Significance of the Conductor Radial Temperature Grad Methodology

IEEE Transactions on Power Delivery 2, 502-511

DOI: 10.1109/tpwrd.1987.4308134

Citation Report

#	Article	IF	CITATIONS
1	Theoretical model for temperature gradients within bare overhead conductors. IEEE Transactions on Power Delivery, 1988, 3, 707-715.	4.3	33
2	Dynamic current rating of overhead lines. Electric Power Systems Research, 1989, 16, 11-15.	3.6	8
3	The radial temperature distribution and effective radial thermal conductivity in bare solid and stranded conductors. IEEE Transactions on Power Delivery, 1990, 5, 1443-1452.	4.3	30
4	Current load in a high voltage power transmission line. Electric Power Systems Research, 1991, 21, 181-185.	3.6	5
5	A theoretical model for effective thermal conductivity of multicore power cables. Electric Power Systems Research, 2012, 87, 10-12.	3.6	6
6	Radial Thermal Conductivity of all-Aluminum Alloy Conductors. IEEE Transactions on Power Delivery, 2015, 30, 1983-1990.	4.3	13
7	Accurate Simulations of Thermal Field of Operational Conductors. IOP Conference Series: Materials Science and Engineering, 2017, 231, 012100.	0.6	1
8	Numerical Algorithms for Calculating Temperature, Layered Stress, and Critical Current of Overhead Conductors. Mathematical Problems in Engineering, 2020, 2020, 1-14.	1.1	1
9	Experimental study on the transformer effect in an ACSR cable. International Journal of Electrical Power and Energy Systems, 2020, 119, 105861.	5.5	9
10	Temperature-dependent system level analysis of electric power transmission systems: A review. Electric Power Systems Research, 2021, 193, 107033.	3.6	10
11	Analiza poprzecznego rozkÅ, adu temperatury w przewodach elektroenergetycznych. Przeglad Elektrotechniczny, 2017, 1, 134-137.	0.2	0
12	Comprehensive review of the dynamic thermal rating system for sustainable electrical power systems. Energy Reports, 2022, 8, 3263-3288.	5.1	66
13	Radial Thermoelectric Model for Stranded Transmission Line Conductors. Sensors, 2023, 23, 9205.	3.8	0