Langerhans: increased adhesion of transferred lymphocytes to islets depends on macrophage-derived cytokines in a model of organ-specific insulitis. Immunology, 1999, 98, 111-115.	4.4	10
65	Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin. Nature Medicine, 1999, 5, 314-319.	30.7	348
66	Neuroendocrine Peptides in Stomach and Colon of an Animal Model for Human Diabetes Type I. Journal of Diabetes and Its Complications, 1999, 13, 170-173.	2.3	12
67	BCG vaccine prevents insulitis in low dose streptozotocin-induced diabetic mice. Diabetes Research and Clinical Practice, 1999, 46, 91-97.	2.8	12
68	Troglitazone can prevent development of type 1 diabetes induced by multiple low-dose streptozotocin in mice. Life Sciences, 1999, 65, 1287-1296.	4.3	23
69	Pathophysiology of impaired pulsatile insulin release. Diabetes/Metabolism Research and Reviews, 2000, 16, 179-191.	4.0	58
70	RNA and protein expression of the murine autoimmune regulator gene (Aire) in normal, RelB-deficient and in NOD mouse. European Journal of Immunology, 2000, 30, 1884-1893.	2.9	168
71	Expression of Pancreatic Islet MHC Class I, Insulin, and ICA 512 Tyrosine Phosphatase in Low-dose Streptozotocin-induced Diabetes in Mice. Journal of Histochemistry and Cytochemistry, 2000, 48, 761-767.	2.5	3
72	Suppression of insulitis and diabetes in B cell-deficient mice treated with streptozocin: B cells are essential for the TCR clonotype spreading of islet-infiltrating T cells. International Immunology, 2000, 12, 1075-1083.	4.0	11

#	ARTICLE	IF	CITATIONS
73	Islet Blood Flow in Multiple Low Dose Streptozotocin-Treated Wild-Type and Inducible Nitric Oxide Synthase-Deficient Mice*. Endocrinology, 2000, 141, 2752-2757.	2.8	21
74	Islet loss and alpha cell expansion in type 1 diabetes induced by multiple low-dose streptozotocin administration in mice. Journal of Endocrinology, 2000, 165, 93-99.	2.6	92
75	Activation of Insulin Signal Transduction Pathway and Anti-diabetic Activity of Small Molecule Insulin Receptor Activators. Journal of Biological Chemistry, 2000, 275, 36590-36595.	3.4	65
76	Streptozotocin-Induced β-Cell Death Is Independent of Its Inhibition of O-GlcNAcase in Pancreatic Min6 Cells. Archives of Biochemistry and Biophysics, 2000, 383, 296-302.	3.0	60
77	Sodium Fusidate Ameliorates the Course of Diabetes Induced in Mice by Multiple Low Doses of Streptozotocin. Journal of Autoimmunity, 2000, 15, 395-405.	6.5	8
78	Up-regulation of splenic prohormone convertases PC1 and PC2 in diabetic rats. Regulatory Peptides, 2001, 102, 135-145.	1.9	9
79	Oxidative Stress and Diabetic Cardiomyopathy: A Brief Review. Cardiovascular Toxicology, 2001, 1, 181-194.	2.7	335
80	NFkappaB1 (p50)-deficient mice are not susceptible to multiple low-dose streptozotocin-induced diabetes. Journal of Endocrinology, 2002, 173, 457-464.	2.6	58
81	Pulsatile Insulin Release From Islets Isolated From Three Subjects With Type 2 Diabetes. Diabetes, 2002, 51, 988-993.	0.6	36
82	The Therapeutic Potential of Poly(ADP-Ribose) Polymerase Inhibitors. Pharmacological Reviews, 2002, 54, 375-429.	16.0	1,236
83	Low Expression of Insulin in the Thymus of Non-obese Diabetic Mice. Journal of Autoimmunity, 2002, 19, 203-213.	6.5	27
84	Population genetics and functions of the autoimmune regulator (AIRE). Endocrinology and Metabolism Clinics of North America, 2002, 31, 321-338.	3.2	33
85	Granulocyte macrophage-colony stimulating factor (GM-CSF) recruits immune cells to the pancreas and delays STZ-induced diabetes. Journal of Pathology, 2002, 196, 103-112.	4.5	39
86	Peptide therapy for Type I diabetes: the immunological homunculus and the rationale for vaccination. Diabetologia, 2002, 45, 1468-1474.	6.3	49
87	Transcriptional Regulation of Type I Diabetes by NF-κB. Journal of Immunology, 2003, 171, 4886-4892.	0.8	70
88	INGAP peptide improves nerve function and enhances regeneration in streptozotocinâ€induced diabetic C57BL/6 mice. FASEB Journal, 2004, 18, 1767-1769.	0.5	39
89	The protective effect of ursodeoxycholic acid in alloxan-induced diabetes. Cell Biochemistry and Function, 2004, 22, 97-103.	2.9	13
90	Beyond the red cell: pegylation of other blood cells and tissues. Transfusion Clinique Et Biologique, 2004, 11, 40-46.	0.4	62

# 91	ARTICLE Lisofylline, a novel anti-inflammatory agent, enhances glucose-stimulated insulin secretion in vivo and in vitro: studies in prediabetic and normal rats. Metabolism: Clinical and Experimental, 2004, 53, 290-296.	IF 3.4	CITATIONS
92	Molecular Genetic Approaches for Studying the Etiology of Diabetic Nephropathy. Current Molecular Medicine, 2005, 5, 509-525.	1.3	37
93	Tumor Suppressor p53 Inhibits Autoimmune Inflammation and Macrophage Function. Diabetes, 2005, 54, 1423-1428.	0.6	126
94	Alterations in net glucose uptake and in the pancreatic B-cell GLUT2 transporter induced by diazoxide and by secretory stimuli. Journal of Endocrinology, 2005, 185, 291-299.	2.6	10
95	Diabetic nephropathy: Of mice and men. Advances in Chronic Kidney Disease, 2005, 12, 128-145.	1.4	50
96	Mouse Models of Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2005, 16, 27-45.	6.1	488
97	Roles of poly(ADP-ribose) polymerase activation in the pathogenesis of diabetes mellitus and its complications. Pharmacological Research, 2005, 52, 60-71.	7.1	84
98	Leukocyte Recruitment and Vascular Injury in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2006, 17, 368-377.	6.1	312
99	A Potent Immunomodulatory Compound, (S,R)-3-Phenyl-4,5-dihydro-5-isoxasole Acetic Acid, Prevents Spontaneous and Accelerated Forms of Autoimmune Diabetes in NOD Mice and Inhibits the Immunoinflammatory Diabetes Induced by Multiple Low Doses of Streptozotocin in CBA/H Mice. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 1038-1049.	2.5	32
100	Suppression of SOCS3 expression in the pancreatic β-cell leads to resistance to type 1 diabetes. Biochemical and Biophysical Research Communications, 2007, 359, 952-958.	2.1	23
101	Mechanisms and Outcomes of Drug- and Toxicant-Induced Liver Toxicity in Diabetes. Critical Reviews in Toxicology, 2007, 37, 413-459.	3.9	59
102	The aetiology of type 1 diabetes: an epidemiological perspective. Acta Paediatrica, International Journal of Paediatrics, 1998, 87, 5-10.	1.5	58
103	Macrophage migration inhibitory factor (MIF) is necessary for progression of autoimmune diabetes mellitus. Journal of Cellular Physiology, 2008, 215, 665-675.	4.1	76
104	Susceptibility to type I diabetes in women is associated with the CD3 epsilon locus on chromosome 11. Clinical and Experimental Immunology, 2008, 83, 69-73.	2.6	12
105	Accelerated diabetes in non-obese diabetic (NOD) mice differing in incidence of spontaneous disease. Clinical and Experimental Immunology, 2008, 85, 464-468.	2.6	12
106	Low dose streptozotocin causes stimulation of the immune system and of anti-islet cytotoxicity in mice. Clinical and Experimental Immunology, 2008, 86, 266-270.	2.6	17
107	Streptozotocinâ€induced Diabetic Models in Mice and Rats. Current Protocols in Pharmacology, 2008, 40, Unit 5.47.	4.0	198
108	Carbamylated erythropoietin to treat neuronal injury: new development strategies. Expert Opinion on Investigational Drugs, 2008, 17, 1175-1186.	4.1	33

#	Article	IF	CITATIONS
109	Use of a systems biology approach to understand pancreatic β-cell death in TypeÂ1 diabetes. Biochemical Society Transactions, 2008, 36, 321-327.	3.4	42
110	DNA vaccine containing the mycobacterial hsp65 gene prevented insulitis in MLD-STZ diabetes. Journal of Immune Based Therapies and Vaccines, 2009, 7, 4.	2.4	19
111	Retinoids differentially regulate the progression of autoimmune diabetes in three preclinical models in mice. Molecular Immunology, 2009, 47, 79-86.	2.2	22
112	Animal Models in Diabetes and Pregnancy. Endocrine Reviews, 2010, 31, 680-701.	20.1	133
113	Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes. Cytokine, 2011, 55, 441-445.	3.2	138
114	Effect of Sanguis draconis (a dragon's blood resin) on streptozotocin- and cytokine-induced β-cell damage, in vitro and in vivo. Diabetes Research and Clinical Practice, 2011, 94, 417-425.	2.8	17
115	Polyphenols-rich Vernonia amygdalina shows anti-diabetic effects in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 2011, 133, 598-607.	4.1	93
116	Diabetes in Danish Bank Voles (M. glareolus): Survivorship, Influence on Weight, and Evaluation of Polydipsia as a Screening Tool for Hyperglycaemia. PLoS ONE, 2011, 6, e22893.	2.5	3
117	Knockout of Toll-Like Receptor-2 Attenuates Both the Proinflammatory State of Diabetes and Incipient Diabetic Nephropathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1796-1804.	2.4	126
118	PTCS-2–PTGER2/4 Signaling Pathway Partially Protects From Diabetogenic Toxicity of Streptozotocin in Mice. Diabetes, 2012, 61, 1879-1887.	0.6	17
119	The Lyn Kinase Activator MLR-1023 Is a Novel Insulin Receptor Potentiator that Elicits a Rapid-Onset and Durable Improvement in Glucose Homeostasis in Animal Models of Type 2 Diabetes. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 23-32.	2.5	35
120	The impact of obesity on sepsis mortality: a retrospective review. BMC Infectious Diseases, 2013, 13, 377.	2.9	60
121	Previous contact with Strongyloides venezuelensis contributed to prevent insulitis in MLD-STZ diabetes. Experimental Parasitology, 2013, 134, 183-189.	1.2	20
122	Endocrine Pharmacology. , 2013, , 421-520.		0
123	Extensive double humanization of both liver and hematopoiesis in FRGN mice. Stem Cell Research, 2014, 13, 404-412.	0.7	123
124	Streptozotocinâ€Induced Diabetic Models in Mice and Rats. Current Protocols in Pharmacology, 2015, 70, 5.47.1-5.47.20.	4.0	711
125	Responses of GLP1-secreting L-cells to cytotoxicity resemble pancreatic β-cells but not α-cells. Journal of Molecular Endocrinology, 2015, 54, 91-104.	2.5	12
126	Diabetes and Tryptophan Metabolism. Molecular and Integrative Toxicology, 2015, , 147-171.	0.5	12

#	Article	IF	CITATIONS
127	Altered Macrophage and Dendritic Cell Response in <i>Mif</i> â^'/â^' Mice Reveals a Role of Mif for Inflammatory-Th1 Response in Type 1 Diabetes. Journal of Diabetes Research, 2016, 2016, 1-19.	2.3	30
128	Camel whey protein improves oxidative stress and histopathological alterations in lymphoid organs through Bcl-XL/Bax expression in a streptozotocin-induced type 1 diabetic mouse model. Biomedicine and Pharmacotherapy, 2017, 88, 542-552.	5.6	18
129	Novel therapeutic effects of sesamin on diabetes-induced cardiac dysfunction. Molecular Medicine Reports, 2017, 15, 2949-2956.	2.4	27
130	APPL1 prevents pancreatic beta cell death and inflammation by dampening NFκB activation in a mouse model of type 1 diabetes. Diabetologia, 2017, 60, 464-474.	6.3	16
131	A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin. Biomedicine and Pharmacotherapy, 2017, 95, 605-613.	5.6	210
132	Gut Microbiome and Inflammation: A Study of Diabetic Inflammasome-Knockout Mice. Journal of Diabetes Research, 2017, 2017, 1-5.	2.3	22
133	Human urine-derived stem cells play a novel role in the treatment of STZ-induced diabetic mice. Journal of Molecular Histology, 2018, 49, 419-428.	2.2	22
134	Congenic mapping and candidate gene analysis for streptozotocin-induced diabetes susceptibility locus on mouse chromosome 11. Mammalian Genome, 2018, 29, 273-280.	2.2	5
135	Deficiency of voltage-gated proton channel Hv1 attenuates streptozotocin-induced β-cell damage. Biochemical and Biophysical Research Communications, 2018, 498, 975-980.	2.1	4
136	A comparison of metabolomic changes in type-1 diabetic C57BL/6N mice originating from different sources. Laboratory Animal Research, 2018, 34, 232.	2.5	2
137	β-Cell mass restoration by α7 nicotinic acetylcholine receptor activation. Journal of Biological Chemistry, 2018, 293, 20295-20306.	3.4	22
138	Chronic oscillating glucose challenges disarrange innate immune homeostasis to potentiate the variation of neutrophil–lymphocyte ratio in rats with or without hidden diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2018, Volume 11, 277-288.	2.4	1
139	Glucose-lowering and hypolipidemic activities of polysaccharides from Cordyceps taii in streptozotocin-induced diabetic mice. BMC Complementary and Alternative Medicine, 2019, 19, 230.	3.7	23
140	Progressive Increase of Inflammatory CXCR4 and TNF-Alpha in the Dorsal Root Ganglia and Spinal Cord Maintains Peripheral and Central Sensitization to Diabetic Neuropathic Pain in Rats. Mediators of Inflammation, 2019, 2019, 1-11.	3.0	20
141	Diabetes-induced damage of gastric nitric oxide neurons mediated by P2X7R in diabetic mice. European Journal of Pharmacology, 2019, 851, 151-160.	3.5	5
142	Therapeutic Potential of Caffeic Acid Phenethyl Ester (CAPE) in Diabetes. Current Medicinal Chemistry, 2019, 25, 4827-4836.	2.4	30
143	Pancreatic resident endocrine progenitors demonstrate high islet neogenic fidelity and committed homing towards diabetic mice pancreas. Journal of Cellular Physiology, 2019, 234, 8975-8987.	4.1	5
144	Autophagy in cardiomyopathies. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118432.	4.1	29

#	ARTICLE Electroacupuncture alleviates diabetic neuropathic pain in rats by suppressing P2X3 receptor	IF	CITATIONS
145	expression in dorsal root ganglia. Purinergic Signalling, 2020, 16, 491-502.	2.2	16
146	Pathophysiology of NAFLD and NASH in Experimental Models: The Role of Food Intake Regulating Peptides. Frontiers in Endocrinology, 2020, 11, 597583.	3.5	42
147	Contrast-enhanced ultrasound with sub-micron sized contrast agents detects insulitis in mouse models of type1 diabetes. Nature Communications, 2020, 11, 2238.	12.8	37
148	Animal Models of Diabetes-Associated Renal Injury. Journal of Diabetes Research, 2020, 2020, 1-16.	2.3	36
149	KLF5 Is Induced by FOXO1 and Causes Oxidative Stress and Diabetic Cardiomyopathy. Circulation Research, 2021, 128, 335-357.	4.5	57
150	Cardioprotective effects of Fenugreek (<i>Trigonella foenum-graceum</i>) seed extract in streptozotocin induced diabetic rats. Journal of Cardiovascular and Thoracic Research, 2021, 13, 28-36.	0.9	13
151	Combination of Linagliptin and Empagliflozin Preserves Cardiac Systolic Function in an Ischemia-Reperfusion Injury Mice With Diabetes Mellitus. Cardiology Research, 2021, 12, 91-97.	1.1	3
152	Relationship Between Insulin-Receptor Substrate 1 and Langerhans' Islet in a Rat Model of Type 2 Diabetes Mellitus. In Vivo, 2021, 35, 291-297.	1.3	4
153	Impacts of high fat diet on ocular outcomes in rodent models of visual disease. Experimental Eye Research, 2021, 204, 108440.	2.6	17
154	Streptozotocinâ€Induced Diabetic Models in Mice and Rats. Current Protocols, 2021, 1, e78.	2.9	243
155	The Use of Natural Compounds as a Strategy to Counteract Oxidative Stress in Animal Models of Diabetes Mellitus. International Journal of Molecular Sciences, 2021, 22, 7009.	4.1	13
156	The neuro-restorative effect of adipose-derived mesenchymal stem cell transplantation on a mouse model of diabetic neuropathy. Neurological Research, 2022, 44, 156-164.	1.3	3
157	Cell-Mediated Anti-Islet—Cell Immune Response: Clinical Experience and Lessons from Animal Models. E&M Endocrinology and Metabolism, 1990, , 165-183.	0.1	1
158	Characterization of Giant Perivascular Spaces in the Thymus of the Nonobese Diabetic Mouse. Advances in Experimental Medicine and Biology, 1994, 355, 143-145.	1.6	2
159	Nitric Oxide in the Immunopathogenesis of Type 1 Diabetes. Handbook of Experimental Pharmacology, 2000, , 525-544.	1.8	2
160	Streptozotocin Interactions with Pancreatic β Cells and the Induction of Insulin-Dependent Diabetes. Current Topics in Microbiology and Immunology, 1990, 156, 27-54.	1.1	113
161	Blocking mitochondrial calcium release in Schwann cells prevents demyelinating neuropathies. Journal of Clinical Investigation, 2016, 126, 1023-1038.	8.2	14
162	Blocking mitochondrial calcium release in Schwann cells prevents demyelinating neuropathies. Journal of Clinical Investigation, 2017, 127, 1115-1115.	8.2	10

#	Article	IF	CITATIONS
163	<p>Evaluation of Antidiabetic Effect of Ethanolic Leaves Extract of Becium grandiflorum Lam. (Lamiaceae) in Streptozotocin-Induced Diabetic Mice</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 1481-1489.	2.4	12
164	Cell cycle control of pancreatic beta cell proliferation. Frontiers in Bioscience - Landmark, 2000, 5, d1.	3.0	41
165	Etiology and Pathogenesis of Insulin Dependent Diabetes Mellitus. Pediatric Annals, 1987, 16, 682-692.	0.8	5
166	Dry olive leaf extract (DOLE) down-regulates the progression of experimental immune-mediated diabetes by modulation of cytokine profile in the draining lymph nodes. Archives of Biological Sciences, 2011, 63, 289-297.	0.5	Ο
167	Does Beta Cell Death Result Exclusively from Genetically-Mediated Autoimmune Mechanisms? A Polemic — The Case for Environmental Factors in the Etiology of Insulin-dependent Diabetes Mellitus. , 1994, , 145-164.		0
169	Morphological observations on pancreatic islet blood vessels in low-dose streptozocin-treated mice. Journal of Anatomy, 1993, 182 (Pt 1), 45-53.	1.5	4
170	Interleukin-2-dependent control of disease development in spontaneously diabetic BB rats. Immunology, 1990, 69, 209-14.	4.4	26
171	Activation of intraislet lymphoid cells causes destruction of islet cells. American Journal of Pathology, 1991, 138, 1183-90.	3.8	49
172	Interleukin-1 promotes hyperglycemia and insulitis in mice normally resistant to streptozotocin-induced diabetes. American Journal of Pathology, 1994, 145, 661-70.	3.8	9
173	Immunotherapeutic effects of pentoxifylline in type 1 diabetic mice and its role in the response of T-helper lymphocytes. Iranian Journal of Basic Medical Sciences, 2015, 18, 247-52.	1.0	7
174	Selection of experimental models mimicking human pathophysiology for diabetic microvascular complications. , 2022, , 137-177.		2
175	Reduction of lactoferrin aggravates neuronal ferroptosis after intracerebral hemorrhagic stroke in hyperglycemic mice. Redox Biology, 2022, 50, 102256.	9.0	24
176	Glycosides and flavonoids from the extract of <i>Pueraria thomsonii</i> Benth leaf alleviate type 2 diabetes in high-fat diet plus streptozotocin-induced mice by modulating the gut microbiota. Food and Function, 2022, 13, 3931-3945.	4.6	12
177	Dorsal root ganglia P2X4 and P2X7 receptors contribute to diabetes-induced hyperalgesia and the downregulation of electroacupuncture on P2X4 and P2X7. Purinergic Signalling, 2023, 19, 29-41.	2.2	9
178	Resveratrol Inhibited ADAM10 Mediated CXCL16-Cleavage and T-Cells Recruitment to Pancreatic β-Cells in Type 1 Diabetes Mellitus in Mice. Pharmaceutics, 2022, 14, 594.	4.5	3
179	Streptozotocin-induced hyperglycemia alters the cecal metabolome and exacerbates antibiotic-induced dysbiosis. Cell Reports, 2021, 37, 110113.	6.4	11
180	NF-κB-inducing kinase (NIK) is activated in pancreatic β-cells but does not contribute to the development of diabetes. Cell Death and Disease, 2022, 13, 476.	6.3	4
181	Guidelines on models of diabetic heart disease. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H176-H200.	3.2	20

#	Article	IF	CITATIONS
182	Mouse models of type 1 diabetes and their use in skeletal research. Current Opinion in Endocrinology, Diabetes and Obesity, 2022, 29, 318-325.	2.3	5
183	Nitazoxanide, Ivermectin, and Artemether effects against cryptosporidiosis in diabetic mice: parasitological, histopathological, and chemical studies. Journal of Parasitic Diseases, 2022, 46, 1070-1079.	1.0	2
184	Maternal diabetes negatively impacts fetal health. Open Biology, 2022, 12, .	3.6	1
185	Evaluation of hypolipidemic activity of homeopathic drug Allium sativum 6C potency on different grades of dyslipidemia in Wistar albino rat models. Phytomedicine Plus, 2022, , 100354.	2.0	0
186	Guanfacine Normalizes the Overexpression of Presynaptic α-2A Adrenoceptor Signaling and Ameliorates Neuropathic Pain in a Chronic Animal Model of Type 1 Diabetes. Pharmaceutics, 2022, 14, 2146.	4.5	1
187	FGF13-Sensitive Alteration of Parkin Safeguards Mitochondrial Homeostasis in Endothelium of Diabetic Nephropathy. Diabetes, 2023, 72, 97-111.	0.6	1
188	In Vitro and In Vivo Assessments of Anti-Hyperglycemic Properties of Soybean Residue Fermented with Rhizopus oligosporus and Lactiplantibacillus plantarum. Life, 2022, 12, 1716.	2.4	8
189	The Effects of Exercise Training on Glucose Homeostasis and Muscle Metabolism in Type 1 Diabetic Female Mice. Metabolites, 2022, 12, 948.	2.9	4
190	Magnetic resonance imaging as a nonâ€invasive tool to assess gastric emptying in mice. Neurogastroenterology and Motility, 0, , .	3.0	2
191	Evaluation of hypoglycemic effect of (+)-1,1'-Bislunatin in streptozotocin-induced DDY male mice (Mus) Tj E	TQg1_1 0.7	′84314 rgB⊤ 0
192	Inflammation triggered by the NLRP3 inflammasome is a critical driver of diabetic bladder dysfunction. Frontiers in Physiology, 0, 13, .	2.8	4
193	Anti-diabetic effects of fullerene C60 nanoparticle mediated by its anti-oxidant activity in the pancreas in type 1 diabetic rats. Brazilian Journal of Pharmaceutical Sciences, 0, 58, .	1.2	0
194	18F-FP-CIT dopamine transporter PET findings in the striatum and retina of type 1 diabetic rats. Annals of Nuclear Medicine, 2023, 37, 219-226.	2.2	1
195	The organic nitrate NDBP promotes cardiometabolic protection in type 1 diabetic mice. Journal of Functional Foods, 2023, 104, 105526.	3.4	0
196	The effects of hydroxytyrosol on Prdx6 and insulin expression in diabetic rat pancreases. Histochemistry and Cell Biology, 2023, 160, 127-134.	1.7	0
197	Analysis of Antidiabetic Activity of Squalene via In Silico and In Vivo Assay. Molecules, 2023, 28, 3783.	3.8	1
198	Animal Models of Pain and Anti-inflammatory Treatments. , 2023, , 43-85.		0
199	Visual Dysfunction in Diabetes. Annual Review of Vision Science, 2023, 9, 91-109.	4.4	3

#	Article	IF	CITATIONS
200	Ameliorative effect of <i>Stevia rebaudiana</i> Bertoni on sperm parameters, <i>in vitro</i> fertilization, and early embryo development in a streptozotocin-induced mouse model of diabetes. Zygote, 0, , 1-8.	1.1	1
201	Targeting β Cells with Cathelicidin Nanomedicines Improves Insulin Function and Pancreas Regeneration in Type 1 Diabetic Rats. ACS Pharmacology and Translational Science, 2023, 6, 1544-1560.	4.9	0
202	In Vivo Hypolipidemic, Hypoglycemic, Antihyperglycemic, and In Vitro Antioxidant Effects of Podocarpus gracilis Leaf Extract and Fractions in Diabetic Mice. Evidence-based Complementary and Alternative Medicine, 2023, 2023, 1-15.	1.2	0
203	Okra [Abelmoschus esculentus (L.) Moench] improved blood glucose and restored histopathological alterations in splenic tissues in a rat model with streptozotocin-induced type 1 diabetes through CD8+ T cells and NF-kl² expression. Frontiers in Veterinary Science, 0, 10, .	2.2	1
204	Improving stroke outcomes in hyperglycemic mice by modulating tPA/NMDAR signaling to reduce inflammation and hemorrhages. Blood Advances, 2024, 8, 1330-1344.	5.2	1
205	Ameliorating impact of coenzyme Q10 on the profile of adipokines, cardiomyopathy, and hematological markers correlated with the glucotoxicity sequelae in diabetic rats. PLoS ONE, 2024, 19, e0296775.	2.5	0
206	Inhibition of Hyperglycemia and Hyperlipidemia by Blocking Toll-like Receptor 4: Comparison of Wild-Type and Toll-like Receptor 4 Gene Knockout Mice on Obesity and Diabetes Modeling. Biology, 2024, 13, 63.	2.8	0
207	Manifestation of Pathology in Animal Models of Diabetic Retinopathy Is Delayed from the Onset of Diabetes. International Journal of Molecular Sciences, 2024, 25, 1610.	4.1	0
208	A Mouse Model of Hepatocellular Carcinoma Induced by Streptozotocin and High-Fat Diet. Methods in Molecular Biology, 2024, , 67-75.	0.9	0