Kinetic parameters related to sources and sinks of vibra nightglow

Journal of Geophysical Research 92, 7643-7650 DOI: 10.1029/ja092ia07p07643

Citation Report

#	Article	IF	CITATIONS
1	Eton 5: Simultaneous rocket measurements of the OH meinel Î"Ï = 2 sequence and (8,3) band emission profiles in the nightglow. Planetary and Space Science, 1987, 35, 1137-1147.	1.7	65
2	Mesospheric oxygen atom densities inferred from night-time OH Meinel band emission rates. Planetary and Space Science, 1988, 36, 897-905.	1.7	45
3	On the possible role of the reaction O + HO ₂ → OH + O ₂ in OH airglow. Journal of Geophysical Research, 1988, 93, 285-288.	3.3	65
4	Laserâ€induced fluorescence of the B 2Σ+–X 2Îi system of OH: Detection of v''=8 and 9. Jour Physics, 1989, 90, 3484-3489.	nal of Che	mical 14
5	Atomic oxygen concentrations from OH and O2 nightglow measurements. Planetary and Space Science, 1989, 37, 49-60.	1.7	11
6	A review of the photochemistry of selected nightglow emissions from the mesopause. Journal of Geophysical Research, 1989, 94, 14629-14646.	3.3	95
7	SME observations of nightglow: An assessment of the chemical production mechanisms. Planetary and Space Science, 1990, 38, 529-537.	1.7	27
8	Collision dynamics of OH(X 2Îi,v=12). Journal of Chemical Physics, 1990, 93, 5741-5746.	3.0	42
9	Winds in the upper mesosphere at midâ€latitude: First results using an imaging Fabryâ€Perot Interferometer. Geophysical Research Letters, 1990, 17, 1259-1262.	4.0	29
10	Atomic hydrogen and atomic oxygen density in the mesopause region: Global and seasonal variations deduced from Solar Mesosphere Explorer nearâ€infrared emissions. Journal of Geophysical Research, 1990, 95, 16457-16476.	3.3	81
11	Middle atmosphere heating by exothermic chemical reactions involving oddâ€hydrogen species. Geophysical Research Letters, 1991, 18, 37-40.	4.0	76
12	Comment on "Middle atmosphere heating by exothermic chemical reactions involving oddâ€hydrogen species― Geophysical Research Letters, 1991, 18, 1791-1792.	4.0	2
13	Reply to McDade and Llewellyn. Geophysical Research Letters, 1991, 18, 1793-1794.	4.0	2
14	Gravity waveâ€driven fluctuations in OH nightglow from an extended, dissipative emission region. Journal of Geophysical Research, 1991, 96, 13869-13880.	3.3	58
15	Optical Aeronomy. Reviews of Geophysics, 1991, 29, 1089-1109.	23.0	13
16	Variability of the neutral mesospheric and lower thermospheric composition in the diurnal cycle. Planetary and Space Science, 1991, 39, 803-820.	1.7	28
17	The altitude dependence of the OH(X2Î) vibrational distribution in the nightglow: Some model expectations. Planetary and Space Science, 1991, 39, 1049-1057.	1.7	53
18	Effects of gravity waves on complex airglow chemistries: 2. OH emission. Journal of Geophysical Research, 1992, 97, 3195-3208.	3.3	48

TATION REDC

#	Article	IF	CITATIONS
19	Airglow hydroxyl emissions. Planetary and Space Science, 1992, 40, 235-242.	1.7	43
20	Dynamics of vibrational energy exchange in collisions of OH and OD radicals with N2. Application to the kinetics of OH-vibrational deactivation in the upper atmosphere. Chemical Physics, 1992, 168, 315-325.	1.9	19
21	Atmospheric composition during twilight. Advances in Space Research, 1993, 13, 339-342.	2.6	1
22	Midlatitude observations of the night airglow: Implications to quenching near the mesopause. Journal of Geophysical Research, 1993, 98, 21593-21603.	3.3	22
23	Analysis of hydroxyl earthlimb airglow emissions: Kinetic model for state-to-state dynamics of OH (Ï,N). Journal of Geophysical Research, 1994, 99, 3559.	3.3	53
24	Mesopause temperatures and integrated band brightnesses calculated from airglow OH emissions recorded at Maynooth (53.2°N, 6.4°W) during 1993. Journal of Atmospheric and Solar-Terrestrial Physics, 1995, 57, 1623-1637.	0.9	32
25	Photochemical-dynamical modeling of the measured response of airglow to gravity waves: 1. Basic model for OH airglow. Journal of Geophysical Research, 1995, 100, 11289.	3.3	120
26	Experimental evidence for photochemical control of the atmospheric sodium layer. Journal of Geophysical Research, 1995, 100, 18909.	3.3	39
27	Collisional removal of OH (X 2Î,ν=7) by O2, N2, CO2, and N2O. Journal of Chemical Physics, 1996, 104, 5798-5802.	3.0	39
28	Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements. Journal of Geophysical Research, 1997, 102, 19969-19976.	3.3	112
29	Global simulations and observations of O(1S), O2(1Σ) and OH mesospheric nightglow emissions. Journal of Geophysical Research, 1997, 102, 19949-19968.	3.3	120
30	An experimental study of the nightglow OH(8-3) band emission process in the equatorial mesosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59, 479-486.	1.6	9
31	Laboratory measurements required for upper atmospheric remote sensing of atomic oxygen. Advances in Space Research, 1997, 19, 653-661.	2.6	7
32	The photochemistry of the MLT oxygen airglow emissions and the expected influences of tidal perturbations. Advances in Space Research, 1998, 21, 787-794.	2.6	24
33	Kinetic and spectroscopic requirements for the inference of chemical heating rates and atomic hydrogen densities from OH Meinel band measurements. Geophysical Research Letters, 1998, 25, 647-650.	4.0	29
34	Experimental Detection of Hydrogen Trioxide. Science, 1999, 285, 81-82.	12.6	105
35	Dynamics Study of the HO(vâ€~=0) + O2(vâ€~Ââ€~) Branching Atmospheric Reaction. 1. Formation of Hydroperoxyl Radical. Journal of Physical Chemistry A, 1999, 103, 4815-4822.	2.5	16
36	Test studies on the potential energy surface and rate constant for the OH+O3 atmospheric reaction. Chemical Physics Letters, 2000, 331, 474-482.	2.6	38

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Deactivation Rate Constants of OH(X2Îi,v= 1â^'4) by Collisions of NH3. Journal of Physical Chemistry A, 2000, 104, 9081-9086.	2.5	2
38	Dynamics Study of the OH + O2 Branching Atmospheric Reaction. 2. Influence of Reactants Internal Energy in HO2 and O3 Formation. Journal of Physical Chemistry A, 2001, 105, 4395-4402.	2.5	20
39	Discovery and characterization of atmospherically relevant inorganic species by structurally diagnostic mass spectrometric techniques. International Journal of Mass Spectrometry, 2001, 212, 403-411.	1.5	8
40	Quasiâ€3â€day Kelvin wave and the OI(5577 Ã), OH(6,2) Meinel, and O ₂ (0,1) emissions. Geophysical Research Letters, 2002, 29, 2-1.	4.0	49
41	Atomic oxygen profiles (80-94 km) derived from Wind Imaging Interferometer/Upper Atmospheric Research Satellite measurements of the hydroxyl airglow: 1. Validation of technique. Journal of Geophysical Research, 2003, 108, .	3.3	32
42	Temperature dependence of the collisional energy transfer of OH(v=10) between 220 and 310 K. Journal of Chemical Physics, 2003, 118, 1661-1666.	3.0	22
43	Vibrational deactivation studies of OH X2Π(v = 1–5) by N2and O2. Physical Chemistry Chemical Physics, 2004, 6, 4276-4282.	2.8	29
44	Airglow emissions and oxygen mixing ratios from the photometer experiment on the Turbulent Oxygen Mixing Experiment (TOMEX). Journal of Geophysical Research, 2004, 109, .	3.3	15
45	Airglow on Mars: Some model expectations for the OH Meinel bands and the O IR atmospheric band. Icarus, 2005, 176, 75-95.	2.5	61
46	Using airglow measurements to observe gravity waves in the Martian atmosphere. Advances in Space Research, 2006, 38, 730-738.	2.6	7
47	OH spectroscopy and chemistry investigated with astronomical sky spectra. Canadian Journal of Physics, 2007, 85, 77-99.	1.1	71
48	Chemical and dynamical processes in the mesospheric emissive layer: First results of stereoscopic observations. Journal of Geophysical Research, 2007, 112, .	3.3	3
49	Secular variations of OH nightglow emission and of the OH intensity-weighted temperature induced by gravity–wave forcing in the MLT region. Advances in Space Research, 2008, 41, 1478-1487.	2.6	16
50	Chemical heating rates derived from SCIAMACHY vibrationally excited OH limb emission spectra. Advances in Space Research, 2008, 41, 1914-1920.	2.6	20
51	Inferring hydroxyl layer peak heights from ground-based measurements of OH(6-2) band integrated emission rate at Longyearbyen (78° N, 16° E). Annales Geophysicae, 2009, 27, 4197-4205.	1.6	36
52	Quasi-Classical Trajectory Dynamics Study on the Reaction of H with HO2. Bulletin of the Chemical Society of Japan, 2009, 82, 953-962.	3.2	6
53	3D Imaging of the OH mesospheric emissive layer. Advances in Space Research, 2010, 45, 260-267.	2.6	4
54	A spectral model of the FeO orange bands with a comparison between a laboratory spectrum and a night airglow spectrum observed by OSIRIS on Odin. Canadian Journal of Physics, 2011, 89, 239-248.	1.1	8

#	Article	IF	CITATIONS
55	On the dependence of the OH [*] Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations. Atmospheric Chemistry and Physics, 2012, 12, 8813-8828.	4.9	67
56	Gravityâ€waveâ€induced variations in exothermic heating in the lowâ€latitude, equinox mesophere and lower thermosphere region. Journal of Geophysical Research, 2012, 117, .	3.3	2
57	Anthropogenic effects on the distribution of minor chemical constituents in the mesosphere/lower thermosphere – A model study. Advances in Space Research, 2012, 50, 598-618.	2.6	8
58	Using TIMED/SABER nightglow observations to investigate hydroxyl emission mechanisms in the mesopause region. Journal of Geophysical Research, 2012, 117, .	3.3	76
59	Gravity Wave Mixing and Effective Diffusivity for Minor Chemical Constituents in the Mesosphere/Lower Thermosphere. Space Science Reviews, 2012, 168, 333-362.	8.1	33
60	First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere. Icarus, 2013, 226, 272-281.	2.5	54
61	Implications of the O + OH reaction in hydroxyl nightglow modeling. Atmospheric Chemistry and Physics, 2013, 13, 1-13.	4.9	60
62	Atomic oxygen in the mesosphere and lower thermosphere derived from SABER: Algorithm theoretical basis and measurement uncertainty. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5724-5735.	3.3	101
63	Hydroxyl layer: Mean state and trends at midlatitudes. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,391.	3.3	40
64	OH Meinel band nightglow profiles from OSIRIS observations. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,417.	3.3	15
65	A new mechanism for OH vibrational relaxation leading to enhanced CO ₂ emissions in the nocturnal mesosphere. Geophysical Research Letters, 2015, 42, 4639-4647.	4.0	29
66	OH populations and temperatures from simultaneous spectroscopic observations of 25 bands. Atmospheric Chemistry and Physics, 2015, 15, 3647-3669.	4.9	42
67	Several notes on the OH* layer. Annales Geophysicae, 2015, 33, 923-930.	1.6	20
68	First ground-based observations of mesopause temperatures above the Eastern-Mediterranean Part I: Multi-day oscillations and tides. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 155, 95-103.	1.6	7
69	Gravity wave mixing effects on the OH*-layer. Advances in Space Research, 2020, 65, 175-188.	2.6	7
70	Modelled effects of temperature gradients and waves on the hydroxyl rotational distribution in ground-based airglow measurements. Atmospheric Chemistry and Physics, 2020, 20, 333-343.	4.9	1
71	Simultaneous Retrievals of Nighttime O(³ P) and Total OH Densities From Satellite Observations of Meinel Band Emissions. Geophysical Research Letters, 2021, 48, .	4.0	4
72	Modeling of observations of the OH nightglow in the venusian mesosphere. Icarus, 2021, 368, 114580.	2.5	3

CITATION REPORT

#	Article	IF	CITATIONS
73	The Response of Atomic Hydrogen to Solar Radiation Changes. Springer Atmospheric Sciences, 2013, , 171-188.	0.3	6
74	Quasi-3-day Kelvin wave and the OI(5577 Ã), OH(6,2) Meinel, and O2(0,1) emissions. Geophysical Research Letters, 2002, 29, .	4.0	8
77	Altitude Distribution of O2 1.27.MU.m Nightglow Emission Observed by a Rocket-Borne Radiometer Journal of Geomagnetism and Geoelectricity, 1992, 44, 207-221.	0.9	8
78	Gravity Wave Mixing and Effective Diffusivity for Minor Chemical Constituents in the Mesosphere/Lower Thermosphere. Space Sciences Series of ISSI, 2011, , 333-362.	0.0	0
80	Modeling of Mesospheric OH Airglow Fluctuations and Waves Using S-Domain Radiance Transferance. , 1988, , 77-95.		0
81	Processes Responsible for the Occurrence of the Airglow. , 2008, , 119-268.		0
82	11-year solar cycle influence on OH (3-1) nightglow observed by OSIRIS. Journal of Atmospheric and Solar-Terrestrial Physics, 2022, 229, 105831.	1.6	1
83	Reaction Pathway Control via Reactant Vibrational Excitation and Impact on Product Vibrational Distributions: The O + HO ₂ → OH + O ₂ Atmospheric Reaction. Journal of Physical Chemistry Letters, 2022, 13, 1872-1878.	4.6	4
84	Simplified Relations for the Martian Night-Time OH* Suitable for the Interpretation of Observations. Remote Sensing, 2022, 14, 3866.	4.0	0
85	Analytical Approximations of the Characteristics of Nighttime Hydroxyl on Mars and Intra-Annual Variations. Solar System Research, 2022, 56, 369-381.	0.7	1
86	Analytical Approximations of the Characteristics of Nighttime Hydroxyl on Mars and Intra-Annual Variations. Solar System Research, 2023, 57, 1-13.	0.7	0
87	Morphology of the Excited Hydroxyl in the Martian Atmosphere: A Model Study—Where to Search for Airglow on Mars?. Remote Sensing, 2024, 16, 291.	4.0	Ο