Endothelium inhibits responses of rabbit carotid artery

American Journal of Physiology - Heart and Circulatory Physiol 253, H792-H798

DOI: 10.1152/ajpheart.1987.253.4.h792

Citation Report

#	Article	IF	CITATIONS
1	Endothelium attenuates contractile responses of goat saphenous arteries to adrenergic nerve stimulation. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1989, 94, 431-434.	0.2	1
2	Intra- and extraluminally-applied acetylcholine on the vascular tone or the response to transmural stimulation in dog isolated mesenteric arteries. Naunyn-Schmiedeberg's Archives of Pharmacology, 1990, 341-341, 30-6.	3.0	14
3	Effect of endothelium removal on the vasoconstrictor response to neuronally released 5â€hydroxytryptamine and noradrenaline in the rat isolated mesenteric and femoral arteries. British Journal of Pharmacology, 1991, 102, 85-90.	5.4	34
4	Endogenous nitric oxide modulates adrenergic neural vasoconstriction in guineaâ€pig pulmonary artery. British Journal of Pharmacology, 1991, 104, 565-569.	5.4	51
5	Role of nitric oxide formation in the regulation of haemodynamics and the release of noradrenaline and adrenaline. Naunyn-Schmiedeberg's Archives of Pharmacology, 1991, 344, 720-7.	3.0	37
6	Role of the <scp>l</scp> â€arginineâ€NO pathway and of cyclic GMP in electrical fieldâ€induced noradrenaline release and vasoconstriction in the rat tail artery. British Journal of Pharmacology, 1992, 107, 976-982.	5.4	54
7	Role of nitric oxide from the endothelium on the neurogenic contractile responses of rabbit pulmonary artery. European Journal of Pharmacology, 1992, 222, 113-120.	3.5	28
8	Endothelium-dependent component in the contractile responses of human omental arteries to adrenergic stimulation. European Journal of Pharmacology, 1993, 250, 103-107.	3.5	30
9	Influences of the endothelium and hypoxia on neurogenic transmission in the isolated pulmonary artery of the rabbit. British Journal of Pharmacology, 1993, 108, 150-154.	5.4	16
10	Nitric oxide increases renal blood flow by interacting with the sympathetic nervous system Hypertension, 1994, 24, 220-226.	2.7	43
11	Neurogenic component of ouabain-evoked contractions is modulated by the endothelium Hypertension, 1994, 23, 10-17.	2.7	7
12	Nitric oxide synthase in the pig autonomic nervous system in relation to the influence of NG-nitro-L-arginine on sympathetic and parasympathetic vascular control in vivo. Neuroscience, 1994, 62, 189-203.	2.3	47
13	Enhancement of noradrenergic constriction of large coronary arteries by inhibition of nitric oxide synthesis in anaesthetized dogs. British Journal of Pharmacology, 1994, 112, 443-448.	5.4	18
14	Endothelium-Dependent Regulation of the Cardiovascular System Internal Medicine, 1995, 34, 939-946.	0.7	30
15	Nitric oxide donors enhanced Ca2+ currents and blocked noradrenalineâ€induced Ca2+ current inhibition in rat sympathetic neurons Journal of Physiology, 1995, 482, 521-531.	2.9	65
16	The effect of endotoxin on sympathetic responses in the rat isolated perfused mesenteric bed; involvement of nitric oxide and cycloâ€oxygenase products. British Journal of Pharmacology, 1995, 116, 3316-3322.	5.4	24
17	Involvement of nitric oxide, but not prostaglandins, in the vascular sympathoinhibitory effects of losartan in the pithed spontaneously hypertensive rat. British Journal of Pharmacology, 1996, 117, 315-324.	5.4	6
18	Nitric oxide-dependent and -independent modulation of sympathetic vasoconstriction in the human saphenous vein. European Journal of Pharmacology, 1996, 309, 41-50.	3.5	15

#	Article	IF	CITATIONS
19	Pre- and postjunctional modulation by endothelin-1 of the adrenergic neurogenic response in canine mesenteric arteries. European Journal of Pharmacology, 1996, 311, 169-176.	3.5	10
20	Nitric oxide and sympathoexcitatory cardiovascular neurons of the ventrolateral medulla in cats. Neurophysiology, 1996, 28, 86-93.	0.3	1
21	Tracheal microvascular responses to inhibition of nitric oxide synthesis in anesthetized rats American Journal of Respiratory and Critical Care Medicine, 1996, 154, 1382-1386.	5.6	2
22	Control of Skeletal Muscle Blood Flow During Dynamic Exercise. Sports Medicine, 1996, 21, 119-146.	6.5	72
23	Developmental dynamics of endothelial and neurogenic control of canine thoracic aorta. Mechanisms of Ageing and Development, 1997, 95, 143-152.	4.6	11
24	Attenuated inhibition of adrenergic contraction by nitric oxide in injured guinea pig femoral artery. Heart and Vessels, 1997, 12, 10-18.	1.2	6
25	Endothelium-released adenosine triphosphate contributes to vasoconstrictor responses to periarterial nerve stimulation in isolated, perfused canine splenic arteries. Heart and Vessels, 1998, 13, 256-261.	1.2	6
26	NOS inhibition potentiates norepinephrine but not sympathetic nerve-mediated co-transmission in resistance arteries. Cardiovascular Research, 1999, 43, 762-771.	3.8	7
27	Vascular sodium pump endothelial modulation and alterations in some pathological processes and aging. , 1999, 84, 249-271.		45
28	Role of nitric oxide in the regulation of cardiovascular autonomic control. Clinical Science, 1999, 97, 5-17.	4.3	128
29	Nitric oxide release during α1-adrenoceptor-mediated constriction of arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H873-H881.	3.2	38
30	Nitric oxide and hypertension: not just an endothelium derived relaxing factor!. Journal of Human Hypertension, 2001, 15, 219-227.	2.2	44
31	Carotid artery reactivity to isometric hand grip exercise identifies persons at risk and with coronary disease. Atherosclerosis, 2002, 160, 241-248.	0.8	5
32	cGMP/Protein Kinase G-Dependent Inhibition of N-Type Ca ²⁺ Channels Induced by Nitric Oxide in Human Neuroblastoma IMR32 Cells. Journal of Neuroscience, 2002, 22, 7485-7492.	3.6	45
33	NCX 4016, a nitric oxide-releasing aspirin, modulates adrenergic vasoconstriction in the perfused rat tail artery. British Journal of Pharmacology, 2002, 137, 229-236.	5.4	11
34	Low Frequency Regular Exercise Improves Flow-Mediated Dilatation of Subjects with Mild Hypertension. Hypertension Research, 2005, 28, 315-321.	2.7	48
35	Combined aerobic and resistance training and vascular function: effect of aerobic exercise before and after resistance training. Journal of Applied Physiology, 2007, 103, 1655-1661.	2.5	87
36	Acute Moderate-Intensity Exercise Induces Vasodilation Through an Increase in Nitric Oxide Bioavailiability in Humans. American Journal of Hypertension, 2007, 20, 825-830.	2.0	116

CITATION REPORT

#	Article	IF	CITATIONS
37	Sex, hormones and neuroeffector mechanisms. Acta Physiologica, 2011, 203, 155-165.	3.8	44
38	Endothelial Dysfunction and Increased Responses to Renal Nerve Stimulation in Rat Kidneys during Rhabdomyolysis-Induced Acute Renal Failure: Role of Hydroxyl Radical. Renal Failure, 2012, 34, 211-220.	2.1	8
39	The effects of combined epidural and general anesthesia on the autonomic nervous system and bioavailability of nitric oxide in patients undergoing laparoscopic pelvic surgery. Surgical Endoscopy and Other Interventional Techniques, 2013, 27, 918-926.	2.4	16
40	Shortâ€ŧerm exercise training enhances functional sympatholysis through a nitric oxideâ€dependent mechanism. Journal of Physiology, 2013, 591, 1535-1549.	2.9	45
41	Acute superoxide scavenging reduces sympathetic vasoconstrictor responsiveness in short-term exercise-trained rats. Journal of Applied Physiology, 2013, 114, 1511-1518.	2.5	11
42	Vascular endothelial function masks increased sympathetic vasopressor activity in rats with metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H497-H507.	3.2	23
43	Effect of acute dietary nitrate supplementation on sympathetic vasoconstriction at rest and during exercise. Journal of Applied Physiology, 2019, 127, 81-88.	2.5	11
44	Effect of Electrical Stimulation of Cervical Sympathetic Ganglia on Intraocular Pressure Regulation According to Different Circadian Rhythms in Rats. , 2020, 61, 40.		5
45	Endothelium-Derived Relaxing Factor and the Control of Flow in Conduit and Resistance Arteries. , 1995, , 178-213.		8
46	Interaction between Endothelium-Derived Vasoactive Factors and Neurohumoral Substances in the Regulation of Vascular Tone. , 1993, , 107-134.		1

CITATION REPORT