Local anesthetics and pressure: a comparison of dibucal bilayers

Biochimica Et Biophysica Acta - Biomembranes 899, 196-204

DOI: 10.1016/0005-2736(87)90400-7

Citation Report

#	Article	IF	CITATIONS
1	Pressure-induced exclusion of a local anesthetic from model and nerve membranes. Biochemistry, 1987, 26, 8513-8516.	2.5	58
2	Interaction of polymyxin B1 and polymyxin B1 nonapeptide with phosphatidic acid monolayer and bilayer membranes. Chemistry and Physics of Lipids, 1988, 47, 155-163.	3.2	9
3	Local anestheticsâ€"phospholipid interaction. A study of Dibucaine binding to lipid monolayers. Colloids and Surfaces, 1988, 33, 43-53.	0.9	2
4	Partitioning of local anesthetics into membranes: surface charge effects monitored by the phospholipid head-group. Biochimica Et Biophysica Acta - Biomembranes, 1988, 939, 267-276.	2.6	125
5	Membrane-buffer partition coefficients of tetracaine for liquid-crystal and solid-gel membranes estimated by direct ultraviolet spectrophotometry. Biochimica Et Biophysica Acta - Biomembranes, 1988, 946, 337-344.	2.6	19
6	A SANS Study of High Pressure Phase Transitions in Model Biomembranes. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1989, 93, 708-717.	0.9	134
7	Localization of adriamycin in model and natural membranes. Influence of lipid molecular packing. FEBS Journal, 1989, 181, 695-702.	0.2	51
8	Binding of a neuropeptide, substance P, to neutral and negatively charged lipids. Biochemistry, 1989, 28, 2490-2496.	2.5	109
9	Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid head-group conformation. Biochemistry, 1989, 28, 4216-4221.	2. 5	188
10	On the mechanism of procaine penetration into stearic acid monolayers spread at the air/water interface., 1990,, 155-166.		7
11	Dibucaine interaction with phospholipid vesicles. A resonance energy-transfer study. FEBS Journal, 1990, 189, 387-393.	0.2	17
12	Carboxylic acid or primary amine titration at the lipid-water interface: on the role of electric charges and phospholipid acyl chain composition. A spin labeling experiment. Chemistry and Physics of Lipids, 1990, 55, 133-143.	3.2	14
13	Peptide binding to lipid bilayers. Binding isotherms and .zetapotential of a cyclic somatostatin analog. Biochemistry, 1990, 29, 10995-11000.	2.5	72
14	The use of monolayers for simple and quantitative analysis of lipid-drug interactions exemplified with dibucaine and substance P. Cell Biology International Reports, 1990, 14, 369-380.	0.6	14
15	Influence of stearic acid monolayers upon the procaine adsorption from underlying alkaline aqueous solutions. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1024, 227-232.	2.6	9
16	Interaction of influenza virus hemagglutinin with a lipid monolayer. A comparison of the surface activities of intact virions, isolated hemagglutinins, and a synthetic fusion peptide. Biochemistry, 1991, 30, 11173-11180.	2.5	24
17	Peptide binding to lipid membranes. Spectroscopic studies on the insertion of a cyclic somatostatin analog into phospholipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1061, 78-84.	2.6	57
18	Interaction of charged and uncharged calcium channel antagonists with phospholipid membranes. Binding equilibrium, binding enthalpy, and membrane location. Biochemistry, 1991, 30, 7203-7211.	2.5	89

#	Article	IF	CITATIONS
19	Interaction of mitochondrial creatine kinase with model membranes A monolayer study. FEBS Letters, 1991, 281, 123-129.	2.8	53
20	Characterization of the interaction of doxorubicin with (poly)phosphoinositides in model systems Evidence for specific interaction with phosphatidylinositol-monophosphate and -diphosphate. FEBS Letters, 1991, 288, 237-240.	2.8	22
21	The Influence of the Local Anaesthetic Tetracaine on the Temperature and Pressure Dependent Phase Behaviour of Model Biomembranes. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1991, 95, 811-820.	0.9	14
22	Membrane insertion and lateral mobility of synthetic amphiphilic signal peptides in lipid model membranes. BBA - Biomembranes, 1991, 1071, 123-148.	8.0	100
23	Interaction of myeloperoxidase with mixed lecithin and cholesterol monolayers. Bulletin of Experimental Biology and Medicine, 1991, 111, 168-170.	0.8	0
24	Phosphoinositide-specific phospholipase Cdelta.1: effect of monolayer surface pressure and electrostatic surface potentials on activity. Biochemistry, 1992, 31, 12748-12753.	2.5	66
25	Fluorescence anisotropy studies of dibucaine·HCl in micelles and bacteriorhodopsin. Journal of Photochemistry and Photobiology B: Biology, 1992, 13, 169-185.	3.8	5
26	Local anesthetic-phospholipid interactions. Effects of ionic strength, temperature, and phospholipid mixtures on the binding of dibucaine to phospholipids. Biophysical Chemistry, 1993, 46, 1-11.	2.8	31
27	Do substance P agonists insert into the lipid membrane?. Regulatory Peptides, 1993, 46, 453-454.	1.9	3
28	Binding of Dibucaine to Phospholipid Mixed Vesicles. Bulletin of the Chemical Society of Japan, 1993, 66, 1613-1617.	3.2	9
29	Binding of the calcium antagonist flunarizine to phosphatidylcholine bilayers: charge effects and thermodynamics. Biochemical Journal, 1993, 291, 397-402.	3.7	36
30	Monomolecular Layers in the Study of Biomembranes. Sub-Cellular Biochemistry, 1994, 23, 83-120.	2.4	35
31	The structure of mitochondrial creatine kinase and its membrane binding properties. Molecular and Cellular Biochemistry, 1994, 133-134, 115-123.	3.1	18
32	Electron microscopic investigations on free-standing mixed lipid Langmuir-Blodgett-Kuhn monolayers: phase separation and aging process. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1192, 14-20.	2.6	3
33	Design of a short membrane-destabilizing peptide covalently bound to liposomes. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1195, 259-266.	2.6	33
34	Effects of Specific Fatty Acid Acylation of Phospholipase A2 on Its Interfacial Binding and Catalysis. Biochemistry, 1994, 33, 11598-11607.	2.5	25
35	Membrane leakage induced by synergetic action of Lys-49 and Asp-49 Agkistrodon piscivorus piscivorus phospholipases A2: Implications in their pharmacological activities. International Journal of Biochemistry and Cell Biology, 1995, 27, 1009-1013.	2.8	14
36	Use of a novel method for determination of partition coefficients to compare the effect of local anesthetics on membrane structure. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1240, 25-33.	2.6	96

#	Article	IF	CITATIONS
37	Conformational changes upon binding of a receptor loop to lipid structures: possible role in signal transduction. FEBS Letters, 1995, 375, 239-242.	2.8	23
38	Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. Biophysical Journal, 1995, 69, 1230-1245.	0.5	362
39	Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results. Biophysical Journal, 1996, 71, 561-575.	0.5	306
40	Contributions of Myristoylation to Calcineurin Structure/Function. Journal of Biological Chemistry, 1996, 271, 26517-26521.	3.4	45
41	Electric potential differences across lipid mono- and bilayers. , 1996, , 330-337.		0
42	Structure and function of mitochondrial presequences. Membrane Protein Transport, 1996, 3, 49-79.	0.2	2
43	A mini-trough for the study of membrane insertion ability of proteins. Thin Solid Films, 1996, 284-285, 789-792.	1.8	10
44	Lateral pressure in membranes. BBA - Biomembranes, 1996, 1286, 183-223.	8.0	935
45	A dosimeter for oligopeptide hormones. Sensors and Actuators B: Chemical, 1996, 30, 107-110.	7.8	3
46	Interaction of dipyridamole derivatives with lipids in mixed floating Langmuir monolayers. Colloids and Surfaces B: Biointerfaces, 1996, 7, 69-81.	5.0	12
47	Immobilization of proteins to lipid bilayers. Biosensors and Bioelectronics, 1996, 11, 523-528.	10.1	40
48	Myristoylated Alanine-rich C Kinase Substrate (MARCKS) Produces Reversible Inhibition of Phospholipase C by Sequestering Phosphatidylinositol 4,5-Bisphosphate in Lateral Domains. Journal of Biological Chemistry, 1996, 271, 26187-26193.	3.4	212
49	Effects of size of macrocyclic polyamides on their rate of diffusion in model membranes. Biophysical Journal, 1997, 73, 2580-2587.	0.5	26
50	Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer. Biophysical Journal, 1997, 72, 1719-1731.	0.5	95
51	Interaction of Alzheimer β-Amyloid Peptide(1â°'40) with Lipid Membranesâ€. Biochemistry, 1997, 36, 14845-14852.	2.5	345
52	Peptide-lipid interactions in Langmuir monolayers at the air/water interface. A novel thermodynamic analysis of a two-component surfactant system. Supramolecular Science, 1997, 4, 479-483.	0.7	10
53	A fluorescence spectroscopy study of the interaction of monocationic quinine with phospholipid vesicles Effect of the ionic strength and lipid composition. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1997, 53, 2219-2228.	3.9	9
54	Spin-labeled extracellular loop from a seven-transmembrane helix receptor: Studies in solution and interaction with model membranes. Biopolymers, 1997, 42, 821-829.	2.4	26

#	Article	IF	CITATIONS
55	The localization of the local anesthetic tetracaine in phospholipid vesicles: A fluorescence quenching and resonance energy transfer study. Chemistry and Physics of Lipids, 1997, 90, 11-23.	3.2	21
56	Equilibrium Penetration of DMPC Monolayers by Sodium Cholate. Journal of Colloid and Interface Science, 1998, 207, 70-77.	9.4	10
57	Blood-Brain Barrier Permeation: Molecular Parameters Governing Passive Diffusion. Journal of Membrane Biology, 1998, 165, 201-211.	2.1	325
58	Interaction of colistin with lipids in liposomes and monolayers. International Journal of Pharmaceutics, 1998, 160, 99-107.	5.2	24
59	Lipids in total extracts from Acholeplasma laidlawii A pack more closely than the individual lipids. Monolayers studied at the air-water interface. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1369, 94-102.	2.6	15
60	Mutagenesis of the C2 Domain of Protein Kinase C-α. Journal of Biological Chemistry, 1998, 273, 17544-17552.	3.4	108
61	The insertion of human apolipoprotein H into phospholipid membranes: a monolayer study. Biochemical Journal, 1998, 335, 225-232.	3.7	49
62	Interplay of C1 and C2 Domains of Protein Kinase C-α in Its Membrane Binding and Activation. Journal of Biological Chemistry, 1999, 274, 19852-19861.	3.4	154
63	Lipid–Drug Interaction and Colligative Properties in Phospholipid Vesicles. Journal of Colloid and Interface Science, 1999, 219, 168-177.	9.4	16
64	Analysis of the tangled relationships between P-glycoprotein-mediated multidrug resistance and the lipid phase of the cell membrane. FEBS Journal, 2000, 267, 277-294.	0.2	169
65	Phospholipid Binding of Synthetic Talin Peptides Provides Evidence for an Intrinsic Membrane Anchor of Talin. Journal of Biological Chemistry, 2000, 275, 17954-17961.	3.4	46
66	IRIV-adjuvanted hepatitis A vaccine: in vivo absorption and biophysical characterization. Progress in Lipid Research, 2000, 39, 3-18.	11.6	51
67	Stability of Membrane Proteins: Relevance for the Selection of Appropriate Methods for High-Resolution Structure Determinations. Journal of Structural Biology, 2001, 136, 144-157.	2.8	77
68	Condensed Complexes and the Calorimetry of Cholesterol-Phospholipid Bilayers. Biophysical Journal, 2001, 81, 2774-2785.	0.5	83
69	Local anesthetic-induced microscopic and mesoscopic effects in micelles. A fluorescence, spin label and SAXS study. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1510, 93-105.	2.6	14
70	Fructans insert between the headgroups of phospholipids. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1510, 307-320.	2.6	134
71	Effect of cholesterol on interaction of dibucaine with phospholipid vesicles: a fluorescence study. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1511, 146-155.	2.6	7
72	Comparison of Triton X-100 Penetration into Phosphatidylcholine and Sphingomyelin Mono- and Bilayers. Langmuir, 2001, 17, 4724-4730.	3.5	32

#	Article	IF	CITATIONS
73	Interactions of some local anesthetics and alcohols with membranes. Colloids and Surfaces B: Biointerfaces, 2001, 22, 3-22.	5.0	46
74	Membrane Binding Assays for Peripheral Proteins. Analytical Biochemistry, 2001, 296, 153-161.	2.4	123
75	A long-lived amphiphilic fluorescent probe studied in POPC air–water monolayer and solution bilayer systems. Chemistry and Physics of Lipids, 2001, 113, 1-9.	3.2	17
76	Interaction of the GM2-activator protein with phospholipid-ganglioside bilayer membranes and with monolayers at the air-water interface. FEBS Journal, 2001, 261, 650-658.	0.2	72
77	Cholesterol Is an Important Factor Affecting the Membrane Insertion of β-Amyloid Peptide (Aβ1–40), Which May Potentially Inhibit the Fibril Formation. Journal of Biological Chemistry, 2002, 277, 6273-6279.	3.4	163
78	Peptide-lipid interactions in supported monolayers and bilayers. Current Topics in Membranes, 2002, 52, 191-202.	0.9	3
79	Predicting Blood-Brain Barrier Permeability of Drugs: Evaluation of Different In Vitro Assays. Journal of Drug Targeting, 2002, 10, 263-276.	4.4	122
80	Behavior of a GPI-anchored protein in phospholipid monolayers at the air–water interface. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1560, 1-13.	2.6	43
81	Modes of membrane interaction of a natural cysteine-rich peptide: viscotoxin A3. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1559, 145-159.	2.6	37
82	Interactions of Cyclosporines with Lipid Membranes as Studied by Solidâ€state Nuclear Magnetic Resonance Spectroscopy and Highâ€sensitivity Titration Calorimetry. Journal of Pharmaceutical Sciences, 2002, 91, 856-867.	3.3	38
83	Trifluoroethanol and binding to model membranes stabilize a predicted turn in a peptide corresponding to the first extracellular loop of the angiotensin II AT1A receptor. Biopolymers, 2002, 65, 21-31.	2.4	19
84	Penetration of a GPI-anchored protein into phospholipid monolayers spread at the air/water interface. Colloids and Surfaces B: Biointerfaces, 2002, 23, 365-373.	5.0	32
85	Study of beta-amyloid peptide (Abeta40) insertion into phospholipid membranes using monolayer technique. Biochemistry (Moscow), 2002, 67, 1283-1288.	1.5	20
86	Structural Requirements of the Fructan-Lipid Interaction. Biophysical Journal, 2003, 84, 3147-3154.	0.5	77
87	Transmembrane voltage sensor. Membrane Science and Technology, 2003, 7, 847-886.	0.5	2
88	Comparative membrane interaction study of viscotoxins A3, A2 and B from mistletoe (Viscum album) and connections with their structures. Biochemical Journal, 2003, 374, 71-78.	3.7	24
89	Insertion of a Glycosylphosphatidylinositol-Anchored Enzyme into Liposomes. Journal of Membrane Biology, 2004, 197, 169-177.	2.1	26
90	Halogenation of Drugs Enhances Membrane Binding and Permeation. ChemBioChem, 2004, 5, 676-684.	2.6	214

#	Article	IF	CITATIONS
91	Effect of the glycosphingolipid, GM1 on localization of dibucaine in phospholipid vesicles: a fluorescence study. Chemistry and Physics of Lipids, 2004, 130, 175-187.	3.2	6
92	Effect of the phospholipid head group in antibiotic-phospholipid association at water–air interface. Biophysical Chemistry, 2004, 110, 101-117.	2.8	35
93	The interaction of n-nonyl- $\hat{1}^2$ -d-glucopyranoside and sodium dodecyl sulfate with DMPC and DMPG monolayers studied by infrared reflection absorption spectroscopy. Physical Chemistry Chemical Physics, 2004, 6, 5543-5550.	2.8	5
94	Lipid Corralling and Poloxamer Squeeze-Out in Membranes. Physical Review Letters, 2004, 93, 028101.	7.8	58
95	Insertion of Alzheimer's Aβ40 Peptide into Lipid Monolayers. Biophysical Journal, 2004, 87, 1732-1740.	0.5	114
96	Surface behaviour and peptide–lipid interactions of the antibiotic peptides, Maculatin and Citropin. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1664, 31-37.	2.6	90
97	Atomic Force Microscopy Reveals Defects Within Mica Supported Lipid Bilayers Induced by the Amyloidogenic Human Amylin Peptide. Journal of Molecular Biology, 2004, 342, 877-887.	4.2	151
98	Templating Effect of Lipid Membranes on Alzheimer's Amyloid Beta Peptide. ChemPhysChem, 2005, 6, 226-229.	2.1	42
99	Adsorption of Amyloid β (1-40) Peptide at Phospholipid Monolayers. ChemBioChem, 2005, 6, 1817-1824.	2.6	99
100	Bilayer interaction and localization of cell penetrating peptides with model membranes: A comparative study of a human calcitonin (hCT)-derived peptide with pVEC and pAntp($43a$ 6"58). Biochimica Et Biophysica Acta - Biomembranes, 2005, 1712, 197-211.	2.6	26
101	Surface Behavior and Lipid Interaction of Alzheimer β-Amyloid Peptide 1–42: A Membrane-Disrupting Peptide. Biophysical Journal, 2005, 88, 2706-2713.	0.5	172
102	Membrane-Protein Interactions in Cell Signaling and Membrane Trafficking. Annual Review of Biophysics and Biomolecular Structure, 2005, 34, 119-151.	18.3	561
103	In Silico Prediction of Bloodâ^'Brain Barrier Permeation Using the Calculated Molecular Cross-Sectional Area as Main Parameter. Journal of Chemical Information and Modeling, 2006, 46, 2638-2650.	5.4	78
104	Interaction of Verapamil with Lipid Membranes and P-Glycoprotein: Connecting Thermodynamics and Membrane Structure with Functional Activity. Biophysical Journal, 2006, 91, 2943-2955.	0.5	54
105	Interactions of a Fungistatic Antibiotic, Griseofulvin, with Phospholipid Monolayers Used as Models of Biological Membranes. Langmuir, 2006, 22, 7701-7711.	3.5	43
106	In situ characterization of lipid A interaction with antimicrobial peptides using surface X-ray scattering. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 232-240.	2.6	34
107	Insertion selectivity of antimicrobial peptide protegrin-1 into lipid monolayers: Effect of head group electrostatics and tail group packing. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1450-1460.	2.6	80
108	Enhancement of drug absorption by noncharged detergents through membrane and P-glycoprotein binding. Expert Opinion on Drug Metabolism and Toxicology, 2006, 2, 733-752.	3.3	63

#	Article	IF	CITATIONS
109	Interaction of sitamaquine with membrane lipids of Leishmania donovani promastigotes. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 246-252.	2.6	35
110	Interactions of cell penetrating peptide Tat with model membranes: A biophysical study. Biochemical and Biophysical Research Communications, 2007, 363, 178-182.	2.1	25
111	Ganglioside GM1-Mediated Amyloid-beta Fibrillogenesis and Membrane Disruption. Biochemistry, 2007, 46, 1913-1924.	2.5	78
112	Thermodynamic Description of the Interactions between Lipids in Ternary Langmuir Monolayers:Â the Study of Cholesterol Distribution in Membranes. Journal of Physical Chemistry B, 2007, 111, 2495-2502.	2.6	66
113	Temperature Dependence of Poloxamer Insertion Into and Squeeze-Out from Lipid Monolayers. Langmuir, 2007, 23, 2631-2637.	3.5	46
114	Cholesterol Displacement from Membrane Phospholipids by Hexadecanol. Biophysical Journal, 2007, 93, 2038-2047.	0.5	21
115	The Role of Size and Charge for Blood–Brain Barrier Permeation of Drugs and Fatty Acids. Journal of Molecular Neuroscience, 2007, 33, 32-41.	2.3	100
116	Colorimetric Polymer Films for Predicting Lipid Interactions and Percutaneous Adsorption of Pharmaceutical Formulations. Pharmaceutical Research, 2008, 25, 2815-2821.	3.5	1
117	Investigations into the ability of the peptide, HAL18, to interact with bacterial membranes. European Biophysics Journal, 2008, 38, 37-43.	2.2	18
118	Distribution of neutral prilocaine in a phospholipid bilayer: Insights from molecular dynamics simulations. International Journal of Quantum Chemistry, 2008, 108, 2386-2391.	2.0	14
119	Lipid membrane templates the ordering and induces the fibrillogenesis of Alzheimer's disease amyloidâ€Î² peptide. Proteins: Structure, Function and Bioinformatics, 2008, 72, 1-24.	2.6	131
120	Xâ€ray reflectivity study of a transcriptionâ€activating factorâ€derived peptide penetration into the model phospholipid monolayers. Journal of Peptide Science, 2008, 14, 461-468.	1.4	12
121	Rat osseous plate alkaline phosphatase as Langmuir monolayer—An infrared study at the air–water interface. Journal of Colloid and Interface Science, 2008, 320, 476-482.	9.4	31
122	The impact of membrane lipid composition on antimicrobial function of an \hat{l} ±-helical peptide. Chemistry and Physics of Lipids, 2008, 151, 92-102.	3.2	28
123	Condensing and Fluidizing Effects of Ganglioside GM1 on Phospholipid Films. Biophysical Journal, 2008, 94, 3047-3064.	0.5	68
124	Interaction of Recombinant Surfactant Protein D with Lipopolysaccharide: Conformation and Orientation of Bound Protein by IRRAS and Simulations. Biochemistry, 2008, 47, 8103-8113.	2.5	24
125	P-Glycoprotein Senses Its Substrates and the Lateral Membrane Packing Density: Consequences for the Catalytic Cycle. Biochemistry, 2008, 47, 10197-10207.	2.5	42
126	Ordered Nanoclusters in Lipid-Cholesterol Membranes. Physical Review Letters, 2009, 103, 028103.	7.8	44

#	Article	IF	CITATIONS
127	Exploring the interactions of gliadins with model membranes: Effect of confined geometry and interfaces. Biopolymers, 2009, 91, 610-622.	2.4	24
128	A study on the interactions of Aurein 2.5 with bacterial membranes. Colloids and Surfaces B: Biointerfaces, 2009, 68, 225-230.	5.0	21
129	Exploring the Effects of Sterols in Model Lipid Membranes Using Single-Molecule Orientations. Journal of Physical Chemistry B, 2009, 113, 10240-10248.	2.6	15
130	Physicochemical and Biological Characterization of Monoketocholic Acid, a Novel Permeability Enhancer. Molecular Pharmaceutics, 2009, 6, 448-456.	4.6	46
131	Parameters modulating the maximum insertion pressure of proteins and peptides in lipid monolayers. Biochimie, 2009, 91, 718-733.	2.6	140
132	Detergents as intrinsic P-glycoprotein substrates and inhibitors. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2335-2344.	2.6	58
133	Interaction of alkyltrimethylammonium bromides with DMPC-d54 and DMPG-d54 monolayers studied by infrared reflection absorption spectroscopy (IRRAS). Journal of Colloid and Interface Science, 2010, 342, 243-252.	9.4	7
134	Interactions of the natural antimicrobial mycosubtilin with phospholipid membrane models. Colloids and Surfaces B: Biointerfaces, 2010, 78, 17-23.	5.0	34
135	Membrane Localization of β-Amyloid 1–42 in Lysosomes. Journal of Biological Chemistry, 2010, 285, 19986-19996.	3.4	50
136	Lipid and Peptide Dynamics in Membranes upon Insertion of n-alkyl- \hat{l}^2 -D-Glucopyranosides. Biophysical Journal, 2010, 98, 1529-1538.	0.5	10
137	Exploring the P-Glycoprotein Binding Cavity with Polyoxyethylene Alkyl Ethers. Biophysical Journal, 2010, 99, 3589-3598.	0.5	30
138	An Upside Down View of Cholesterol's Condensing Effect: Does Surface Occupancy Play a Role?. Langmuir, 2010, 26, 5316-5318.	3.5	12
139	Prediction of blood–brain barrier penetration of poorly soluble drug candidates using surface activity profiling. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 75, 405-410.	4.3	11
140	P-glycoprotein substrate transport assessed by comparing cellular and vesicular ATPase activity. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 515-525.	2.6	29
141	Acylated and unacylated ghrelin binding to membranes and to ghrelin receptor: Towards a better understanding of the underlying mechanisms. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2102-2113.	2.6	31
142	On the Interaction of Ionic Detergents with Lipid Membranes. Thermodynamic Comparison ofn-Alkyl-+N(CH3)3andn-Alkyl-SO4â~. Journal of Physical Chemistry B, 2010, 114, 15862-15871.	2.6	18
143	Effect of Cholesterol on the Membrane Interaction of Modelin-5 Isoforms. Biochemistry, 2011, 50, 10898-10909.	2.5	15
144	Effects on Membrane Lateral Pressure Suggest Permeation Mechanisms for Bacterial Quorum Signaling Molecules. Biochemistry, 2011, 50, 6983-6993.	2.5	41

#	Article	IF	CITATIONS
145	Effect of Polymer Chain Length on Membrane Perturbation Activity of Cationic Phenylene Ethynylene Oligomers and Polymers. Langmuir, 2011, 27, 10770-10775.	3.5	42
146	Influence of C-Terminal Amidation on the Efficacy of Modelin-5. Biochemistry, 2011, 50, 1514-1523.	2.5	57
147	Kinetic analysis of the interaction between poly(amidoamine) dendrimers and model lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 209-218.	2.6	56
148	The fusogenic tilted peptide (67–78) of α-synuclein is a cholesterol binding domain. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2343-2351.	2.6	107
149	Molecular Basis for the Glycosphingolipid-Binding Specificity of α-Synuclein: Key Role of Tyrosine 39 in Membrane Insertion. Journal of Molecular Biology, 2011, 408, 654-669.	4.2	111
150	Analysis of the Contribution of Saturated and Polyunsaturated Phospholipid Monolayers to the Binding of Proteins. Langmuir, 2011, 27, 1373-1379.	3.5	85
151	Intra-membrane Oligomerization and Extra-membrane Oligomerization of Amyloid- \hat{l}^2 Peptide Are Competing Processes as a Result of Distinct Patterns of Motif Interplay. Journal of Biological Chemistry, 2012, 287, 748-756.	3.4	38
152	Interaction of Tau Protein with Model Lipid Membranes Induces Tau Structural Compaction and Membrane Disruption. Biochemistry, 2012, 51, 2539-2550.	2.5	122
153	Adsorption behaviors and structural transitions of organic cations on an anionic lipid monolayer at the air–water interface. Soft Matter, 2012, 8, 6504.	2.7	14
154	Binding of a Truncated Form of Lecithin:Retinol Acyltransferase and Its N- and C-Terminal Peptides to Lipid Monolayers. Langmuir, 2012, 28, 3516-3523.	3.5	19
155	Role of molecular architecture on the relative efficacy of aurein 2.5 and modelin 5. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2094-2102.	2.6	16
156	P-Glycoprotein-ATPase Modulation: The Molecular Mechanisms. Biophysical Journal, 2012, 102, 1383-1393.	0.5	39
157	Interactions between suitably functionalised conformationally distinct benzanilides and phospholipid monolayers. Soft Matter, 2012, 8, 3258.	2.7	11
158	Thermodynamic interactions of a cis and trans benzanilide with Escherichia coli bacterial membranes. European Biophysics Journal, 2012, 41, 687-693.	2.2	12
159	The effect of neutral helper lipids on the structure of cationic lipid monolayers. Journal of the Royal Society Interface, 2012, 9, 548-561.	3.4	33
160	Interaction of a Tat Substrate and a Tat Signal Peptide with Thylakoid Lipids at the Air–Water Interface. ChemBioChem, 2012, 13, 231-239.	2.6	6
161	Comparative study of the interaction of synthetic methionine-enkephalin and its amidated derivate with monolayers of zwitterionic and negatively charged phospholipids. Amino Acids, 2012, 42, 253-260.	2.7	6
162	Biochemical Identification of a Linear Cholesterol-Binding Domain within Alzheimer's β Amyloid Peptide. ACS Chemical Neuroscience, 2013, 4, 509-517.	3.5	73

#	Article	IF	CITATIONS
163	Interactions of Pluronic block copolymers with lipid monolayers studied by epi-fluorescence microscopy and by adsorption experiments. Journal of Colloid and Interface Science, 2013, 407, 327-338.	9.4	23
164	Number of Sialic Acid Residues in Ganglioside Headgroup Affects Interactions with Neighboring Lipids. Biophysical Journal, 2013, 105, 1421-1431.	0.5	20
165	Peptide and protein binding to lipid monolayers studied by FT-IRRA spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2294-2305.	2.6	48
166	Aurein 2.3 functionality is supported by oblique orientated \hat{l}_{\pm} -helical formation. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 586-594.	2.6	21
167	Sav1866 from <i>Staphylococcus aureus</i> and P-Glycoprotein: Similarities and Differences in ATPase Activity Assessed with Detergents as Allocrites. Biochemistry, 2013, 52, 3297-3309.	2.5	17
168	The Interaction of Polyglutamine Peptides with Lipid Membranes Is Regulated by Flanking Sequences Associated with Huntingtin. Journal of Biological Chemistry, 2013, 288, 14993-15005.	3.4	78
169	Antimicrobial activity of aurein 2.5 against yeasts. FEMS Microbiology Letters, 2013, 346, 140-145.	1.8	6
170	Interaction of methionine–enkephalins with raft-forming lipids: monolayers and BAM experiments. Amino Acids, 2014, 46, 1159-1168.	2.7	7
171	Langmuir–Blodgett Approach to Investigate Antimicrobial Peptide–Membrane Interactions. Behavior Research Methods, 2014, 20, 83-110.	4.0	14
172	Modulation of Dipalmitoylphosphatidylcholine Monolayers by Dimethyl Sulfoxide. Langmuir, 2014, 30, 8803-8811.	3.5	29
173	Susceptibility of sheep, human, and pig erythrocytes to haemolysis by the antimicrobial peptide Modelin 5. European Biophysics Journal, 2014, 43, 423-432.	2.2	13
174	The interaction of aurein 2.5 with fungal membranes. European Biophysics Journal, 2014, 43, 255-264.	2.2	6
175	Interaction of Alzheimer's β-Amyloid Peptides with Cholesterol: Mechanistic Insights into Amyloid Pore Formation. Biochemistry, 2014, 53, 4489-4502.	2.5	125
176	Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins. Advances in Colloid and Interface Science, 2014, 207, 223-239.	14.7	35
177	How To Decipher Protein and Peptide Selectivity for Lipids in Monolayers. ACS Symposium Series, 2015, , 109-128.	0.5	0
178	Membrane Affinity of Platensimycin and Its Dialkylamine Analogs. International Journal of Molecular Sciences, 2015, 16, 17909-17932.	4.1	6
179	The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1111-1118.	2.6	49
180	X-ray reflectivity and grazing incidence diffraction studies of interaction between human adhesion/growth-regulatory galectin-1 and DPPEâ€"GM1 lipid monolayer at an air/water interface. Biochemistry (Moscow), 2015, 80, 943-956.	1.5	13

#	Article	IF	CITATIONS
181	Effects of Cardiolipin on Membrane Morphology: A Langmuir Monolayer Study. Biophysical Journal, 2015, 108, 1977-1986.	0.5	36
182	Protein–Lipid Interactions in the Brain. , 2015, , 135-162.		0
183	Creutzfeldt–Jakob Disease. , 2015, , 201-222.		0
184	Effect of Protonation on the Secondary Structure and Orientation of Plant Light-Harvesting Complex II Studied by PM-IRRAS. Langmuir, 2015, 31, 11583-11590.	3.5	2
185	A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes. Scientific Reports, 2016, 6, 21907.	3.3	105
186	The effect of urea and taurine as hydrophilic penetration enhancers on stratum corneum lipid models. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2006-2018.	2.6	37
187	Impact of Structural Differences in Galactocerebrosides on the Behavior of 2D Monolayers. Langmuir, 2016, 32, 2436-2444.	3.5	11
188	MARTINI Coarse-Grained Model of Triton TX-100 in Pure DPPC Monolayer and Bilayer Interfaces. Journal of Physical Chemistry B, 2016, 120, 3821-3832.	2.6	21
189	Phosphatidylserine Allows Observation of the Calcium–Myristoyl Switch of Recoverin and Its Preferential Binding. Journal of the American Chemical Society, 2016, 138, 13533-13540.	13.7	21
190	Water in Contact with a Cationic Lipid Exhibits Bulklike Vibrational Dynamics. Journal of Physical Chemistry B, 2016, 120, 10069-10078.	2.6	26
191	Two-Step Membrane Binding of NDPK-B Induces Membrane Fluidity Decrease and Changes in Lipid Lateral Organization and Protein Cluster Formation. Langmuir, 2016, 32, 12923-12933.	3.5	9
192	Perfluorinated Moieties Increase the Interaction of Amphiphilic Block Copolymers with Lipid Monolayers. Langmuir, 2016, 32, 8102-8115.	3.5	14
193	Low pH Enhances the Action of Maximin H5 against <i>Staphylococcus aureus</i> and Helps Mediate Lysylated Phosphatidylglycerol-Induced Resistance. Biochemistry, 2016, 55, 3735-3751.	2.5	14
194	Cholesterol Modifies Huntingtin Binding to, Disruption of, and Aggregation on Lipid Membranes. Biochemistry, 2016, 55, 92-102.	2.5	35
195	Effects of Leucin-Enkephalins on Surface Characteristics and Morphology of Model Membranes Composed of Raft-Forming Lipids. Journal of Membrane Biology, 2016, 249, 229-238.	2.1	5
196	Sequestration of bovine seminal plasma proteins by different assemblies of phosphatidylcholine: A new technical approach. Colloids and Surfaces B: Biointerfaces, 2016, 140, 523-530.	5.0	6
197	Investigations into the potential anticancer activity of Maximin H5. Biochimie, 2017, 137, 29-34.	2.6	13
198	Effect of the presence of cholesterol in the interfacial microenvironment on the modulation of the alkaline phosphatase activity during in vitro mineralization. Colloids and Surfaces B: Biointerfaces, 2017, 155, 466-476.	5.0	26

#	Article	IF	CITATIONS
199	Modulation of Activity of Ultrashort Lipopeptides toward Negatively Charged Model Lipid Films. Langmuir, 2017, 33, 4619-4627.	3.5	19
200	Distinct membrane properties are differentially influenced by cardiolipin content and acyl chain composition in biomimetic membranes. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 257-267.	2.6	25
201	How to gather useful and valuable information from protein binding measurements using Langmuir lipid monolayers. Advances in Colloid and Interface Science, 2017, 243, 60-76.	14.7	27
202	The miscibility of milk sphingomyelin and cholesterol is affected by temperature and surface pressure in mixed Langmuir monolayers. Food Chemistry, 2017, 224, 114-123.	8.2	23
203	Cospreading of Anionic Phospholipids with Peptides of the Structure (KX) < sub > 4 < / sub > K at the Air–Water Interface: Influence of Lipid Headgroup Structure and Hydrophobicity of the Peptide on Monolayer Behavior. Langmuir, 2017, 33, 12204-12217.	3.5	4
204	Study of procaine and tetracaine in the lipid bilayer using molecular dynamics simulation. European Biophysics Journal, 2017, 46, 265-282.	2.2	10
205	Binding of the GTPase Sar1 to a Lipid Membrane Monolayer: Insertion and Orientation Studied by Infrared Reflection–Absorption Spectroscopy. Polymers, 2017, 9, 612.	4.5	9
206	Sphingomyelin and GM1 Influence Huntingtin Binding to, Disruption of, and Aggregation on Lipid Membranes. ACS Omega, 2018, 3, 273-285.	3.5	31
207	Newly Synthesized Lipid–Porphyrin Conjugates: Evaluation of Their Selfâ€Assembling Properties, Their Miscibility with Phospholipids and Their Photodynamic Activity In Vitro. Chemistry - A European Journal, 2018, 24, 19179-19194.	3.3	26
208	Cholesterol Regulates the Incorporation and Catalytic Activity of Tissue-Nonspecific Alkaline Phosphatase in DPPC Monolayers. Langmuir, 2019, 35, 15232-15241.	3.5	11
209	Fibrillar and Nonfibrillar Amyloid Beta Structures Drive Two Modes of Membrane-Mediated Toxicity. Langmuir, 2019, 35, 16024-16036.	3.5	36
210	Endosomal pH favors shedding of membraneâ€inserted amyloidâ€Î² peptide. Protein Science, 2019, 28, 889-899.	7.6	3
211	Effect of Local Anesthetics on the Organization and Dynamics of Hippocampal Membranes: A Fluorescence Approach. Journal of Physical Chemistry B, 2019, 123, 639-647.	2.6	9
212	Characterization of neurocalcin delta membrane binding by biophysical methods. Colloids and Surfaces B: Biointerfaces, 2019, 174, 291-299.	5.0	5
213	Cholesterol and Cardiolipin Importance in Local Anesthetics–Membrane Interactions: The Langmuir Monolayer Study. Journal of Membrane Biology, 2019, 252, 31-39.	2.1	16
214	Endocytosis Is a Key Mode of Interaction between Extracellular β-Amyloid and the Cell Membrane. Biophysical Journal, 2020, 119, 1078-1090.	0.5	7
215	Lipid-Dependent Interaction of Human N-BAR Domain Proteins with Sarcolemma Mono- and Bilayers. Langmuir, 2020, 36, 8695-8704.	3.5	3
216	Lipid membrane templated misfolding and self-assembly of intrinsically disordered tau protein. Scientific Reports, 2020, 10, 13324.	3.3	32

#	Article	IF	CITATIONS
217	Study of the Mechanism of the Antimicrobial Activity of Novel Water Soluble Ammonium Quaternary Benzanthrone on Model Membranes. Journal of Membrane Biology, 2020, 253, 247-256.	2.1	2
218	Physicochemical characterization of novel 3-carboxymethyl-bile salts, as permeability and solubility enhancers. Journal of Molecular Liquids, 2020, 303, 112634.	4.9	6
219	Differential Interactions of Piscidins with Phospholipids and Lipopolysaccharides at Membrane Interfaces. Langmuir, 2020, 36, 5065-5077.	3. 5	10
220	Nebulised surface-active hybrid nanoparticles of voriconazole for pulmonary Aspergillosis demonstrate clathrin-mediated cellular uptake, improved antifungal efficacy and lung retention. Journal of Nanobiotechnology, 2021, 19, 19.	9.1	23
221	Partitioning of Seven Different Classes of Antibiotics into LPS Monolayers Supports Three Different Permeation Mechanisms through the Outer Bacterial Membrane. Langmuir, 2021, 37, 1372-1385.	3. 5	19
222	Measuring protein insertion areas in lipid monolayers by fluorescence correlation spectroscopy. Biophysical Journal, 2021, 120, 1333-1342.	0.5	2
223	Action of Drugs on the Erythrocyte Membrane. Blood Cell Biochemistry, 1990, , 475-529.	0.3	16
224	Thermodynamics of Lipid Interactions with Cell-Penetrating Peptides. Methods in Molecular Biology, 2011, 683, 129-155.	0.9	15
225	Protein-lipid interactions at membrane surfaces. Springer Series in Biophysics, 1990, , 23-50.	0.4	1
226	Activation of phospholipase A2 by adriamycin in vitro. Role of drug-lipid interactions Journal of Biological Chemistry, 1991, 266, 6302-6307.	3.4	37
227	The Interactions of Bilirubin with Model and Biological Membranes. Journal of Biological Chemistry, 1989, 264, 5648-5652.	3.4	52
228	Insertion and folding of the amino-terminal amphiphilic signal sequences of the mannitol and glucitol permeases of Escherichia coli Journal of Biological Chemistry, 1992, 267, 11017-11022.	3.4	22
229	Factors determining the specificity of signal transduction by guanine nucleotide-binding protein-coupled receptors. II. Preferential coupling of the alpha 2C-adrenergic receptor to the guanine nucleotide-binding protein, Go Journal of Biological Chemistry, 1992, 267, 9852-9857.	3.4	33
230	Membrane incorporation and induction of secondary structure of synthetic peptides corresponding to the N-terminal signal sequences of the glucitol and mannitol permeases of Escherichia coli. Journal of Biological Chemistry, 1989, 264, 2587-2592.	3.4	26
231	How Cholesterol Constrains Glycolipid Conformation for Optimal Recognition of Alzheimer's \hat{l}^2 Amyloid Peptide (A \hat{l}^2 1-40). PLoS ONE, 2010, 5, e9079.	2.5	101
232	The structure of mitochondrial creatine kinase and its membrane binding properties. , 1994, , 115-123.		0
235	Farnesylation and lipid unsaturation are critical for the membrane binding of the C-terminal segment of G-Protein Receptor Kinase 1. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112315.	5.0	1
236	Effect of Local Anesthetics on Dipole Potential of Different Phase Membranes: A Fluorescence Study. Journal of Membrane Biology, 2022, 255, 363-369.	2.1	1

#	Article	IF	CITATIONS
237	Histidine 19 Residue Is Essential for Cell Internalization of Antifungal Peptide SmAPÎ ± 1 -21 Derived from the Î \pm -Core of the Silybum marianum Defensin DefSm2-D in Fusarium graminearum. Antibiotics, 2022, 11, 1501.	3.7	0
238	The biological role of charge distribution in linear antimicrobial peptides. Expert Opinion on Drug Discovery, 2023, 18, 287-302.	5. 0	5
239	Comparative Evaluation of Existing and Rationally Designed Novel Antimicrobial Peptides for Treatment of Skin and Soft Tissue Infections. Antibiotics, 2023, 12, 551.	3.7	0
240	Kinetic Model of Adsorption of Aqueous Solutes onto Lipid Bilayers: Modulation of the Activity of Membrane Proteins. Journal of Physical Chemistry B, 2023, 127, 1598-1606.	2.6	0
241	Interfacial $A\hat{l}^2$ fibril formation is modulated by the disorder-order state of the lipids: The concept of the physical environment as amyloid inductor in biomembranes. Biochimica Et Biophysica Acta - Biomembranes, 2024, 1866, 184234.	2.6	1
242	Pulmonary Surfactant: A Mighty Thin Film. Chemical Reviews, 2023, 123, 13209-13290.	47.7	3
243	Curcumin Reduces Amyloid Beta Oligomer Interactions with Anionic Membranes. ACS Chemical Neuroscience, 2023, 14, 4026-4038.	3.5	1