Visual deprivation causes myopia in chicks with optic n

Current Eye Research 6, 993-999 DOI: 10.3109/02713688709034870

Citation Report

#	Article	IF	CITATIONS
1	Mathematical model of emmetropization in the chicken. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1988, 5, 2080.	0.8	72
2	Chicks blinded with formoguanamine do not develop lid suture myopia. Current Eye Research, 1988, 7, 69-73.	0.7	30
3	Accommodation, refractive error and eye growth in chickens. Vision Research, 1988, 28, 639-657.	0.7	576
4	Myopia: Induced, normal and clinical. Eye, 1988, 2, S242-S256.	1.1	18
5	Dopamine synthesis and metabolism in rhesus monkey retina: Development, aging, and the effects of monocular visual deprivation. Visual Neuroscience, 1989, 2, 465-471.	0.5	147
6	Ocular responses of genetically blind chicks to the light environment and to lid suture. Current Eye Research, 1989, 8, 757-764.	0.7	14
7	Excitatory amino acids interfere with normal eye growth in posthatch chick. Current Eye Research, 1989, 8, 781-792.	0.7	34
8	Retinal dopamine and form-deprivation myopia Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 704-706.	3.3	366
9	Does the eye grow into focus?. Nature, 1990, 345, 477-478.	13.7	8
10	Developing eyes that lack accommodation grow to compensate for imposed defocus. Visual Neuroscience, 1990, 4, 177-183.	0.5	183
11	Pharmacological modification of eye growth in normally reared and visually deprived chicks. Current Eye Research, 1990, 9, 733-740.	0.7	28
12	Local ocular compensation for imposed local refractive error. Vision Research, 1990, 30, 339-349.	0.7	79
13	Increased aggrecan (cartilage proteoglycan) production in the sclera of myopic chicks. Developmental Biology, 1991, 147, 303-312.	0.9	112
14	Properties of the feedback loops controlling eye growth and refractive state in the chicken. Vision Research, 1991, 31, 717-734.	0.7	218
15	The regulation of eye growth and refractive state: An experimental study of emmetropization. Vision Research, 1991, 31, 1237-1250.	0.7	222
16	Refractive-error changes in kitten eyes produced by chronic on-channel blockade. Vision Research, 1991, 31, 833-844.	0.7	36
17	Review: Avian Models for Experimental Myopia. Journal of Ocular Pharmacology and Therapeutics, 1991, 7, 259-276.	0.6	20
18	Some visual and neurochemical correlates of refractive development. Visual Neuroscience, 1991, 7, 125-128	0.5	11

#	Article	IF	CITATIONS
19	Proteoglycan synthesis by scleral chondrocytes is modulated by a vision dependent mechanism. Current Eye Research, 1992, 11, 767-782.	0.7	89
20	The development of experimental myopia and ocular component dimensions in monocularly lid-sutured tree shrews (Tupaia belangeri). Vision Research, 1992, 32, 843-852.	0.7	145
21	Axial myopia in eyes with optic nerve hypoplasia. Graefe's Archive for Clinical and Experimental Ophthalmology, 1992, 230, 372-377.	1.0	28
22	Diurnal growth rhythms in the chicken eye: relation to myopia development and retinal dopamine levels. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1993, 172, 263-270.	0.7	129
23	Chapter 6 Retinal control of eye growth and refraction. Progress in Retinal and Eye Research, 1993, 12, 133-153.	0.8	128
24	Chromatic aberration and accommodation: their role in emmetropization in the chick. Vision Research, 1993, 33, 1593-1603.	0.7	98
25	Ocular development and visual deprivation myopia in the common marmoset (Callithrix jacchus). Vision Research, 1993, 33, 1311-1324.	0.7	172
26	Experimental myopia in a diurnal mammal (Sciurus carolinensis) with no accommodative ability Journal of Physiology, 1993, 469, 427-441.	1.3	59
27	Lid-suture myopia in tree shrews with retinal ganglion cell blockade. Visual Neuroscience, 1994, 11, 143-153.	0.5	98
28	Constant light affects retinal dopamine levels and blocks deprivation myopia but not lens-induced refractive errors in chickens. Visual Neuroscience, 1994, 11, 199-208.	0.5	113
29	Scleral cell growth is influenced by retinal pigment epithelium in vitro. Graefe's Archive for Clinical and Experimental Ophthalmology, 1994, 232, 545-552.	1.0	30
30	A simple mechanism for emmetropization without cues from accommodation or colour. Vision Research, 1994, 34, 873-876.	0.7	93
31	Regulation of eye growth in the African cichlid fish Haplochromis burtoni. Vision Research, 1994, 34, 1807-1814.	0.7	50
32	6-Hydroxy dopamine does not affect lens-induced refractive errors but suppresses deprivation myopia. Vision Research, 1994, 34, 143-149.	0.7	95
33	Electroretinogram responses and refractive errors in patients with a history of retinopathy of prematurity. Documenta Ophthalmologica, 1995, 91, 87-100.	1.0	34
34	Studies on the role of the retinal dopamine/melatonin system in experimental refractive errors in chickens. Vision Research, 1995, 35, 1247-1264.	0.7	160
35	Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vision Research, 1995, 35, 1175-1194.	0.7	510
36	How applicable are animal myopia models to human juvenile onset myopia?. Vision Research, 1995, 35, 1283-1288.	0.7	40

0			Depart	
		10N	Repoi	2
\sim	/			N 1

#	Article	IF	CITATIONS
37	Inducing ametropias in hatchling chicks by defocus—Aperture effects and cylindrical lenses. Vision Research, 1995, 35, 1165-1174.	0.7	78
38	The effects of blockade of retinal cell action potentials on ocular growth, emmetropization and form deprivation myopia in young chicks. Vision Research, 1995, 35, 1141-1152.	0.7	71
39	Does experimentally-induced amblyopia cause hyperopia in monkeys?. Vision Research, 1995, 35, 1289-1297.	0.7	80
40	A role for photoreceptor outer segments in the induction of deprivation myopia. Vision Research, 1995, 35, 1217-1225.	0.7	77
41	The relationship of choroidal blood flow and accommodation to the control of ocular growth. Vision Research, 1995, 35, 1227-1245.	0.7	42
42	Formoguanamine-induced inhibition of deprivation myopia in chick is accompanied by choroidal thinning while retinal function is retained. Vision Research, 1995, 35, 2075-2088.	0.7	17
43	Progression of myopia. American Journal of Ophthalmology, 1996, 121, 116.	1.7	13
44	Measurement by laser Doppler interferometry of intraocular distances in humans and chicks with a precision of better than ±20 μm. Applied Optics, 1996, 35, 3358.	2.1	19
45	Effects on the compensatory responses to positive and negative lenses of intermittent lens wear and ciliary nerve section in chicks. Vision Research, 1996, 36, 1023-1036.	0.7	179
46	Diffuser contact lenses retard axial elongation in infant rhesus monkeys. Vision Research, 1996, 36, 509-514.	0.7	34
47	In Vivo and In Vitro Association of Retinoic Acid with Form-deprivation Myopia in the Chick. Experimental Eye Research, 1996, 63, 443-452.	1.2	58
48	The ciliary ganglion and vitreous cavity shape. Current Eye Research, 1996, 15, 453-460.	0.7	22
49	Breed- and gender-dependent differences in eye growth and form deprivation responses in chick. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1996, 178, 551-61.	0.7	20
50	The eye of the blue acara (Aequidens pulcher, Cichlidae) grows to compensate for defocus due to chromatic aberration. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1996, 179, 837-42.	0.7	93
51	Chick eye optics: zero to fourteen days. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1996, 179, 185-94.	0.7	31
52	ERG of form deprivation myopia and drug induced ametropia in chicks. Current Eye Research, 1996, 15, 79-86.	0.7	28
53	Factors controlling the dendritic arborization of retinal ganglion cells. Visual Neuroscience, 1996, 13, 721-733.	0.5	43
54	Changes in Eye Growth Produced by Drugs Which Affect Retinal ON or OFF Responses to Light. Journal of Ocular Pharmacology and Therapeutics, 1996, 12, 193-208.	0.6	31

ARTICLE IF CITATIONS # Regional Scleral Changes in Form-deprivation Myopia in Chicks. Experimental Eye Research, 1997, 64, 1.2 41 55 465-476. Local Changes in Eye Growth induced by Imposed Local Refractive Error despite Active Accommodation. Vision Research, 1997, 37, 659-668. 204 Flicker parameters are different for suppression of myopia and hyperopia. Vision Research, 1997, 37, 57 0.7 67 2661-2673. Retinal function with lens-induced myopia compared with form-deprivation myopia in chicks. Graefe's Archive for Clinical and Experimental Ophthalmology, 1997, 235, 320-324. The sensitivity of the chick eye to refractive defocus. Ophthalmic and Physiological Optics, 1997, 17, 59 1.0 16 61-67. Apomorphine inhibits the growth-stimulating effect of retinal pigment epithelium on scleral cellsin vitro. , 1997, 15, 191-196. Oscillatory potentials in the retina: what do they reveal. Progress in Retinal and Eye Research, 1998, 17, 61 7.3 456 485-521. Influence of Destruction of Retina-RPE Complex on the Proliferation of Scleral Chondrocytes in 0.6 Chicks. Journal of Ocular Pharmacology and Therapeutics, 1998, 14, 429-436. Sharp vision: a prerequisite for compensation to myopic defocus in the chick?. Current Eye Research, 63 0.7 38 1998, 17, 322-331. Myopia Updates., 1998,,. Retinoic Acid Increases in the Retina of the Chick with Form Deprivation Myopia. Ophthalmic Research, 1.0 65 69 1998, 30, 361-367. Animal Models of Myopia: Learning How Vision Controls the Size of the Eye. ILAR Journal, 1999, 40, 1.8 59-77. Muscarinic receptor functioning and distribution in the eye: Molecular basis and implications for 67 1.1 31 clinical diagnosis and therapy. Eye, 1999, 13, 285-300. How good is the match between the plane of the text and the plane of focus during reading? 1. Ophthalmic and Physiological Optics, 1999, 19, 180-192. 1.0 The lens paradigm in experimental myopia: oculomotor, optical and neurophysiological 69 1.0 15 considerations. Ophthalmic and Physiological Optics, 1999, 19, 103-111. Prevention of form-deprivation myopia with pirenzepine: a study of drug delivery and distribution. Ophthalmic and Physiological Optics, 1999, 19, 327-335. The effect of sleep state on electroretinographic (ERG) activity during early human development. Early 71 0.8 6 Human Development, 1999, 55, 51-62. Prevention of form-deprivation myopia with pirenzepine: a study of drug delivery and distribution. Ophthalmic and Physiological Optics, 1999, 19, 327-335.

#	Article	IF	CITATIONS
74	Experimental Animal Myopia Models Are Applicable to Human Juvenile-Onset Myopia. Survey of Ophthalmology, 1999, 44, S93-S102.	1.7	35
75	Colchicine causes excessive ocular growth and myopia in chicks. Vision Research, 1999, 39, 685-697.	0.7	65
76	The effects of spectacle wear in infancy on eye growth and refractive error in the marmoset (Callithrix jacchus). Vision Research, 1999, 39, 189-206.	0.7	134
77	The growing eye: an autofocus system that works on very poor images. Vision Research, 1999, 39, 1585-1589.	0.7	64
78	Long-term changes in retinal contrast sensitivity in chicks from frosted occluders and drugs: relations to myopia?. Vision Research, 1999, 39, 2499-2510.	0.7	44
79	Interactions of Spatial and Luminance Information in the Retina of Chickens During Myopia Development. Experimental Eye Research, 1999, 68, 105-115.	1.2	58
80	A Unifying Theory of Refractive Error Development. Bulletin of Mathematical Biology, 2000, 62, 1087-1108.	0.9	42
81	Effects of prostaglandins on form deprivation myopia in the chick. Acta Ophthalmologica, 2000, 78, 495-500.	0.4	13
82	The role of photoreceptors in the control of refractive state. Progress in Retinal and Eye Research, 2000, 19, 421-457.	7.3	92
83	Influence of deprivation on axial ocular growth: A novel mechanism of emmetropization. Annals of Ophthalmology, 2000, 32, 191-195.	0.0	1
84	Formation and Sampling of the Retinal Image. , 2000, , 1-54.		20
85	Quantitative analysis of the effect of near lens addition on accommodation and myopigenesis. Current Eye Research, 2000, 20, 293-312.	0.7	30
86	Regional Blood Flow in the Myopic Chick Eye during and after Form Deprivation: a Study with Radioactively-labelled Microspheres. Experimental Eye Research, 2000, 71, 233-238.	1.2	14
87	Modulation of constant light effects on the eye by ciliary ganglionectomy and optic nerve section. Vision Research, 2000, 40, 2249-2256.	0.7	22
88	A study on the prevention and treatment of myopia with nacre on chicks. Pharmacological Research, 2001, 44, 1-6.	3.1	30
89	Prevention of Axial Elongation in Myopia by the Trace Element Zinc. Biological Trace Element Research, 2001, 79, 39-47.	1.9	20
90	Contrast adaptation in retinal and cortical evoked potentials: No adaptation to low spatial frequencies. Visual Neuroscience, 2002, 19, 645-650.	0.5	28
91	Myopia and models and mechanisms of refractive error control. Ophthalmology Clinics of North America, 2002, 15, 127-133.	1.8	20

#	Article	lF	CITATIONS
92	Pirenzepine Affects Scleral Metabolic Changes in Myopia through a Non-toxic Mechanism. Experimental Eye Research, 2002, 74, 103-111.	1.2	30
93	Temporal Relationship of Choroidal Blood Flow and Thickness Changes during Recovery from Form Deprivation Myopia in Chicks. Experimental Eye Research, 2002, 74, 561-570.	1.2	130
94	Muscarinic receptor protein expression in the ocular tissues of the chick during normal and myopic eye development. Developmental Brain Research, 2002, 135, 79-86.	2.1	16
95	Differential refractive susceptibility to sustained nearwork. Ophthalmic and Physiological Optics, 2002, 22, 372-379.	1.0	42
96	Role of the sclera in the development and pathological complications of myopia. Progress in Retinal and Eye Research, 2003, 22, 307-338.	7.3	462
97	The biological basis of myopic refractive error. Australasian journal of optometry, The, 2003, 86, 276-288.	0.6	95
98	Are We Nearsighted When it Comes to Myopia Treatment?. Eye and Contact Lens, 2003, 29, S139-S142.	0.8	0
99	Neural pathways subserving negative lens-induced emmetropization in chicks – Insights from selective lesions of the optic nerve and ciliary nerve. Current Eye Research, 2003, 27, 371-385.	0.7	124
100	Through the Lens Clearly: Phylogeny and Development. , 2004, 45, 740.		15
101	Posterior Retinal Contour in Adult Human Anisomyopia. , 2004, 45, 2152.		133
102	Recovery from Form-Deprivation Myopia in Rhesus Monkeys. , 2004, 45, 3361.		56
103	Structural and Elemental Evidence for Edema in the Retina, Retinal Pigment Epithelium, and Choroid during Recovery from Experimentally Induced Myopia. , 2004, 45, 2463.		67
104	Effects of Optically Imposed Astigmatism on Emmetropization in Infant Monkeys. , 2004, 45, 1647.		74
105	Refraction and keratometry in 40 week old premature (corrected age) and term infants. British Journal of Ophthalmology, 2004, 88, 900-904.	2.1	37
106	Pax-6 Expression in Posthatch Chick Retina during and Recovery from Form-Deprivation Myopia. Developmental Neuroscience, 2004, 26, 328-335.	1.0	21
107	Development of the primate area of high acuity. 1. Use of finite element analysis models to identify mechanical variables affecting pit formation. Visual Neuroscience, 2004, 21, 53-62.	0.5	109
108	Spontaneous Lacquer Crack Lesions in the Retinopathy, Globe Enlarged (rge) Chick. Journal of Comparative Pathology, 2004, 131, 105-111.	0.1	10
109	Myopia: precedents for research in the twenty-first century. Clinical and Experimental Ophthalmology, 2004, 32, 305-324.	1.3	97

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
110	Homeostasis of Eye Growth and the Question of Myopia. Neuron, 2004, 43, 447-468.		3.8	827
111	Screening for Differential Gene Expression During the Development of Form-Deprivation Chicken. Optometry and Vision Science, 2004, 81, 148-155.	on Myopia in the	0.6	23
112	Retinoic Acid Reduces Ocular Elongation in Chicks with Formâ€Deprivation Myopia. Cu Ocular Toxicology, 2005, 23, 53-64.	utaneous and	0.3	0
113	Lenticular accommodation in relation to ametropia: The chick model. Journal of Vision,	2005, 5, 2.	0.1	14
115	Inducing Form-Deprivation Myopia in Fish. , 2005, 46, 1797.			62
116	Peripheral Vision Can Influence Eye Growth and Refractive Development in Infant Mon 3965.	keys. , 2005, 46,		391
117	The role of the retinal pigment epithelium in eye growth regulation and myopia: A revie Neuroscience, 2005, 22, 251-261.	ew. Visual	0.5	147
118	Retinal serotonin, eye growth and myopia development in chick. Experimental Eye Res 616-625.	earch, 2005, 81,	1.2	32
119	Changes in scleral MMP-2, TIMP-2 and TGFβ-2 mRNA expression after imposed myopic defocus in chickens. Experimental Eye Research, 2006, 82, 710-719.	: and hyperopic	1.2	56
120	Comparative Aspects of Visual System Development. , 2006, , 37-72.			12
121	Aberrations of chick eyes during normal growth and lens induction of myopia. Journal Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 845-855.	of , 2006, 192,	0.7	26
122	Effects of interchanging hyperopic defocus and form deprivation stimuli in normal and nerve-sectioned chicks. Vision Research, 2006, 46, 1070-1079.	optic	0.7	26
123	What Image Properties Regulate Eye Growth?. Current Biology, 2006, 16, 687-691.		1.8	40
124	Change in the Synthesis Rates of Ocular Retinoic Acid and Scleral Glycosaminoglycan e Experimentally Altered Eye Growth in Marmosets. , 2006, 47, 1768.	during		78
125	Development of Ocular Refraction: Lessons from Animal Experiments. , 2006, , 1-18.			1
126	Eyes of a Lower Vertebrate Are Susceptible to the Visual Environment. , 2007, 48, 482	9.		67
127	The albino chick as a model for studying ocular developmental anomalies, including re- errors, associated with albinism. Experimental Eye Research, 2007, 85, 431-442.	fractive	1.2	27
128	Postnatal Control of Ocular Growth: Dopaminergic Mechanisms. Novartis Foundation 1990, 155, 45-62.	Symposium,	1.2	24

#	Article	IF	CITATIONS
129	Incremental retinal-defocus theory of myopia development—Schematic analysis and computer simulation. Computers in Biology and Medicine, 2007, 37, 930-946.	3.9	35
130	Regulation of human eye growth by the energy density of the radiation in the retina—A biophysical theory in ophthalmology. Journal of Theoretical Biology, 2008, 253, 302-309.	0.8	1
131	The developing and evolving retina: Using time to organize form. Brain Research, 2008, 1192, 5-16.	1.1	45
132	Colchicine attenuates compensation to negative but not to positive lenses in young chicks. Experimental Eye Research, 2008, 86, 260-270.	1.2	14
133	The role of the lens in refractive development of the eye: Animal models of ametropia. Experimental Eye Research, 2008, 87, 3-8.	1.2	28
134	Effects of Direct Intravitreal Dopamine Injection on Sclera and Retina in Form-Deprived Myopic Rabbits. Journal of Ocular Pharmacology and Therapeutics, 2008, 24, 543-550.	0.6	25
135	Myopia Pharmacology: Etiologic Clues, Therapeutic Potential. , 2008, , 167-196.		3
136	Inhibition of Human Scleral Fibroblast Cell Attachment to Collagen Type I by TGFBIp. , 2009, 50, 3542.		29
137	Effects of Form Deprivation on Peripheral Refractions and Ocular Shape in Infant Rhesus Monkeys (Macaca mulatta). , 2009, 50, 4033.		44
138	Influence of accommodation and refractive status on the peripheral refractive profile. British Journal of Ophthalmology, 2009, 93, 1186-1190.	2.1	33
139	Opposite Effects of Glucagon and Insulin on Compensation for Spectacle Lenses in Chicks. , 2009, 50, 24.		62
140	Hemiretinal Form Deprivation: Evidence for Local Control of Eye Growth and Refractive Development in Infant Monkeys. , 2009, 50, 5057.		127
141	Insulin Acts as a Powerful Stimulator of Axial Myopia in Chicks. , 2009, 50, 13.		70
142	Animal models of myopia. Acta Ophthalmologica, 1996, 74, 213-219.	0.4	36
143	Reprint of "The role of the lens in refractive development of the eye: Animal models of ametropia― [Experimental Eye Research 87 (2008) 3–8]. Experimental Eye Research, 2009, 88, 235-240.	1.2	0
144	Gene profiling in experimental models of eye growth: Clues to myopia pathogenesis. Vision Research, 2010, 50, 2322-2333.	0.7	46
145	Peripheral refraction and the development of refractive error: a review. Ophthalmic and Physiological Optics, 2010, 30, 321-338.	1.0	125
146	Муоріа. , 2010, , 424-432.		2

#	Article	IF	CITATIONS
147	Increased Hyaluronan Synthase-2 mRNA Expression and Hyaluronan Accumulation with Choroidal Thickening: Response during Recovery from Induced Myopia. , 2010, 51, 6172.		18
148	Human Optical Axial Length and Defocus. , 2010, 51, 6262.		148
149	Pharmaceutical intervention for myopia control. Expert Review of Ophthalmology, 2010, 5, 759-787.	0.3	57
150	Transforming growth factor-beta in the chicken fundal layers: An immunohistochemical study. Experimental Eye Research, 2010, 90, 780-790.	1.2	15
151	Spontaneous High Myopia in One Eye Will Affect the Development of Form Deprivation Myopia in the Fellow Eye. Current Eye Research, 2011, 36, 513-521.	0.7	11
152	Prentice Award Lecture 2010: A Case for Peripheral Optical Treatment Strategies for Myopia. Optometry and Vision Science, 2011, 88, 1029-1044.	0.6	177
153	Impairment of retinal adaptive circuitry in the myopic eye. Vision Research, 2011, 51, 367-375.	0.7	14
154	Interventions to slow progression of myopia in children. The Cochrane Library, 2011, , CD004916.	1.5	168
155	Vision-guided ocular growth in a mutant chicken model with diminished visual acuity. Experimental Eye Research, 2012, 102, 59-69.	1.2	17
156	Parasympathetic influences on emmetropization in chicks: Evidence for different mechanisms in form deprivation vs negative lens-induced myopia. Experimental Eye Research, 2012, 102, 93-103.	1.2	25
157	Bidirectional, Optical Sign-Dependent Regulation of BMP2 Gene Expression in Chick Retinal Pigment Epithelium. , 2012, 53, 6072.		49
158	The combination of IGF1 and FGF2 and the induction of excessive ocular growth and extreme myopia. Experimental Eye Research, 2012, 99, 1-16.	1.2	58
159	The complex interactions of retinal, optical and environmental factors in myopia aetiology. Progress in Retinal and Eye Research, 2012, 31, 622-660.	7.3	550
160	The Effect of Simultaneous Negative and Positive Defocus on Eye Growth and Development of Refractive State in Marmosets. , 2012, 53, 6479.		80
161	The increased prevalence of myopia in Finland. Acta Ophthalmologica, 2012, 90, 497-502.	0.6	57
162	Effects of hemiretinal form deprivation on central refractive development and posterior eye shape in chicks. Vision Research, 2012, 55, 24-31.	0.7	17
163	An updated view on the role of dopamine in myopia. Experimental Eye Research, 2013, 114, 106-119.	1.2	289
164	Comparative effects of posterior eye cup tissues from myopic and hyperopic chick eyes on cultured scleral fibroblasts. Experimental Eye Research, 2013, 107, 11-20.	1.2	10

#	Article	IF	CITATIONS
166	InÂvitro effects of insulin and RPE on choroidal and scleral components of eye growth in chicks. Experimental Eye Research, 2013, 116, 439-448.	1.2	20
167	Can the retina alone detect the sign of defocus?. Ophthalmic and Physiological Optics, 2013, 33, 362-367.	1.0	21
168	Dynamics of active emmetropisation in young chicks – influence of sign and magnitude of imposed defocus. Ophthalmic and Physiological Optics, 2013, 33, 215-226.	1.0	16
169	The role of luminance and chromatic cues in emmetropisation. Ophthalmic and Physiological Optics, 2013, 33, 196-214.	1.0	90
170	Disruption of the Centrifugal Visual System Inhibits Early Eye Growth in Chicks. , 2013, 54, 3632.		12
171	Cene Expression Signatures in Tree Shrew Sclera in Response to Three Myopiagenic Conditions. , 2013, 54, 6806.		59
172	Eyes in Various Species Can Shorten to Compensate for Myopic Defocus. , 2013, 54, 2634.		38
173	The Influence of Suppression on Axial Length Progression in Intermittent Exotropia. Journal of Korean Ophthalmological Society, 2013, 54, 766.	0.0	0
174	Visually-Driven Ocular Growth in Mice Requires Functional Rod Photoreceptors. , 2014, 55, 6272.		53
175	The Sclera and Induced Abnormalities in Myopia. , 2014, , 97-112.		1
176	Pathologic Myopia. , 2014, , .		41
177	The Effect of Fractal Contact Lenses on Peripheral Refraction in Myopic Model Eyes. Current Eye Research, 2014, 39, 1151-1160.	0.7	6
178	Visual Development. , 2014, , .		17
179	Influence of higher order aberrations and retinal image quality in myopisation of emmetropic eyes. Vision Research, 2014, 105, 233-243.	0.7	24
180	Axial Eye Growth and Refractive Error Development Can Be Modified by Exposing the Peripheral Retina to Relative Myopic or Hyperopic Defocus. Investigative Ophthalmology and Visual Science, 2014, 55, 6765-6773.	3.3	161
181	Gene expression signatures in tree shrew choroid in response to three myopiagenic conditions. Vision Research, 2014, 102, 52-63.	0.7	25
182	II.B. Myopic Vitreopathy. , 2014, , 113-129.		4
183	Role of the Dopaminergic System in the Development of Myopia in Children and Adolescents. Journal of Child Neurology, 2014, 29, 1739-1746.	0.7	15

		CITATION RE	PORT	
#	Article		IF	CITATIONS
184	Animal models in myopia research. Australasian journal of optometry, The, 2015, 98, 502	7-517.	0.6	137
185	A review of environmental risk factors for myopia during early life, childhood and adolesc Australasian journal of optometry, The, 2015, 98, 497-506.	ence.	0.6	135
186	Rate of change and predictive factors for increasing minus contact lens powers in young Australasian journal of optometry, The, 2015, 98, 323-329.	myopes.	0.6	2
187	Both the central and peripheral retina contribute to myopia development in chicks. Oph Physiological Optics, 2015, 35, 652-662.	halmic and	1.0	15
188	Molecular and Biochemical Aspects of the Retina on Refraction. Progress in Molecular Bi Translational Science, 2015, 134, 249-267.	ology and	0.9	33
189	ON pathway mutations increase susceptibility to form-deprivation myopia. Experimental 2015, 137, 79-83.	Eye Research,	1.2	62
190	Bidirectional Expression of Metabolic, Structural, and Immune Pathways in Early Myopia Hyperopia. Frontiers in Neuroscience, 2016, 10, 390.	and	1.4	36
191	Differential gene expression of BMP2 and BMP receptors in chick retina & choroid induce optical defocus. Visual Neuroscience, 2016, 33, E015.	ed by imposed	0.5	11
192	The pattern ERG in chicks – Stimulus dependence and optic nerve section. Vision Rese 45-52.	arch, 2016, 128,	0.7	9
193	Eye growth and myopia development: Unifying theory and Matlab model. Computers in Medicine, 2016, 70, 106-118.	Biology and	3.9	7
194	Myopia Control. Eye and Contact Lens, 2016, 42, 3-8.		0.8	105
195	Early Anesthesia Exposure and the Effect on Visual Acuity, Refractive Error, and Retinal N Layer Thickness of Young Adults. Journal of Pediatrics, 2016, 169, 256-259.e1.	erve Fiber	0.9	15
196	Optic nerve head and intraocular pressure in the guinea pig eye. Experimental Eye Resea 7-16.	rch, 2016, 146,	1.2	33
197	Interventions to Reduce Myopia Progression in Children. Strabismus, 2017, 25, 23-32.		0.4	28
198	Observations on the relationship between anisometropia, amblyopia and strabismus. Vis 2017, 134, 26-42.	ion Research,	0.7	45
199	Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists form-deprivation myopia in tree shrews. Visual Neuroscience, 2017, 34, E003.	reduce	0.5	25
200	Region-specific differential corneal and scleral mRNA expressions of MMP2, TIMP2, and T myopic-astigmatic chicks. Scientific Reports, 2017, 7, 11423.	GFB2 in highly	1.6	6
201	The chick eye in vision research: An excellent model for the study of ocular disease. Prog Retinal and Eye Research, 2017, 61, 72-97.	ress in	7.3	59

#	Article	IF	CITATIONS
202	The effect of unilateral disruption of the centrifugal visual system on normal eye development in chicks raised under constant light conditions. Brain Structure and Function, 2017, 222, 1315-1330.	1.2	6
203	Alterations of Glutamate and Î ³ -Aminobutyric Acid Expressions in Normal and Myopic Eye Development in Guinea Pigs. , 2017, 58, 1256.		15
204	Early quantitative profiling of differential retinal protein expression in lens-induced myopia in guinea pig using fluorescence difference two-dimensional gel electrophoresis. Molecular Medicine Reports, 2018, 17, 5571-5580.	1.1	9
205	A Review of Myopia Control with Atropine. Journal of Ocular Pharmacology and Therapeutics, 2018, 34, 374-379.	0.6	41
206	The role of temporal contrast and blue light in emmetropization. Vision Research, 2018, 151, 78-87.	0.7	26
207	Gene expression in response to optical defocus of opposite signs reveals bidirectional mechanism of visually guided eye growth. PLoS Biology, 2018, 16, e2006021.	2.6	53
208	Short term optical defocus perturbs normal developmental shifts in retina/RPE protein abundance. BMC Developmental Biology, 2018, 18, 18.	2.1	11
209	Myopia-Inhibiting Concentrations of Muscarinic Receptor Antagonists Block Activation of Alpha _{2A} -Adrenoceptors In Vitro. , 2018, 59, 2778.		45
210	A Review of Current Concepts of the Etiology and Treatment of Myopia. Eye and Contact Lens, 2018, 44, 231-247.	0.8	148
211	Short Interruptions of Imposed Hyperopic Defocus Earlier in Treatment are More Effective at Preventing Myopia Development. Scientific Reports, 2019, 9, 11459.	1.6	18
212	Etiology and Management of Myopia. Advances in Ophthalmology and Optometry, 2019, 4, 39-64.	0.3	0
213	Monocular accommodation response to random defocus changes induced by a tuneable lens. Vision Research, 2019, 165, 45-53.	0.7	10
214	Pharmacogenomic Approach to Antimyopia Drug Development: Pathways Lead the Way. Trends in Pharmacological Sciences, 2019, 40, 833-852.	4.0	19
215	Origins of Refractive Errors: Environmental and Genetic Factors. Annual Review of Vision Science, 2019, 5, 47-72.	2.3	75
216	Current and emerging pharmaceutical interventions for myopia. British Journal of Ophthalmology, 2019, 103, 1539-1548.	2.1	15
217	IMI – Report on Experimental Models of Emmetropization and Myopia. , 2019, 60, M31.		241
218	Regional alterations in human choroidal thickness in response to shortâ€ŧerm monocular hemifield myopic defocus. Ophthalmic and Physiological Optics, 2019, 39, 172-182.	1.0	24
219	Retinoic Acid in Ocular Growth Regulation. , 2019, , .		1

#	Article	IF	CITATIONS
220	Lack of cone mediated retinal function increases susceptibility to form-deprivation myopia in mice. Experimental Eye Research, 2019, 180, 226-230.	1.2	17
221	Optic nerve crush modulates refractive development of the C57BL/6 mouse by changing multiple ocular dimensions. Brain Research, 2020, 1726, 146537.	1.1	5
222	Stopping the rise of myopia in Asia. Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258, 943-959.	1.0	46
223	Optical mechanisms regulating emmetropisation and refractive errors: evidence from animal models. Australasian journal of optometry, The, 2020, 103, 55-67.	0.6	26
224	Biological Mechanisms of Atropine Control of Myopia. Eye and Contact Lens, 2020, 46, 129-135.	0.8	71
225	Testing impacts of global blur profiles using a multiscale vision simulator. Heliyon, 2020, 6, e04153.	1.4	3
226	Focusing the eyes and recognizing objects: evo-devo and the sensitive period. Current Opinion in Behavioral Sciences, 2020, 36, 36-41.	2.0	0
227	Connective tissue remodeling in myopia and its potential role in increasing risk of glaucoma. Current Opinion in Biomedical Engineering, 2020, 15, 40-50.	1.8	32
228	Optical Aberrations of Guinea Pig Eyes. , 2020, 61, 39.		3
229	The effect of optic nerve section on form deprivation myopia in the guinea pig. Journal of Comparative Neurology, 2020, 528, 2874-2887.	0.9	13
230	Retinal defocus and <scp>formâ€deprivation</scp> induced regional differential gene expression of bone morphogenetic proteins in chick retinal pigment epithelium. Journal of Comparative Neurology, 2020, 528, 2864-2873.	0.9	7
231	Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nature Genetics, 2020, 52, 401-407.	9.4	180
232	Defocused Images Change Multineuronal Firing Patterns in the Mouse Retina. Cells, 2020, 9, 530.	1.8	12
233	Association between MMP/TIMP Levels in the Aqueous Humor and Plasma with Axial Lengths in Myopia Patients. BioMed Research International, 2020, 2020, 1-11.	0.9	13
234	Interventions to slow progression of myopia in children. The Cochrane Library, 2021, 2021, CD004916.	1.5	76
235	Animal Models of Experimental Myopia: Limitations and Synergies with Studies on Human Myopia. , 2021, , 67-85.		0
236	SWATH Based Quantitative Proteomics Reveals Significant Lipid Metabolism in Early Myopic Guinea Pig Retina. International Journal of Molecular Sciences, 2021, 22, 4721.	1.8	17
237	Genome-wide analysis of retinal transcriptome reveals common genetic network underlying perception of contrast and optical defocus detection. BMC Medical Genomics, 2021, 14, 153.	0.7	8

#	Article	IF	Citations
238	Long-Wavelength–Filtered Light Transiently Inhibits Negative Lens-Induced Axial Eye Growth in the Chick Myopia Model. Translational Vision Science and Technology, 2021, 10, 38.	1.1	4
239	Functional integration of eye tissues and refractive eye development: Mechanisms and pathways. Experimental Eye Research, 2021, 209, 108693.	1.2	21
240	The Sclera and Induced Abnormalities in Myopia. , 2021, , 121-137.		0
241	Optical Methods to Slow the Progression of Myopia. , 2021, , 435-446.		Ο
242	Effects of Selective Neurotoxins on Eye Growth in the Young Chick. Novartis Foundation Symposium, 1990, 155, 63-88.	1.2	34
243	Experimental Studies of Emmetropization in the Chick. Novartis Foundation Symposium, 1990, 155, 89-114.	1.2	13
244	Retinal Influences on Sclera Underlie Visual Deprivation Myopia. Novartis Foundation Symposium, 1990, 155, 126-148.	1.2	19
245	Animal Models of Experimental Myopia: Limitations and Synergies with Studies on Human Myopia. , 2014, , 39-58.		7
246	Levels of Control in the Refractive Development of the Eye: Evidence from Animal Models. , 1998, , 285-296.		1
247	Understanding Myopia: Pathogenesis and Mechanisms. , 2020, , 65-94.		12
248	An Incremental Retinal-Defocus Theory of the Development of Myopia. Comments on Theoretical Biology, 2003, 8, 511-538.	0.6	10
250	Alpha2â€∎drenoceptor agonists inhibit formâ€deprivation myopia in the chick. Australasian journal of optometry, The, 2019, 102, 418-425.	0.6	16
251	The sensitivity of the chick eye to refractive defocus. Ophthalmic and Physiological Optics, 1997, 17, 61-67.	1.0	16
252	Imposed Optical Defocus Induces Isoform-Specific Up-Regulation of TGFÎ ² Gene Expression in Chick Retinal Pigment Epithelium and Choroid but Not Neural Retina. PLoS ONE, 2016, 11, e0155356.	1.1	15
253	A strategically oriented conception of optical prevention of myopia onset and progression. Rossiiskii Oftal'mologicheskii Zhurnal, 2020, 13, 7-16.	0.1	10
254	Time Course of Perceived Visual Distortion and Axial Length Growth in Myopic Children Undergoing Orthokeratology. Frontiers in Neuroscience, 2021, 15, 693217.	1.4	1
255	Distinctive Mechanisms Regulating Corneal and Scleral Growth. , 2000, , 127-130.		0
256	The role of muscarinic antagonists in the control of eye growth and myopia. , 2000, , 183-192.		0

	CITATION	ATION REPORT	
#	Article	IF	CITATIONS
257	Optical Causes of Experimental Myopia. Novartis Foundation Symposium, 1990, 155, 160-177.	1.2	9
258	Models of Myopia Development. Series on Bioengineering and Biomedical Engineering, 2009, , 127-158.	0.1	0
259	Homeomorphic Matlab Model of Myopia Development. Journal of Computer Science and Systems Biology, 2010, 03, .	0.0	1
260	The Relevance of Studies in Chicks for Understanding Myopia in Humans. , 2010, , 239-266.		7
262	Deprivation Myopia and Emmetropization. , 1995, , 193-201.		0
263	Axial Myopia in Keratitis Phlyctaenulosa Caused by form Deprivation Myopia. , 1997, , 597-608.		1
264	How Is Emmetropization Controlled? Results of Research on Experimental Myopia. , 1998, , 13-22.		1
265	Scaling the Retina, Micro and Macro. , 1998, , 245-258.		1
266	Scleral Changes and Melatonin in Form-Deprivation Myopia. , 1998, , 304-312.		1
267	Neural Mechanisms and Eye Growth Control. , 1998, , 241-254.		4
268	Observed Axial Change in Axial High Myopia Eyes after Phacoemulsification. Hans Journal of Ophthalmology, 2016, 05, 89-94.	0.0	0
269	Design of multizone soft contact lens to slow myopia progression. , 2018, , .		0
270	The RPE in Myopia Development. , 2020, , 117-138.		2
271	Deprivation Myopia and Emmetropization. , 2006, , 243-254.		0
272	Physiological strategies for emmetropia. Transactions of the American Ophthalmological Society, 1995, 93, 105-18; discussion 118-22.	1.4	13
273	Progression of myopia. Transactions of the American Ophthalmological Society, 1995, 93, 755-800.	1.4	21
274	A role for aquaporin-4 during induction of form deprivation myopia in chick. Molecular Vision, 2008, 14, 298-307.	1.1	14
275	Microarray analysis of retinal gene expression in chicks during imposed myopic defocus. Molecular Vision, 2008, 14, 1589-99.	1.1	29

ARTICLE IF CITATIONS # Dissecting the genetic heterogeneity of myopia susceptibility in an Ashkenazi Jewish population using 276 1.1 3 ordered subset analysis. Molecular Vision, 2011, 17, 1641-51. Effects of intravitreal insulin and insulin signaling cascade inhibitors on emmetropization in the 1.1 chick. Molecular Vision, 2012, 18, 2608-22. Upregulation of regulator of G-protein signaling 2 in the sclera of a form deprivation myopic animal 278 1.1 23 model. Molecular Vision, 2014, 20, 977-87. Chondrogenesis in scleral stem/progenitor cells and its association with form-deprived myopia in 279 1.1 mice. Molecular Vision, 2015, 21, 138-47. Gene expression signatures in tree shrew sclera during recovery from minus-lens wear and during 280 1.1 6 plus-lens wear. Molecular Vision, 2019, 25, 311-328. Light and myopia: from epidemiological studies to neurobiological mechanisms. Therapeutic Advances in Ophthalmology, 2021, 13, 251584142110592. 0.8 The difference between the cycloplegic and noncycloplegic refractive error may be an indicator for 282 0.0 0 the myopia progression in myopic children. Journal of Health Sciences and Medicine, 2022, 5, 287-290. Transcriptional profiling of the chick retina identifies down-regulation of <i>VIP</i> and 1.4 <i>UTS2B</i> genes during early lens-induced myopia. Molecular Omics, 2022, 18, 449-459. Candidate pathways for retina to scleral signaling in refractive eye growth. Experimental Eye 284 1.2 32 Research, 2022, 219, 109071. Ocular Rigidity and Current Therapy. Current Eye Research, 0, , 1-9. Effect of atropine 0.01% on progression of myopia. Indian Journal of Ophthalmology, 2022, 70, 3373. 289 2 0.5 ROLE OF ATROPINE 0.01% DROPS FOR CONTROLLING PROGRESSION OF MYOPIA IN CHILDREN., 2022, , 11-13. 290 The Role of Retinal Dysfunction in Myopia Development. Cellular and Molecular Neurobiology, 2023, 291 1.7 5 43, 1905-1930. Altered Structure and Function of Murine Sclera in Form-Deprivation Myopia., 2022, 63, 13. Burning the candle at both ends: Intraretinal signaling of intrinsically photosensitive retinal 293 1.8 1 ganglion cells. Frontiers in Cellular Neuroscience, 0, 16, . Axial Length: A Risk Factor for Cataractogenesis. Annals of the Academy of Medicine, Singapore, 2006, 294 35, 416-419. 295 Emmetropization and nonmyopic eye growth. Survey of Ophthalmology, 2023, 68, 759-783. 1.7 10 The Temporal Characteristics of Eye Growth Control Mechanisms Differ Following Optic Nerve 296 Section., 1997, , .

#	Article	IF	CITATIONS
297	Flash Electroretinography as a Measure of Retinal Function in Myopia and Hyperopia: A Systematic Review. Vision (Switzerland), 2023, 7, 15.	0.5	2
298	Applications of Genomics and Transcriptomics in Precision Medicine for Myopia Control or Prevention. Biomolecules, 2023, 13, 494.	1.8	5
299	Contralateral effect in progression and recovery of lensâ€induced myopia in mice. Ophthalmic and Physiological Optics, 2023, 43, 558-565.	1.0	1
311	Das RPE in der Myopie-Entwicklung. , 2024, , 129-153.		0