Smoke-Plume Distributions above Large-Scale Fires: Im "Nuclear Winter―

Journal of Climate and Applied Meteorology 25, 1434-1444 DOI: 10.1175/1520-0450(1986)025<1434:spdals>2.0.co;2

Citation Report

#	Article	IF	Citations
1	Uncertainties in the smoke source term for †̃nuclear winter' studies. Nature, 1986, 324, 222-226.	27.8	50
2	Coagulation in smoke plumes after a nuclear war. Atmospheric Environment, 1987, 21, 957-969.	1.0	13
3	Further reply. Atmospheric Environment, 1987, 21, 2066-2067.	1.0	2
4	Twoâ€dimensional simulations of possible mesoscale effects of nuclear war fires: 1. Model description. Journal of Geophysical Research, 1989, 94, 1127-1144.	3.3	49
5	Twoâ€dimensional simulations of possible mesoscale effects of nuclear war fires: 2. Model results. Journal of Geophysical Research, 1989, 94, 1145-1163.	3.3	6
6	Predicting the Consequences of Nuclear War: Precipitation Scavenging of Smoke. Aerosol Science and Technology, 1989, 10, 51-62.	3.1	9
7	Scattering and Absorption by Elongated Aerosol Particles. Aerosol Science and Technology, 1989, 10, 172-180.	3.1	9
8	Blue moons and large fires. Applied Optics, 1989, 28, 1778.	2.1	3
9	Optical scattering and absorption by branched chains of aerosols. Applied Optics, 1989, 28, 3083.	2.1	88
10	Climate and smoke: an appraisal of nuclear winter. Science, 1990, 247, 166-176.	12.6	122
11	Light Scattering and Absorption by Fractal Agglomerates and Coagulations of Smoke Aerosols. Journal of Modern Optics, 1990, 37, 171-181.	1.3	53
12	Numerical simulation of small area fires. Atmospheric Environment Part A General Topics, 1990, 24, 297-307.	1.3	18
13	Empirical formula for optical absorption by fractal aerosol agglomerates. Applied Optics, 1991, 30, 1547.	2.1	9
14	Agglomeration of dust in convective clouds initialized by nuclear bursts. Atmospheric Environment Part A General Topics, 1991, 25, 2627-2642.	1.3	9
15	Environmental impact of fires in Kuwait. Nature, 1991, 350, 11-12.	27.8	118
16	Climate response to smoke from the burning oil wells in Kuwait. Nature, 1991, 351, 367-371.	27.8	98
17	Numerical simulation of mixing of coaxial air flows with condensation. International Journal of Heat and Mass Transfer, 1991, 34, 1823-1838.	4.8	2
18	General theory of Maxwell-Garnett model for particulate composites with bi-isotropic host materials. International Journal of Electronics, 1992, 73, 1355-1362.	1.4	14

ATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
19	Environmental impact of the Gulf War: An integrated preliminary assessment. Environmental Management, 1993, 17, 557-562.	2.7	38
20	An approximate model of atmospheric plumes produced by large area fires. Atmospheric Environment Part A General Topics, 1993, 27, 73-82.	1.3	4
21	Dynamical and radiative response to the massive injection of aerosol from Kuwait oil burning fires. Geophysical Research Letters, 1993, 20, 2889-2892.	4.0	2
22	Numerical computation and measurement of infrared extinction of the powder of brass 70Cu/30Zn. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 1995, 18, 719-727.	1.1	0
24	Simulation of a biomass-burning plume: Comparison of model results with observations. Journal of Geophysical Research, 2002, 107, AAC 5-1.	3.3	75
25	Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part I): reference simulation. Atmospheric Chemistry and Physics, 2006, 6, 5247-5260.	4.9	156
26	Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (PartÂII): sensitivity studies. Atmospheric Chemistry and Physics, 2006, 6, 5261-5277.	4.9	101
27	Atmospheric effects and societal consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism. Atmospheric Chemistry and Physics, 2007, 7, 1973-2002.	4.9	82
28	Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmospheric Chemistry and Physics, 2007, 7, 3385-3398.	4.9	334
29	Massive global ozone loss predicted following regional nuclear conflict. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5307-5312.	7.1	114
30	Mega fire emissions in Siberia: potential supply of bioavailable iron from forests to the ocean. Biogeosciences, 2011, 8, 1679-1697.	3.3	53
31	A Review of Fire Interactions and Mass Fires. Journal of Combustion, 2011, 2011, 1-14.	1.0	67
32	Numerical and laboratory prediction of smoke lofting in the atmosphere over large area fires. Applied Mathematical Modelling, 2013, 37, 876-887.	4.2	1
33	3-D model simulations of dynamical and microphysical interactions in pyroconvective clouds under idealized conditions. Atmospheric Chemistry and Physics, 2014, 14, 7573-7583.	4.9	20
34	Quantifying pyroconvective injection heights using observations of fire energy: sensitivity of spaceborne observations of carbon monoxide. Atmospheric Chemistry and Physics, 2015, 15, 4339-4355.	4.9	18
35	Designing global climate and atmospheric chemistry simulations for 1 and 10â€ ⁻ km diameter asteroid impacts using the properties of ejecta from the K-Pg impact. Atmospheric Chemistry and Physics, 2016, 16, 13185-13212.	4.9	24
36	Comment on "Climate Impact of a Regional Nuclear Weapon Exchange: An Improved Assessment Based on Detailed Source Calculations―by Reisner et al Journal of Geophysical Research D: Atmospheres, 2019, 124, 12953-12958.	3.3	10
37	Examining the Climate Effects of a Regional Nuclear Weapons Exchange Using a Multiscale Atmospheric Modeling Approach. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033056.	3.3	11

#	Article	IF	CITATIONS
38	The Impact of a Regional Nuclear Conflict between India and Pakistan: Two Views. Journal for Peace and Nuclear Disarmament, 2021, 4, 163-175.	1.0	10
39	A Closure for the Virtual Origin of Turbulent Plumes. Journals of the Atmospheric Sciences, 2022, 79, 1459-1471.	1.7	2
40	Atmospheric Transports of Particulate and Gaseous Products by Fires. , 1997, , 207-250.		13
41	Convective Processes in Forest Fires. , 1998, , 401-420.		12
42	Investigation of aerosol - droplet interaction in the mature convective clouds using the two-dimensional model. , 1996, , 901-903.		4
47	Modeling of Adverse Air Quality Effects. , 1990, , 335-353.		Ο
50	Upper Troposphere Smoke Injection From Large Areal Fires. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034332.	3.3	5
51	Latent Heating Is Required for Firestorm Plumes to Reach the Stratosphere. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	1

CITATION REPORT