The Effects of Demand-Forecast Fluctuations on Custor When Demand is Lumpy

Journal of the Operational Research Society 38, 75-82 DOI: 10.1057/jors.1987.9

Citation Report

#	Article	IF	CITATIONS
1	Control of inventories with intermittent demand. European Journal of Operational Research, 1989, 40, 16-21.	5.7	57
2	Evaluating Forecast Performance in an Inventory Control System. Management Science, 1990, 36, 490-499.	4.1	104
3	Forecasting intermittent demand in manufacturing: a comparative evaluation of Croston's method. International Journal of Forecasting, 1994, 10, 529-538.	6.5	188
4	Estimating the demand pattern for C category items. Journal of the Operational Research Society, 1997, 48, 530-532.	3.4	7
5	Evaluation of forecasting methods for intermittent parts demand in the field of aviation: a predictive model. Computers and Operations Research, 2003, 30, 2097-2114.	4.0	181
6	A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting, 2004, 20, 375-387.	6.5	289
7	Forecasting intermittent demand by SVMs regression. , 0, , .		2
8	The impact of unknown demand parameters on (R,S)-inventory control performance. European Journal of Operational Research, 2005, 162, 805-815.	5.7	29
9	SVR-Based Method Forecasting Intermittent Demand for Service Parts Inventories. Lecture Notes in Computer Science, 2005, , 604-613.	1.3	4
11	On the stock control performance of intermittent demand estimators. International Journal of Production Economics, 2006, 103, 36-47.	8.9	115
12	Forecasting for intermittent demand: the estimation of an unbiased average. Journal of the Operational Research Society, 2006, 57, 588-592.	3.4	50
13	A new approach of forecasting intermittent demand for spare parts inventories in the process industries. Journal of the Operational Research Society, 2007, 58, 52-61.	3.4	84
14	Budgets, Internal Reports and Manager Forecast Accuracy. SSRN Electronic Journal, 2007, , .	0.4	5
15	On the performance of binomial and beta-binomial models of demand forecasting for multiple slow-moving inventory items. Computers and Operations Research, 2008, 35, 893-905.	4.0	26
16	Budgets, Internal Reports, and Manager Forecast Accuracy*. Contemporary Accounting Research, 2008, 25, 707-738.	3.0	54
17	Classification for forecasting and stock control: a case study. Journal of the Operational Research Society, 2008, 59, 473-481.	3.4	113
18	Extended beta-binomial model for demand forecasting of multiple slow-moving inventory items. International Journal of Systems Science, 2008, 39, 713-726.	5.5	9
19	Characterizing the frequency of orders received by a stockist. IMA Journal of Management Mathematics, 2008, 19, 137-143.	1.6	6

CITATION REPORT

#	Article	IF	CITATIONS
20	Demand forecasting adjustments for service-level achievement. IMA Journal of Management Mathematics, 2008, 19, 175-192.	1.6	35
21	Empirical testing of forecast update procedure for seasonal products. International Journal of Information Technology and Management, 2008, 7, 60.	0.1	Ο
22	Periodic control of intermittent demand items: theory and empirical analysis. Journal of the Operational Research Society, 2009, 60, 611-618.	3.4	41
23	Demand categorisation in a European spare parts logistics network. International Journal of Operations and Production Management, 2009, 29, 292-316.	5.9	83
24	Inventory performance under pack size constraints and spatially-correlated demand. International Journal of Production Economics, 2009, 117, 330-337.	8.9	17
25	Inventory management of multiple items with irregular demand: A case study. European Journal of Operational Research, 2010, 205, 313-324.	5.7	50
26	On the demand distributions of spare parts. International Journal of Production Research, 2012, 50, 2101-2117.	7.5	77
27	A riskâ€based approach to manage nonâ€repairable spare parts inventory. Journal of Quality in Maintenance Engineering, 2012, 18, 344-362.	1.7	16
28	A Strategic Framework for Spare Parts Logistics. California Management Review, 2012, 54, 69-92.	6.3	29
29	Forecast errors and inventory performance under forecast information sharing. International Journal of Forecasting, 2012, 28, 830-841.	6.5	69
30	Remanufacturing intermittent demand forecast: A critical assessment. , 2013, , .		0
31	Bayesian modeling application and optimization to demand forecasting. IngenierÃa Y Desarrollo, 2014, 32, 179-199.	0.1	1
32	Spare parts management: Linking distributional assumptions to demand classification. European Journal of Operational Research, 2014, 235, 624-635.	5.7	59
33	Inventory planning with dynamic demand. A state of art review. DYNA (Colombia), 2015, 82, 182-191.	0.4	5
34	MÉTODOS ESTADÃ&TICOS CLÃ&ICOS Y BAYESIANOS PARA EL PRONÓSTICO DE DEMANDA. UN ANÃLISIS COMPARATIVO. Revista De La Facultad De Ciencias, 2015, 4, 52-67.	0.0	3
35	Forecasting of compound Erlang demand. Journal of the Operational Research Society, 2015, 66, 2061-2074.	3.4	5
36	An investigation on bootstrapping forecasting methods for intermittent demands. International Journal of Production Economics, 2019, 209, 20-29.	8.9	23
37	Spare Aeroengine Demand Prediction Model Based on Deep Croston Method. Journal of Aerospace Information Systems, 2020, 17, 125-133.	1.4	4

#	Article	IF	CITATIONS
38	A compound-Poisson Bayesian approach for spare parts inventory forecasting. International Journal of Production Economics, 2021, 232, 107954.	8.9	15
39	Does forecast disaggregation facilitate organizational learning by doing? The effect of forecast disaggregation on the year-over-year improvement in demand forecast revisions. SSRN Electronic Journal, O, , .	0.4	0
40	A modified Teunter-Syntetos-Babai method for intermittent demand forecasting. Journal of Management Science and Engineering, 2021, 6, 53-63.	2.8	3
41	Inventory – forecasting: Mind the gap. European Journal of Operational Research, 2022, 299, 397-419.	5.7	23
42	Profit Estimation Error in the Newsvendor Model Under a Parametric Demand Distribution. Management Science, 2021, 67, 4863-4879.	4.1	12
43	Distributional Assumptions for Parametric Forecasting of Intermittent Demand. , 2011, , 31-52.		12
44	Inventory-transportation integrated optimization for maintenance spare parts of high-speed trains. PLoS ONE, 2017, 12, e0176961.	2.5	6
45	How to Determine the Order-Up-To Level when Demand is Gamma Distributed with Unknown Parameters. SSRN Electronic Journal, 0, , .	0.4	1
46	Statistical Management and Modeling for Demand of Spare Parts. , 2006, , 905-929.		1
47	Chapter 8 Managing Slow-Moving and Low-Value (Class C) Inventories. , 2016, , 351-386.		0
48	Chapter 3 ForecastingModels and Techniques. , 2016, , 73-142.		0
49	Intermittent demand forecasting for aircraft inventories: a study of Brazilian's Boeing 737NG aircraft´s spare parts management. Transportes, 2019, 27, 102-116.	0.2	0
50	Classification and inventory control of spare parts based on compound Poisson Demand. , 2020, , .		0
51	A combined forecasting method for intermittent demand using the automotive aftermarket data. Data Science and Management, 2022, 5, 43-56.	8.1	14
53	Statistical Management and Modeling for Demand Spare Parts. Springer Handbooks, 2023, , 275-304.	0.6	0
55	An adaptive multi-objective optimal forecast combination and its application for predicting intermittent demand. Journal of the Operational Research Society, 0, , 1-13.	3.4	0
56	IACPPO: A deep reinforcement learning-based model for warehouse inventory replenishment. Computers and Industrial Engineering, 2024, 187, 109829.	6.3	0