Inferior olivary nuclear complex of the rat: Morphology of organization within the olivocerebellar system

Journal of Comparative Neurology 263, 467-484 DOI: 10.1002/cne.902630402

Citation Report

#	Article	IF	CITATIONS
1	The rat inferior olive as seen with immunostaining for glutamate decarboxylase. Anatomy and Embryology, 1988, 179, 109-127.	1.5	37
2	Comparative study of glutamate decarboxylase immunoreactive boutons in the mammalian inferior olive. Journal of Comparative Neurology, 1989, 286, 514-539.	1.6	46
3	Anterograde tracing of the rat olivocerebellar system with phaseolus vulgaris leucoagglutinin (PHA-L). Demonstration of climbing fiber collateral innervation of the cerebellar nuclei. Journal of Comparative Neurology, 1989, 288, 1-18.	1.6	211
4	Multiple Purkinje Cell Recording in Rodent Cerebellar Cortex. European Journal of Neuroscience, 1989, 1, 572-586.	2.6	307
5	The Functional Organization of the Olivo-Cerebellar System as Examined by Multiple Purkinje Cell Recordings. European Journal of Neuroscience, 1989, 1, 587-602.	2.6	423
6	Topographic and zonal pattern of olivocerebellar projection to the paramedian lobule in the rabbit: an experimental study with an HRP retrograde tracing method. Neuroscience Research, 1989, 7, 173-198.	1.9	7
7	Topographical organization of the olivocerebellar projection upon the posterior vermis in the rat. Neuroscience Research, 1989, 7, 87-102.	1.9	15
8	Representation of vibrissae inputs through the climbing fiber pathway in lobule VII of the adult rat cerebellar vermis. Brain Research, 1989, 488, 241-252.	2.2	11
9	Lesions of the inferior olive do not affect long- or short-term habituation of the acoustic startle response in rats. Neuroscience Letters, 1989, 100, 164-168.	2.1	9
10	Spontaneous Saccades and Gaze-Holding Ability in the Pigmented Rat. II. Effects of Localized Cerebellar Lesions. European Journal of Neuroscience, 1990, 2, 1085-1094.	2.6	33
11	Projections of the medial cerebellar nucleus to oculomotor-related midbrain areas in the rat: An anterograde and retrograde HRP study. Journal of Comparative Neurology, 1990, 296, 427-436.	1.6	39
12	Cerebellar nucleo-olivary projections in the rat: An anterograde tracing study withPhaseolus vulgaris-leucoagglutinin (PHA-L). Journal of Comparative Neurology, 1990, 298, 315-333.	1.6	115
13	Connections of the caudal cerebellar interpositus complex in a new world monkey (Cebus apella). Brain Research Bulletin, 1990, 25, 919-927.	3.0	53
14	Columnar organisation of the inferior olive projection to the posterior lobe of the rat cerebellum. Journal of Comparative Neurology, 1990, 302, 236-254.	1.6	60
15	Effect of harmaline on cells of the inferior olive in the absence of tremor: Differential response of genetically dystonic and harmaline-tolerant rats. Neuroscience, 1991, 41, 543-549.	2.3	38
16	Activation of a specific vestibulo-olivary pathway by centripetal acceleration in rat. Brain Research, 1991, 562, 311-317.	2.2	39
17	Quantitative in situ hybridization analysis of glutamic acid decarboxylase messenger RNA in developing rat cerebellum. Developmental Brain Research, 1991, 63, 253-264.	1.7	21
18	Olivary morphology and olivocerebellar topography in adult lurcher mutant mice. Journal of Comparative Neurology, 1991, 312, 641-651.	1.6	81

#	Article	IF	CITATIONS
19	Relationships between neuronal birthdates and cytoarchitecture in the rat inferior olivary complex. Journal of Comparative Neurology, 1991, 313, 509-521.	1.6	35
20	Adaptation and habituation of the vestibulo-ocular reflex in intact and inferior olive-lesioned rats. Experimental Brain Research, 1991, 86, 568-78.	1.5	76
21	Fos-defined activity in rat brainstem following centripetal acceleration. Journal of Neuroscience, 1992, 12, 4489-4500.	3.6	81
22	The Effect of Kainic Acid Lesions of the Cerebellar Cortex on the Conditioned Nictitating Membrane Response in the Rabbit. European Journal of Neuroscience, 1992, 4, 966-980.	2.6	42
23	Early Development of Olivocerebellar Projections in the Fetal Rat Using CGRP Immunocytochemistry. European Journal of Neuroscience, 1992, 4, 1159-1179.	2.6	107
24	Organization of inferior olivary projections to the flocculus and ventral paraflocculus of the rat cerebellum. Journal of Comparative Neurology, 1992, 316, 129-150.	1.6	113
25	The tectorecipient zone in the inferior olivary nucleus in the rat. Journal of Comparative Neurology, 1992, 320, 398-414.	1.6	34
26	Development of the olivocerebellar projection in the rat: I. Transient biochemical compartmentation of the inferior olive. Journal of Comparative Neurology, 1992, 323, 519-536.	1.6	86
27	Development of the olivocerebellar projection in the rat: II. Matching of the developmental compartmentations of the cerebellum and inferior olive through the projection map. Journal of Comparative Neurology, 1992, 323, 537-550.	1.6	86
28	Evidence of early topographic organization in the embryonic olivocerebellar projection: A model system for the study of pattern formation processes in the central nervous system. Developmental Dynamics, 1993, 197, 125-145.	1.8	59
29	Fine structure of the dorsal cap of the inferior olive and its GAB aergic and non-Gabaergic input from the nucleus prepositus hypoglossi in rat and rabbit. Journal of Comparative Neurology, 1993, 327, 63-82.	1.6	183
30	Electron microscopy of in vivo recorded and intracellularly injected inferior olivary neurons and their GABAergic innervation in the cat. Microscopy Research and Technique, 1993, 24, 85-102.	2.2	14
31	The olivocerebellar projection in normal (+ / +), heterozygous weaver (wv/ +), and homozygous weaver (wv/wv) mutant mice: comparison of terminal pattern and topographic organization. Experimental Brain Research, 1993, 95, 187-201.	1.5	14
32	Zonal Organization Within the Projection from the Inferior Olive to the Rostral Paramedian Lobule of the Cat Cerebellum. European Journal of Neuroscience, 1993, 5, 162-173.	2.6	28
33	Compartmentation of the cerebellar cortex by protein kinase C delta. Neuroscience, 1993, 56, 177-188.	2.3	45
34	The cerebellar olivo-corticonuclear connections in the rat. Progress in Neurobiology, 1993, 40, 63-87.	5.7	185
35	The X zone and CX subzone of the cerebellum in the rat. Neuroscience Research, 1993, 16, 195-207.	1.9	39
36	Transient ipsilateral innervation of the cerebellum by developing olivocerebellar neurons. A retrograde double-labelling study with fast blue and diamidino yellow. Neuroscience, 1993, 56, 485-497.	2.3	17

#	Article	IF	CITATIONS
37	The â€~creeper stage' in cerebellar climbing fiber synaptogenesis precedes the â€~pericellular nest' - ultrastructural evidence with parvalbumin immunocytochemistry. Developmental Brain Research, 1993, 76, 207-220.	1.7	91
38	Clutamate-immunoreactive climbing fibres in the cerebellar cortex of the rat. Histochemistry, 1994, 101, 427-437.	1.9	15
39	Morphological evidence for the presence of ipsilateral inferior olivary neurons during postnatal development of the olivocerebellar projection in the rat. Journal of Comparative Neurology, 1994, 350, 485-496.	1.6	13
40	Purkinje cell loss from alternating sagittal zones in the cerebellum of leaner mutant mice. Brain Research, 1994, 658, 93-104.	2.2	83
41	NMDA-mediated metabolic activation of the cerebellar cortex in behaving rats by the neuropeptide endothelin-1. Brain Research, 1994, 647, 345-352.	2.2	15
42	Induction of Fos-like protein in neurons of the medulla oblongata after electrical stimulation of the vagus nerve in anesthetized rabbit. Brain Research, 1994, 635, 317-322.	2.2	28
43	A subpopulation of olivocerebellar projection neurons express neuropeptide Y. Brain Research, 1994, 634, 353-357.	2.2	11
44	Distribution of corticotropin-releasing factor and calcitonin generelated peptide in the developing mouse cerebellum. Neuroscience Research, 1994, 19, 387-396.	1.9	27
45	Zonal organization of the climbing fiber projection to the flocculus and nodulus of the rabbit: A combined axonal tracing and acetylcholinesterase histochemical study. Journal of Comparative Neurology, 1995, 356, 23-50.	1.6	186
46	Nucleus medialis-nucleus interpositus interface: Its olivary and cerebellocortical projections in the rat. Journal of Comparative Neurology, 1995, 363, 1-14.	1.6	22
47	The cerebellar symphony. Nature, 1995, 374, 412-413.	27.8	12
48	Reciprocal trophic interactions in the adult climbing fibre—Purkinje cell system. Progress in Neurobiology, 1995, 47, 341-369.	5.7	17
49	Abnormal ipsilateral functional vibrissae projection onto Purkinje cells multiply innervated by climbing fibers in the rat. Developmental Brain Research, 1995, 87, 172-178.	1.7	32
50	Trigeminocerebellar and trigemino-olivary projections in rats. Neuroscience Research, 1996, 25, 267-283.	1.9	52
51	Organization of the Vestibulocerebellum. Annals of the New York Academy of Sciences, 1996, 781, 553-579.	3.8	210
52	Adrenergic agents inhibit rapid increases in cerebellar Purkinje cell glutamic acid decarboxylase (GAD67) mRNA levels after climbing fiber lesions or reserpine treatment. Journal of Neuroscience, 1996, 16, 1844-1851.	3.6	5
53	Morphological Correlates of Bilateral Synchrony in the Rat Cerebellar Cortex. Journal of Neuroscience, 1996, 16, 3412-3426.	3.6	103
54	BEN As a Presumptive Target Recognition Molecule during the Development of the Olivocerebellar System. Journal of Neuroscience, 1996, 16, 3296-3310.	3.6	86

#	Article	IF	CITATIONS
55	Coexistence of choline acetyltransferase and GABA in axon terminals in the dorsal cap of the rat inferior olive. Brain Research, 1996, 724, 136-140.	2.2	18
56	Gracile, cuneate, and spinal trigeminal projections to inferior olive in rat and monkey. Journal of Comparative Neurology, 1996, 375, 467-480.	1.6	44
57	The estrous cycle and the olivo-cerebellar circuit. Experimental Brain Research, 1996, 111, 385-392.	1.5	11
58	The Projections of the Lateral Reticular Nucleus to the Deep Cerebellar Nuclei. An Experimental Analysis in the Rat. European Journal of Neuroscience, 1996, 8, 2157-2167.	2.6	38
59	Chapter 1 The cerebellum: chemoarchitecture and anatomy. Handbook of Chemical Neuroanatomy, 1996, , 1-369.	0.3	24
60	Chapter 10 Cerebellar nuclei: the olivary connection. Progress in Brain Research, 1997, 114, 167-192.	1.4	61
61	Neuropeptide Y (NPY) expression is up-regulated in the rat inferior olive during development. NeuroReport, 1997, 8, 3743-3747.	1.2	15
62	Chapter 16 Intrinsic properties and environmental factors in the regeneration of adult cerebellar axons. Progress in Brain Research, 1997, 114, 283-296.	1.4	17
63	Chapter 15 Reciprocal trophic interactions between climbing fibres and Purkinje cells in the rat cerebellum. Progress in Brain Research, 1997, 114, 263-282.	1.4	55
64	Cerebellar Nitric Oxide Synthase Is Expressed within Granule Cell Patches Innervated by Specific Mossy Fiber Terminals: A Developmental Profile. Developmental Neuroscience, 1997, 19, 274-282.	2.0	17
65	Neuronal Circuits Are Subdivided by Differential Expression of Type-II Classic Cadherins in Postnatal Mouse Brains. Molecular and Cellular Neurosciences, 1997, 9, 433-447.	2.2	262
66	Step cycle-related oscillatory properties of inferior olivary neurons recorded in ensembles. Neuroscience, 1997, 82, 69-81.	2.3	14
67	The Olivocerebellar Projection Mediates Ibogaine-Induced Degeneration of Purkinje Cells: A Model of Indirect, Trans-Synaptic Excitotoxicity. Journal of Neuroscience, 1997, 17, 8828-8841.	3.6	156
68	Saccule contribution to immediate early gene induction in the gerbil brainstem with posterior canal galvanic or hypergravity stimulation. Brain Research, 1997, 761, 51-58.	2.2	33
69	Localisation of insulin-like growth factor-I (IGF-I) immunoreactivity in the olivocerebellar system of developing and adult rats. Developmental Brain Research, 1997, 98, 102-113.	1.7	20
70	Lesioning of the inferior olive using a ventral surgical approach. Molecular and Chemical Neuropathology, 1997, 31, 245-264.	1.0	9
71	Reestablishment of the olivocerebellar projection map by compensatory transcommissural reinnervation following unilateral transection of the inferior cerebellar peduncle in the newborn rat. , 1997, 379, 283-299.		50
72	Somatotopical organisation within the climbing fibre projection to the paramedian lobule and copula pyramidis of the rat cerebellum. Journal of Comparative Neurology, 1997, 389, 249-263.	1.6	75

#	Article	IF	CITATIONS
73	Light and electron microscopic immunohistochemical localization of N-acetylaspartylglutamate NAAG in the olivocerebellar pathway of the rat. Synapse, 1997, 26, 140-154.	1.2	27
74	Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. Journal of Physiology, 1998, 512, 555-566.	2.9	327
75	Cadherin-6 in the developing mouse brain: Expression along restricted connection systems and synaptic localization suggest a potential role in neuronal circuitry. Developmental Dynamics, 1998, 211, 338-351.	1.8	113
76	Cocaine- and amphetamine-regulated transcript peptide immunohistochemical localization in the rat brain. Journal of Comparative Neurology, 1998, 391, 115-132.	1.6	410
77	Brainstem efferents from the interface between the nucleus medialis and the nucleus interpositus in the rat. Journal of Comparative Neurology, 1998, 402, 264-275.	1.6	27
78	Plasticity of the olivocerebellar pathway. Trends in Neurosciences, 1998, 21, 407-413.	8.6	115
80	Inferior olivary-induced expression of Fos-like immunoreactivity in the cerebellar nuclei of wild-type and Lurcher mice. European Journal of Neuroscience, 1999, 11, 3809-3822.	2.6	17
81	Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: Comparison of ORL1 receptor mRNA expression with125I-[14Tyr]-orphanin FQ binding. Journal of Comparative Neurology, 1999, 412, 563-605.	1.6	323
82	Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. Journal of Comparative Neurology, 1999, 414, 131-148.	1.6	202
83	Organization of projections from the inferior olive to the cerebellar nuclei in the rat. Journal of Comparative Neurology, 2000, 426, 209-228.	1.6	148
84	Functional organization of climbing fibre projection to the cerebellar anterior lobe of the rat. Journal of Physiology, 2000, 522, 297-309.	2.9	60
85	Fos expression in the rat brain after exposure to gravito-inertial force changes. Brain Research, 2000, 861, 333-344.	2.2	64
86	Differential induction of brain-derived neurotrophic factor mRNA in rat inferior olive subregions following unilateral labyrinthectomy. Neuroscience, 2001, 106, 385-394.	2.3	19
87	The Entire Trajectories of Single Olivocerebellar Axons in the Cerebellar Cortex and their Contribution to Cerebellar Compartmentalization. Journal of Neuroscience, 2001, 21, 7715-7723.	3.6	158
88	The number of neurons in the inferior olivary nucleus in Alzheimer's disease and normal aging: A stereological study using the optical fractionator. Journal of Alzheimer's Disease, 2001, 3, 159-168.	2.6	15
89	Bilaterally synchronous complex spike Purkinje cell activity in the mammalian cerebellum. European Journal of Neuroscience, 2001, 13, 327-339.	2.6	35
90	Corticonuclear projections of the cerebellum preserve both anteroposterior and mediolateral pairing patterns. European Journal of Neuroscience, 2001, 13, 694-708.	2.6	9
91	Localization of low affinity nerve growth factor receptor in the rat inferior olivary complex during development and plasticity of climbing fibres. Developmental Brain Research, 2001, 126, 229-239.	1.7	6

ARTICLE IF CITATIONS Axonal Collateral Branching of Neurones in the Inferior Olive Projecting to the Cerebellar 2.3 6 92 Paramedian Lobule in the Rabbit. Cells Tissues Organs, 2002, 172, 37-47. Target-Specific Innervation of Embryonic Cerebellar Transplants by Regenerating Olivocerebellar 4.1 Axons in the Adult Rat. Experimental Neurology, 2002, 173, 205-212. 94 Climbing fiber development: do neurotrophins have a part to play?. Cerebellum, 2002, 1, 265-275. 2.5 28 Nr-CAM and TAG-1 are expressed in distinct populations of developing precerebellar and cerebellar 95 34 neurons. Neuroscience, 2002, 113, 743-748. The neuropeptide Y receptors, Y1 and Y2, are transiently and differentially expressed in the developing 96 2.3 18 cerebellum. Neuroscience, 2002, 113, 767-777. Cerebellar lesion up-regulates P2X1 and P2X2 purinergic receptors in precerebellar nuclei. Neuroscience, 2002, 115, 425-434. 2.3 HRP injection in lobule VI-VII of the cerebellar cortex reveals a bilateral inferior olive projection in 98 1.6 3 granuloprival rats. Journal of Comparative Neurology, 2002, 449, 65-75. Structure-function relations of two somatotopically corresponding regions of the rat cerebellar 90 2.5 cortex: olivo-cortico-nuclear connections. Cerebellúm, 2002, 1, 165-184. Fos induction in the amygdala by vestibular information during hypergravity stimulation. Brain 100 2.2 32 Research, 2003, 986, 114-123. Extrinsic regulation of injury/growth-related gene expression in the inferior olive of the adult rat. European Journal of Neuroscience, 2003, 18, 2146-2158. Fos and FRA protein expression in rat precerebellar structures during the Neurolab Space Mission. 102 3.08 Brain Research Bulletin, 2003, 62, 203-221. The Distribution of Climbing and Mossy Fiber Collateral Branches from the Copula Pyramidis and the Paramedian Lobule: Congruence of Climbing Fiber Cortical Zones and the Pattern of Zebrin Banding 3.6 199 within the Rat Cerebellum. Journal of Neuroscience, 2003, 23, 4645-4656. 104 Cerebellum and Precerebellar Nuclei., 2004, , 321-392. 49 Cerebellum., 2004, , 205-242. Ascending and Descending Pathways in the Spinal Cord., 2004, , 149-164. 106 25 Spatio-Temporal Changes in Neurofilament Proteins Immunoreactivity Following Kainate-Induced Cerebellar Lesion in Rats. Cellular and Molecular Neurobiology, 2004, 24, 367-378. The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat 108 cerebellar vermis: The congruence of projection zones and the zebrin pattern. Journal of 1.5192 Neurocytology, 2004, 33, 5-21. Molecular, Topographic, and Functional Organization of the Cerebellar Cortex: A Study with 273 Combined Aldolase C and Olivocerebellar Labeling. Journal of Neuroscience, 2004, 24, 8771-8785.

#	Article	IF	CITATIONS
110	Precerebellar Nuclei and Red Nucleus. , 2004, , 167-204.		54
111	Axotomy dependent purinergic and nitrergic co-expression. Neuroscience, 2004, 123, 393-404.	2.3	42
112	Topography of olivo-cortico-nuclear modules in the intermediate cerebellum of the rat. Journal of Comparative Neurology, 2005, 492, 193-213.	1.6	82
113	Partial resistance of ataxin-2-containing olivary and pontine neurons to axotomy-induced degeneration. Brain Research Bulletin, 2005, 66, 212-221.	3.0	10
114	Naturally occurring neuronal death during the postnatal development of Purkinje cells and their precerebellar afferent projections. Brain Research Reviews, 2005, 49, 267-279.	9.0	22
115	Oculomotor cerebellum. Progress in Brain Research, 2006, 151, 231-268.	1.4	135
116	Morphological study on the inferior olivary nuclear complex of the donkey (Equus asinus). Tissue and Cell, 2006, 38, 353-359.	2.2	1
117	Differential expression of NMDA and AMPA/KA receptor subunits in the inferior olive of postnatal rats. Brain Research, 2006, 1067, 103-114.	2.2	16
118	Olivo-cortico-nuclear localizations within crus I of the cerebellum. Journal of Comparative Neurology, 2006, 497, 287-308.	1.6	8
119	Somatomotor and oculomotor inferior olivary neurons have distinct electrophysiological phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16550-16555.	7.1	32
120	And the Olive Said to the Cerebellum: Organization and Functional Significance of the Olivo-Cerebellar System. Neuroscientist, 2007, 13, 616-625.	3.5	31
121	Trio Controls the Mature Organization of Neuronal Clusters in the Hindbrain. Journal of Neuroscience, 2007, 27, 10323-10332.	3.6	43
122	Qualitative and Quantitative Studies of the Inferior Olivary Complex in the Water Buffalo (Buballus) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
123	Identification of aldolase C compartments in the mouse cerebellar cortex by olivocerebellar labeling. Journal of Comparative Neurology, 2007, 500, 1076-1092.	1.6	123
124	Relationship of complex spike synchrony bands and climbing fiber projection determined by reference to aldolase C compartments in crus IIa of the rat cerebellar cortex. Journal of Comparative Neurology, 2007, 501, 13-29.	1.6	58
125	Topography of olivocerebellar projections to the uvula and paramedian lobule in the rabbit: Comparison with other species. Annals of Anatomy, 2008, 190, 368-382.	1.9	2
126	Expression of cocaine- and amphetamine-regulated transcript (CART) peptides at climbing fibre-Purkinje cell synapses in the rat vestibular cerebellum. Neuropeptides, 2008, 42, 39-46.	2.2	6
127	Serotonin Evokes Endocannabinoid Release and Retrogradely Suppresses Excitatory Synapses. Journal of Neuroscience, 2008, 28, 6508-6515.	3.6	100

#	Article	IF	CITATIONS
128	Molecular Mechanisms Controlling Midline Crossing by Precerebellar Neurons. Journal of Neuroscience, 2008, 28, 6285-6294.	3.6	57
129	Projection of reconstructed single purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum. Journal of Comparative Neurology, 2009, 512, 282-304.	1.6	126
130	5-HT2A receptors are concentrated in regions of the human infant medulla involved in respiratory and autonomic control. Autonomic Neuroscience: Basic and Clinical, 2009, 147, 48-55.	2.8	21
131	Projections from the Spinal Cord to the Brain. , 2009, , 148-167.		16
132	Organization of the marmoset cerebellum in threeâ€dimensional space: Lobulation, aldolase C compartmentalization and axonal projection. Journal of Comparative Neurology, 2010, 518, 1764-1791.	1.6	56
133	Morphometric analysis of the neuronal numbers and densities of the inferior olivary complex in the donkey (Equus asinus). Acta Histochemica, 2011, 113, 453-456.	1.8	0
134	Neurochemical and Structural Organization of the Principal Nucleus of the Inferior Olive in the Human. Anatomical Record, 2011, 294, 1198-1216.	1.4	18
135	The UNC5C Netrin Receptor Regulates Dorsal Guidance of Mouse Hindbrain Axons. Journal of Neuroscience, 2011, 31, 2167-2179.	3.6	49
136	A Hypothetical Universal Model of Cerebellar Function: Reconsideration of the Current Dogma. Cerebellum, 2013, 12, 758-772.	2.5	9
137	Cerebellar Nuclei and the Inferior Olivary Nuclei: Organization and Connections. , 2013, , 377-436.		24
138	Embryonic stages in cerebellar afferent development. Cerebellum and Ataxias, 2015, 2, 7.	1.9	27
139	Cerebellum and Cerebellar Connections. , 2015, , 133-205.		33
140	The Periaqueductal Gray Orchestrates Sensory and Motor Circuits at Multiple Levels of the Neuraxis. Journal of Neuroscience, 2015, 35, 14132-14147.	3.6	52
141	Extracellular matrix molecules exhibit unique expression pattern in the climbing fiber-generating precerebellar nucleus, the inferior olive. Neuroscience, 2015, 284, 412-421.	2.3	10
142	Maturation of glutamatergic transmission in the vestibulo-olivary pathway impacts on the registration of head rotational signals in the brainstem of rats. Brain Structure and Function, 2016, 221, 217-238.	2.3	8
143	Non-cell autonomous control of precerebellar neuron migration by Slits and Robos. Development (Cambridge), 2018, 145, .	2.5	10
144	The entire trajectories of single pontocerebellar axons and their lobular and longitudinal terminal distribution patterns in multiple aldolase Câ€positive compartments of the rat cerebellar cortex. Journal of Comparative Neurology, 2019, 527, 2488-2511.	1.6	27
145	The Theory and Neuroscience of Cerebellar Cognition. Annual Review of Neuroscience, 2019, 42, 337-364.	10.7	337

#	Article	IF	CITATIONS
146	Shared and differential features of Robo3 expression pattern in amniotes. Journal of Comparative Neurology, 2019, 527, 2009-2029.	1.6	13
147	Functional organization and connectivity of the dorsal column nuclei complex reveals a sensorimotor integration and distribution hub. Journal of Comparative Neurology, 2021, 529, 187-220.	1.6	33
148	Neurotoxins and Neuronal Death. , 1999, , 221-245.		5
149	Purkinje Cell Heterogeneity: Its Role in Organizing the Topography of the Cerebellar Cortex Connections. , 1992, , 5-21.		55
150	Origins of GABAergic Inputs to the Inferior Olive. , 1989, , 86-107.		69
152	The embryonic cerebellum contains topographic cues that guide developing inferior olivary axons. Development (Cambridge), 1997, 124, 861-870.	2.5	60
153	Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. ELife, 2020, 9, .	6.0	148
155	The Cerebellum and Cognition. , 2002, , 118-128.		0
156	Neural Networks and Adaptive Control: Neural Network Models. , 2002, , 204-222.		0
157	Anatomy and Physiology of the Cerebellar Cortex. , 2002, , 14-36.		0
159	The Cerebellar Nuclei and Their Efferent Pathways: Voluntary Motor Learning. , 2002, , 68-86.		0
160	The Inferior Olivary System and the Climbing Fibers. , 2002, , 42-67.		0
162	Cerebellar Pathology in Humans and Animals: Genetic Alterations. , 2002, , 137-147.		0
163	The Vestibulocerebellum and the Oculomotor System. , 2002, , 100-117.		0
165	Nonadaptive Models, Forerunners of Adaptive Models, and Earlier Adaptive Control Models. , 2002, , 169-203.		0
166	Specific Features of Adaptive Controllers and Adaptive Signal Processors. , 2002, , 223-246.		0
167	Adaptive Control Models. , 2002, , 247-270.		0
169	Cerebellar Memory, Long-Term Depression, and Long-Term Potentiation. , 2002, , 89-99.		0

#	Article	IF	CITATIONS
170	Specialized Cerebellum-Like Structures. , 2002, , 148-166.		0
171	The Mossy Fiber Afferent System. , 2002, , 37-41.		0
172	The Cerebellum as an Adaptive Controller. , 2002, , 273-292.		0
173	Timing Functions, Classical Conditioning, and Instrumental Conditioning. , 2002, , 129-136.		0
174	Comparative Anatomy of the Cerebellum. , 2002, , 7-13.		0
175	Principles of Organization within the Olivocerebellar System in the Rat. , 1989, , 46-51.		2
176	Map projection rewiring in the adult cerebellum after lesions. , 1998, , 169-185.		1
177	Cerebellar Nuclei and the Inferior Olivary Nuclei: Organization and Connections. , 2020, , 1-61.		0
179	Cerebellar Nuclei and the Inferior Olivary Nuclei: Organization and Connections. , 2022, , 497-557.		1
181	Uncoupling axon guidance and neuronal migration in Robo3â€deficient inferior olivary neurons. Journal of Comparative Neurology, 2022, 530, 2868-2880.	1.6	3
183	Topographic organization in the cerebellar nuclei and inferior olive in relation to cerebellar hemispheric lobules in the mouse: Distinction between crus I and neighboring lobules. Journal of Comparative Neurology, 2023, 531, 1633-1650.	1.6	1
184	Developmental patterns of extracellular matrix molecules in the embryonic and postnatal mouse hindbrain. Frontiers in Neuroanatomy, 0, 18, .	1.7	Ο