Monoclonal antibodies reveal the global organization of

Journal of Neuroscience Methods 21, 145-157 DOI: 10.1016/0165-0270(87)90112-9

Citation Report

#	Article	IF	CITATIONS
1	Topographical distribution of muscarinic cholinergic receptors in the cerebellar cortex of the mouse, rat, guinea pig, and rabbit: A species comparison. Journal of Comparative Neurology, 1988, 272, 317-330.	1.6	44
2	Somatostatin expression in the cerebellar cortex during postnatal development. Anatomy and Embryology, 1989, 179, 257-267.	1.5	41
3	Rat olfactory cells and a central nervous system neuronal subpopulation share a cell surface antigen. Brain Research, 1989, 488, 202-212.	2.2	4
4	Changes in neurotrophin responsiveness during the development of cerebellar granule neurons. Neuron, 1992, 9, 1041-1052.	8.1	233
5	Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell, 1992, 68, 33-51.	28.9	974
6	Molecular characterization of a novel cDNA from murine cerebellum, developmental expression, and distribution in brain. Molecular Brain Research, 1994, 25, 192-199.	2.3	3
7	Assessment of a mutation in the H5 domain of Girk2 as a candidate for the weaver mutation Genome Research, 1995, 5, 453-463.	5.5	36
8	Regulation of Neuronal Survival by the Serine-Threonine Protein Kinase Akt. Science, 1997, 275, 661-665.	12.6	2,322
9	Neuregulin and erbB Receptors Play a Critical Role in Neuronal Migration. Neuron, 1997, 19, 39-50.	8.1	358
10	Parallin, a cerebellar granule cell protein the expression of which is developmentally regulated by Purkinje cells: evidence from mutant mice. Developmental Brain Research, 1997, 104, 79-89.	1.7	Ο
11	Confirmation of region-specific patterns of gene expression in the human brain. Neurogenetics, 2007, 8, 219-224.	1.4	15
12	Purkinje Cell Migration and Differentiation. , 2013, , 147-178.		15
13	Establishment of topographic circuit zones in the cerebellum of scrambler mutant mice. Frontiers in Neural Circuits, 2013, 7, 122.	2.8	23
14	Insights into cerebellar development and connectivity. Neuroscience Letters, 2019, 688, 2-13.	2.1	75
17	The Cerebellum and Cognition. , 2002, , 118-128.		0
18	Neural Networks and Adaptive Control: Neural Network Models. , 2002, , 204-222.		0
19	Anatomy and Physiology of the Cerebellar Cortex. , 2002, , 14-36.		0
21	The Cerebellar Nuclei and Their Efferent Pathways: Voluntary Motor Learning. , 2002, , 68-86.		0

#	Article	IF	CITATIONS
22	The Inferior Olivary System and the Climbing Fibers. , 2002, , 42-67.		0
24	Cerebellar Pathology in Humans and Animals: Genetic Alterations. , 2002, , 137-147.		Ο
25	The Vestibulocerebellum and the Oculomotor System. , 2002, , 100-117.		0
27	Nonadaptive Models, Forerunners of Adaptive Models, and Earlier Adaptive Control Models. , 2002, , 169-203.		0
28	Specific Features of Adaptive Controllers and Adaptive Signal Processors. , 2002, , 223-246.		0
29	Adaptive Control Models. , 2002, , 247-270.		Ο
31	Cerebellar Memory, Long-Term Depression, and Long-Term Potentiation. , 2002, , 89-99.		0
32	Specialized Cerebellum-Like Structures. , 2002, , 148-166.		Ο
33	The Mossy Fiber Afferent System. , 2002, , 37-41.		0
34	The Cerebellum as an Adaptive Controller. , 2002, , 273-292.		Ο
35	Timing Functions, Classical Conditioning, and Instrumental Conditioning. , 2002, , 129-136.		0
36	Comparative Anatomy of the Cerebellum. , 2002, , 7-13.		0
37	Purkinje Cell Migration and Differentiation. , 2022, , 173-205.		1

CITATION REPORT