Fast tidewater glaciers

Journal of Geophysical Research 92, 9051-9058 DOI: 10.1029/jb092ib09p09051

Citation Report

1	Swiss glaciers. Journal of the Franklin Institute, 1886, 122, 66-70.	3.4	0
2	Fast glacier flow: Ice streams, surging, and tidewater glaciers. Journal of Geophysical Research, 1987, 92, 8835-8841.	3.3	166
3	How do glaciers surge? A review. Journal of Geophysical Research, 1987, 92, 9121-9134.	3.3	244
4	Columbia Bay, Alaska: an â€~upside down' estuary. Estuarine, Coastal and Shelf Science, 1988, 26, 607-617.	2.1	76
5	Climatic evolution of the eastern Canadian Arctic and Baffin Bay during the past three million years. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1988, 318, 645-660.	2.3	6
6	Holocene glaciation of Alaska (and Adjoining YUKON Territory, Canada). Quaternary Science Reviews, 1988, 7, 159-184.	3.0	94
7	Small-Amplitude, Short-Period Variations in the Speed of a Tide-Water Glacier in South-Central Alaska, U.S.A Annals of Glaciology, 1989, 12, 187-191.	1.4	13
8	On The Nature of Svalbard Icebergs. Journal of Glaciology, 1989, 35, 224-234.	2.2	87
9	Small-Amplitude, Short-Period Variations in the Speed of a Tide-Water Glacier in South-Central Alaska, U.S.A Annals of Glaciology, 1989, 12, 187-191.	1.4	13
10	Glaciomarine facies within subglacial tunnel valleys: the sedimentary record of glacioisostatic downwarping in the Irish Sea Basin. Sedimentology, 1989, 36, 431-448.	3.1	67
11	The Late Devensian (<22,000 BP) Irish Sea Basin: The sedimentary record of a collapsed ice sheet margin. Quaternary Science Reviews, 1989, 8, 307-351.	3.0	224
12	Biofacies and sediments in an emergent Late Pleistocene glaciomarine sequence, Skerries, east central Ireland. Marine Geology, 1990, 94, 23-36.	2.1	17
13	Topographic and Glaciological Controls on Holocene Ice-Sheet Margin Dynamics. Central West Greenland. Annals of Glaciology, 1990, 14, 307-310.	1.4	26
14	Topographic and Glaciological Controls on Holocene Ice-Sheet Margin Dynamics. Central West Greenland. Annals of Glaciology, 1990, 14, 307-310.	1.4	29
15	Surficial glaciology of Jakobshavns Isbræ, West Greenland: Part I. Surface morphology. Journal of Glaciology, 1991, 37, 368-382.	2.2	13
16	Relationship between tidewater glacier calving velocity and water depth at the calving front. Annals of Glaciology, 1991, 15, 115-118.	1.4	14
17	Surficial glaciology of Jakobshavns Isbræ, West Greenland: Part I. Surface morphology. Journal of Glaciology, 1991, 37, 368-382.	2.2	158
18	Relationship between tidewater glacier calving velocity and water depth at the calving front. Annals of Glaciology, 1991, 15, 115-118.	1.4	128

TATION RE

IF

CITATIONS

ARTICLE

#

#	Article	IF	CITATIONS
19	Sedimentary processes may cause fluctuations of tidewater glaciers. Annals of Glaciology, 1991, 15, 119-124.	1.4	78
20	Non-climatic control of glacier-terminus fluctuations in the Wrangell and Chugach Mountains, Alaska, U.S.A Journal of Glaciology, 1991, 37, 348-356.	2.2	46
21	Formation of De Geer moraines and implications for deglaciation dynamics. Journal of Quaternary Science, 1991, 6, 263-277.	2.1	52
22	Iceberg calving and the glacioclimatic record. Progress in Physical Geography, 1992, 16, 253-282.	3.2	90
23	Research into the Hansbreen, a tidewater glacier in Spitsbergen. Polar Geography and Geology, 1992, 16, 243-252.	0.2	9
24	Glacier recession in Iceland and Austria. Eos, 1992, 73, 129-129.	0.1	49
25	Contrasting Response of South Greenland Glaciers to Recent Climatic Change. Arctic and Alpine Research, 1992, 24, 124.	1.3	39
26	Glaciomarine facies from the western sector of the last British ice sheet, Malin Beg, County Donegal, Ireland. Quaternary Science Reviews, 1993, 12, 35-45.	3.0	12
27	Neoglacial fluctuations and sedimentation of an iceberg-calving glacier resolved with tree rings (kenai Fjords national park, Alaska). Quaternary International, 1993, 18, 35-42.	1.5	15
28	The Patagonian Icefields: A Glaciological Review. Arctic and Alpine Research, 1993, 25, 316.	1.3	159
29	The temporal significance of transitions from melting to calving termini at glaciers in the central Southern Alps of New Zealand. Holocene, 1993, 3, 232-240.	1.7	162
30	Historic retreat of Grand Pacific and Melbern Glaciers Saint Elias Mountains, Canada: an analogue for decay of the Cordilleran ice sheet at the end of the Pleistocene?. Journal of Glaciology, 1993, 39, 619-624.	2.2	29
31	Bering Glacier surge and iceberg-calving mechanism at Vitus Lake, Alaska, U.S.A Journal of Glaciology, 1993, 39, 722-727.	2.2	28
32	Tectonic processes in Svalbard tide-water glacier surges: evidence from structural glaciology. Journal of Claciology, 1994, 40, 553-560.	2.2	39
33	Historie retreat of Grand Pacific and Melbern Glaciers, Saint Elias Mountains, Canada: an analogue for decay of the Cordilleran ice sheet at the end of the Pleistocene?. Journal of Glaciology, 1994, 40, 205-210.	2.2	3
34	Historie retreat of Grand Pacific and Melbern Glaciers, Saint Elias Mountains, Canada: an analogue for decay of the Cordilleran ice sheet at the end of the Pleistocene?. Journal of Glaciology, 1994, 40, 205-210.	2.2	0
35	Freshwater calving and anomalous glacier oscillations: recent behaviour of Moreno and Ameghino Glaciers, Patagonia. Holocene, 1994, 4, 422-429.	1.7	40
36	Early Holocene deglaciation of Expedition and Strand fiords, Canadian High Arctic. Canadian Journal of Earth Sciences, 1994, 31, 943-958.	1.3	28

#	Article	IF	CITATIONS
37	Unstable Behavior of the Laurentide Ice Sheet over Deforming Sediment and Its Implications for Climate Change. Quaternary Research, 1994, 41, 19-25.	1.7	202
38	Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier: 1. Observations. Journal of Geophysical Research, 1994, 99, 15219.	3.3	128
39	Tectonic processes in Svalbard tide-water glacier surges: evidence from structural glaciology. Journal of Glaciology, 1994, 40, 553-560.	2.2	37
40	Recent variations of calving glaciers in Patagonia, South America, revealed by ground surveys, satellite-data analyses and numerical experiments. Annals of Glaciology, 1995, 21, 297-303.	1.4	6
41	Glaciar Upsala, Patagonia: rapid calving retreat in fresh water. Annals of Glaciology, 1995, 21, 311-316.	1.4	19
42	Characteristics of tide-water calving at Glaciar San Rafael, Chile. Journal of Glaciology, 1995, 41, 273-289.	2.2	11
43	Characteristics of tide-water calving at Glaciar San Rafael, Chile. Journal of Glaciology, 1995, 41, 273-289.	2.2	123
44	Ice-thickness measurements of Taku Glacier, Alaska, U.S.A., and their relevance to its recent behavior. Journal of Glaciology, 1995, 41, 541-553.	2.2	57
45	Recent variations of calving glaciers in Patagonia, South America, revealed by ground surveys, satellite-data analyses and numerical experiments. Annals of Glaciology, 1995, 21, 297-303.	1.4	45
46	Glaciar Upsala, Patagonia: rapid calving retreat in fresh water. Annals of Glaciology, 1995, 21, 311-316.	1.4	65
47	CHANGES OF GLACIERS IN GLACIER BAY, ALASKA, USING GROUND AND SATELLITE MEASUREMENTS. Physical Geography, 1995, 16, 27-41.	1.4	56
48	TAKU AND LE CONTE GLACIERS, ALASKA: CALVING-SPEED CONTROL OF LATE-HOLOCENE ASYNCHRONOUS ADVANCES AND RETREATS. Physical Geography, 1995, 16, 59-82.	1.4	55
49	ANNUAL AERIAL PHOTOGRAPHY OF GLACIERS IN NORTHWEST NORTH AMERICA: HOW IT ALL BEGAN AND ITS GOLDEN AGE. Physical Geography, 1995, 16, 15-26.	1.4	7
50	Clacier Fluctuations in the Kenai Fjords, Alaska, U.S.A.: An Evaluation of Controls on Iceberg-Calving Glaciers. Arctic and Alpine Research, 1995, 27, 234.	1.3	32
51	Surging History and Potential for Renewed Retreat: Bering Glacier, Alaska, U.S.A Arctic and Alpine Research, 1995, 27, 81.	1.3	19
52	Late Pleistocene and Holocene paleoenvironments of the North Pacific coast. Quaternary Science Reviews, 1995, 14, 449-471.	3.0	206
53	Simulating iceberg calving with a percolation model. Journal of Geophysical Research, 1995, 100, 6225-6232.	3.3	12
54	Taku Glacier, Southeast Alaska, U.S.A.: Late Holocene History of a Tidewater Glacier. Arctic and Alpine Research, 1996, 28, 42.	1.3	36

ARTICLE IF CITATIONS # Sediment flux from a fjord during glacial periods, Isfjorden, Spitsbergen. Global and Planetary 3.5 113 55 Change, 1996, 12, 237-249. An Ice Shelf Breakup. Science, 1996, 271, 775-776. 12.6 57 On Mertz and Ninnis Glaciers, East Antarctica. Journal of Glaciology, 1996, 42, 447-453. 2.2 28 Tidewater calving. Journal of Claciology, 1996, 42, 375-385. 174 Interferometric radar observations of Glaciar San Rafael, Chile. Journal of Glaciology, 1996, 42, 59 2.2 59 279-291. On Mertz and Ninnis Glaciers, East Antarctica. Journal of Glaciology, 1996, 42, 447-453. 2.2 61 Tidewater calving. Journal of Glaciology, 1996, 42, 375-385. 2.2 102 Interferometric radar observations of Glaciar San Rafael, Chile. Journal of Glaciology, 1996, 42, 279-291. Recent Oscillations of the San Quintin and San Rafael Glaciers, Patagonian Chile. Geografiska Annaler, 63 1.5 28 Series A: Physical Geography, 1996, 78, 35-49. Ice-marginal sedimentation and its implications for ice-lobe deglaciation patterns in the Baltic region: 2.1 Pohjankangas, western Finland. Journal of Quaternary Science, 1996, 11, 377-388. Numerical modeling of Late Glacial Laurentide advance of ice across Hudson Strait: Insights into 3.0 65 44 terrestrial and marine geology, mass balance, and calving flux. Paleoceanography, 1997, 12, 97-110. Surge of Bering Glacier and Bagley Ice Field, Alaska: an update to August 1995 and an interpretation of 2.2 brittle-deformation patterns. Journal of Glaciology, 1997, 43, 427-434. Surge of Bering Glacier and Bagley Ice Field, Alaska: an update to August 1995 and an interpretation of 67 2.2 32 brittle-deformation patterns. Journal of Glaciology, 1997, 43, 427-434. Colonisation vs. disturbance: the effects of sustained ice-scouring on intertidal communities. Journal 1.5 of Experimental Marine Biology and Ecology, 1997, 210, 1-21. Western Norwegian fjord sediments: age, volume, stratigraphy, and role as temporary depository 69 2.1 62 during glacial cycles. Marine Geology, 1997, 143, 39-53. Effects of the readvance of an ice margin on the seismic character of the underlying sediment. Marine 29 Geology, 1997, 143, 81-102. Seismic-stratigraphy of Shuswap Lake, British Columbia, Canada. Sedimentary Geology, 1997, 109, 71 2.133 283-303. Subglacial deformation associated with fast ice flow, from the Columbia Glacier, Alaska. Sedimentary 2.1 34 Geology, 1997, 111, 177-197.

ARTICLE IF CITATIONS # Late-glacial cirque glaciation in parts of western Norway. Journal of Quaternary Science, 1998, 13, 73 2.127 17-27. Ice foot development at temperate tidewater margins in Alaska. Geophysical Research Letters, 1998, 25, 74 1923-1926. A simple model for the influence of push-morainal banks on the calving and stability of glacial 75 2.2 24 tidewater termini. Journal of Glaciology, 1998, 44, 31-41. A simple model for the influence of push-morainal banks on the calving and stability of glacial tidewater termini. Journal of Glaciology, 1998, 44, 31-41. Correlations between glacier properties: finding appropriate parameters for global glacier 77 2.2 12 monitoring. Journal of Glaciology, 1999, 45, 9-16. Recent Glacier Variations of the Hielos PatagÃ³nicos, South America, and Their Contribution to Sea-level Change. Arctic, Antarctic, and Alpine Research, 1999, 31, 165-173. 1.1 Interferometric radar observations of Glaciares Europa and Penguin, Hielo Patag \tilde{A}^3 nico Sur, Chile. 79 2.2 18 Journal of Glaciology, 1999, 45, 325-337. A Glaciological perspective on Heinrich events. Geophysical Monograph Series, 1999, , 243-262. 0.1 Formation of the Sorundamalm glaciofluvial deposit and its paleohydrological significance, 81 1.2 1 Stockholm area, east-central Sweden. Cff, 1999, 121, 194-197. High-Resolution Modeling of the Advance of the Younger Dryas Ice Sheet and Its Climate in Scotland. 1.7 Quaternary Research, 1999, 52, 27-43. The calving glaciers of southern South America. Global and Planetary Change, 1999, 22, 59-77. 83 108 3.5 Processes and rates of ice loss at the terminus of Tasman Glacier, New Zealand. Global and Planetary 49 Change, 1999, 22, 79-91. Rapid tidewater glacier retreat: a comparison between Columbia Glacier, Alaska and Patagonian 85 3.5 48 calving glaciers. Global and Planetary Change, 1999, 22, 131-138. Identifying fast ice flow from landform assemblages in the geological record: a discussion. Annals of Glaciology, 1999, 28, 59-66. 1.4 74 Interferometric radar observations of Glaciares Europa and Penguin, Hielo PatagÃ³nico Sur, Chile. 87 2.2 1 Journal of Glaciology, 1999, 45, 325-337. The influence of ice on polar nearshore benthos. Journal of the Marine Biological Association of the United Kingdom, 1999, 79, 401-407. Dynamic Features of Thinning and Retreating Glaciar Upsala, a Lacustrine Calving Glacier in Southern 89 1.1 38 Patagonia. Arctic, Antarctic, and Alpine Research, 2000, 32, 485-491. Variations of Patagonian Glaciers, South America, Using RADARSAT and Landsat Images. Canadian 2.4 Journal of Remote Sensing, 2000, 26, 501-511.

#	Article	IF	CITATIONS
91	Glaciological reconstruction of the Laurentide Ice Sheet: physical processes and modelling challenges. Canadian Journal of Earth Sciences, 2000, 37, 769-793.	1.3	187
92	Alaskan Glacier beats a dramatic retreat. Eos, 2000, 81, 577-584.	0.1	15
93	Holocene coastal glaciation of Alaska. Quaternary Science Reviews, 2001, 20, 449-461.	3.0	142
94	Holocene history of Hubbard Glacier in Yakutat Bay and Russell Fiord, southern Alaska. Bulletin of the Geological Society of America, 2001, 113, 388-402.	3.3	39
95	Flow dynamics of tidewater glaciers: a numerical modelling approach. Journal of Glaciology, 2001, 47, 595-606.	2.2	129
96	Dynamics of marine glacier termini read from moraine architecture. Geology, 2001, 29, 199.	4.4	46
97	Short-term flow dynamics of a retreating tidewater glacier: LeConte Glacier, Alaska, U.S.A Journal of Glaciology, 2001, 47, 567-578.	2.2	52
98	Buoyancy-driven lacustrine calving, Glaciar Nef, Chilean Patagonia. Journal of Glaciology, 2001, 47, 135-146.	2.2	69
99	Calving rates in fresh water: new data from southern Patagonia. Annals of Glaciology, 2002, 34, 379-384.	1.4	43
101	The retreat of a tidewater glacier: observations and model calculations on Hansbreen, Spitsbergen. Journal of Glaciology, 2002, 48, 592-600.	2.2	93
102	Calving glaciers. Progress in Physical Geography, 2002, 26, 96-122.	3.2	156
104	Tide-induced lateral movement of Brunt Ice Shelf, Antarctica. Geophysical Research Letters, 2002, 29, 67-1-67-4.	4.0	56
105	Multi-decadal elevation changes on Bagley Ice Valley and Malaspina Glacier, Alaska. Geophysical Research Letters, 2003, 30, .	4.0	48
106	Contribution of the Patagonia Icefields of South America to Sea Level Rise. Science, 2003, 302, 434-437.	12.6	455
107	The Nastapoka drift belt, eastern Hudson Bay: implications of a stillstand of the Quebec–Labrador ice margin in the Tyrrell Sea at 8 ka BP. Canadian Journal of Earth Sciences, 2003, 40, 65-76.	1.3	34
108	Short-term variations in calving of a tidewater glacier: LeConte Glacier, Alaska, U.S.A Journal of Glaciology, 2003, 49, 587-598.	2.2	55
109	Tidally driven stick–slip motion in the mouth of Whillans Ice Stream, Antarctica. Annals of Glaciology, 2003, 36, 263-272.	1.4	84
110	On the rheology of till. Annals of Glaciology, 2003, 37, 55-59.	1.4	45

#	Article	IF	CITATIONS
111	Modeling the marine extent of Northern Hemisphere ice sheets during the last glacial cycle. Annals of Glaciology, 2003, 37, 173-180.	1.4	25
112	An 850 year record of climate and fluctuations of the iceberg-calving Nellie Juan Glacier, south central Alaska, U.S.A Annals of Glaciology, 2003, 36, 51-56.	1.4	16
113	The distribution and flow characteristics of surge-type glaciers in the Canadian High Arctic. Annals of Claciology, 2003, 36, 73-81.	1.4	97
114	Sediment, glaciohydraulic supercooling, and fast glacier flow. Annals of Glaciology, 2003, 36, 135-141.	1.4	26
115	Late Quaternary Deglaciation, Glaciomarine Sedimentation and Glacioisostatic Recovery in the RiviÃ re Nastapoka Area, Eastern Hudson Bay, Northern Québec. Géographie Physique Et Quaternaire, 2003, 57, 65-83.	0.2	18
117	Short-term velocity variations on Hansbreen, a tidewater glacier in Spitsbergen. Journal of Glaciology, 2004, 50, 389-398.	2.2	62
118	Rapid ice discharge from southeast Greenland glaciers. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	83
119	A minimal model of a tidewater glacier. Annals of Glaciology, 2005, 42, 1-6.	1.4	36
120	Retreat of Glaciar Tyndall, Patagonia, over the last half-century. Journal of Glaciology, 2005, 51, 239-247.	2.2	46
121	Faint traces of high Arctic glaciations: an early Holocene ice-front fluctuation in Bolterdalen, Svalbard. Boreas, 2005, 34, 308-323.	2.4	35
122	Glacier surge dynamics of Sortebræ, east Greenland, from synthetic aperture radar feature tracking. Journal of Geophysical Research, 2005, 110, .	3.3	73
123	Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat. Journal of Geophysical Research, 2005, 110, .	3.3	83
124	Assemblages of submarine landforms produced by tidewater glaciers in Svalbard. Journal of Geophysical Research, 2006, 111, .	3.3	178
125	Rapid and synchronous ice-dynamic changes in East Greenland. Geophysical Research Letters, 2006, 33, .	4.0	184
126	Discrimination of the flow law for subglacial sediment using in situ measurements and an interpretation model. Journal of Geophysical Research, 2006, 111, .	3.3	47
127	Erosion rates during rapid deglaciation in Icy Bay, Alaska. Journal of Geophysical Research, 2006, 111, .	3.3	86
128	Episodic reactivation of large-scale push moraines in front of the advancing Taku Glacier, Alaska. Journal of Geophysical Research, 2006, 111, .	3.3	20
129	Updated estimates of glacier volume changes in the western Chugach Mountains, Alaska, and a comparison of regional extrapolation methods. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	96

#	Article	IF	CITATIONS
130	Accelerating thinning of Kenai Peninsula glaciers, Alaska. Geophysical Research Letters, 2006, 33, .	4.0	28
131	Rapid erosion of soft sediments by tidewater glacier advance: Taku Glacier, Alaska, USA. Geophysical Research Letters, 2006, 33, .	4.0	47
132	Modelling the advance–retreat cycle of a tidewater glacier with simple sediment dynamics. Global and Planetary Change, 2006, 50, 148-160.	3.5	21
134	Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biological Reviews, 2006, 81, 75.	10.4	278
135	Late Quaternary glacial and deglacial history of eastern Vestfirdir, Iceland using cosmogenic isotope (36Cl) exposure ages and marine cores. Journal of Quaternary Science, 2006, 21, 271-285.	2.1	52
136	Dynamics of tidewater glaciers: comparison of three models. Journal of Glaciology, 2006, 52, 183-190.	2.2	18
137	A Revised and Extended Holocene Glacial History of Icy Bay, Southern Alaska, U.S.A. Arctic, Antarctic, and Alpine Research, 2006, 38, 153-162.	1.1	25
138	Rapid Changes in Ice Discharge from Greenland Outlet Glaciers. Science, 2007, 315, 1559-1561.	12.6	420
139	Effect of Sedimentation on Ice-Sheet Grounding-Line Stability. Science, 2007, 315, 1838-1841.	12.6	176
140	â€~Calving laws', â€~sliding laws' and the stability of tidewater glaciers. Annals of Glaciology, 2007, 46, 123-130.	1.4	160
141	Flotation and retreat of a lake-calving terminus, Mendenhall Glacier, southeast Alaska, USA. Journal of Glaciology, 2007, 53, 211-224.	2.2	73
142	Response of glaciers in northwestern North America to future climate change: an atmosphere/glacier hierarchical modeling approach. Annals of Glaciology, 2007, 46, 283-290.	1.4	13
143	Glacier inventory of the Gran Campo Nevado Ice Cap in the Southern Andes and glacier changes observed during recent decades. Global and Planetary Change, 2007, 59, 87-100.	3.5	35
144	Portage Glacier and Portage Pass, Alaska: Little Ice Age dynamics and the chronology of glacial retreat. Polar Geography, 2007, 30, 107-138.	1.9	2
145	Simulation of the evolution of Breidamerkurjökull in the late Holocene. Journal of Geophysical Research, 2007, 112, .	3.3	12
146	Hubbard Clacier, Alaska: 2002 closure and outburst of Russell Fjord and postflood conditions at Gilbert Point. Journal of Geophysical Research, 2007, 112, .	3.3	25
147	Controls on advance of tidewater glaciers: Results from numerical modeling applied to Columbia Glacier. Journal of Geophysical Research, 2007, 112, .	3.3	37
148	Glacier changes in southeast Alaska and northwest British Columbia and contribution to sea level rise. Journal of Geophysical Research, 2007, 112, .	3.3	199

#	Article	IF	CITATIONS
149	A simple mechanism for irreversible tidewater glacier retreat. Journal of Geophysical Research, 2007, 112, .	3.3	137
150	Seismic detection and analysis of icequakes at Columbia Glacier, Alaska. Journal of Geophysical Research, 2007, 112, .	3.3	64
151	Widespread acceleration of tidewater glaciers on the Antarctic Peninsula. Journal of Geophysical Research, 2007, 112, .	3.3	195
152	Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. Journal of Geophysical Research, 2007, 112, .	3.3	838
153	Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century. Science, 2007, 317, 1064-1067.	12.6	570
154	Calving processes and the dynamics of calving glaciers. Earth-Science Reviews, 2007, 82, 143-179.	9.1	513
155	Simulation of a tidewater glacier evolution in Marian Cove, King George Island, Antarctica. Geosciences Journal, 2008, 12, 33-39.	1.2	27
156	Pleistocene glacimarine sedimentation on the continental slope off Vancouver Island, British Columbia. Marine Geology, 2008, 255, 45-54.	2.1	18
157	Fjord insertion into continental margins driven by topographic steering of ice. Nature Geoscience, 2008, 1, 365-369.	12.9	151
158	The Kregnes moraine in Gauldalen, westâ€central Norway: anatomy of a Younger Dryas proglacial delta in a palaeofjord basin*. Boreas, 1999, 28, 454-476.	2.4	22
159	Faint traces of high Arctic glaciations: an early Holocene iceâ€front fluctuation in Bolterdalen, Svalbard. Boreas, 2005, 34, 308-323.	2.4	9
160	Post-glacial relative sea level, isostasy, and glacial history in Icy Strait, Southeast Alaska, USA. Quaternary Research, 2008, 69, 201-216.	1.7	25
161	Iceâ€front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. Journal of Geophysical Research, 2008, 113, .	3.3	147
162	Changes in ice front position on Greenland's outlet glaciers from 1992 to 2007. Journal of Geophysical Research, 2008, 113, .	3.3	250
163	Chronological constraints on Cordilleran Ice Sheet glaciomarine sedimentation from core MD02-2496 off Vancouver Island (western Canada). Quaternary Science Reviews, 2008, 27, 941-955.	3.0	43
164	The effect of water depth on iceâ€proximal glaciolacustrine sedimentation: Salpausselkä, southern Finland. Boreas, 1990, 19, 147-164.	2.4	88
165	Terminal environment, topographic control and fluctuations of West Greenland glaciers. Boreas, 1991, 20, 1-15.	2.4	63
166	Acceleration of surface lowering on the tidewater glaciers of Icy Bay, Alaska, U.S.A. from InSAR DEMs and ICESat altimetry. Earth and Planetary Science Letters, 2008, 265, 345-359.	4.4	27

#	Article	IF	CITATIONS
167	Patterns of glacier response to disintegration of the Larsen B ice shelf, Antarctic Peninsula. Global and Planetary Change, 2008, 63, 1-8.	3.5	50
168	Vulnerability of the Cordilleran Ice Sheet to iceberg calving during late Quaternary rapid climate change events. Paleoceanography, 2008, 23, .	3.0	38
169	A Matter of Firn. Science, 2008, 320, 1596-1597.	12.6	3
170	Kinematic Constraints on Glacier Contributions to 21st-Century Sea-Level Rise. Science, 2008, 321, 1340-1343.	12.6	727
171	Validation of high-resolution GRACE mascon estimates of glacier mass changes in the St Elias Mountains, Alaska, USA, using aircraft laser altimetry. Journal of Glaciology, 2008, 54, 778-787.	2.2	54
172	Seasonal fluctuations in the advance of a tidewater glacier and potential causes: Hubbard Glacier, Alaska, USA. Journal of Glaciology, 2008, 54, 401-411.	2.2	34
173	Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. Journal of Glaciology, 2008, 54, 767-777.	2.2	160
174	Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–06: ice dynamics and coupling to climate. Journal of Glaciology, 2008, 54, 646-660.	2.2	228
175	Synchronous acceleration of ice loss and glacial erosion, Glaciar Marinelli, Chilean Tierra del Fuego. Journal of Glaciology, 2009, 55, 207-220.	2.2	47
176	Changes of Glaciers and Climate in Northwestern North America during the Late Twentieth Century. Journal of Climate, 2009, 22, 4117-4134.	3.2	71
177	Accurate ocean tide modeling in southeast Alaska and large tidal dissipation around Glacier Bay. Journal of Oceanography, 2009, 65, 335-347.	1.7	10
178	Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nature Geoscience, 2009, 2, 110-114.	12.9	427
179	Seafloor evidence for palaeoâ€ice streaming and calving of the grounded Irish Sea Ice Stream: Implications for the interpretation of its final deglaciation phase. Boreas, 2009, 38, 119-131.	2.4	63
180	Holocene glacier fluctuations in Alaska. Quaternary Science Reviews, 2009, 28, 2034-2048.	3.0	145
181	Terminus dynamics at an advancing glacier: Taku Glacier, Alaska. Journal of Glaciology, 2009, 55, 1052-1060.	2.2	24
182	Ground-based interferometric radar for velocity and calving-rate measurements of the tidewater glacier at Kronebreen, Svalbard. Annals of Glaciology, 2009, 50, 47-54.	1.4	20
183	Glacier changes in Alaska: can mass-balance models explain GRACE mascon trends?. Annals of Glaciology, 2009, 50, 148-154.	1.4	14
184	Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland. Journal of Glaciology, 2010, 56, 601-613.	2.2	184

#	Article	IF	CITATIONS
185	A three-dimensional calving model: numerical experiments on Johnsons Glacier, Livingston Island, Antarctica. Journal of Glaciology, 2010, 56, 200-214.	2.2	53
186	A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics. Journal of Glaciology, 2010, 56, 781-794.	2.2	222

Results from the Ice-Sheet Model Intercomparison Projectâ \in "Heinrich Event Intercomparison (ISMIP) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{2}{2!2}$

188	The Response of Taku and Lemon Creek Glaciers to Climate. Arctic, Antarctic, and Alpine Research, 2010, 42, 34-44.	1.1	14
189	Fjords as temporary sediment traps: History of glacial erosion and deposition in Muir Inlet, Glacier Bay National Park, southeastern Alaska. Bulletin of the Geological Society of America, 2010, 122, 1067-1080.	3.3	40
190	Iceberg calving as a primary source of regionalâ€scale glacierâ€generated seismicity in the St. Elias Mountains, Alaska. Journal of Geophysical Research, 2010, 115, .	3.3	21
191	Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska. Geophysical Research Letters, 2010, 37, .	4.0	72
192	Sudden increase in tidal response linked to calving and acceleration at a large Greenland outlet glacier. Geophysical Research Letters, 2010, 37, .	4.0	38
193	History of the Greenland Ice Sheet: paleoclimatic insights. Quaternary Science Reviews, 2010, 29, 1728-1756.	3.0	177
194	Links between Patagonian Ice Sheet fluctuations and Antarctic dust variability during the last glacial period (MIS 4-2). Quaternary Science Reviews, 2010, 29, 1464-1471.	3.0	37
195	Ocean forcing of the Greenland Ice Sheet: Calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. Journal of Geophysical Research, 2011, 116, .	3.3	127
196	A complex relationship between calving glaciers and climate. Eos, 2011, 92, 305-306.	0.1	87
197	Hazard assessment investigations due to recent changes in Triftgletscher, Bernese Alps, Switzerland. Natural Hazards and Earth System Sciences, 2011, 11, 2149-2162.	3.6	12
198	Modes of sediment delivery to the grounding line of a fast-flowing tidewater glacier: implications for ice-margin conditions and glacier dynamics. Geological Society Special Publication, 2011, 354, 33-56.	1.3	9
199	Multi-decadal retreat of Greenland's marine-terminating glaciers. Journal of Glaciology, 2011, 57, 389-396.	2.2	145
200	The triggering of subglacial lake drainage during rapid glacier drawdown: Crane Glacier, Antarctic Peninsula. Annals of Glaciology, 2011, 52, 74-82.	1.4	63
201	Surface mass balance, thinning and iceberg production, Columbia Glacier, Alaska, 1948–2007. Journal of Glaciology, 2011, 57, 431-440.	2.2	24
202	Tree-ring dates on two pre-Little Ice Age advances in Glacier Bay National Park and Preserve, Alaska, USA. Quaternary Research, 2011, 76, 190-195.	1.7	14

#	Article	IF	CITATIONS
203	Understanding and Modelling Rapid Dynamic Changes of Tidewater Outlet Glaciers: Issues and Implications. Surveys in Geophysics, 2011, 32, 437-458.	4.6	155
204	Tropical glaciers, recorders and indicators of climate change, are disappearing globally. Annals of Glaciology, 2011, 52, 23-34.	1.4	120
205	ISMIP-HEINO experiment revisited: effect of higher-order approximation and sensitivity study. Journal of Glaciology, 2011, 57, 1158-1170.	2.2	5
206	Deriving mass balance and calving variations from reanalysis data and sparse observations, Glaciar San Rafael, northern Patagonia, 1950–2005. Cryosphere, 2011, 5, 791-808.	3.9	27
207	The kinematics of ancient tidewater ice margins: criteria for recognition from grounding-line moraines. Geological Society Special Publication, 2011, 354, 57-75.	1.3	7
208	Glacimarine sedimentation processes at Kronebreen and Kongsvegen, Svalbard. Journal of Glaciology, 2011, 57, 841-847.	2.2	34
209	Greenland marine-terminating glacier area changes: 2000–2010. Annals of Glaciology, 2011, 52, 91-98.	1.4	51
210	Ice speed of a calving glacier modulated by small fluctuations in basal water pressure. Nature Geoscience, 2011, 4, 597-600.	12.9	66
211	Ice-stream retreat and ice-shelf history in Marguerite Trough, Antarctic Peninsula: Sedimentological and foraminiferal signatures. Bulletin of the Geological Society of America, 2011, 123, 997-1015.	3.3	88
212	Seasonal speed-up of two outlet glaciers of Austfonna, Svalbard, inferred from continuous GPS measurements. Cryosphere, 2012, 6, 453-466.	3.9	44
213	Variable glacier response to atmospheric warming, northern Antarctic Peninsula, 1988–2009. Cryosphere, 2012, 6, 1031-1048.	3.9	65
214	Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 913-931.	2.1	121
215	An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland. Nature Geoscience, 2012, 5, 427-432.	12.9	180
217	Well-posed boundary conditions for limited-domain models of transient ice flow near an ice divide. Journal of Glaciology, 2012, 58, 1008-1020.	2.2	7
218	Outlet glacier response to forcing over hourly to interannual timescales, Jakobshavn Isbræ, Greenland. Journal of Glaciology, 2012, 58, 1212-1226.	2.2	25
219	Using surface velocities to calculate ice thickness and bed topography: a case study at Columbia Glacier, Alaska, USA. Journal of Glaciology, 2012, 58, 1151-1164.	2.2	105
220	Glaciar Jorge Montt (Chilean Patagonia) dynamics derived from photos obtained by fixed cameras and satellite image feature tracking. Annals of Glaciology, 2012, 53, 147-155.	1.4	43
221	Oceanic mechanical forcing of a marine-terminating Greenland glacier. Annals of Glaciology, 2012, 53, 181-192.	1.4	69

#	Article	IF	CITATIONS
223	Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and modelâ \in based analysis. Journal of Geophysical Research, 2012, 117, .	3.3	134
224	Morainal bank progradation and sediment accumulation in Disenchantment Bay, Alaska: Response to advancing Hubbard Glacier. Journal of Geophysical Research, 2012, 117, n/a-n/a.	3.3	15
225	Subglacial basins: Their origin and importance in glacial systems and landscapes. Earth-Science Reviews, 2012, 115, 332-372.	9.1	140
226	The Future of the World's Glaciers. , 2012, , 197-222.		39
227	Testing the effect of water in crevasses on a physically based calving model. Annals of Glaciology, 2012, 53, 90-96.	1.4	38
228	Calving seismicity from iceberg–sea surface interactions. Journal of Geophysical Research, 2012, 117, .	3.3	41
229	Dynamics of tidewater surge-type glaciers in northwest Svalbard. Journal of Glaciology, 2012, 58, 110-118.	2.2	46
230	Little Ice Age advance and retreat of Glaciar Jorge Montt, Chilean Patagonia. Climate of the Past, 2012, 8, 403-414.	3.4	43
231	Relationship between flow speed variability of three tidewater glaciers and surface melt intensity in Greenland between 1979 and 2006. Chinese Journal of Oceanology and Limnology, 2013, 31, 202-209.	0.7	0
232	Diverse calving patterns linked to glacier geometry. Nature Geoscience, 2013, 6, 833-836.	12.9	104
233	Supraâ€glacial deposition and flux of catastrophic rock–slope failure debris, southâ€central Alaska. Earth Surface Processes and Landforms, 2013, 38, 675-682.	2.5	35
234	Influence of sea ice decline, atmospheric warming, and glacier width on marineâ€ŧerminating outlet glacier behavior in northwest Greenland at seasonal to interannual timescales. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1210-1226.	2.8	75
235	Basal melting beneath a fast-flowing temperate tidewater glacier. Annals of Glaciology, 2013, 54, 265-271.	1.4	6
236	High sensitivity of tidewater outlet glacier dynamics to shape. Cryosphere, 2013, 7, 1007-1015.	3.9	89
237	Recent progress in understanding marine-terminating Arctic outlet glacier response to climatic and oceanic forcing. Progress in Physical Geography, 2013, 37, 436-467.	3.2	55
238	Changing basal conditions during the speed-up of Jakobshavn Isbræ, Greenland. Cryosphere, 2013, 7, 1679-1692.	3.9	33
239	Lowâ€frequency radar sounding of temperate ice masses in Southern Alaska. Geophysical Research Letters, 2013, 40, 5399-5405.	4.0	42
240	Mass balance in the Glacier Bay area of Alaska, USA, and British Columbia, Canada, 1995–2011, using airborne laser altimetry. Journal of Glaciology, 2013, 59, 632-648.	2.2	36

ARTICLE IF CITATIONS # Seasonal variations of outlet glacier terminus position in Greenland. Journal of Glaciology, 2013, 59, 241 2.2 61 759-770. Acceleration and flotation of a glacier terminus during formation of a proglacial lake in Rhonegletscher, Switzerland. Journal of Glaciology, 2013, 59, 559-570. 242 2.2 28 Rising ELA and expanding proglacial lakes indicate impending rapid retreat of Brady Glacier, Alaska. 243 2.6 12 Hydrological Processes, 2013, 27, 3075-3082. Satellite-derived volume loss rates and glacier speeds for the Cordillera Darwin Icefield, Chile. 244 3.9 Cryosphere, 2013, 7, 823-839. Grounding line migration and highâ \in resolution calving dynamics of Jakobshavn Isbr \tilde{A} , West Greenland. 245 2.8 39 Journal of Geophysical Research F: Earth Surface, 2013, 118, 382-395. The Marine Cryosphere. International Geophysics, 2013, , 413-442. Assessment of heat sources on the control of fast flow of Vestfonna ice cap, Svalbard. Cryosphere, 247 3.9 16 2014, 8, 1951-1973. The land-ice contribution to 21st-century dynamic sea level rise. Ocean Science, 2014, 10, 485-500. 3.4 248 10 Evidence for the asynchronous retreat of large outlet glaciers in southeast Greenland at the end of 249 3.0 40 the last glaciation. Quaternary Science Reviews, 2014, 99, 244-259. Effects of Waves on Tabular Ice-Shelf Calving. Earth Interactions, 2014, 18, 1-28. 1.5 Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord 251 2.2 70 geometry and sea-ice conditions. Journal of Glaciology, 2014, 60, 155-170. Elevation changes and dynamic provinces of Jakobshavn IsbrÅ¹, Greenland, derived using generalized 2.2 spatial surface roughness from ICESat GLAS and ATM data. Journal of Glaciology, 2014, 60, 834-848. Evolution of glacier-dammed lakes through space and time; Brady Glacier, Alaska, USA. 253 2.6 9 Geomorphology, 2014, 210, 59-70. Deglacial ocean warming and marine margin retreat of the Cordilleran Ice Sheet in the North Pacific 254 4.4 Ocean. Earth and Planetary Science Letters, 2014, 403, 89-98. Bathymetric control of tidewater glacier mass loss in northwest Greenland. Earth and Planetary 255 4.4 41 Science Letters, 2014, 401, 40-46. Buoyant flexure and basal crevassing in dynamic mass loss at Helheim Glacier. Nature Geoscience, 2014, 7, 593-596. Iceâ€front variations and speed changes of calving glaciers in the Southern Patagonia Icefield from 1984 257 2.8 72 to 2011. Journal of Geophysical Research F: Earth Surface, 2014, 119, 2541-2554. Evidence for non-tidal diurnal velocity variations of Helheim Glacier, East Greenland. Journal of 2.2 Glaciology, 2014, 60, 1169-1180.

#	Article	IF	CITATIONS
259	Alaska tidewater glacier terminus positions, 1948–2012. Journal of Geophysical Research F: Earth Surface, 2014, 119, 153-167.	2.8	77
260	Subglacial discharge at tidewater glaciers revealed by seismic tremor. Geophysical Research Letters, 2015, 42, 6391-6398.	4.0	60
261	Variations in Alaska tidewater glacier frontal ablation, 1985–2013. Journal of Geophysical Research F: Earth Surface, 2015, 120, 120-136.	2.8	54
262	Multiple reâ€advances of a Lake Vätern outlet glacier during Fennoscandian Ice Sheet retreat, southâ€central Sweden. Boreas, 2015, 44, 619-637.	2.4	25
263	Derivation and analysis of a complete modern-date glacier inventory for Alaska and northwest Canada. Journal of Glaciology, 2015, 61, 403-420.	2.2	60
264	Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ, Greenland. Journal of Glaciology, 2015, 61, 76-88.	2.2	73
265	A new model for global glacier change and sea-level rise. Frontiers in Earth Science, 2015, 3, .	1.8	295
266	Fast retreat of Zachariæ IsstrÃ,m, northeast Greenland. Science, 2015, 350, 1357-1361.	12.6	158
267	Contrasting glacier variations of Glaciar Perito Moreno and Glaciar Ameghino, Southern Patagonia Icefield. Annals of Glaciology, 2015, 56, 26-32.	1.4	20
268	Tidally driven ice speed variation at Helheim Glacier, Greenland, observed with terrestrial radar interferometry. Journal of Glaciology, 2015, 61, 301-308.	2.2	28
269	Calving of a tidewater glacier driven by melting at the waterline. Journal of Glaciology, 2015, 61, 851-863.	2.2	41
270	Oceanic Forcing of Ice-Sheet Retreat: West Antarctica and More. Annual Review of Earth and Planetary Sciences, 2015, 43, 207-231.	11.0	83
271	Underwater acoustic signatures of glacier calving. Geophysical Research Letters, 2015, 42, 804-812.	4.0	37
272	Precise chronology of Little Ice Age expansion and repetitive surges of Langjökull, central Iceland. Geology, 2015, 43, 167-170.	4.4	16
273	Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt. Cryosphere, 2015, 9, 197-215.	3.9	120
274	Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth and Planetary Science Letters, 2015, 412, 112-121.	4.4	362
275	Retreat Instability of Tidewater Glaciers and Marine Ice Sheets. , 2015, , 677-712.		4
276	Basal topographic controls on rapid retreat of Humboldt Clacier, northern Greenland. Journal of Glaciology, 2015, 61, 137-150.	2.2	52

#	ARTICLE	IF	CITATIONS
277	Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability. Nature Communications, 2015, 6, 8910.	12.8	70
278	Oceans Melting Greenland: Early Results from NASA's Ocean-Ice Mission in Greenland. , 2016, 29, 72-83.		75
279	An Intensive Observation of Calving at Helheim Glacier, East Greenland. , 2016, 29, 46-61.		17
280	Surface elevation changes during 2007–13 on Bowdoin and Tugto Glaciers, northwestern Greenland. Journal of Glaciology, 2016, 62, 1083-1092.	2.2	21
281	Ablation from calving and surface melt at lake-terminating Bridge Glacier, British Columbia, 1984–2013. Cryosphere, 2016, 10, 87-102.	3.9	15
282	Variability in ice motion at a land-terminating Greenlandic outlet glacier: the role of channelized and distributed drainage systems. Journal of Glaciology, 2016, 62, 451-466.	2.2	23
283	The Role of Temperature in the Distribution of the Glacier Ice Worm, <i>Mesenchytraeus solifugus</i> (Annelida: Oligochaeta: Enchytraeidae). Arctic, Antarctic, and Alpine Research, 2016, 48, 199-211.	1.1	20
284	Modeling hydraulic fracture of glaciers using continuum damage mechanics. Journal of Glaciology, 2016, 62, 794-804.	2.2	29
285	Modeling the evolution of the Juneau Icefield between 1971 and 2100 using the Parallel Ice Sheet Model (PISM). Journal of Glaciology, 2016, 62, 199-214.	2.2	38
286	A mass-flux perspective of the tidewater glacier cycle. Journal of Glaciology, 2016, 62, 82-93.	2.2	10
287	Characterizing interannual variability of glacier dynamics and dynamic discharge (1999–2015) for the ice masses of Ellesmere and Axel Heiberg Islands, Nunavut, Canada. Journal of Geophysical Research F: Earth Surface, 2016, 121, 39-63.	2.8	39
288	Grounding line retreat of Pope, Smith, and Kohler Glaciers, West Antarctica, measured with Sentinelâ€∎a radar interferometry data. Geophysical Research Letters, 2016, 43, 8572-8579.	4.0	67
289	Increased mass loss and asynchronous behavior of marineâ€ŧerminating outlet glaciers at Upernavik IsstrÃ,m, NW Greenland. Journal of Geophysical Research F: Earth Surface, 2016, 121, 241-256.	2.8	22
290	Observations and modeling of fjord sedimentation during the 30 year retreat of Columbia Glacier, AK. Journal of Glaciology, 2016, 62, 778-793.	2.2	13
291	Basal resistance for three of the largest Greenland outlet glaciers. Journal of Geophysical Research F: Earth Surface, 2016, 121, 168-180.	2.8	44
292	Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings. Reviews of Geophysics, 2016, 54, 220-239.	23.0	128
293	A new concept for glacial geological investigations of surges, based on High-Arctic examples (Svalbard). Quaternary Science Reviews, 2016, 132, 74-100.	3.0	15
294	The role of the cryosphere in source-to-sink systems. Earth-Science Reviews, 2016, 153, 43-76.	9.1	53

#	Article	IF	CITATIONS
295	Bounds on the calving cliff height of marine terminating glaciers. Geophysical Research Letters, 2017, 44, 1369-1375.	4.0	23
296	Seismic stratigraphy and glacial cycles in the inland passages of the Magallanes Region of Chile, southernmost South America. Marine Geology, 2017, 386, 19-31.	2.1	9
297	A model for tidewater glacier undercutting by submarine melting. Geophysical Research Letters, 2017, 44, 2360-2368.	4.0	40
298	Recent retreat of Columbia Glacier, Alaska: Millennial context. Geology, 2017, 45, 547-550.	4.4	6
299	Reconstructing Climate from Glaciers. Annual Review of Earth and Planetary Sciences, 2017, 45, 649-680.	11.0	66
300	Sediment transport drives tidewater glacier periodicity. Nature Communications, 2017, 8, 90.	12.8	50
301	Seasonal and interannual variabilities in terminus position, glacier velocity, and surface elevation at Helheim and Kangerlussuaq Glaciers from 2008 to 2016. Journal of Geophysical Research F: Earth Surface, 2017, 122, 1635-1652.	2.8	57
302	Seafloor geomorphology and glacimarine sedimentation associated with fast-flowing ice sheet outlet glaciers in Disko Bay, West Greenland. Quaternary Science Reviews, 2017, 169, 206-230.	3.0	22
303	Asynchronous behavior of outlet glaciers feeding Godthåbsfjord (Nuup Kangerlua) and the triggering of Narsap Sermia's retreat in SW Greenland. Journal of Glaciology, 2017, 63, 288-308.	2.2	40
304	Glacier ice loss monitored through the Planet cubesat constellation. , 2017, , .		5
305	Rapidly changing subglacial hydrological pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities. Cryosphere, 2017, 11, 2691-2710.	3.9	49
306	Calving localization at Helheim Glacier using multiple local seismic stations. Cryosphere, 2017, 11, 609-618.	3.9	1
307	Seasonal Variations in Ice-Front Position Controlled by Frontal Ablation at Glaciar Perito Moreno, the Southern Patagonia Icefield. Frontiers in Earth Science, 2017, 5, .	1.8	22
308	Dynamic Changes at Yahtse Glacier, the Most Rapidly Advancing Tidewater Glacier in Alaska. Frontiers in Earth Science, 2017, 5, .	1.8	5
309	A Plastic Network Approach to Model Calving Glacier Advance and Retreat. Frontiers in Earth Science, 2017, 5, .	1.8	2
310	Recent Deceleration of the Ice Elevation Change of Ecology Glacier (King George Island, Antarctica). Remote Sensing, 2017, 9, 520.	4.0	43
311	Exceptional retreat of Novaya Zemlya's marine-terminating outlet glaciers between 2000 and 2013. Cryosphere, 2017, 11, 2149-2174.	3.9	24
312	A Century of Stability of Avannarleq and Kujalleq Glaciers, West Greenland, Explained Using Highâ€Resolution Airborne Gravity and Other Data. Geophysical Research Letters, 2018, 45, 3156-3163.	4.0	13

#	ARTICLE	IF	CITATIONS
313	Glacier calving observed with time-lapse imagery and tsunami waves at Glaciar Perito Moreno, Patagonia. Journal of Glaciology, 2018, 64, 362-376.	2.2	23
314	A subaquatic moraine complex in overdeepened Lake Thun (Switzerland) unravelling the deglaciation history of the Aare Glacier. Quaternary Science Reviews, 2018, 187, 62-79.	3.0	15
315	Coast formation in an Arctic area due to glacier surge and retreat: The Hornbreen–Hambergbreen case from Spistbergen. Earth Surface Processes and Landforms, 2018, 43, 387-400.	2.5	40
316	Calving glaciers and ice shelves. Advances in Physics: X, 2018, 3, 1513819.	4.1	30
317	Dynamic changes in outlet glaciers in northern Greenland from 1948 to 2015. Cryosphere, 2018, 12, 3243-3263.	3.9	54
318	Ice front and flow speed variations of marine-terminating outlet glaciers along the coast of Prudhoe Land, northwestern Greenland. Journal of Glaciology, 2018, 64, 300-310.	2.2	24
319	Geometric Controls on Tidewater Glacier Retreat in Central Western Greenland. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2024-2038.	2.8	86
320	The Holocene retreat dynamics and stability of Petermann Glacier in northwest Greenland. Nature Communications, 2018, 9, 2104.	12.8	39
321	Changes in glacier dynamics in the northern Antarctic Peninsula since 1985. Cryosphere, 2018, 12, 577-594.	3.9	30
322	Impact of Fjord Geometry on Grounding Line Stability. Frontiers in Earth Science, 2018, 6, .	1.8	15
323	Oceanâ€Induced Melt Triggers Glacier Retreat in Northwest Greenland. Geophysical Research Letters, 2018, 45, 8334-8342.	4.0	65
324	Calving relation for tidewater glaciers based on detailed stress field analysis. Cryosphere, 2018, 12, 721-739.	3.9	15
325	Ice front change of marine-terminating outlet glaciers in northwest and southeast Greenland during the 21st century. Journal of Glaciology, 2018, 64, 523-535.	2.2	29
326	Evolving Environmental and Geometric Controls on Columbia Glacier's Continued Retreat. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1528-1545.	2.8	14
327	A Thin Film Viscoplastic Theory for Calving Glaciers: Toward a Bound on the Calving Rate of Glaciers. Journal of Geophysical Research F: Earth Surface, 2019, 124, 2036-2055.	2.8	9
328	Seven decades of uninterrupted advance of Good Friday Glacier, Axel Heiberg Island, Arctic Canada. Journal of Glaciology, 2019, 65, 440-452.	2.2	9
328 329	Seven decades of uninterrupted advance of Good Friday Glacier, Axel Heiberg Island, Arctic Canada. Journal of Glaciology, 2019, 65, 440-452. Automatically delineating the calving front of Jakobshavn Isbræ from multitemporal TerraSAR-X images: a deep learning approach. Cryosphere, 2019, 13, 1729-1741.	2.2 3.9	9 50

#	Article	IF	CITATIONS
331	Exceptional Retreat of Kangerlussuaq Glacier, East Greenland, Between 2016 and 2018. Frontiers in Earth Science, 2019, 7, .	1.8	19
332	A simple stress-based cliff-calving law. Cryosphere, 2019, 13, 2475-2488.	3.9	11
333	Modeling the response of northwest Greenland to enhanced ocean thermal forcing and subglacial discharge. Cryosphere, 2019, 13, 723-734.	3.9	41
334	Response of glacier flow and structure to proglacial lake development and climate at FjallsjŶkull, south-east Iceland. Journal of Glaciology, 2019, 65, 321-336.	2.2	14
335	Monitoring Greenland ice sheet buoyancy-driven calving discharge using glacial earthquakes. Annals of Glaciology, 2019, 60, 75-95.	1.4	17
336	Large spatial variations in the flux balance along the front of a Greenland tidewater glacier. Cryosphere, 2019, 13, 911-925.	3.9	17
337	Why study glaciers?. , 2019, , 1-4.		0
338	Some basic concepts. , 2019, , 5-16.		0
339	Mass balance. , 2019, , 17-45.		0
340	Flow and fracture of a crystalline material. , 2019, , 46-80.		0
341	The velocity field in a glacier. , 2019, , 81-114.		1
342	Temperature distribution in polar ice sheets. , 2019, , 115-148.		0
343	The coupling between a glacier and its bed. , 2019, , 149-198.		0
344	Water flow in and under glaciers: Geomorphic implications. , 2019, , 199-255.		0
345	Stress and deformation. , 2019, , 256-273.		0
346	Stress and velocity distribution in an idealized glacier. , 2019, , 274-290.		0
347	Numerical modeling. , 2019, , 291-319.		0
348	Applications of stress and deformation principles to classical problems. , 2019, , 320-349.		0

#	Article	IF	CITATIONS
349	Ice streams and ice shelves. , 2019, , 350-386.		0
350	Finite strain and the origin of foliation. , 2019, , 387-407.		0
351	Response of glaciers to climate change. , 2019, , 408-432.		0
352	Ice core studies. , 2019, , 433-454.		0
359	Glacial to postglacial submarine landform assemblages in fiords of northeastern Baffin Island. Geomorphology, 2019, 330, 40-56.	2.6	12
360	Ocean Access to Zachariæ IsstrÃ,m Glacier, Northeast Greenland, Revealed by OMG Airborne Gravity. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020281.	3.4	10
361	Morainal Bank Evolution and Impact on Terminus Dynamics During a Tidewater Glacier Stillstand. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005359.	2.8	5
362	Explaining mass balance and retreat dichotomies at Taku and Lemon Creek Glaciers, Alaska. Journal of Glaciology, 2020, 66, 530-542.	2.2	10
363	Accelerated retreat of coastal glaciers in the Western Prince William Sound, Alaska. Arctic, Antarctic, and Alpine Research, 2020, 52, 617-634.	1.1	3
364	SERMeQ Model Produces a Realistic Upper Bound on Calving Retreat for 155 Greenland Outlet Glaciers. Geophysical Research Letters, 2020, 47, e2020GL090213.	4.0	1
365	Ice-Cliff Morphometry in Identifying the Surge Phenomenon of Tidewater Glaciers (Spitsbergen,) Tj ETQq0 0 0 rgl	BT Qverloo 2.2	ck ₈ 10 Tf 50 3
366	Glacier and ocean variability in Ata Sund, west Greenland, since 1400 CE. Holocene, 2020, 30, 1681-1693.	1.7	2
367	Twenty-first century sea-level rise could exceed IPCC projections for strong-warming futures. One Earth, 2020, 3, 691-703.	6.8	52
368	Longâ€ŧerm impact of the proglacial lake Jökulsárlón on the flow velocity and stability of BreiŰamerkurjŶkull glacier, Iceland. Earth Surface Processes and Landforms, 2020, 45, 2647-2663.	2.5	14
369	Mapping Glacier Forelands Based on UAV BVLOS Operation in Antarctica. Remote Sensing, 2020, 12, 630.	4.0	17
370	Englacial Warming Indicates Deep Crevassing in Bowdoin Glacier, Greenland. Frontiers in Earth Science, 2020, 8, .	1.8	10
371	Factors Controlling Terminus Position of Hansbreen, a Tidewater Glacier in Svalbard. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005763.	2.8	13
372	Retreat instability of tidewater glaciers and marine ice sheets. , 2021, , 671-706.		2

ARTICLE IF CITATIONS # Linear response of the Greenland ice sheet's tidewater glacier terminus positions to climate. Journal 373 2.2 18 of Glaciology, 2021, 67, 193-203. Kinematics of the exceptionally-short surge cycles of SÃŧ' KusÃj (Turner Glacier), Alaska, from 1983 to 374 2.2 2013. Journal of Glaciology, 2021, 67, 744-758. Frontal ablation and mass loss of the Patagonian icefields. Earth and Planetary Science Letters, 2021, 375 4.4 31 561, 116811. Geospatial investigation on transitional (quiescence to surge initiation) phase dynamics of Monacobreen tidewater glacier, Svalbard. Advances in Space Research, 2022, 69, 1813-1839. Multispectral image analysis of glaciers and glacier lakes in the Chugach Mountains, Alaska., 2014,, 377 2 297-332. 378 Some Aspects of the Physics of Glaciers., 1999, , 69-88. Understanding and Modelling Rapid Dynamic Changes of Tidewater Outlet Glaciers: Issues and 379 0.0 17 Implications. Space Sciences Series of ISSI, 2011, , 437-458. Glacier Flow Modeling., 1993, , 417-506. 380 383 Dynamic response of the Greenland ice sheet to recent cooling. Scientific Reports, 2020, 10, 1647. 3.3 21 Fluctuations of tidewater glaciers in Hornsund Fjord (Southern Svalbard) since the beginning of the 20th century. Polish Polar Research, 2013, 34, 327-352. Sedimentary processes may cause fluctuations of tidewater glaciers. Annals of Glaciology, 1991, 15, 387 21 1.4 119-124. Correlations between glacier properties: finding appropriate parameters for global glacier 388 2.2 monitoring. Journal of Glaciology, 1999, 45, 9-16. Bering Glacier surge and iceberg-calving mechanism at Vitus Lake, Alaska, U.S.A. Journal of Glaciology, 389 2.2 8 1993, 39, 722-727. Freshwater input to the Arctic fjord Hornsund (Svalbard). Polar Research, 2019, 38, . 1.6 39 Testing hypotheses of the cause of peripheral thinning of the Greenland Ice Sheet: is land-terminating 392 3.9 50 ice thinning at anomalously high rates?. Cryosphere, 2008, 2, 205-218. Modelling environmental influences on calving at Helheim Glacier in eastern Greenland. Cryosphere, 2014, 8, 827-841. 3.9 Ocean-Ice Interactions in Inglefield Gulf: Early Results from NASA's Oceans Melting Greenland 402 1.0 11 Mission. Oceanography, 2018, 31, . Fiord to Deep Sea Sediment Transfers along the Northeastern Canadian Continental Margin: Models and Data. Géographie Physique Et Quaternaire, 0, 44, 55-70.

ARTICLE IF CITATIONS The sensitivity of Cook Glacier, East Antarctica, to changes in ice-shelf extent and grounding-line 404 2.2 1 position. Journal of Glaciology, 2022, 68, 473-485. Calving of glaciers.. Journal of the Japanese Society of Snow and Ice, 2002, 64, 649-657. 0.1 407 Principles of glacier mechanics. Choice Reviews, 2005, 43, 43-0962-43-0962. 0.2 31 Tidewater Glaciers. Encyclopedia of Earth Sciences Series, 2011, , 1175-1179. 409 0.1 - Numerical Ice-Sheet Models., 2013, , 272-315. 413 0 Alaska: Glaciers of Kenai Fjords National Park and Katmai National Park and Preserve., 2014, , 241-261. Non-climatic control of glacier-terminus fluctuations in the Wrangell and Chugach Mountains, 422 2.2 4 Alaska, U.S.A. Journal of Glaciology, 1991, 37, 348-356. Theory of Niveal, Glacial, and Periglacial Features., 1991, , 365-399. Historic retreat of Grand Pacific and Melbern Glaciers Saint Elias Mountains. Canada: an analogue for 424 decay of the Cordilleran ice sheet at the end of the Pleistocene?. Journal of Glaciology, 1993, 39, 2.2 3 619-624. SYNOPTIC OBSERVATIONS OF CALVING EVENTS IN ANTARCTICA USING SPACEBORNE IMAGES. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, 0.2 XLII-5, 531-536. Retreat of Northern Hemisphere Marineâ€Terminating Glaciers, 2000–2020. Geophysical Research 427 4.028 Letters, 2022, 49, e2021GL096501. Spatio-temporal changes in radar zones and ELA estimation of glaciers in NyÃ...lesund using Sentinel-1 1.2 SAR. Polar Science, 2022, 31, 100786. Glacier Surface Speed Variations on the Kenai Peninsula, Alaska, 2014–2019. Journal of Geophysical 429 2.8 9 Research F: Earth Surface, 2022, 127, . Seasonal and Multiyear Flow Variability on the Prince of Wales Icefield, Ellesmere Island: 2009–2019. 2.8 Journal of Geophysical Research F: Earth Surface, 2022, 127, . Quantifying Geodetic Mass Balance of the Northern and Southern Patagonian Icefields Since 1976. 431 2 1.8 Frontiers in Earth Science, 2022, 10, . Maritime glacier retreat and terminus area change in Kenai Fjords National Park, Alaska, between 1984 2.2 and 2021. Journal of Glaciology, 2023, 69, 25<u>1-265.</u> Spaceborne InSAR mapping of landslides and subsidence in rapidly deglaciating terrain, Glacier Bay 436 National Park and Preserve and vicinity, Alaska and British Columbia. Remote Sensing of Environment, 11.0 7 2022, 281, 113231. Current State and Recent Changes of Glaciers in the Patagonian Andes (\sim 37ÂÂ $^{\circ}$ S to 55 Â $^{\circ}$ S). Natural and 0.4 Social Sciences of Patagonia, 2022, , 59-91.

#	Article	IF	CITATIONS
438	Helheim Glacier ice velocity variability responds to runoff and terminus position change at different timescales. Nature Communications, 2022, 13, .	12.8	7
439	The unquantified mass loss of Northern Hemisphere marine-terminating glaciers from 2000–2020. Nature Communications, 2022, 13, .	12.8	16
440	Simulating surface height and terminus position for marine outlet glaciers using a level set method with data assimilation. Journal of Computational Physics, 2023, 474, 111766.	3.8	2
441	Weekly to monthly terminus variability of Greenland's marine-terminating outlet glaciers. Cryosphere, 2023, 17, 1-13.	3.9	1
442	Iceberg Calving: Regimes and Transitions. Annual Review of Earth and Planetary Sciences, 2023, 51, 189-215.	11.0	3
443	Climate and Surface Mass Balance at Glaciar Perito Moreno, Southern Patagonia. Journal of Climate, 2023, 36, 625-641.	3.2	2
444	Glacier-specific factors drive differing seasonal and interannual dynamics of Nunatakassaap Sermia and Illullip Sermia, Greenland. Arctic, Antarctic, and Alpine Research, 2023, 55, .	1.1	1
445	Dynamics throughout a complete surge of Iceberg Glacier on western Axel Heiberg Island, Canadian High Arctic. Journal of Glaciology, 2023, 69, 1333-1350.	2.2	3
446	Seven-year variation in glacier surface velocity at Narsap Sermia in Southwest Greenland. GIScience and Remote Sensing, 2023, 60, .	5.9	0
447	The Response of Tidewater Glacier Termini Positions in Hornsund (Svalbard) to Climate Forcing, 1992–2020. Journal of Geophysical Research F: Earth Surface, 2023, 128, .	2.8	1
448	Effects of topography on dynamics and mass loss of lake-terminating glaciers in southern Patagonia. Journal of Glaciology, 0, , 1-18.	2.2	3
449	Topographic modulation of outlet glaciers in Greenland: a review. Annals of Glaciology, 2022, 63, 171-177.	1.4	0
450	Evaluation of four calving laws for Antarctic ice shelves. Cryosphere, 2023, 17, 4889-4901.	3.9	0
451	Evolution of a Surge Cycle of the Beringâ€Bagley Glacier System From Observations and Numerical Modeling. Journal of Geophysical Research F: Earth Surface, 2024, 129, .	2.8	0
452	Computational Modeling of Ice Mechanics: A Review of Challenges and Approaches in Engineering and Glaciology. , 2024, , 312-338.		0
453	Response of lacustrine glacier dynamics to atmospheric forcing in the Cordillera Darwin. Journal of Glaciology, 0, , 1-19.	2.2	0