
CITATION REPORT List of articles citing

DOI: 10.1111/j.1432-1033.1986.tb09625.x FEBS Journal, 1986, 156, 637-43.

Source: https://exaly.com/paper-pdf/18543581/citation-report.pdf

Version: 2024-04-19

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
277	Chapter 1 Structure and function of antibodies. 1987 , 17, 1-50		17
276	LargeBcale Affinity Purification of Human InsulinLike Growth Factor I from Culture Medium of Escherichia Coli. 1987 , 5, 379-382		75
275	Expression of human insulin-like growth factor I in bacteria: use of optimized gene fusion vectors to facilitate protein purification. 1987 , 26, 5239-44		132
274	Homology to region X from staphylococcal protein A is not unique to cell surface proteins. 1987 , 127, 373-6		4
273	Complete amino acid sequence of protein B. 1988 , 235, 262-6		19
272	Enzyme-linked immunosorbent assays (ELISAs) for the determination of contaminants resulting from the immunoaffinity purification of recombinant proteins. 1988 , 113, 113-22		20
271	Thiol-directed immobilization of recombinant IgG-binding receptors. FEBS Journal, 1989, 186, 557-61		47
270	Isolated DNA repeat region from fcrA76, the Fc-binding protein gene from an M-type 76 strain of group A streptococci, encodes a protein with Fc-binding activity. 1990 , 4, 2071-9		29
269	Chemical and molecular classification of staphylococci. 1990 , 19, 9S-24S		23
268	Sequential 1H NMR assignments and secondary structure of the B domain of staphylococcal protein A: structural changes between the free B domain in solution and the Fc-bound B domain in crystal. 1990 , 29, 8787-93		68
267	Differential stability of recombinant human insulin-like growth factor II in Escherichia coli and Staphylococcus aureus. 1990 , 14, 423-37		18
266	15N nuclear magnetic resonance studies of the B domain of staphylococcal protein A: sequence specific assignments of the imide 15N resonances of the proline residues and the interaction with human immunoglobulin G. 1990 , 269, 174-6		15
265	Structural and functional analysis of the human IgG-Fab receptor activity of streptococcal protein G. <i>Molecular Immunology</i> , 1991 , 28, 1055-61	4.3	12
264	Potential for vaccination against infections caused by Staphylococcus aureus. 1991 , 9, 221-7		65
263	Isolation of monoaminergic synaptosomes from rat brain by immunomagnetophoresis. 1991 , 56, 1569-	-80	8
262	Human antibody effector function. 1992 , 51, 1-84		205
261	Temperature-sensitive immunoglobulin A-binding and dimerization of C-terminus-impaired protein Arp4 produced in Escherichia coli. 1992 , 36, 923-33		1

260	Regulation of the protein A-encoding gene in Staphylococcus aureus. 1992 , 114, 25-34	41
259	Sorting of protein A to the staphylococcal cell wall. 1992 , 70, 267-81	466
258	Interaction of immunoglobulin G with immobilized histidine: mechanistic and kinetic aspects. 1992 , 604, 29-37	68
257	Oriented immunoglobulin G layer onto the Langmuir-Blodgett films of protein A. 1992 , 210-211, 710-712	20
256	A bifunctional affinity linker to couple antibodies to cellulose. 1993 , 11, 1570-3	21
255	Immunoglobulin binding specificities of the homology regions (domains) of protein A. 1993 , 38, 368-74	11
254	13C NMR study of the mode of interaction in solution of the B fragment of staphylococcal protein A and the Fc fragments of mouse immunoglobulin G. 1993 , 328, 49-54	33
253	The interaction between different domains of staphylococcal protein A and human polyclonal IgG, IgA, IgM and F(ab\$2: separation of affinity from specificity. <i>Molecular Immunology</i> , 1993 , 30, 1279-85	105
252	Bacteriophage surface display of an immunoglobulin-binding domain of Staphylococcus aureus protein A. 1994 , 12, 169-72	20
251	Construction and characterization of M13 bacteriophages displaying functional IgG-binding domains of staphylococcal protein A. 1994 , 151, 45-51	21
250	Interactions of bacterial cell-surface proteins with antibodies: a ersatile set of protein-protein interactions. 1995 , 409-416	1
249	Model for the complex between protein G and an antibody Fc fragment in solution. 1995 , 3, 79-85	76
248	Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. 1995 , 268, 103-6	393
247	Structures of bacterial immunoglobulin-binding domains and their complexes with immunoglobulins. 1995 , 5, 471-81	87
246	Solution structure of the E-domain of staphylococcal protein A. 1996 , 35, 15558-69	49
245	Protein A mimetic peptide ligand for affinity purification of antibodies. <i>Journal of Molecular Recognition</i> , 1996 , 9, 564-9	101
244	Immunological activities of IgG antibody on pre-coated Fc receptor surfaces. <i>Analytica Chimica Acta</i> , 1996 , 331, 97-102	30
243	Confocal microscopy as a tool for studying protein adsorption to chromatographic matrices. 1996 , 743, 75-83	89

242	B-cell superantigens: molecular and cellular implications. 1997 , 14, 259-90	11
241	Staphylococcal protein A binding to VH3 encoded immunoglobulins. 1997 , 14, 291-308	21
240	High-resolution solution NMR structure of the Z domain of staphylococcal protein A. 1997 , 272, 573-90	126
239	Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expression and Purification, 1997, 11, 1-16	271
238	In vivo consequences of B cell superantigen immunization. 1997 , 815, 105-10	6
237	Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. 1997 , 15, 772-7	509
236	New targets for antibiotic development: biogenesis of surface adherence structures. 1998, 3, 495-504	8
235	Characterization and affinity applications of cellulose-binding domains. 1998 , 715, 283-96	152
234	Growth phase dependent stop codon readthrough and shift of translation reading frame in Escherichia coli. 1998 , 421, 237-42	47
233	NMR study of the interaction between the B domain of staphylococcal protein A and the Fc portion of immunoglobulin G. 1998 , 37, 129-36	62
232	A second IgG-binding protein in Staphylococcus aureus. 1998 , 144 (Pt 4), 985-991	110
231	Presentation of antigen in immune complexes is boosted by soluble bacterial immunoglobulin binding proteins. 1999 , 189, 1217-28	10
230	Antibody variable region binding by Staphylococcal protein A: thermodynamic analysis and location of the Fv binding site on E-domain. 1999 , 8, 1423-31	81
229	Use of 13C conformation-dependent chemical shifts to elucidate the local structure of a large protein with homologous domains in solution and solid state. 1999 , 38, 203-8	12
228	Site-directed lipid modification of IgG-binding protein by intracellular bacterial lipoprotein process. 1999 , 75, 23-31	3
227	Force-Induced Dissociation of Single Protein A l gG Bonds[] 1999 , 15, 7316-7324	30
226	Functions of the Fc receptors for immunoglobulin G. 2000 , 14, 141-56	13
225	Staphylococcal protein A: unfolding pathways, unfolded states, and differences between the B and E domains. 2000 , 97, 133-8	129

(2002-2000)

224	An advantage for use of isotope labeling and NMR chemical shifts to analyze the structure of four homologous IgG-binding domains of staphylococcal protein A. 2000 , 42, 35-47	11
223	Assembling of engineered IgG-binding protein on gold surface for highly oriented antibody immobilization. 2000 , 76, 207-14	115
222	15 Separation of antibodies by liquid chromatography. 2000 , 535-632	11
221	Detection and characterization of individual intermolecular bonds using optical tweezers. 2001 , 80, 2976-86	65
220	Solution structure of an immunoactive peptide fragment of Staphylococcal protein-A. 2001 , 18, 773-81	4
219	Immunoglobulin binding properties of the Prosorba immunadsorption column in treatment of rheumatoid arthritis. 2001 , 5, 84-91	15
218	Coupling of antibodies via protein Z on modified polyoma virus-like particles. 2001 , 10, 434-44	49
217	Protein A is a virulence factor in Staphylococcus aureus arthritis and septic death. 2002 , 33, 239-49	136
216	Superantigen-induced apoptotic death of tumor cells is mediated by cytotoxic lymphocytes, cytokines, and nitric oxide. 2002 , 290, 1336-42	18
215	A model B-cell superantigen and the immunobiology of B lymphocytes. 2002 , 102, 117-34	61
214	Immunoglobulin purification by affinity chromatography using protein A mimetic ligands prepared by combinatorial chemical synthesis. 2002 , 31, 263-78	33
213	Improved partitioning in aqueous two-phase system of tyrosine-tagged recombinant lactate dehydrogenase. <i>Protein Expression and Purification</i> , 2002 , 25, 263-9	10
212	Construction and characterization of affibody-Fc chimeras produced in Escherichia coli. 2002, 261, 199-211	47
211	Cellulose-binding domains: biotechnological applications. 2002 , 20, 191-213	107
210	Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat protein SdrE and protein A. 2002 , 44, 1033-44	237
209	Changes in lymphocytic cluster distribution during extracorporeal immunoadsorption. 2002 , 26, 140-4	6
208	Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. 2002 , 4, 759-70	178
207	Anti-idiotypic protein domains selected from protein A-based affibody libraries. 2002 , 48, 454-62	59

206	Differential binding characteristics of protein G and protein A for Fc fragments of papain-digested mouse IgG. 2003 , 85, 231-5	28
205	Engineered protein a for the orientational control of immobilized proteins. 2003, 14, 974-8	57
204	Generation and characterization of a mouse monoclonal antibody with specificity similar to staphylococcal protein A (SPA). 2003 , 22, 33-9	13
203	Fluid shear regulates the kinetics and receptor specificity of Staphylococcus aureus binding to activated platelets. 2004 , 173, 1258-65	37
202	Interactions of immunoglobulins outside the antigen-combining site. 2004 , 82, 155-215	62
201	Bacterial cell wall-expressed protein A triggers supraclonal B-cell responses upon in vivo infection with Staphylococcus aureus. 2005 , 7, 1501-11	30
200	Fine affinity discrimination by normalized fluorescence activated cell sorting in staphylococcal surface display. 2005 , 248, 189-98	41
199	On the mechanism of staphylococcal protein A immunomodulation. 2005 , 45, 274-80	42
198	Temperature-triggered purification of antibodies. 2005 , 90, 373-9	44
197	Antibody variable region interactions with Protein A: implications for the development of generic purification processes. 2005 , 92, 665-73	121
196	Protein Engineering Strategies for Selective Protein Purification. 2005 , 28, 1315-1325	37
195	B cell superantigens: a microbeS answer to innate-like B cells and natural antibodies. 2005, 26, 463-84	33
194	Genetically engineered elastin-protein A fusion as a universal platform for homogeneous, phase-separation immunoassay. <i>Analytical Chemistry</i> , 2005 , 77, 2318-22	49
193	Denatured-state ensemble and the early-stage folding of the G29A mutant of the B-domain of protein A. 2005 , 109, 9073-81	22
192	Fabrication of nanopatterned films of bovine serum albumin and staphylococcal protein A using latex particle lithography. 2006 , 131, 244-50	27
191	Engineered staphylococcal protein AS IgG-binding domain with cathepsin L inhibitory activity. 2006 , 349, 449-53	11
190	Staphylococcus aureus protein A binding to von Willebrand factor A1 domain is mediated by conserved IgG binding regions. 2006 , 273, 4831-41	77
189	All individual domains of staphylococcal protein A show Fab binding. 1998 , 20, 69-78	51

188	Iron acquisition and transport in Staphylococcus aureus. 2006 , 19, 193-203	104
187	QCM Immunosensor Based on Polyamidoamine Dendrimers. 2006 , 18, 1943-1949	16
186	Temporal and dose-dependent relationships between in vivo B cell receptor-targeted proliferation and deletion-induced by a microbial B cell toxin. 2006 , 176, 2262-71	18
185	The Genera Staphylococcus and Macrococcus. 2006 , 5-75	90
184	Staphylococcus aureus protein A activates TNFR1 signaling through conserved IgG binding domains. <i>Journal of Biological Chemistry</i> , 2006 , 281, 20190-6	96
183	Evaluation of staphylococcal cell surface display and flow cytometry for postselectional characterization of affinity proteins in combinatorial protein engineering applications. 2007 , 73, 6714-21	26
182	Affinity Chromatographic Purification of Antibodies. 2007 , 40, 2799-2820	8
181	Piezoelectric Immunosensors. 2006 , 237-280	8
180	Staphylococcus aureus protein A triggers T cell-independent B cell proliferation by sensitizing B cells for TLR2 ligands. 2007 , 178, 2803-12	84
179	Distribution of protein A on the surface of Staphylococcus aureus. 2007 , 189, 4473-84	60
178	Redesign of protein domains using one-bead-one-compound combinatorial chemistry. 2007 , 129, 14922-32	7
177	Strategy for selecting and characterizing linker peptides for CBM9-tagged fusion proteins expressed in Escherichia coli. 2007 , 98, 599-610	55
176	Protein A chromatography for antibody purification. 2007 , 848, 40-7	367
175	Staphylococcus aureus protein A activates TACE through EGFR-dependent signaling. <i>EMBO Journal</i> , 2007 , 26, 701-9	81
174	Fast purification of trace vitellogenin from Chinese rare minnow using protein A-immobilized antibody. 2008 , 390, 2151-7	1
173	Expression and secretion of recombinant ZZ-EGFP fusion protein by the methylotrophic yeast Pichia pastoris. 2008 , 30, 1409-14	7
172	Universal bio-molecular signal transduction-based nano-electronic bio-detection system. <i>Sensors and Actuators B: Chemical</i> , 2008 , 133, 547-554	2
171	Evolutional selection of a combinatorial phage library displaying randomly-rearranged various single domains of immunoglobulin (Ig)-binding proteins (IBPs) with four kinds of Ig molecules. 2008 , 8, 137	7

170	Denaturant-induced expansion and compaction of a multi-domain protein: IgG. 2008, 384, 1029-36	19
169	Localization of the equine IgG-binding domain in the fibrinogen-binding protein (FgBP) of Streptococcus equi subsp. equi. 2009 , 155, 2583-2592	10
168	Trace level analysis of leached Protein A in bioprocess samples without interference from the large excess of rhMAb IgG. 2009 , 341, 59-67	11
167	Methionine oxidation in human IgG2 Fc decreases binding affinities to protein A and FcRn. 2009 , 18, 424-33	162
166	Engineered affinity proteinsgeneration and applications. 2009 , 140, 254-69	89
165	Antibody purification with protein A attached supermacroporous poly(hydroxyethyl methacrylate) cryogel. 2009 , 45, 201-208	69
164	Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His. 2009 , 30, 1746-55	80
163	2,6,9-Trisubstituted purine derivatives as protein A mimetics for the treatment of autoimmune diseases. 2009 , 19, 242-6	7
162	Quantitation of soluble aggregates in recombinant monoclonal antibody cell culture by pH-gradient protein A chromatography. 2009 , 388, 273-8	16
161	Label free capacitive immunosensor for detecting calpastatina meat tenderness biomarker. 2009 , 76, 93-9	21
160	An Efficient Kilogram-Scale Synthesis of N,N?-Bis(4,6-disubstituted 1,3,5-triazin-2-yl)-4-aminophenetylamine. 2009 , 13, 1156-1160	
159	Affinity Fusions: Gene Expression. 2009 , 1	
158	Structural and functional role of Staphylococcus aureus surface components recognizing adhesive matrix molecules of the host. 2009 , 4, 1337-52	92
157	The codon specificity of eubacterial release factors is determined by the sequence and size of the recognition loop. 2010 , 16, 1623-33	9
156	A Staphylococcus aureus small RNA is required for bacterial virulence and regulates the expression of an immune-evasion molecule. 2010 , 6, e1000927	104
155	Engineered lactic acid bacterium Lactococcus lactis capable of binding antibodies and tumor necrosis factor alpha. 2010 , 76, 6928-32	31
154	2,4,6-trisubstituted triazines as protein a mimetics for the treatment of autoimmune diseases. 2010 , 53, 1138-45	29
153	Performance of protein-A-based affinity membranes for antibody purification. 2011 , 22, 2325-41	15

152	Innate immunity in the respiratory epithelium. 2011 , 45, 189-201		294
151	IgG-binding proteins of bacteria. 2011 , 76, 295-308		28
150	Development of a multi-product leached protein A assay for bioprocess samples containing recombinant human monoclonal antibodies. 2011 , 366, 20-7		2
149	Exploring variation in binding of Protein A and Protein G to immunoglobulin type G by isothermal titration calorimetry. <i>Journal of Molecular Recognition</i> , 2011 , 24, 945-52	2.6	24
148	A Mussel Adhesive Protein Fused with the BC Domain of Protein A is a Functional Linker Material that Efficiently Immobilizes Antibodies onto Diverse Surfaces. 2011 , 21, 4101-4108		15
147	The Sbi protein is a multifunctional immune evasion factor of Staphylococcus aureus. <i>Infection and Immunity</i> , 2011 , 79, 3801-9	3.7	96
146	CD1d and CD1c expression in human B cells is regulated by activation and retinoic acid receptor signaling. 2011 , 186, 5261-72		43
145	The WalKR system controls major staphylococcal virulence genes and is involved in triggering the host inflammatory response. <i>Infection and Immunity</i> , 2012 , 80, 3438-53	3.7	97
144	Phage-based molecular directed evolution yields multiple tandem human IgA affibodies with intramolecular binding avidity. 2012 , 158, 120-7		1
143	Engineering of affibody molecules for therapy and diagnostics. <i>Methods in Molecular Biology</i> , 2012 , 899, 103-26	1.4	67
142	Expression and purification of SfaX(II), a protein involved in regulating adhesion and motility genes in extraintestinal pathogenic Escherichia coli. <i>Protein Expression and Purification</i> , 2012 , 86, 127-34	2	3
141	Immunopathogenesis of Staphylococcus aureus pulmonary infection. 2012 , 34, 281-97		87
140	Preparation of a bio-immunoreagent between ZZ affibody and enhanced green fluorescent protein for immunofluorescence applications. 2012 , 28, 1281-5		2
139	Site-directed antibody immobilization techniques for immunosensors. <i>Biosensors and Bioelectronics</i> , 2013 , 50, 460-71	11.8	207
138	Site-specific and covalent attachment of his-tagged proteins by chelation assisted photoimmobilization: a strategy for microarraying of protein ligands. 2013 , 29, 11687-94		13
137	Evaluation of IgY capture ELISA for sensitive detection of alpha hemolysin of Staphylococcus aureus without staphylococcal protein A interference. 2013 , 391, 31-8		37
136	Specific binding of immunoglobulin G to protein A-mesoporous silica composites for affinity column chromatography. 2013 , 1, 6321-6328		20
135	Cysteine-terminated B-domain of Staphylococcus aureus protein A as a scaffold for targeting GABA(A) receptors. 2013 , 432, 49-57		3

134	Affinity proteins and their generation. 2013 , 88, 25-38		15
133	Quantum dot imaging platform for single-cell molecular profiling. 2013 , 4, 1619		186
132	Regioselective covalent immobilization of recombinant antibody-binding proteins A, G, and L for construction of antibody arrays. 2013 , 135, 8973-80		39
131	Staphylococcus aureus mutants lacking cell wall-bound protein A found in isolates from bacteraemia, MRSA infection and a healthy nasal carrier. 2013 , 67, 19-24		12
130	Shedding of tumor necrosis factor receptor 1 induced by protein A decreases tumor necrosis factor alpha availability and inflammation during systemic Staphylococcus aureus infection. <i>Infection and Immunity</i> , 2013 , 81, 4200-7	3.7	34
129	Construction, expression, functional characterization and practical application of fusion protein SPA-BAPmut. <i>Biopolymers and Cell</i> , 2013 , 29, 49-54	0.3	4
128	Improved native isolation of endogenous Protein A-tagged protein complexes. 2013, 54, 213-6		10
127	Dual RNA regulatory control of a Staphylococcus aureus virulence factor. 2014 , 42, 4847-58		39
126	Toward improving selectivity in affinity chromatography with PEGylated affinity ligands: the performance of PEGylated protein A. 2014 , 30, 1364-79		9
125	Self-assembled proteinticle nanostructures for 3-dimensional display of antibodies. 2014 , 6, 14919-25		21
124	A monoclonal antibody that recognizes the E domain of staphylococcal protein A. 2014 , 32, 464-9		9
123	Detection of protein-protein interactions by proximity-driven S(N)Ar reactions of lysine-linked fluorophores. 2014 , 136, 5241-4		11
122	Uniform fluorescent nanobioprobes for pathogen detection. 2014 , 8, 5116-24		95
121	The statistical conformation of a highly flexible protein: small-angle X-ray scattering of S. aureus protein A. 2014 , 22, 1184-1195		14
120	Molecular modification of Protein A to improve the elution pH and alkali resistance in affinity chromatography. 2014 , 172, 4002-12		9
119	Thermodynamic investigation of Z33-antibody interaction leads to selective purification of human antibodies. 2014 , 179, 32-41		8
118	In vitro molecular evolution yields an NEIBM with a potential novel IgG binding property. 2014 , 4, 6908		3
117	Multiplexed In-cell Immunoassay for Same-sample Protein Expression Profiling. 2015 , 5, 13651		1

(2016-2015)

116	Affinity proteomics to study endogenous protein complexes: pointers, pitfalls, preferences and perspectives. 2015 , 58, 103-19	39
115	High-level fed-batch fermentative expression of an engineered Staphylococcal protein A based ligand in E. coli: purification and characterization. 2015 , 5, 70	14
114	Protein A is released into the Staphylococcus aureus culture supernatant with an unprocessed sorting signal. <i>Infection and Immunity</i> , 2015 , 83, 1598-609	34
113	Engineered high-affinity nanobodies recognizing staphylococcal Protein A and suitable for native isolation of protein complexes. 2015 , 477, 92-4	9
112	Experimental characterization of the transport phenomena, adsorption, and elution in a protein A affinity monolithic medium. 2015 , 1407, 130-8	16
111	Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold. 2015 , 1415, 83-90	80
110	Differential binding of heavy chain variable domain 3 antigen binding fragments to protein A chromatography resins. 2015 , 1409, 60-9	6
109	The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response. 2016 , 529-566	16
108	Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides. 2016 , 9,	108
107	Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles. 2016 , 6, 21803	38
106	Development of an immunoFET biosensor for the detection of biotinylated PCR product. 2016 , 2, e00188	5
105	The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response. 2016 , 4,	200
104	A strategy of designing the ligand of antibody affinity chromatography based on molecular dynamics simulation. 2016 , 1463, 81-9	6
103	Electrogenerated Chemiluminescence Bioassay of Two Protein Kinases Incorporating Peptide Phosphorylation and Versatile Probe. <i>Analytical Chemistry</i> , 2016 , 88, 8720-7	28
102	Oriented Covalent Immobilization of Engineered ZZ-Cys onto Maleimide-Sepharose: An Affinity Platform for IgG Purification. 2016 , 79, 1271-1276	5
101	Protein Complex Purification by Affinity Capture. 2016 , 2016,	13
100	Structural studies on chimeric Sesbania mosaic virus coat protein: Revisiting SeMV assembly. 2016 , 489, 34-43	7
99	Identification of a peptide ligand for antibody immobilization on biosensor surfaces. <i>Biochip Journal</i> , 2016 , 10, 88-94	14

98	A Robust Workflow for Native Mass Spectrometric Analysis of Affinity-Isolated Endogenous Protein Assemblies. <i>Analytical Chemistry</i> , 2016 , 88, 2799-807	7.8	19
97	Innate Immune Signaling Activated by MDR Bacteria in the Airway. 2016 , 96, 19-53		28
96	Indirect monitoring of protein A biosynthesis in E.coli using potentiometric multisensor system. <i>Sensors and Actuators B: Chemical</i> , 2017 , 238, 1159-1164	8.5	9
95	Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures. 2017 , 257, 171-177		39
94	Surface Plasmon Resonance Investigations of Bioselective Element Based on the Recombinant Protein A for Immunoglobulin Detection. 2017 , 12, 112		8
93	Simultaneous detection of multiple viruses in their co-infected cells using multicolour imaging with self-assembled quantum dot probes. 2017 , 184, 2815-2824		5
92	Conjugate of an IgG Binding Domain with Botulinum Neurotoxin A Lacking the Acceptor Moiety Targets Its SNARE Protease into TrkA-Expressing Cells When Coupled to Anti-TrkA IgG or Fc-即GF. 2017 , 28, 1684-1692		5
91	THE DEVELOPMENT OF ANTIBODY PURIFICATION TECHNOLOGIES. 2017, 23-54		1
90	Polyclonal and monoclonal IgG binding on protein A resins-Evidence of competitive binding effects. 2017 , 114, 1803-1812		11
89	Downstream Processing Technologies/Capturing and Final Purification: Opportunities for Innovation, Change, and Improvement. A Review of Downstream Processing Developments in Protein Purification. 2018 , 165, 115-178		9
88	Bioinspired supramolecular engineering of self-assembling immunofibers for high affinity binding of immunoglobulin G. 2018 , 178, 448-457		8
87	Thermodynamic and conformational analysis of the interaction between antibody binding proteins and IgG. 2018 , 112, 1084-1092		5
86	Orientation and density control of proteins on solid matters by outer membrane coating: Analytical and diagnostic applications. 2018 , 147, 174-184		6
85	Increase in IgG-binding Capacity of Recombinant Protein a Immobilized on Heterofunctional Amino and Epoxy Agarose. 2018 , 381, 012042		2
84	Supramolecular Polymeric Assemblies for the Selective Depletion of Abundant Acidic Proteins in Serum. 2018 , 10, 40443-40451		3
83	Virulence Factor Targeting of the Bacterial Pathogen Staphylococcus aureus for Vaccine and Therapeutics. 2018 , 19, 111-127		36
82	Non-covalent Coating of Liposome Surface with IgG through Its Constant Region. 2018 , 47, 770-772		4
81	A Facile Route for Oriented Covalent Immobilization of Recombinant Protein A on Epoxy Agarose Gels: In Situ Generation of Heterofunctional Amino-Epoxy Supports. 2018 , 3, 10320-10324		2

Identification and Characterization of Novel Fc-Binding Heptapeptides from Experiments and Simulations. 2018 , 10,		4
Production of fluorescent antibody-labeling proteins in plants using a viral vector and the application in the detection of Acidovorax citrulli and Bamboo mosaic virus. <i>PLoS ONE</i> , 2018 , 13, e0192	4 3 3	9
Oriented covalent immobilization of recombinant protein A on the glutaraldehyde activated agarose support. 2018 , 120, 100-108		14
The hijackers guide to escaping complement: Lessons learned from pathogens. <i>Molecular Immunology</i> , 2019 , 114, 49-61	4.3	22
Plasma/serum proteomics: depletion strategies for reducing high-abundance proteins for biomarker discovery. <i>Bioanalysis</i> , 2019 , 11, 1799-1812	2.1	32
A novel oriented antibody immobilization based voltammetric immunosensor for allergenic activity detection of lectin in kidney bean by using AuNPs-PEI-MWCNTs modified electrode. <i>Biosensors and Bioelectronics</i> , 2019 , 143, 111607	11.8	14
Screening for New Surface Anchoring Domains for. Frontiers in Microbiology, 2019, 10, 1879	5.7	6
Chemiluminescent analysis of Staphylococcus aureus utilizing phe11-protonectin against Gram-positive bacteria. <i>Sensors and Actuators B: Chemical</i> , 2019 , 285, 271-276	8.5	8
Toward reducing biomaterial antigenic potential: a miniaturized Fc-binding domain for local deposition of antibodies. <i>Biomaterials Science</i> , 2019 , 7, 760-772	7.4	5
A non-covalent antibody complex for the delivery of anti-cancer drugs. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2019 , 142, 49-60	5.7	2
Immunoglobulin G structure and rheumatoid factor epitopes. PLoS ONE, 2019, 14, e0217624	3.7	20
Effect of butyrate on passive transfer of immunity in dairy calves. <i>Journal of Dairy Science</i> , 2019 , 102, 4190-4197	4	6
Orientation Control of the Molecular Recognition Layer for Improved Sensitivity: a Review. <i>Biochip Journal</i> , 2019 , 13, 82-94	4	18
High-Affinity Antibody Detection with a Bivalent Circularized Peptide Containing Antibody-Binding Domains. <i>Biotechnology Journal</i> , 2019 , 14, e1800647	5.6	2
Symposium review: Intramammary infections-Major pathogens and strain-associated complexity. <i>Journal of Dairy Science</i> , 2019 , 102, 4713-4726	4	28
A comprehensive review on staphylococcal protein A (SpA): Its production and applications. <i>Biotechnology and Applied Biochemistry</i> , 2019 , 66, 454-464	2.8	21
Bacterially Derived Antibody Binders as Small Adapters for DNA-PAINT Microscopy. <i>ChemBioChem</i> , 2019 , 20, 1032-1038	3.8	17
Mechanisms of Immune Evasion and Bone Tissue Colonization That Make Staphylococcus aureus the Primary Pathogen in Osteomyelitis. <i>Current Osteoporosis Reports</i> , 2019 , 17, 395-404	5.4	52
	Simulations. 2018, 10, Production of fluorescent antibody-labeling proteins in plants using a viral vector and the application in the detection of Acidovorax citrulli and Bamboo mosaic virus. PLoS ONE, 2018, 13, e0192. Oriented covalent immobilization of recombinant protein A on the glutaraldehyde activated agarose support. 2018, 120, 100-108 The hijackers guide to escaping complement: Lessons learned from pathogens. Molecular Immunology, 2019, 114, 49-61 Plasma/serum proteomics: depletion strategies for reducing high-abundance proteins for biomarker discovery. Bioanalysis, 2019, 11, 1799-1812 A novel oriented antibody immobilization based voltammetric immunosensor for allergenic activity detection of lectin in kidney bean by using AuNPs-PEI-MWCNTs modified electrode. Biosensors and Bioelectronics, 2019, 143, 111607 Screening for New Surface Anchoring Domains for. Frontiers in Microbiology, 2019, 10, 1879 Chemiluminescent analysis of Stanbylococcus aureus utilizing phe11-protonectin against Gram-positive bacteria. Sensors and Actuators B: Chemical, 2019, 285, 271-276 Toward reducing biomaterial antigenic potential: a miniaturized Fc-binding domain for local deposition of antibodies. Biomaterials Science, 2019, 7, 760-772 A non-covalent antibody complex for the delivery of anti-cancer drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 49-60 Immunoglobulin G structure and rheumatoid factor epitopes. PLoS ONE, 2019, 14, e0217624 Effect of butyrate on passive transfer of immunity in dairy calves. Journal of Dairy Science, 2019, 102, 4190-4197 Orientation Control of the Molecular Recognition Layer for Improved Sensitivity: a Review. Biochip Journal, 2019, 13, 82-94 High-Affinity Antibody Detection with a Bivalent Circularized Peptide Containing Antibody-Binding Domains. Biotechnology Journal, 2019, 14, e1800647 Symposium review: Intramammary Infections-Major pathogens and strain-associated complexity. Journal of Dairy Science, 2019, 102, 4713-4726 A comprehensive review on staph	Production of fluorescent antibody-labeling proteins in plants using a viral vector and the application in the detection of Acidovorax citrulli and Bamboo mosaic virus. PLoS ONE, 2018, 13, e0192435 Oriented covalent immobilization of recombinant protein A on the glutaraldehyde activated agarose support. 2018, 120, 100-108 The hijackers guide to escaping complement: Lessons learned from pathogens. Molecular minumology, 2019, 114, 49-61 Plasma/serum proteomics: depletion strategies for reducing high-abundance proteins for biomarker discovery. Bioanalysis, 2019, 11, 1799-1812 A novel oriented antibody immobilization based voltammetric immunosensor for allergenic activity detection of lectin in kidney bean by using AuNPs-PEI-MWCNTs modified electrode. Biosensors and Bioelectronics, 2019, 143, 111607 Screening for New Surface Anchoring Domains for. Frontiers in Microbiology, 2019, 10, 1879 57. Chemiluminescent analysis of Staphylococcus aureus utilizing phe11-protonectin against Gram-positive bacteria. Sensors and Actuators B: Chemical, 2019, 285, 271-276 Toward reducing biomaterial antigenic potential: a miniaturized Fc-binding domain for local deposition of antibodies. Biomaterials Science, 2019, 7, 760-772 A non-covalent antibody complex for the delivery of anti-cancer drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 49-60 Immunoglobulin G structure and rheumatoid factor epitopes. PLoS ONE, 2019, 14, e0217624 3.7 Effect of butyrate on passive transfer of immunity in dairy calves. Journal of Dairy Science, 2019, 102, 4190-4197 Orientation Control of the Molecular Recognition Layer for Improved Sensitivity: a Review. Biochip Journal, 2019, 13, 82-94 4 High-Affinity Antibody Detection with a Bivalent Circularized Peptide Containing Antibody-Binding Domains. Biotechnology Journal, 2019, 14, e1800647 Symposium review: Intramammany infections-Major pathogens and strain-associated complexity. Journal of Dairy Science, 2019, 102, 4713-4726 A comprehensive review on staphylococcal

62	An engineered Staphylococcal Protein A based ligand: Production, characterization and potential application for the capture of Immunoglobulin and Fc-fusion proteins. <i>Protein Expression and Purification</i> , 2019 , 155, 27-34	2	8
61	Detection of Brucella abortus by a platform functionalized with protein A and specific antibodies IgG. <i>Microscopy Research and Technique</i> , 2019 , 82, 586-595	2.8	4
60	Biosynthesized Quantum Dot for Facile and Ultrasensitive Electrochemical and Electrochemiluminescence Immunoassay. <i>Analytical Chemistry</i> , 2020 , 92, 1598-1604	7.8	22
59	Optimal spacer arm microenvironment for the immobilization of recombinant Protein A on heterofunctional amino-epoxy agarose supports. <i>Process Biochemistry</i> , 2020 , 91, 90-98	4.8	6
58	Holographic immunoassays: direct detection of antibodies binding to colloidal spheres. <i>Soft Matter</i> , 2020 , 16, 10180-10186	3.6	1
57	Multifunctional Amyloid Oligomeric Nanoparticles for Specific Cell Targeting and Drug Delivery. <i>Biomacromolecules</i> , 2020 , 21, 4302-4312	6.9	1
56	Application of Force to a Syndecan-4 Containing Complex With Thy-1-#ntegrin Accelerates Neurite Retraction. <i>Frontiers in Molecular Biosciences</i> , 2020 , 7, 582257	5.6	4
55	Rapid Fabrication of Protein Microarrays via Autogeneration and on-Chip Purification of Biotinylated Probes. <i>ACS Synthetic Biology</i> , 2020 , 9, 2267-2273	5.7	O
54	Current Concepts of Osteomyelitis: From Pathologic Mechanisms to Advanced Research Methods. <i>American Journal of Pathology</i> , 2020 , 190, 1151-1163	5.8	19
53	Development of pepper vein banding virus chimeric virus-like particles for potential diagnostic and therapeutic applications. <i>Archives of Virology</i> , 2020 , 165, 1163-1176	2.6	2
52	Antivirulence Strategies for the Treatment of Infections: A Mini Review. <i>Frontiers in Microbiology</i> , 2020 , 11, 632706	5.7	13
51	Binding characteristics of staphylococcal protein A and streptococcal protein G for fragment crystallizable portion of human immunoglobulin G. <i>Computational and Structural Biotechnology Journal</i> , 2021 , 19, 3372-3383	6.8	2
50	Insight into the human pathodegradome of the V8 protease from Staphylococcus aureus. <i>Cell Reports</i> , 2021 , 35, 108930	10.6	3
49	Staphylococcal Protein A Induces Leukocyte Necrosis by Complexing with Human Immunoglobulins. <i>MBio</i> , 2021 , 12, e0089921	7.8	1
48	Lateral flow assay of methicillin-resistant Staphylococcus aureus using bacteriophage cellular wall-binding domain as recognition agent. <i>Biosensors and Bioelectronics</i> , 2021 , 182, 113189	11.8	6
47	Selection of specific nanobodies to develop an immuno-assay detecting Staphylococcus aureus in milk. <i>Food Chemistry</i> , 2021 , 353, 129481	8.5	18
46	Superantigen Recognition and Interactions: Functions, Mechanisms and Applications. <i>Frontiers in Immunology</i> , 2021 , 12, 731845	8.4	11
45	Approaches to Devise Antibody Purification Processes by Chromatography. 2004 , 79-103		1

44	Piezoelectric Immunosensors. 2006 , 237		2
43	Recovery and Purification of Antibody. <i>Cell Engineering</i> , 2011 , 305-340		5
42	Application of IgY antibodies against staphylococcal protein A (SpA) of Staphylococcus aureus for detection and prophylactic functions. <i>Applied Microbiology and Biotechnology</i> , 2020 , 104, 9387-9398	5.7	6
41	The type I bacterial immunoglobulin-binding protein: Staphylococcal protein A. 1990 , 17-28		15
40	The gene for staphylococcal protein A. 1990 , 29-39		3
39	Bacterial immunoglobulin-binding proteinsfluture trends. 1990 , 425-452		1
38	Human Mast Cells and Basophils in Immune Responses to Infectious Agents. 2000, 397-418		5
37	Secretion incompetence of bovine pancreatic trypsin inhibitor expressed in Escherichia coli <i>Journal of Biological Chemistry</i> , 1991 , 266, 2970-2977	5.4	26
36	Virulence of protein A-deficient and alpha-toxin-deficient mutants of Staphylococcus aureus isolated by allele replacement. <i>Infection and Immunity</i> , 1987 , 55, 3103-10	3.7	210
35	Aleutian mink disease parvovirus infection of mink macrophages and human macrophage cell line U937: demonstration of antibody-dependent enhancement of infection. <i>Journal of Virology</i> , 1993 , 67, 7017-24	6.6	42
34	Intramammary Immunization of Pregnant Mice with Staphylococcal Protein A Reduces the Post-Challenge Mammary Gland Bacterial Load but Not Pathology. <i>PLoS ONE</i> , 2016 , 11, e0148383	3.7	9
33	A natural human monoclonal antibody targeting Staphylococcus Protein A protects against Staphylococcus aureus bacteremia. <i>PLoS ONE</i> , 2018 , 13, e0190537	3.7	43
32	Bioaffinity sorbent based on immobilized protein A Staphylococcus aureus: development and application. <i>Biopolymers and Cell</i> , 2012 , 28, 141-148	0.3	6
31	Recombinant Staphylococcal protein A with cysteine residue for preparation of affinity chromatography stationary phase and immunosensor applications. <i>Biopolymers and Cell</i> , 2015 , 31, 115-	122	5
30	SPR investigations of the formation of intermediate layer of the immunosensor bioselective element based on the recombinant Staphylococcal protein A. <i>Biopolymers and Cell</i> , 2015 , 31, 301-308	0.3	2
29	Molecular studies of immunological enzyme clumping factor B for the inhibition of Staphylococcus aureus with essential oils of Nigella sativa. <i>Journal of Molecular Recognition</i> , 2021 , 34, e2941	2.6	
28	Protein A.		
27	Type II immunoglobulin receptor and its gene. 1990 , 83-99		2

26	The nature of the interaction of bacterial Fc receptors and IgG. 1990 , 305-316		2
25	[Plasmasorption]. Klinische Anasthesiologie Und Intensivtherapie, 1993 , 45, 147-63		
24	Non-Immunological High-Affinity Interactions Used for Labelling. 1993 , 307-344		1
23	Prparation von Proteinen f⊞die Gelelektrophorese. 1997 , 1-66		
22	Bioengineering. 2020 , 193-208		
21	Production of specific antibodies against protein A fusion proteins. <i>EMBO Journal</i> , 1986 , 5, 2393-8	13	11
20	Sialic acid binding sites in VP2 of bluetongue virus and their use during virus entry. <i>Journal of Virology</i> , 2021 , JVI0167721	6.6	1
19	The first report on the sortase-mediated display of bioactive protein A from Staphylococcus aureus (SpA) on the surface of the vegetative form of Bacillus subtilis. <i>Microbial Cell Factories</i> , 2021 , 20, 212	6.4	Ο
18	SpAD Biofunctionalized Cellulose Acetate Scaffolds Inhibit Adherence in a Coordinating Function with the von Willebrand A1 Domain (vWF A1) <i>Journal of Functional Biomaterials</i> , 2022 , 13,	4.8	1
17	Skeletal infections: microbial pathogenesis, immunity and clinical management <i>Nature Reviews Microbiology</i> , 2022 ,	22.2	12
16	Engineering Saccharomyces cerevisiae for the production and secretion of Affibody molecules <i>Microbial Cell Factories</i> , 2022 , 21, 36	6.4	1
15	Green fluorescent protein-fused bacteriophage cellular wall-binding domain as broad-spectrum signal probe for fluorimetry of methicillin-resistant Staphylococcus aureus strains <i>Analytica Chimica Acta</i> , 2022 , 1207, 339799	6.6	Ο
14	Meso-substituented pyronine: colorful emission and versatile platform for the rational design of fluorescent probes. <i>Coordination Chemistry Reviews</i> , 2022 , 461, 214507	23.2	1
13	Functional Magnetic Microdroplets for Antibody Extraction. <i>Advanced Materials Interfaces</i> , 2022 , 9, 210	1,4,67	2
12	Affinity Isolation of Endogenous Saccharomyces Cerevisiae Nuclear Pore Complexes <i>Methods in Molecular Biology</i> , 2022 , 2502, 3-34	1.4	O
11	Data_Sheet_1.docx. 2019 ,		
10	Data_Sheet_2.xlsx. 2019 ,		
9	Data_Sheet_1.pdf. 2020 ,		

CITATION REPORT

8 Carthamus tinctorius L., as an Anti-virulence Intervention Against Methicillin Resistance Staphylococcus aureus. **2022**, 18, 1219-1228

7	Bacteriophage-Based Detection of Staphylococcus aureus in Human Serum. 2022 , 14, 1748	O
6	High-Purity Corundum as Support for Affinity Extractions from Complex Samples. 2022 , 9, 252	0
5	Nanoplasmonic Avidity-Based Detection and Quantification of IgG Aggregates.	О
4	IgG Fc Affinity Ligands and Their Applications in Antibody-Involved Drug Delivery: A Brief Review. 2023 , 15, 187	О
3	A simple urine test by 3D-plus-3D immunoassay guides precise in vitro cancer diagnosis.	O
2	Viral attachment blocking chimera composed of DNA origami and nanobody inhibits Pseudorabies Virus infectionin vitro.	0
1	Methods for the localization of cellular components in Chlamydomonas. 2023 , 345-384	O