Pancreatic B cells possess defense mechanisms against

Proceedings of the National Academy of Sciences of the Unite 83, 5267-5271

DOI: 10.1073/pnas.83.14.5267

Citation Report

#	Article	lF	CITATIONS
1	Spontaneously Diabetic BB Rats Have Age-Dependent Islet Â-CellSpecific Surface Antibodies at Clinical Onset. Diabetes, 1987, 36, 1111-1115.	0.3	18
2	The biosociology of pancreatic B cells. Diabetologia, 1987, 30, 277-291.	2.9	166
3	Functional Restoration of Cultured Mouse Pancreatic Islets after <i>in Vitro</i> Exposure to Alloxan. Basic and Clinical Pharmacology and Toxicology, 1988, 63, 396-399.	0.0	16
4	Culture of mouse pancreatic islets in different glucose concentrations modifies B cell sensitivity to streptozotocin. Diabetologia, 1988, 31, 168-174.	2.9	53
5	Functional characteristics of cultured mouse pancreatic islets following exposure to different streptozotocin concentrations. Molecular and Cellular Endocrinology, 1988, 59, 83-91.	1.6	46
6	The Pathology of the Endocrine Pancreas in Diabetes. , 1988, , .		12
7	Cytokines as Immune Effector Molecules in Autoimmune Endocrine Diseases with Special Reference to Insulin-Dependent Diabetes Mellitus. Autoimmunity, 1989, 4, 191-218.	1.2	75
8	Studies on the Mechanisms Causing Inhibition of Insulin Secretion in Rat Pancreatic Islets Exposed to Human Interleukin-1β Indicate a Perturbation in the Mitochondrial Function*. Endocrinology, 1989, 124, 1492-1501.	1.4	112
9	Function and Metabolism of Pancreatic β ells Maintained in Culture Following Experimentally Induced Damage. Basic and Clinical Pharmacology and Toxicology, 1989, 65, 163-168.	0.0	18
10	Sensitivity of rat pancreatic A and B cells to somatostatin. Diabetologia, 1989, 32, 207-212.	2.9	90
11	Terbutaline decreases the blood flow of the pancreatic islets but does not reduce the diabetogenic action of streptozotocin in the rat. European Journal of Pharmacology, 1989, 161, 79-83.	1.7	25
12	Immunological aspects of diabetes mellitus: Prospects for pharmacological modification. , 1989, 44, 351-406.		9
13	High Dose Nicotinamide Fails to Prevent Diabetes in BB Rats. Autoimmunity, 1989, 5, 79-86.	1.2	21
14	Elevated levels of nonesterified fatty acids in the myocardium of alloxan diabetic rats. Lipids, 1990, 25, 307-310.	0.7	18
15	Disappearance of glucose-induced oscillations of cytoplasmic Ca2+ in pancreatic Î ² -cells exposed to streptozotocin or alloxan. Toxicology, 1990, 63, 263-271.	2.0	21
16	Humoral-Mediated Anti-Islet Cytotoxicity in Diabetes-Prone BB/OK Rats-Effect on $\hat{1}^2$ -Cell Function and	0.6	4
17	Transplantation of Purified Islet Cells in Diabetic Rats: II. Immunogenicity of Allografted Islet Â-Cells. Diabetes, 1991, 40, 920-930.	0.3	39
18	Repetitive Exposure of Pancreatic Islets to Interleukin-1β. AnIn VitroModel of Pre-diabetes?. Autoimmunity, 1991, 10, 311-318.	1.2	13

#	Article	IF	CITATIONS
19	New Perspectives on the Structure and Function of the Normal and Diabetic β-cell. Upsala Journal of Medical Sciences, 1991, 96, 1-16.	0.4	0
20	Heterogeneity in Pancreatic Î ² -cell Population. Diabetes, 1992, 41, 777-781.	0.3	160
21	Pancreatic beta cells in insulinâ€dependent diabetes. Diabetes/metabolism Reviews, 1992, 8, 209-227.	0.2	127
22	Oxygen radicals generated by the enzyme xanthine oxidase lyse rat pancreatic islet cells in vitro. Diabetologia, 1992, 35, 1028-1034.	2.9	65
23	Effect of prooxidants on insulin secretion by the isolated rat pancreas. Bulletin of Experimental Biology and Medicine, 1993, 116, 961-962.	0.3	0
24	Reduced glutamate decarboxylase activity in rat islet β cells which survived streptozotocin-induced cytotoxicity. FEBS Letters, 1993, 324, 262-264.	1.3	3
25	Repair of Pancreatic β-cells: A Relevant Phenomenon in Early IDDM?. Diabetes, 1993, 42, 1383-1391.	0.3	58
26	Immunointervention in Type 1 (Insulin-Dependent) Mellitus Diabetes. Acta Clinica Belgica, 1993, 48, 86-95.	0.5	5
27	Mechanisms of cytokine-induced destruction of rat insulinoma cells: the role of nitric oxide Endocrinology, 1994, 134, 1006-1010.	1.4	58
28	Human pancreatic islet beta-cell destruction by cytokines is independent of nitric oxide production Journal of Clinical Endocrinology and Metabolism, 1994, 79, 1058-1062.	1.8	85
29	Physiologic relevance of heterogeneity in the pancreatic beta-cell population. Diabetologia, 1994, 37, S57-S64.	2.9	145
30	DNA fragmentation is an early event in cytokine-induced islet beta-cell destruction. Diabetologia, 1994, 37, 733-738.	2.9	82
31	Irreversible loss of normal beta-cell regulation by glucose in neonatally streptozotocin diabetic rats. Diabetologia, 1994, 37, 351-357.	2.9	19
32	Effect of nutrients, hormones and serum on survival of rat islet beta cells in culture. Diabetologia, 1994, 37, 15-21.	2.9	110
33	Islet cell defence and repair mechanisms in insulin-dependent diabetes: a role for the pancreatic regenerating (<i>Reg</i>) gene?. Biochemical Society Transactions, 1994, 22, 37-41.	1.6	8
34	Major species differences between humans and rodents in the susceptibility to pancreatic beta-cell injury Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9253-9256.	3.3	249
35	Heat shock induces resistance in rat pancreatic islet cells against nitric oxide, oxygen radicals and streptozotocin toxicity in vitro Journal of Clinical Investigation, 1995, 95, 2840-2845.	3.9	141
37	Inactivation of the Poly(ADP-ribose) Polymerase Gene Affects Oxygen Radical and Nitric Oxide Toxicity in Islet Cells. Journal of Biological Chemistry, 1995, 270, 11176-11180.	1.6	258

#	Article	IF	CITATIONS
38	Heat shock protein hsp70 overexpression confers resistance against nitric oxide. FEBS Letters, 1996, 391, 185-188.	1.3	147
39	Damaged Rat β Cells Discharge Glutamate Decarboxylase in the Extracellular Medium. Biochemical and Biophysical Research Communications, 1996, 228, 293-297.	1.0	18
40	Prevention of Insulin-dependent Diabetes: Where Are We Now?. , 1996, 12, 127-135.		5
41	Metabolic activation of islet cells improves resistance against oxygen radicals or streptozocin, but not nitric oxide Journal of Clinical Endocrinology and Metabolism, 1996, 81, 3966-3971.	1.8	3
42	Cytokines Induce Deoxyribonucleic Acid Strand Breaks and Apoptosis in Human Pancreatic Islet Cells*. Endocrinology, 1997, 138, 2610-2614.	1.4	282
43	Activation of a novel non-selective cation channel by alloxan and H2O2in the rat insulin-secreting cell line CRI-G1. Journal of Physiology, 1997, 501, 59-66.	1.3	61
44	A short exposure to a highâ€glucose milieu stabilizes the acidic vacuolar apparatus of insulinoma cells in culture to ensuing oxidative stress. Apmis, 1997, 105, 689-698.	0.9	27
45	An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus. , 1998, 14, 129-151.		379
46	Cytokines and Their Roles in Pancreatic Islet β-Cell Destruction and Insulin-Dependent Diabetes Mellitus. Biochemical Pharmacology, 1998, 55, 1139-1149.	2.0	428
47	Intercellular Differences in Interleukin 1β-Induced Suppression of Insulin Synthesis and Stimulation of Noninsulin Protein Synthesis by Rat Pancreatic β-Cells*. Endocrinology, 1998, 139, 1540-1545.	1.4	39
48	The Deutsche Nicotinamide Intervention Study: an attempt to prevent type 1 diabetes. DENIS Group. Diabetes, 1998, 47, 980-984.	0.3	179
49	A Low Voltage-Activated Ca2+ Current Mediates Cytokine-Induced Pancreatic β-Cell Death*. Endocrinology, 1999, 140, 1200-1204.	1.4	76
50	β-Cell Dysfunction and Death. Advances in Molecular and Cell Biology, 1999, 29, 47-73.	0.1	4
51	Emerging therapeutic strategies in autoimmune diabetes: aetiology, prediction, prevention and cure. Expert Opinion on Therapeutic Targets, 1999, 3, 177-193.	1.0	0
52	Nicotinamide protects human beta cells against chemically-induced necrosis, but not against cytokine-induced apoptosis. Diabetologia, 1999, 42, 55-59.	2.9	79
53	Free radical modulation of insulin release in INS-1 cells exposed to alloxan. Biochemical Pharmacology, 1999, 57, 639-648.	2.0	93
54	Diet can influence the ability of nicotinamide to prevent diabetes in the non-obese diabetic mouse: a preliminary study. Diabetes/Metabolism Research and Reviews, 1999, 15, 21-28.	1.7	6
55	Nicotinamide prevents the development of diabetes in the cyclophosphamide-induced NOD mouse model by reducing beta-cell apoptosis. , 2000, 191, 86-92.		41

#	Article	IF	CITATIONS
56	Cytokines induce apoptosis in beta-cells isolated from mice lacking the inducible isoform of nitric oxide synthase (iNOS-/-) Diabetes, 2000, 49, 1116-1122.	0.3	194
57	Poly(ADP-ribose) polymerase facilitates the repair of N-methylpurines in mitochondrial DNA. Diabetes, 2000, 49, 1849-1855.	0.3	27
58	Inverse Relationship Between Cytotoxicity of Free Fatty Acids in Pancreatic Islet Cells and Cellular Triglyceride Accumulation. Diabetes, 2001, 50, 1771-1777.	0.3	509
59	Prevention of type 1a diabetes mellitus*. Pediatric Diabetes, 2001, 2, 17-24.	1.2	5
60	Distinction Between Interleukin-1-Induced Necrosis and Apoptosis of Islet Cells. Diabetes, 2001, 50, 551-557.	0.3	68
61	Role of pancreatic beta-cells in the process of beta-cell death. Diabetes, 2001, 50, S52-S57.	0.3	49
62	Double-Stranded Ribonucleic Acid (RNA) Induces β-Cell Fas Messenger RNA Expression and Increases Cytokine-Induced β-Cell Apoptosis*. Endocrinology, 2001, 142, 2593-2599.	1.4	40
63	Double-Stranded RNA Cooperates with Interferon-Î ³ and IL-1Î ² to Induce Both Chemokine Expression and Nuclear Factor-κB-Dependent Apoptosis in Pancreatic β-Cells: Potential Mechanisms for Viral-Induced Insulitis and β-Cell Death in Type 1 Diabetes Mellitus. Endocrinology, 2002, 143, 1225-1234.	1.4	65
64	Specific Expression of Bax-ω in Pancreatic β-Cells Is Down-Regulated by Cytokines before the Onset of Apoptosis. Endocrinology, 2002, 143, 320-326.	1.4	27
65	Troglitazone does not protect rat pancreatic β cells against free fatty acid-induced cytotoxicity. Biochemical Pharmacology, 2002, 63, 1281-1285.	2.0	40
66	Role of cytokines in the pathogenesis of autoimmune diabetes mellitus. Reviews in Endocrine and Metabolic Disorders, 2003, 4, 291-299.	2.6	101
67	Immunization with streptozotocin-treated NOD mouse islets inhibits the onset of autoimmune diabetes in NOD mice. Journal of Autoimmunity, 2003, 21, 11-15.	3.0	9
68	Variations in IB1/JIP1 Expression Regulate Susceptibility of Â-Cells to Cytokine-Induced Apoptosis Irrespective of C-Jun NH2-Terminal Kinase Signaling. Diabetes, 2003, 52, 2497-2502.	0.3	22
69	Alterações histológicas e imunoistoquÃmicas em pâncreas de ratos normais e diabéticos tratados com Syzygium cumini. Ciencia Rural, 2004, 34, 1821-1825.	0.3	0
70	Identification of Key β Cell Gene Signaling Pathways Involved in Type 1 Diabetes. Annals of the New York Academy of Sciences, 2004, 1037, 203-207.	1.8	3
71	Human pancreatic duct cells can produce tumour necrosis factor-α that damages neighbouring beta cells and activates dendritic cells. Diabetologia, 2004, 47, 998-1008.	2.9	39
72	Nutrient sensing in pancreatic \hat{l}^2 cells suppresses mitochondrial superoxide generation and its contribution to apoptosis. Biochemical Society Transactions, 2005, 33, 300-301.	1.6	13
73	Activation of 12-lipoxygenase in proinflammatory cytokine-mediated beta cell toxicity. Diabetologia, 2005, 48, 486-495.	2.9	78

#	Article	IF	Citations
74	Comparison of cellular and medium insulin and GABA content as markers for living Î ² -cells. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E307-E313.	1.8	19
75	Glucose Suppresses Superoxide Generation in Metabolically Responsive Pancreatic β Cells*. Journal of Biological Chemistry, 2005, 280, 20389-20396.	1.6	120
76	GLP-1 receptor activation improves Î ² cell function and survival following induction of endoplasmic reticulum stress. Cell Metabolism, 2006, 4, 391-406.	7.2	375
77	Glycemic Control of Apoptosis in the Pancreatic Beta Cell: Danger of Extremes?. Antioxidants and Redox Signaling, 2007, 9, 309-317.	2.5	22
78	Peroxisome proliferatorâ€activated receptorâ€fα–retinoidâ€fX receptor agonists induce beta ell protectior against palmitate toxicity. FEBS Journal, 2007, 274, 6094-6105.	2.2	49
79	Increased oxygen radical formation and mitochondrial dysfunction mediate beta cell apoptosis under conditions of AMP-activated protein kinase stimulation. Free Radical Biology and Medicine, 2007, 42, 64-78.	1.3	91
80	Restoring a functional βâ€cell mass in diabetes. Diabetes, Obesity and Metabolism, 2008, 10, 54-62.	2.2	61
81	Effect of nicotinamide on early graft failure following intraportal islet transplantation. Experimental and Molecular Medicine, 2009, 41, 782.	3.2	21
82	ULTRASTRUCTURAL STUDIES OF TIME OURSE AND CELLULAR SPECIFICITY OF INTERLEUKINâ€1 MEDIATED ISL CYTOTOXICITY. Acta Pathologica, Microbiologica, Et Immunologica Scandinavica Section C, Immunology, 1987, 95C, 55-63.	ET 0.2	33
83	Protein Markers for Insulin-Producing Beta Cells with Higher Glucose Sensitivity. PLoS ONE, 2010, 5, e14214.	1.1	33
84	<i>In vitro</i> toxicity of melamine against <i>Tetrahymena pyriformis</i> cells. Journal of Veterinary Science, 2011, 12, 27.	0.5	7
85	Liver and Pancreas. , 2012, , 433-535.		20
86	Protective effect of nicotinamide on high glucose/palmitate-induced glucolipotoxicity to INS-1 beta cells is attributed to its inhibitory activity to sirtuins. Archives of Biochemistry and Biophysics, 2013, 535, 187-196.	1.4	20
87	Streptozotocin Stimulates the Ion Channel TRPA1 Directly. Journal of Biological Chemistry, 2015, 290, 15185-15196.	1.6	59
88	Evaluation of a Standardized Extract from <i>Morus alba</i> against <i>α</i> -Glucosidase Inhibitory Effect and Postprandial Antihyperglycemic in Patients with Impaired Glucose Tolerance: A Randomized Double-Blind Clinical Trial. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-10.	0.5	20
89	Phenylpropenoic Acid Glucoside from Rooibos Protects Pancreatic Beta Cells against Cell Death Induced by Acute Injury. PLoS ONE, 2016, 11, e0157604.	1.1	28
90	Response to the letter to the editor: Dihydroartemisinin prevents palmitate-induced β-cell apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 150-151.	2.2	0
91	The Autoimmune Hypothesis of Insulin-Dependent Diabetes: 1965 to the Present. E&M Endocrinology and Metabolism, 1990, , 1-28.	0.1	4

ARTICLE IF CITATIONS # Immunoregulation by Cytokines in Autoimmune Diabetes. Advances in Experimental Medicine and 92 0.8 21 Biology, 2003, 520, 159-193. The Reg Gene and Islet Cell Repair and Renewal in Type 1 Diabetes. Advances in Experimental Medicine 0.8 and Biology, 1997, 426, 321-327. Animal Models for Insulin-Dependent Diabetes Mellitus., 1999, , 113-139. 94 1 Death of the Pancreatic B-Cell., 1988, , 106-124. Cellular Endogenous Fluorescence: A Basis for Preparing Subpopulations of Functionally 96 5 Homogeneous Cells. , 1989, , 391-404. Separation of Pancreatic Islet Cells according to Functional Characteristics., 1987, , 119-140. 98 Digestive System 2., 2000, , 432-544. 6 Prolonged exposure of human beta cells to elevated glucose levels results in sustained cellular activation leading to a loss of glucose regulation.. Journal of Clinical Investigation, 1996, 98, 2805-2812. Prevention of type 1a diabetes mellitus*. Pediatric Diabetes, 2001, 2, 17-24. 100 1.2 7 Glycemic Control of Apoptosis in the Pancreatic Beta Cell: Danger of Extremes?. Antioxidants and 2.5 Redox Signaling, 2006, . 102 Circulating Signs of Autoimmune Islet Disease., 1988,, 53-70. 1 The Efficacity of Abelmoschus esculentus Fruit on Insulin Control in Diabetic Male Wistar Rats. Majallah-i DÄnishgÄh-i 'UlÅ«m-i PizishkÄ«-i ĪlÄm, 2016, 24, 133-143. 0.1 Effect of Magnesium pre-treatment on alloxan induced hyperglycemia in rats. African Health Sciences, 104 0.3 7 2011, 11, 79-84.

CITATION REPORT