Chemical Kinetic Data Base for Combustion Chemistry. Compounds

Journal of Physical and Chemical Reference Data 15, 1087-1279 DOI: 10.1063/1.555759

Citation Report

#	Article	IF	CITATIONS
10	Molecular beam study of the interaction of atomic and molecular oxygen with methane. Journal of Chemical Physics, 1987, 87, 5266-5271.	3.0	14
11	Chemistry of Molecular Growth Processes in Flames. Science, 1987, 236, 1540-1546.	12.6	46
12	The Role of Low Temperature Chemistry in the Autoignition of N-Butane. , 0, , .		34
13	The O + NH3 reaction: A review. International Journal of Chemical Kinetics, 1987, 19, 319-362.	1.6	33
14	The photochemistry of methyl cyclobutyl ketone. Part 2. Temperature dependence and the acetyl radical decomposition. International Journal of Chemical Kinetics, 1987, 19, 997-1013.	1.6	11
15	CH3O+CO removal rate constant measurements over the 473–973 K temperature range. Chemical Physics Letters, 1987, 138, 548-552.	2.6	19
16	Kinetics of hydroxyl radical reactions with formaldehyde and 1,3,5-trioxane between 290 and 600 K. International Journal of Chemical Kinetics, 1988, 20, 117-129.	1.6	35
17	Kinetic isotopic fractionation and the origin of HDO and CH3D in the solar system. Icarus, 1988, 74, 121-132.	2.5	26
18	Estimation of the reaction rate for the formation of CH3O from H + H2CO: Implications for chemistry in the solar system. Icarus, 1988, 73, 516-526.	2.5	55
19	HDO in the Martian atmosphere: Implications for the abundance of crustal water. Icarus, 1988, 76, 146-159.	2.5	140
20	Direct study of the reactions of CH2OH and CH3CHOH radicals with O(3P) atoms. Chemical Physics Letters, 1988, 148, 530-536.	2.6	19
21	Analysis of fuel-lean combustion using chemical mechanisms. Combustion and Flame, 1988, 72, 271-286.	5.2	11
22	The reaction of OH and OD with nitromethane and OD with perdeuteronitromethane. Chemical Physics, 1988, 120, 319-325.	1.9	7
23	Discharge flow study of the CH3S + NO2 reaction mechanism using Cl + CH3SH as the CH3S source. Chemical Physics Letters, 1988, 148, 231-236.	2.6	32
24	Methane utilization by oxidative coupling I. A study of reactions in the gas phase during the cofeeding of methane and oxygen. Journal of Catalysis, 1988, 113, 144-163.	6.2	141
25	Reduced H2-O2 mechanisms for use in reacting flow simulation. , 1988, , .		5
26	Spectrometric measurements of the kinetics of individual atom and radical reactions in the 300–1900 K temperature range. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1988, 43, 1075-1085.	2.9	3
27	Hydrogen atom abstraction by O(3P) from diborane and ethane. Journal of Chemical Physics, 1988, 88, 6282-6289.	3.0	10

#	Article	IF	CITATIONS
28	Improved potential energy surfaces for the reaction O(3P)+H2→OH+H. Journal of Chemical Physics, 1988, 88, 6982-6990.	3.0	47
29	Radiative lifetime and quenching of the Ã 2A1 state of the CH3O radical. Journal of Chemical Physics, 1988, 88, 171-175.	3.0	21
30	The Application of Multiâ€Photon Ionization Mass Spectrometry to the Study of the Reactions O + C ₂ H ₄ , F + C ₃ H ₆ , F + câ€C ₃ H ₆ , F + CH ₃ OH, H + CH ₂ OH and O + CH ₃ O. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1988, 92, 1472-1477.	0.9	16
31	Laser Diagnostics of Microelectronics Fabrication Processes. Materials Research Society Symposia Proceedings, 1988, 117, 73.	0.1	0
32	A Kinetic Model for Metalorganic Chemical Vapor Deposition of GaAs from Trimethylgallium and Arsine. Materials Research Society Symposia Proceedings, 1988, 131, 117.	0.1	6
33	Autoignition Chemistry of N-Butane in a Motored Engine:A Comparison of Experimental and Modeling Results. , 1988, , .		17
34	Rate constants for the reaction O+D2→OD+D by the flash photolysis–shock tube technique over the temperature range 825–2487 K: The H2 to D2 isotope effect. Journal of Chemical Physics, 1989, 90, 189-198.	3.0	89
35	On the role of oxygen and hydrogen in diamondâ€forming discharges. Journal of Applied Physics, 1989, 65, 3448-3452.	2.5	240
36	Laserâ€induced emission of CH3O in solid argon. Journal of Chemical Physics, 1989, 90, 81-86.	3.0	29
37	Evaluation of the rate constant for the reaction OH+H2CO: Application of modeling and sensitivity analysis techniques for determination of the product branching ratio. Journal of Chemical Physics, 1989, 91, 4088-4097.	3.0	41
38	Some New Observations on Methanol Oxidation Chemistry. Combustion Science and Technology, 1989, 63, 107-129.	2.3	87
39	Dynamics of the reaction of atomic fluorine with azomethane: An IR-chemiluminescence study. Chemical Physics, 1989, 132, 413-422.	1.9	10
40	Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 1989, 15, 287-338.	31.2	2,716
41	Canonical statistical adiabatic channel model calculations of the H + CH3 ? CH4 recombination reaction on anab initio potential energy surface. The role of the transitional modes. International Journal of Chemical Kinetics, 1989, 21, 165-174.	1.6	8
42	Detailed chemical kinetic modeling of butylbenzene pyrolysis. International Journal of Chemical Kinetics, 1989, 21, 561-574.	1.6	51
43	The pressure and temperature dependence of methane decomposition. International Journal of Chemical Kinetics, 1989, 21, 923-945.	1.6	41
44	Thermal reaction of CH2O with NO2 in the temperature range of 393-476 K: FTIR product measurement and kinetic modeling. International Journal of Chemical Kinetics, 1989, 21, 1015-1027.	1.6	31
45	A measurement of the strength of the $1\frac{1}{2}$ band of CH3. Chemical Physics Letters, 1989, 156, 47-50.	2.6	42

#	Article	IF	CITATIONS
46	Present state of predicting limiting high-pressure rate coefficients for pyrolysis reactions. Combustion and Flame, 1989, 78, 59-69.	5.2	5
47	Rate constants for the decomposition and formation of simple alkanes over extended temperature and pressure ranges. Combustion and Flame, 1989, 78, 71-86.	5.2	67
48	The pyrolysis of acetylene initiated by acetone. Combustion and Flame, 1989, 75, 343-366.	5.2	57
49	Pressure and temperature dependence of reactions proceeding via a bound complex. 2. Application to 2CH3 → C2H5 + H. Combustion and Flame, 1989, 75, 25-31.	5.2	111
51	RRKM model of C2H4 dissociation: Heat of formation of vinylidene. Chemical Physics Letters, 1989, 159, 32-34.	2.6	25
52	Transport phenomena and chemical reaction issues in OMVPE of compound semiconductors. Journal of Crystal Growth, 1989, 98, 148-166.	1.5	59
53	A pulse radiolysis study of the temperature dependence of reactions involving H, OH and e-aq in aqueous solutions. International Journal of Radiation Applications and Instrumentation Nuclear Tracks and Radiation Measurements, 1989, 34, 753-758.	0.0	15
54	Experimental and computational investigation of the structure of a sooting C2H2-O2-Ar flame. Proceedings of the Combustion Institute, 1989, 22, 313-322.	0.3	38
55	Toward a quantitative understanding of elementary combustion reactions. Proceedings of the Combustion Institute, 1989, 22, 843-862.	0.3	20
56	Tabulation of rate constants for combustion modeling. Proceedings of the Combustion Institute, 1989, 22, 943-952.	0.3	7
57	Reactions of hydroxymethyl and hydroxyethyl radicals with molecular and atomic oxygen. Proceedings of the Combustion Institute, 1989, 22, 963-972.	0.3	9
58	Direct measurements of methoxy removal rate constants for collisions with CH4, Ar, N2, Xe, and CF4 in the temperature range 673–973 K. Proceedings of the Combustion Institute, 1989, 22, 973-981.	0.3	10
59	Mechanism and rate constants for the reactions of hydrogen atoms with isobutene at high temperatures. Proceedings of the Combustion Institute, 1989, 22, 1015-1022.	0.3	19
60	The reactions of benzyl radicals with hydrogen atoms, oxygen atoms, and molecular oxygen using EI/REMPI mass spectrometry. Proceedings of the Combustion Institute, 1989, 22, 1041-1051.	0.3	19
61	Advanced NOx reduction processes using-NH and -CN compounds in conjunction with staged air addition. Proceedings of the Combustion Institute, 1989, 22, 1135-1145.	0.3	18
62	Numerical studies of a thermokinetic model for oscillatory cool flame and complex ignition phenomena in ethanal oxidation under well-stirred flowing conditions. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1989, 422, 289-310.	1.4	13
63	Electron and chemical kinetics in methane rf glowâ€discharge deposition plasmas. Journal of Applied Physics, 1989, 65, 70-78.	2.5	161
64	Photochemistry of CO and H ₂ O: Analysis of laboratory experiments and applications to the prebiotic Earth's atmosphere. Journal of Geophysical Research, 1989, 94, 14957-14970.	3.3	26

#	ARTICLE	IF	CITATIONS
65	Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method. , 1989, , .		3
66	Computer simulation of materials processing plasma discharges. Critical Reviews in Solid State and Materials Sciences, 1989, 16, 1-35.	12.3	56
67	Relative rates of CH ₃ NO ₂ , CH ₃ ONO, and CH ₃ ONO ₂ formation in the thermal reaction of NO ₂ with acetaldehyde and DI-T-butyl peroxide at low temperatures. Journal of Energetic Materials, 1989, 7, 55-76.	2.0	3
68	Ignition and Flame Propagation Modeling With an Improved Methane Oxidation Mechanism. Combustion Science and Technology, 1989, 63, 287-313.	2.3	47
69	Models and Mechanisms of III-V Compound Semiconductor Growth by Movpe. Materials Research Society Symposia Proceedings, 1989, 145, 107.	0.1	12
70	Preparation of Single Rotation Vibration States of CH ₃ O (X̃ ² E) Above the H – CH ₂ O Dissociation Threshold by Stimulated Emission Pumping. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1990, 94, 1219-1224.	0.9	14
71	Gas-phase processes in diamond synthesis by hot-filament CVD Kagaku Kogaku Ronbunshu, 1990, 16, 454-462.	0.3	2
72	The Dissociation-Recombination System CH ₄ + M⇌CH ₃ + H + M: Reevaluated Experiments from 300 to 3000 K. Zeitschrift Fur Physikalische Chemie, 1990, 167, 129-149.	2.8	46
73	An Investigation of the Reaction between O(³ P) and Toluene at High Temperatures. Zeitschrift Fur Physikalische Chemie, 1990, 168, 1-12.	2.8	23
74	Models of The Direct Catalytic Partial Oxidation of Light Alkanes. Studies in Surface Science and Catalysis, 1990, , 405-415.	1.5	26
75	Fundamental processes of SF/sub 6/ decomposition and oxidation in glow and corona discharges. IEEE Transactions on Electrical Insulation, 1990, 25, 75-94.	0.8	226
76	Radical concentration measurements in hydrocarbon diffusion flames. Applied Physics B, Photophysics and Laser Chemistry, 1990, 50, 499-511.	1.5	11
77	Comments on current aspects of chemical kinetics. International Journal of Chemical Kinetics, 1990, 22, 113-133.	1.6	4
78	Toward a comprehensive mechanism for methanol pyrolysis. International Journal of Chemical Kinetics, 1990, 22, 219-241.	1.6	89
79	Time-resolved mass spectrometric study of the reaction H +Trans-2-Butene. International Journal of Chemical Kinetics, 1990, 22, 359-378.	1.6	5
80	A shock tube study of the CH2O + NO2 reaction at high temperatures. International Journal of Chemical Kinetics, 1990, 22, 455-482.	1.6	60
81	Homogeneous pyrolysis of acetylacetone at high temperatures in shock waves. International Journal of Chemical Kinetics, 1990, 22, 491-504.	1.6	12
82	Ethylene pyrolysis and oxidation: A kinetic modeling study. International Journal of Chemical Kinetics, 1990, 22, 641-664.	1.6	87

#	Article	IF	CITATIONS
83	High temperature pyrolysis of methane in shock waves. Rates for dissociative recombination reactions of methyl radicals and for propyne formation reaction. International Journal of Chemical Kinetics, 1990, 22, 701-709.	1.6	43
84	OH and CH profiles in a 10 Torr methane / oxygen flame: experiment and flame modeling. Chemical Physics Letters, 1990, 175, 395-400.	2.6	9
85	Computer modeling of cool flames and ignition of acetaldehyde. Combustion and Flame, 1990, 82, 15-39.	5.2	43
86	Influence of equivalence ratio on the structure of low-pressure premixed methanolî—,air flames. Combustion and Flame, 1990, 82, 163-175.	5.2	11
87	Concentration measurements of OH· and equilibrium analysis in a laminar methane-air diffusion flame. Combustion and Flame, 1990, 79, 366-380.	5.2	70
88	Sonolysis of hydrocarbons in aqueous solution. International Journal of Radiation Applications and Instrumentation Nuclear Tracks and Radiation Measurements, 1990, 36, 511-516.	0.0	11
89	Theoretical analysis of collisional energy transfer in unimolecular reactions: Collision efficiencies in binary mixtures. Chemical Physics, 1990, 143, 25-38.	1.9	4
90	An Experimental and Kinetic Modeling Study of the Combustion of n-Butane and Isobutane in an Internal Combustion Engine. , 1990, , .		12
91	Stimulated emission pumping spectroscopy of CH3O (X̃ 2E) at the dissociation limit. Journal of Chemical Physics, 1990, 93, 1472-1473.	3.0	20
92	Reaction and electronic excitation in crossed-beams collisions of low-energy O(3P) atoms withH2O andCO2. Physical Review Letters, 1990, 65, 2359-2361.	7.8	24
93	Hydrogen/air combustion calculations - The chemical basis of efficiency in hypersonic flows. AIAA Journal, 1990, 28, 1740-1744.	2.6	16
94	Flux-vector splitting calculation of nonequilibrium hydrogen-air reactions. Journal of Spacecraft and Rockets, 1990, 27, 167-174.	1.9	14
95	Mechanistic Studies of Toluene Destruction in Diffusion Flames. Combustion Science and Technology, 1990, 71, 175-195.	2.3	35
96	Thermal Decomposition of t-Butyl Alcohol in Shock Waves. Combustion Science and Technology, 1990, 71, 219-232.	2.3	22
97	Estimation of rate constants for near-diffusion-controlled reactions in water at high temperatures. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 1539.	1.7	273
98	Kinetics of the reactions of CH3O and CD3O with NO. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 4001.	1.7	20
99	Shock wave study of the reaction HO2+HO2→H2O2+O2: Confirmation of a rate constant minimum near 700 K. Journal of Chemical Physics, 1990, 93, 1755-1760.	3.0	105
100	Oxypyrolysis of natural gas. Applied Catalysis, 1990, 58, 269-280.	0.8	56

#	Article	IF	CITATIONS
101	Methyl radical and Hâ€atom concentrations during diamond growth. Journal of Applied Physics, 1990, 67, 6520-6526.	2.5	183
102	Stimulated-emission pumping spectroscopy of highly excited states of CH_3O(XËœE2): zero-order vibrational states at 3000 cm^â~'1 ≤000 cm^â~'1. Journal of the Optical Society of America B: Optical Physics, 1990, 7, 1935.	2.1	8
103	A Comprehensive Reaction Mechanism For Carbon Monoxide/Hydrogen/Oxygen Kinetics. Combustion Science and Technology, 1991, 79, 97-128.	2.3	362
104	Flash photolysis study of the CH3O2+ CH3O2 and CH3O2+ HO2 reactions between 600 and 719 K: unimolecular decomposition of methylhydroperoxide. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 3213.	1.7	47
105	Time-resolved study of hydrogen atoms in the H2–O2system under conditions close to criticality. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 2907-2912.	1.7	4
106	Kinetic Modeling of Fuel-Nitrogen Conversion in One-Dimensional, Pulverized-Coal Flames. Combustion Science and Technology, 1991, 76, 81-109.	2.3	34
107	Partial Oxidation of Methane: The Role of the Gas Phase Reactions. Catalysis Reviews - Science and Engineering, 1991, 33, 169-240.	12.9	108
108	Detailed surface and gas-phase chemical kinetics of diamond deposition. Physical Review B, 1991, 43, 1520-1545.	3.2	388
109	High-temperature oxidation of ethanol. Part 2.—Kinetic modelling. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 2549-2559.	1.7	63
110	Experimental and theoretical study of isotope effects on ozone decomposition. Journal of Geophysical Research, 1991, 96, 10911-10921.	3.3	37
111	Diagnostics and modelling of ECRH microwave discharges. Plasma Physics and Controlled Fusion, 1991, 33, 997-1028.	2.1	80
112	Microkinetic analysis of methane dimerization reaction. Industrial & Engineering Chemistry Research, 1991, 30, 2114-2123.	3.7	44
113	Numerical study on mixing and combustion of injecting hydrogen jet in a supersonic air flow. , 1991, , .		2
114	CHEMACT: A Computer Code to Estimate Rate Constants for Chemically-Activated Reactions. Combustion Science and Technology, 1991, 80, 63-85.	2.3	84
115	Interpolated variational transitionâ€state theory: Practical methods for estimating variational transitionâ€state properties and tunneling contributions to chemical reaction rates from electronic structure calculations. Journal of Chemical Physics, 1991, 95, 8875-8894.	3.0	296
116	Direct kinetic studies of SiH3+SiH3, H, CCl4, SiD4, Si2H6, and C3H6by tunable infrared diode laser spectroscopy. Journal of Chemical Physics, 1991, 95, 4914-4926.	3.0	70
117	Knock Characteristics of Liquid and Gaseous Fuels in Lean Mixtures. , 1991, , .		6
118	Autoignition Chemistry of C4 Olefins Under Motored Engine Conditions: A Comparison of Experimental and Modeling Results. , 1991, , .		29

#	Article	IF	CITATIONS
119	The Influence of Unimolecular Fallâ€off Behaviour on Pyrolysis Systems. A Case Study. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1991, 95, 608-614.	0.9	0
120	The photolysis of acetone at 308 nm. Journal of Photochemistry and Photobiology A: Chemistry, 1991, 57, 441-451.	3.9	4
121	Nitramine propellant ignition and combustion research. Progress in Energy and Combustion Science, 1991, 17, 263-296.	31.2	79
122	Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations. Journal of Chemical Physics, 1991, 95, 1852-1861.	3.0	331
123	New measurement of the rate coefficient for the reaction of OH with methane. Nature, 1991, 350, 406-409.	27.8	217
124	Shock tube measurements of the rate coefficient for N+CH3→H2CN+H using N-atom aras and excimer photolysis of NO. Proceedings of the Combustion Institute, 1991, 23, 267-273.	0.3	2
125	A flamelet calculation of benzene formation in coflowing laminar diffusion flames. Proceedings of the Combustion Institute, 1991, 23, 559-566.	0.3	11
126	Measurements and modeling of light hydrocarbons in rich C2H4 combustion in a jet-stirred reactor. Combustion and Flame, 1991, 84, 38-46.	5.2	27
127	On the reactivity of hydroperoxy radicals and hydrogen peroxide in a two-stage butane-air flame. Combustion and Flame, 1991, 85, 263-270.	5.2	10
128	Generalized kinetic model for wet oxidation of organic compounds. AICHE Journal, 1991, 37, 1687-1697.	3.6	390
129	A combined stability-sensitivity analysis of weak and strong reactions of hydrogen/oxygen mixtures. International Journal of Chemical Kinetics, 1991, 23, 251-278.	1.6	24
130	Kinetic modeling of the reduction of nitric oxide in combustion products by isocyanic acid. International Journal of Chemical Kinetics, 1991, 23, 289-313.	1.6	161
131	The use of transition-state theory to extrapolate rate coefficients for reactions of H atoms with alkanes. International Journal of Chemical Kinetics, 1991, 23, 683-700.	1.6	50
132	Shock tube pyrolysis of pyrrole and kinetic modeling. International Journal of Chemical Kinetics, 1991, 23, 733-760.	1.6	115
133	A shock tube study of the reaction of methyl radicals with hydroxyl radicals. International Journal of Chemical Kinetics, 1991, 23, 1017-1033.	1.6	62
134	A shock tube study of the reactions of the hydroxyl radical with several combustion species. International Journal of Chemical Kinetics, 1991, 23, 1075-1094.	1.6	95
135	Shock tube UV absorption study of the oxidation of benzyl radicals. Proceedings of the Combustion Institute, 1991, 23, 37-43.	0.3	31
136	Rate constants for the reaction, O(3P)+H2O¶OH+OH, over the temperature range 1053 K to 2033 K using two direct techniques. Proceedings of the Combustion Institute, 1991, 23, 51-57.	0.3	26

\sim			<u> </u>		
	ΙΤΔΤ	ION	RE	DO	DT
<u> </u>	והו		IVL	. 0	

#	Article	IF	CITATIONS
137	The detection of CH3CO, C2H5, and CH3CHO by rempi/mass spectrometry and the application to the study of the reactions H+CH3CO and O+CH3CO. Proceedings of the Combustion Institute, 1991, 23, 131-138.	0.3	10
138	Hydrogen atom attack on perchloroethylene. Proceedings of the Combustion Institute, 1991, 23, 139-145.	0.3	2
139	The oxidation of CH2O in the intermediate temperature range (943–995 K). Proceedings of the Combustion Institute, 1991, 23, 171-177.	0.3	12
140	The structure and reaction mechanism of rich, non-sooting C2H2/O2/Ar flames. Proceedings of the Combustion Institute, 1991, 23, 187-194.	0.3	14
141	An experimental and computational study of the burning rates of ultra-lean to moderately-rich H2/O2/N2 laminar flames with pressure variations. Proceedings of the Combustion Institute, 1991, 23, 333-340.	0.3	108
142	Experimental and numerical determination of laminar flame speeds: Mixtures of C2-hydrocarbons with oxygen and nitrogen. Proceedings of the Combustion Institute, 1991, 23, 471-478.	0.3	168
143	Engine knock predictions using a fully-detailed and a reduced chemical kinetic mechanism. Proceedings of the Combustion Institute, 1991, 23, 1055-1062.	0.3	62
144	Determination of activation energies for diamond growth by an advanced hot filament chemical vapor deposition method. Applied Physics Letters, 1991, 59, 488-490.	3.3	71
145	An Investigation of the Reaction of CH ₃ Radicals with O ₂ at High Temperatures. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1991, 95, 1163-1168.	0.9	24
146	Laser-Induced Fluorescence of CH · in a Laminar CH4/Air Diffusion Flame: Implications for Diagnostic Measurements and Analysis of Chemical Rates. Combustion Science and Technology, 1991, 76, 1-20.	2.3	37
147	Kinetic Calculations in Plasmas Used for Diamond Deposition. Japanese Journal of Applied Physics, 1992, 31, 1505-1513.	1.5	42
148	Excitation of the fine-structure transitions of O(3PJ) in collisions with ortho- and para-H2. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, 285-297.	1.5	75
149	Stateâ€ŧoâ€state dynamics of atom+polyatom abstraction reactions. II. The H+C2H6/C3H8→H2(v',J') +C2H5/C3H7 reactions. Journal of Chemical Physics, 1992, 96, 5746-5757.	3.0	27
150	Nascent product states in the photoinitiated reaction of O3 and H2O. Journal of Chemical Physics, 1992, 97, 952-961.	3.0	58
151	A mechanism for growth on diamond (110) from acetylene. Journal of Chemical Physics, 1992, 96, 2371-2377.	3.0	80
152	Stateâ€ŧoâ€state dynamics of atom + polyatom abstraction reactions. I. The H+CD4→HD(v',J ')+CD Journal of Chemical Physics, 1992, 96, 1957-1966.	3 reaction	· 49
153	Kinetics and thermodynamics of the reaction SF6â‡,,SF5+F. Journal of Chemical Physics, 1992, 96, 4272-4282.	3.0	51
154	Experimental and calculational study on diamond growth by an advanced hot filament chemical vapor deposition method. Journal of Applied Physics, 1992, 72, 705-711.	2.5	61

#	Article	IF	CITATIONS
155	Monte Carlo simulation of diamond growth by methyl and acetylene reactions. Journal of Chemical Physics, 1992, 97, 5794-5802.	3.0	71
156	The Incinerability of Perchloroethylene and Chlorobenzene. Combustion Science and Technology, 1992, 82, 31-47.	2.3	5
157	Morphology of Diamond Films Produced by ECR-PACVD. Materials Research Society Symposia Proceedings, 1992, 280, 701.	0.1	1
158	Reaction and Transport Models of the MOVPE of Ternary III-V Semiconductors. Materials Research Society Symposia Proceedings, 1992, 282, 99.	0.1	1
159	The Formation of O and H Atoms in the Reaction of CH ₂ with O ₂ at High Temperatures. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1992, 96, 194-198.	0.9	30
160	Weak Collision Effects in the Reaction CH ₃ CO → CH ₃ + CO. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1992, 96, 1338-1347.	0.9	21
161	Elementary Reactions in the Methanol Oxidation System. Part II: Measurement and Modeling of Autoignition in a Methanolâ€Fuelled Otto Engine. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1992, 96, 1376-1387.	0.9	14
162	Direct Measurement of the Rate Constant for CH ₃ + OH Recombination at 290 K. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1992, 96, 1352-1359.	0.9	19
163	Elementary Reactions in the Methanol Oxidation System. Part I: Establishment of the Mechanism and Modelling of Laminar Burning Velocities. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1992, 96, 1360-1376.	0.9	45
164	Organic peroxy radicals: Kinetics, spectroscopy and tropospheric chemistry. Atmospheric Environment Part A General Topics, 1992, 26, 1805-1961.	1.3	616
165	The enthalpy change and the detailed rate coefficients of the equilibrium reaction OH+C2H2=MHOC2H2 over the temperature range 627–713 K. Journal of Chemical Physics, 1992, 97, 3092-3099.	3.0	14
166	Solid rocket exhaust in the stratosphere - Plume diffusion and chemical reactions. , 1992, , .		0
167	Detailed Chemical Kinetic Modeling: Chemical Reaction Engineering of the Future. Advances in Chemical Engineering, 1992, 18, 95-196.	0.9	38
168	Detailed rate coefficients and the enthalpy change of the equilibrium reaction OH+C2H4=MHOC2H4 over the temperature range 544–673 K. Journal of Chemical Physics, 1992, 96, 377-386.	3.0	51
169	A Comprehensive Study of Methanol Kinetics in Freely-Propagating and Burner-Stabilized Flames, Flow and Static Reactors, and Shock Tubes. Combustion Science and Technology, 1992, 83, 33-75.	2.3	127
170	Resolution of gas phase and surface combustion chemistry into elementary reactions. Proceedings of the Combustion Institute, 1992, 24, 553-579.	0.3	122
171	The importance of hindered rotations and other anharmonic effects in the thermal dissociation of small unsaturated molecules: Application to HCN. Proceedings of the Combustion Institute, 1992, 24, 613-619.	0.3	4
172	Validation of a mechanism for use in modeling CH2Cl2 and/or CH3Cl combustion and pyrolysis. Proceedings of the Combustion Institute, 1992, 24, 743-748.	0.3	6

ARTICLE IF CITATIONS # The effect of low-concentration fuels on the conversion of nitric oxide to nitrogen dioxide. 173 0.3 41 Proceedings of the Combustion Institute, 1992, 24, 909-916. Direct measurement of the reaction CH3+OH and its pathways between 300 and 480 K. Proceedings of 174 0.3 the Combustion Institute, 1992, 24, 597-604. Mechanisms and rates of benzoyl reactions: The reactions C6H5CHO+Cl, C6H5CO+O, and C6H5CO+H. 175 0.3 5 Proceedings of the Combustion Institute, 1992, 24, 669-674. A study on ethanol oxidation kinetics in laminar premixed flames, flow reactors, and shock tubes. 0.3 154 Proceedings of the Combustion Institute, 1992, 24, 833-841. Thermal decomposition of pure methane at 1263 K. Experiments and mechanistic modelling. 177 2.7 26 Thermochimica Acta, 1992, 211, 303-322. Diamond growth on a (100)-type step. Thin Solid Films, 1992, 212, 193-200. 1.8 Elementary steps of radical-surface interactions in oxidative coupling of methane. Catalysis Today, 179 4.4 35 1992, 13, 561-564. Flame infrared emission detection of hydrogen. Journal of Chromatography A, 1992, 589, 241-248. 3.7 181 Simulation of carbon doping of GaAs during MOVPE. Journal of Crystal Growth, 1992, 124, 483-492. 1.5 66 Absolute rate constants of R+NO(+M)â†'RNO(+M) reactions. II. Measurements for R=C2F5, i-C3F7, n-C4F9, and t-C4F9 at T = 295 K. Chemical Physics, 1992, 167, 1-15. Promotion of high-temperature self-ignition. Progress in Energy and Combustion Science, 1992, 18, 183 31.2 22 297-325. Measurement of thermal rate constants by flash or laser photolysis in shock tubes: Oxidations of H2 184 31.2 and D2. Progress in Energy and Combustion Science, 1992, 18, 327-347. Optimization and analysis of large chemical kinetic mechanisms using the solution mapping 185 31.2 369 methodâ€"combustion of methane. Progress in Energy and Combustion Science, 1992, 18, 47-73. Non-Arrhenius temperature dependence of the rate constant for the H + H2S reaction. Chemical 2.6 Physics Letters, 1992, 189, 199-204. The relative abundance of ethane to acetylene in the Jovian stratosphere. Icarus, 1992, 100, 527-533. 187 2.548 LIF measurements in methane/air flames of radicals important in prompt-NO formation. Combustion and Flame, 1992, 88, 137-148. A comprehensive study on CH2O oxidation kinetics. Combustion and Flame, 1992, 91, 257-284. 189 5.250 Gas-phase modeling of homogeneous boron/oxygen/hydrogen/carbon combustion. Combustion and 190 5.2 Flame, 1992, 90, 259-268.

#	ARTICLE	IF	CITATIONS
191	Mechanism reduction for the oscillatory oxidation of hydrogen: Sensitivity and quasi-steady-state analyses. Combustion and Flame, 1992, 91, 107-130.	5.2	131
192	Ultrasonic destruction of chlorinated compounds in aqueous solution. Environmental Progress, 1992, 11, 195-201.	0.7	62
193	An experimental and modeling study of ethanol oxidation kinetics in an atmospheric pressure flow reactor. International Journal of Chemical Kinetics, 1992, 24, 319-344.	1.6	98
194	Theoretical interpretation of the kinetics and mechanisms of the HNO + HNO and HNO + 2NO reactions with a unified model. International Journal of Chemical Kinetics, 1992, 24, 489-516.	1.6	51
195	Kinetic modeling of propane oxidation and pyrolysis. International Journal of Chemical Kinetics, 1992, 24, 813-837.	1.6	63
196	Kinetic-transport models of bimodal reaction sequences—I. Homogeneous and heterogeneous pathways in oxidative coupling of methane. Chemical Engineering Science, 1993, 48, 2643-2661.	3.8	82
197	Fragments in the UV photolysis of the CH3 and CH3O2 radicals. Chemical Physics Letters, 1993, 208, 27-31.	2.6	9
198	The heat of formation of the CF3CO radical: a note of caution. Chemical Physics Letters, 1993, 201, 391-392.	2.6	3
199	Rate constants for the reaction of CF3O radicals with hydrocarbons at 298 K. Chemical Physics Letters, 1993, 207, 498-503.	2.6	30
200	Kinetics of the gas-phase reaction between ethyl and hydroxyl radicals. Chemical Physics Letters, 1993, 208, 321-327.	2.6	25
201	Detailed structure study of a low pressure, stoichiometric H2/N2O/Ar flame. Combustion and Flame, 1993, 94, 407-425.	5.2	44
202	Shock-tube study of CH2O pyrolysis and oxidation. Combustion and Flame, 1993, 92, 365-376.	5.2	73
203	Radical processes in the pyrolysis of acetylene. International Journal of Chemical Kinetics, 1993, 25, 215-219.	1.6	16
204	High temperature pyrolysis of formaldehyde in shock waves. International Journal of Chemical Kinetics, 1993, 25, 305-322.	1.6	43
205	Thermal reaction of HNCO with NO2 at moderate temperatures. International Journal of Chemical Kinetics, 1993, 25, 845-863.	1.6	29
206	Modelling of the homogeneously catalyzed and uncatalyzed pyrolysis of neopentane: Thermochemistry of the neopentyl radical. International Journal of Chemical Kinetics, 1993, 25, 931-955.	1.6	23
207	A study of ethane decomposition in a shock tube using laser absorption of CH3. International Journal of Chemical Kinetics, 1993, 25, 969-982.	1.6	18
208	Modelling of the decomposition of methane at 1273 K in a plug flow reactor at low conversion. Journal of Analytical and Applied Pyrolysis, 1993, 25, 395-405.	5.5	26

	CITATION RE	EPORT	
#	Article	IF	CITATIONS
209	A reaction-transport model of GaAs growth by metalorganic chemical vapor deposition using trimethyl-gallium and tertiary-butyl-arsine. Journal of Crystal Growth, 1993, 131, 283-299.	1.5	31
210	Homogeneous and heterogeneous contributions to the catalytic oxidative dehydrogenation of ethane. Applied Catalysis A: General, 1993, 97, 49-65.	4.3	83
211	Plasma and surface modeling of the deposition of hydrogenated carbon films from low-pressure methane plasmas. Applied Physics A: Solids and Surfaces, 1993, 56, 527-546.	1.4	114
212	Oxidative coupling of methane. The effect of alkali chlorides on molybdate based catalyst leading to high selectivity in C3-product formation. Catalysis Letters, 1993, 18, 15-26.	2.6	5
213	Kinetic-transport models and the design of catalysts and reactors for the oxidative coupling of methane. Catalysis Letters, 1993, 19, 167-180.	2.6	41
214	Destruction mechanisms for formaldehyde in atmospheric pressure low temperature plasmas. Journal of Applied Physics, 1993, 73, 51-55.	2.5	76
215	Flash pyrolysis of coal sub-structures. A mechanistic and kinetic evaluation. Journal of Analytical and Applied Pyrolysis, 1993, 25, 229-242.	5.5	2
216	Prediction of Kinetic Parameters for Hydrogen Abstraction Reactions. Combustion Science and Technology, 1993, 95, 1-50.	2.3	72
217	C1/C2Chemistry in Fuel-Rich Post-Flame Gases I. Experimental Results and Pool Modelling. Combustion Science and Technology, 1993, 87, 199-215.	2.3	6
218	Plasma chemistry of He/O2/SiH4and He/N2O/SiH4mixtures for remote plasmaâ€activated chemicalâ€vapor deposition of silicon dioxide. Journal of Applied Physics, 1993, 74, 6538-6553.	2.5	100
219	Partial oxidation of methane, methanol, and mixtures of methane and methanol, methane and ethane, and methane, carbon dioxide, and carbon monoxide. Industrial & Engineering Chemistry Research, 1993, 32, 788-795.	3.7	25
220	Vibronic analysis of the Ã→X̃ laserâ€induced fluorescence of jetâ€cooled methoxy (CH3O) radical. Journal of Chemical Physics, 1993, 99, 9465-9471.	3.0	45
221	Temperature, N ₂ , and N density profiles of Triton's atmosphere: Observations and model. Journal of Geophysical Research, 1993, 98, 3065-3078.	3.3	67
222	Adsorption of HO _{<i>x</i>} on aerosol surfaces: Implications for the atmosphere of Mars. Journal of Geophysical Research, 1993, 98, 10933-10940.	3.3	21
223	The kinetics of the formation of nitrile compounds in the atmospheres of Titan and Neptune. Journal of Geophysical Research, 1993, 98, 17115-17122.	3.3	32
224	Hydrogen dissociation in a microwave discharge for diamond deposition. Diamond and Related Materials, 1993, 2, 25-35.	3.9	45
225	Role of hydrogen/air chemistry in nozzle performance for a hypersonic propulsion system. Journal of Propulsion and Power, 1993, 9, 134-138.	2.2	28
226	Reactions via Chemically Activated Methanol and their Meaning for the Modeling of CH4-Air Flames and CH3OH-Air Flames. Combustion Science and Technology, 1993, 91, 15-20.	2.3	13

#	Article	IF	CITATIONS
227	On the Dependence of the Rate of Moist CO Oxidation on O2Concentration at Atmospheric Pressure Combustion Science and Technology, 1993, 95, 161-171.	2.3	12
228	Effect of Rare Gas Dilution on CH3Radical Density in RF-Discharge CH4Plasma. Japanese Journal of Applied Physics, 1993, 32, 5721-5725.	1.5	48
229	Quantitative timeâ€resolved observations of groundâ€state zinc atoms, methyl radicals, and excited CH radicals resulting from the 193 nm photodissociation of dimethylzinc. Journal of Applied Physics, 1993, 74, 6962-6971.	2.5	5
230	Plume and wake dynamics, mixing, and chemistry behind a high speed civil transport aircraft. Journal of Aircraft, 1993, 30, 467-479.	2.4	98
231	Fundamental Kinetics and Mechanisms of Hydrogen Oxidation in Supercritical Water. Combustion Science and Technology, 1993, 88, 369-397.	2.3	83
232	Examination of Gallium Arsenide Mocvd Reaction Mechanisms. Materials Research Society Symposia Proceedings, 1993, 312, 151.	0.1	1
233	Kinetics of Low-Pressure Mocvd Of GaAs from Triethyl-Gallium and Arsine. Materials Research Society Symposia Proceedings, 1993, 334, 177.	0.1	1
234	Chemical Kinetic Modeling of Fuel-Rich Flames of CH2Cl2/CH2/O2/Ar. Combustion Science and Technology, 1994, 101, 103-134.	2.3	18
235	Low and Intermediate Temperature Ethane Combustion Modeling. Combustion Science and Technology, 1994, 98, 95-122.	2.3	14
236	Pathways to Chlorinated Dibenzodioxins and Dibenzofurans from Partial Oxidation of Chlorinated Aromatics by OH Radical: Thermodynamic and Kinetic Insights. Combustion Science and Technology, 1994, 101, 153-169.	2.3	25
237	Plasma chemical model for decomposition of SF6in a negative glow corona discharge. Physica Scripta, 1994, T53, 9-29.	2.5	104
238	Calculated Three Dimensional Spatial Distribution ofCH3Radical Density in the RF DischargeCH4Plasma with Parallel-Plate Electrodes. Japanese Journal of Applied Physics, 1994, 33, 5046-5050.	1.5	5
239	Ultraviolet spectroscopy of gaseous species in a hot filament diamond deposition system when C2H2and H2are the input gases. Journal of Applied Physics, 1994, 75, 3142-3150.	2.5	42
240	A kinetic study of methane conversion by a dinitrogen microwave plasma. Plasma Chemistry and Plasma Processing, 1994, 14, 229-249.	2.4	59
241	Numerical modeling of titanium carbide synthesis in thermal plasma reactors. Plasma Chemistry and Plasma Processing, 1994, 14, 333-360.	2.4	11
242	Kinetics of ignition of n-pentane in a shock-tube. Journal of Thermal Science, 1994, 3, 61-66.	1.9	Ο
243	The reaction system CH3+OH at intermediate temperatures. Appearance of a new product channel. Proceedings of the Combustion Institute, 1994, 25, 721-731.	0.3	11
244	Bifurcation analysis of methyl radical oxidation in open systems. The low-pressure regime. Proceedings of the Combustion Institute, 1994, 25, 733-739.	0.3	1

#	Article	IF	CITATIONS
245	New results on moist CO oxidation: high pressure, high temperature experiments and comprehensive kinetic modeling. Proceedings of the Combustion Institute, 1994, 25, 759-766.	0.3	103
246	The reaction of hydroperoxy-propyl radicals with molecular oxygen. Proceedings of the Combustion Institute, 1994, 25, 783-791.	0.3	12
247	Reactions of phenoxy radicals in the gas phase. Proceedings of the Combustion Institute, 1994, 25, 841-849.	0.3	12
248	An experimental and computational study of methanol oxidation in the intermediate-and high-temperature regimes. Proceedings of the Combustion Institute, 1994, 25, 901-908.	0.3	53
249	Analysis of the reactions H+N2O and NH+NO: Pathways and rate constants over a wide range of temperature and pressure. Proceedings of the Combustion Institute, 1994, 25, 965-974.	0.3	35
250	Effects of pressure and dilution on the extinction of counterflow nonpremixed hydrogen-air flames. Proceedings of the Combustion Institute, 1994, 25, 1333-1339.	0.3	20
251	Fluoromethane chemistry and its role in flame suppression. Proceedings of the Combustion Institute, 1994, 25, 1505-1511.	0.3	18
252	Etching of GaAs (100) with gaseous H/CH3 mixtures. International Journal of Chemical Kinetics, 1994, 26, 131-140.	1.6	3
253	O(3P) attack on Boranes. III. B10H14. International Journal of Chemical Kinetics, 1994, 26, 283-288.	1.6	1
254	A shock tube study of the OH + OH ? H2O + O reaction. International Journal of Chemical Kinetics, 1994, 26, 389-401.	1.6	68
255	High-temperature ignition of propane with MTBE as an additive: Shock tube experiments and modeling. International Journal of Chemical Kinetics, 1994, 26, 757-770.	1.6	27
256	Lumped kinetics of many irreversible bimolecular reactions. Chemical Engineering Science, 1994, 49, 781-795.	3.8	7
257	Features of the potential energy surface for the CH3 + O2 reaction channels. Chemical Physics Letters, 1994, 225, 208-212.	2.6	8
258	The oxidation of methane at elevated pressures: Experiments and modeling. Combustion and Flame, 1994, 97, 201-224.	5.2	87
259	The inhibiting effect of CF3Br on the reaction CH4 + O2 at 1070 K. Combustion and Flame, 1994, 99, 644-652.	5.2	23
260	High-temperature pyrolysis of ketene in shock waves. Combustion and Flame, 1994, 99, 18-28.	5.2	39
261	A new comprehensive reaction mechanism for combustion of hydrocarbon fuels. Combustion and Flame, 1994, 99, 201-211.	5.2	93
262	Nonequilibrium boundary layer of potassium-seeded combustion products. Combustion and Flame, 1994, 98, 313-325.	5.2	15

#	Article	IF	CITATIONS
263	An experimental and numerical study of the high-temperature oxidation of 1,1,1-C2H3Cl3. Combustion and Flame, 1994, 98, 155-169.	5.2	21
264	A flow reactor study of HNCO oxidation chemistry. Combustion and Flame, 1994, 98, 241-258.	5.2	77
265	Effect of pressure on the oxidative coupling of methane in the absence of catalyst. AICHE Journal, 1994, 40, 521-535.	3.6	52
266	Thermal coupling of methane: Influence of hydrogen at 1330°C. Experimental and simulated results. Journal of Analytical and Applied Pyrolysis, 1994, 29, 183-205.	5.5	8
267	Thermal coupling of methane. Thermochimica Acta, 1994, 232, 155-169.	2.7	17
268	V.U.V. absorption diagnostic for shock tube kinetics studies of C2H4. Journal of Quantitative Spectroscopy and Radiative Transfer, 1994, 52, 31-43.	2.3	7
269	Photodissociation dynamics of DMZn at 193 nm: Implications for the growth of ZnSe films by laser-assisted metalorganic chemical vapor deposition. Journal of Electronic Materials, 1994, 23, 105-113.	2.2	1
270	Adjusting trimethylgallium injection time to explore atomic layer epitaxy of GaAs between 425 and 500°C by organometallic vapor phase epitaxy. Journal of Electronic Materials, 1994, 23, 185-189.	2.2	2
271	Long path-FTIR studies of some atmospheric reactions involving CF3OO and CF3O radicals. Research on Chemical Intermediates, 1994, 20, 277-301.	2.7	17
272	A Wide Range Modeling Study of Methane Oxidation. Combustion Science and Technology, 1994, 96, 279-325.	2.3	73
273	Solid rocket exhaust in the stratosphere - Plume diffusion and chemical reactions. Journal of Spacecraft and Rockets, 1994, 31, 435-442.	1.9	42
274	lgnition delay characteristics of methane fuels. Progress in Energy and Combustion Science, 1994, 20, 431-460.	31.2	243
275	Chemiluminescent reaction of oxygen atoms with dimethyl disulfide and dimethyl sulfide. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 825.	1.7	2
276	Detailed Kinetic Modelling of Chemistry and Temperature Effects on Ammonia Oxidation. Combustion Science and Technology, 1994, 99, 253-276.	2.3	156
277	Ionâ€induced etching of organic polymers in argon and oxygen radioâ€frequency plasmas. Journal of Applied Physics, 1994, 75, 758-769.	2.5	53
278	Investigation into the kinetics and mechanism of the reaction of NO3 with CH3O2 at 298 K and 2.5 Torr: a potential source of OH in the night-time troposphere?. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1205.	1.7	31
279	Methane Partial Oxidation to Methanol. 1. Effects of Reaction Conditions and Additives. Industrial & Engineering Chemistry Research, 1994, 33, 784-789.	3.7	26
280	Kinetics of Diamond-Like Film Growth Using Filament-Assisted Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 1994, 363, 151.	0.1	0

#	Article	IF	CITATIONS
281	A kinetic study about the reactions of NH(X3Σâ^') with hydrocarbons part 2: Ethene, propene, and 2,3-dimethyl-2-butene. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 864-868.	0.9	5
282	The O3 Sensitized Partial Oxidation of CH4 to CH3OH. Studies in Surface Science and Catalysis, 1994, 81, 373-378.	1.5	3
283	Selecting oxygen source for partial oxidation of methane to methanol using microwave plasmas. Research on Chemical Intermediates, 1995, 21, 621-630.	2.7	4
284	Detailed chemical kinetics model for supercritical water oxidation of C1 compounds and H2. AICHE Journal, 1995, 41, 1874-1888.	3.6	99
285	Formation of HCOH + H2 through the reaction CH3 + OH. Experimental evidence for a hitherto undetected product channel. International Journal of Chemical Kinetics, 1995, 27, 577-595.	1.6	25
286	Rate constant and a detailed error analysis for C2H3 + H reaction. International Journal of Chemical Kinetics, 1995, 27, 769-776.	1.6	6
287	The decomposition of nitrous oxide at 1.5 ? P ? 10.5 atm and 1103 ?T ? 1173 K. International Journal of Chemical Kinetics, 1995, 27, 883-909.	1.6	53
288	Ethylene oxidation in a well-stirred reactor. International Journal of Chemical Kinetics, 1995, 27, 957-986.	1.6	75
289	O + NNH: A possible new route for NOX formation in flames. International Journal of Chemical Kinetics, 1995, 27, 1097-1109.	1.6	222
290	Kinetic study of reactions of C2H5O2with NO at 298 K and 0.55 - 2 torr. International Journal of Chemical Kinetics, 1995, 27, 1121-1133.	1.6	19
291	Kinetics and modeling of the H2?O2?NOx system. International Journal of Chemical Kinetics, 1995, 27, 1165-1178.	1.6	47
292	A shock tube study of methyl-methyl reactions between 1200 and 2400 K. International Journal of Chemical Kinetics, 1995, 27, 1179-1196.	1.6	31
293	Pyrolysis of methane in the presence of hydrogen. Chemical Engineering and Technology, 1995, 18, 349-358.	1.5	72
294	Upgrading of extra-heavy crude oil by direct use of methane in the presence of water. Fuel, 1995, 74, 1162-1168.	6.4	30
295	High-temperature measurements of the rate coefficient of the H + CO2 → CO + OH reaction. Chemical Physics Letters, 1995, 240, 57-62.	2.6	40
296	Kinetics of the phenyl radical reaction with ethylene: An RRKM theoretical analysis of low and high temperature data. Combustion and Flame, 1995, 100, 169-176.	5.2	42
297	Combustion chemistry in premixed C2F4î—,O2 flames. Combustion and Flame, 1995, 100, 529-542.	5.2	13
298	Detailed kinetic modeling of C1 — C3 alkane diffusion flames. Combustion and Flame, 1995, 102, 129-160.	5.2	228

ARTICLE IF CITATIONS # Time-resolved imaging of flame kernels: Laser spark ignition of H2/O2/Ar mixtures. Combustion and 299 5.2 115 Flame, 1995, 102, 310-328. Experimental study and modeling of dodecane ignition in a diesel engine. Combustion and Flame, 1995, 5.2 103, 207-220. Methane conversion by an air microwave plasma. Plasma Chemistry and Plasma Processing, 1995, 15, 301 2.4 100 87-107. Pyrolysis of natural gas: chemistry and process concepts. Fuel Processing Technology, 1995, 42, 249-267. Homogeneous gas-phase partial oxidation of methane to methanol and formaldehyde. Fuel Processing 303 7.2 50 Technology, 1995, 42, 129-150. Thermochemical and chemical kinetic data for fluorinated hydrocarbons. Progress in Energy and 31.2 Combustion Science, 1995, 21, 453-529. 305 The role of initiation in oxidative coupling of methane. Applied Catalysis A: General, 1995, 127, 51-63. 4.3 19 Conversion of ethane to methanol and ethanol by ozone sensitized partial oxidation at near 306 4.4 atmospheric pressure. Catalysis Today, 1995, 24, 321-325. Kinetic modeling of heterogeneous-homogeneous radical processes of the partial oxidation of low paraffins. Catalysis Today, 1995, 24, 389-393. 307 4.4 46 Thermal analysis as an aid in the synthesis of non-stoichiometric perovskite type oxides. 2.7 Thermochimica Acta, 1995, 256, 75-89. Ab initio calculations of chain branching upon silane oxidation with oxygen. Reaction Kinetics and 309 0.6 5 Catalysis Letters, 1995, 54, 303-312. Rate constant and reaction channels for the reaction of atomic nitrogen with the ethyl radical. 3.0 28 Journal of Chemical Physics, 1995, 102, 5309-5316. CH3 state distributions form the reactions of O(1D) with saturated and chlorinated hydrocarbons. 311 3.0 39 Journal of Chemical Physics, 1995, 102, 8371-8377. Ab initio molecular orbital study of potential energy surface for the reaction of C2H3 with H2 and related reactions. Journal of Chemical Physics, 1995, 103, 3440-3449. Interactions of CO, NOxand H2O Under Post-Flame Conditions. Combustion Science and Technology, 313 2.370 1995, 110-111, 461-485. Diagnostic Experiment and Kinetic Model Analysis of Microwave \$f CH_{4}/H_{2}\$ Plasmas for 314 46 Deposition of Diamondlike Carbon Films. Japanese Journal of Applied Physics, 1995, 34, 1972-1979. Heterogeneous free-radical reactions in oxidation processes. Russian Chemical Reviews, 1995, 64, 315 6.5 20 349-364. Reaction chemistry and optimization of plasma remediation of NxOyfrom gas streams. Journal of Applied Physics, 1995, 78, 2074-2085.

#	Article	IF	CITATIONS
317	Experimental and Modeling Study of the Selective Homogeneous Gas Phase Oxidation of Methane to Methanol. Industrial & Engineering Chemistry Research, 1995, 34, 1044-1059.	3.7	32
318	Phenol Oxidation in Supercritical Water. ACS Symposium Series, 1995, , 217-231.	0.5	20
319	In situ observations in aircraft exhaust plumes in the lower stratosphere at midlatitudes. Journal of Geophysical Research, 1995, 100, 3065.	3.3	73
320	ELEMENTARY REACTION MODELING OF HIGH-TEMPERATURE BENZENE COMBUSTION. Combustion Science and Technology, 1995, 107, 261-300.	2.3	142
321	Modeling Methane Coot Flames and Ignitions. Combustion Science and Technology, 1995, 106, 83-102.	2.3	13
322	Rate constants for the reactions of C2H5, C2H5O and C2H5O2 radicals with NO3 at 298 K and 2.2 torr. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 817.	1.7	25
323	Homogeneous thermal decomposition of dimethylzinc in a metal–organic vapour phase epitaxy reactor. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3475-3479.	1.7	6
324	Direct EPR measurement of Arrhenius parameters for the reactions of H? atoms with H2O2 and D? atoms with D2O2 in aqueous solution. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3127.	1.7	34
325	Atmospheric implications of the photolysis of the ozone-water weakly bound complex. Journal of Geophysical Research, 1995, 100, 18803.	3.3	91
326	Photochemistry of Triton's atmosphere and ionosphere. Journal of Geophysical Research, 1995, 100, 21271.	3.3	85
327	Recalibration of Two Earlier Potential Energy Surfaces for the CH4+ H → CH3+ H2Reaction. Application of Variational Transition-State Theory and Analysis of the Kinetic Isotope Effects Using Rectilinear and Curvilinear Coordinates. The Journal of Physical Chemistry, 1996, 100, 16561-16567.	2.9	63
328	Global Rate Expression for Nitric Oxide Reburning. Part 2. Energy & Fuels, 1996, 10, 1046-1052.	5.1	48
329	Methane Conversion to Ethylene and Acetylene:Â Optimal Control with Chlorine, Oxygen, and Heat Flux. Industrial & Engineering Chemistry Research, 1996, 35, 683-696.	3.7	12
330	Kinetic and Thermodynamic Sensitivity Analysis of the NO-Sensitised Oxidation of Methane. Combustion Science and Technology, 1996, 115, 259-296.	2.3	135
331	Aircraft exhaust sulfur emissions. Geophysical Research Letters, 1996, 23, 3603-3606.	4.0	57
332	Small-scale chemical evolution of aircraft exhaust species at cruising altitudes. Journal of Geophysical Research, 1996, 101, 15169-15190.	3.3	60
333	Experimental and Theoretical Study of the C2H3â‡,, H + C2H2Reaction. Tunneling and the Shape of Falloff Curves. The Journal of Physical Chemistry, 1996, 100, 16899-16911.	2.9	101
334	Raman Spectroscopic Measurement of Oxidation in Supercritical Water. 1. Conversion of Methanol to Formaldehyde. Industrial & Engineering Chemistry Research, 1996, 35, 2161-2171.	3.7	85

#	Article	IF	CITATIONS
335	Atomic and radical densities in a hot filament diamond deposition system. Journal of Chemical Physics, 1996, 104, 9111-9119.	3.0	21
336	High-temperature oxidation of ethylene oxide in shock waves. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 715-721.	1.7	8
337	Hydrogen Atom Attack on Fluorotoluenes: Rates of Fluorine Displacement. Israel Journal of Chemistry, 1996, 36, 263-273.	2.3	2
338	Kinetics of Hexane Combustion in a Shock Tube. Israel Journal of Chemistry, 1996, 36, 313-320.	2.3	14
339	Numerical study of detonation in CH4 (H2) + air mixtures behind shock waves. Combustion, Explosion and Shock Waves, 1996, 32, 81-97.	0.8	1
340	Experimental study and kinetic modeling of the thermal decomposition of gaseous monomethylhydrazine. Application to detonation sensitivity. Shock Waves, 1996, 6, 139-146.	1.9	21
341	Chemical vapor deposition of carbon on graphite by methane pyrolysis. AICHE Journal, 1996, 42, 3123-3132.	3.6	27
342	Branching ratios for methyl elimination in the reactions of OD radicals and Cl atoms with CH3SCH3. Chemical Physics Letters, 1996, 251, 59-66.	2.6	24
343	Determination of the absolute Raman cross section of methyl. Chemical Physics Letters, 1996, 256, 83-86.	2.6	13
344	Numerical modeling of chemistry and gas dynamics during shock-induced ethylene combustion. Combustion and Flame, 1996, 104, 311-327.	5.2	13
345	Ethane oxidation at elevated pressures in the intermediate temperature regime: Experiments and modeling. Combustion and Flame, 1996, 104, 505-523.	5.2	34
346	Determination of ignition delay times in mixtures of ethylene oxide, oxygen, and argon behind a reflected shock. Combustion and Flame, 1996, 106, 81-88.	5.2	4
347	Methanol and hydrogen oxidation kinetics in water at supercritical states. Combustion and Flame, 1996, 106, 110-130.	5.2	56
348	Shock tube and modeling study of ketene oxidation. Combustion and Flame, 1996, 106, 155-167.	5.2	49
349	Reaction kinetics and transport phenomena underlying the low-pressure metalorganic chemical vapor deposition of GaAs. Journal of Crystal Growth, 1996, 167, 543-556.	1.5	34
350	On the structure of nonsooting counterflow ethylene and acetylene diffusion flames. Combustion and Flame, 1996, 107, 321-335.	5.2	76
351	Shock-tube and modeling study of acetylene pyrolysis and oxidation. Combustion and Flame, 1996, 107, 401-417.	5.2	102
352	Some kinetic aspects of unsteady-state partial oxidation reactions. Dynamic processes on metal oxide surfaces. Catalysis Today, 1996, 32, 21-28.	4.4	10

#	Article	IF	CITATIONS
353	Effects of ambient water in the combustion enhancement of heavily chlorinated hydrocarbons: Studies on droplet burning. Proceedings of the Combustion Institute, 1996, 26, 2413-2420.	0.3	0
354	A kinetic study of the reactions of NH(X3Σâ^') with O2 and no in the temperature range from 1200 to 2200 K. Proceedings of the Combustion Institute, 1996, 26, 559-566.	0.3	14
355	Dissociation and chain reaction in the pyrolysis of pyraine. Proceedings of the Combustion Institute, 1996, 26, 651-658.	0.3	5
356	Computer-aided design of gas-phase oxidation mechanisms—Application to the modeling of n-heptane and iso-octane oxidation. Proceedings of the Combustion Institute, 1996, 26, 755-762.	0.3	60
357	Molecular beam mass spectrometric and modeling studies of neat and NH3-doped low-pressure H2/N2O/Ar flames: Formation and consumption of NO. Proceedings of the Combustion Institute, 1996, 26, 1043-1052.	0.3	7
358	Gas Phase Reactions in Silent Electric Discharges Part III: Investigation of Chemical Reactions Involving Electron-Molecule Collisions in Various Mixtures of O ₂ with Ar, N ₂ or CO. Ozone: Science and Engineering, 1996, 18, 159-171.	2.5	1
359	BAC-MP4 Predictions of Thermochemical Data for C1and C2Stable and Radical Hydrofluorocarbons and Oxidized Hydrofluorocarbons. The Journal of Physical Chemistry, 1996, 100, 8737-8747.	2.9	127
360	Modeling of Aromatic and Polycyclic Aromatic Hydrocarbon Formation in Premixed Methane and Ethane Flames. Combustion Science and Technology, 1996, 116-117, 211-287.	2.3	361
361	Radical and film growth kinetics in methane radioâ€frequency glow discharges. Journal of Applied Physics, 1996, 79, 8735-8747.	2.5	64
362	Kinetics and Mechanism of Methanol Oxidation in Supercritical Water. The Journal of Physical Chemistry, 1996, 100, 15834-15842.	2.9	109
363	Atmospheric Photochemical Oxidation of Benzene:Â Benzene + OH and the Benzeneâ^'OH Adduct (Hydroxyl-2,4-cyclohexadienyl) + O2. The Journal of Physical Chemistry, 1996, 100, 6543-6554.	2.9	101
364	Formation of Triplet CO in Atomic Oxygen Flames of Acetylene and Carbon Suboxide. The Journal of Physical Chemistry, 1996, 100, 138-148.	2.9	24
365	Recombination of Methyl Radicals. 1. New Data between 1175 and 1750 K in the Falloff Regionâ€. The Journal of Physical Chemistry, 1996, 100, 974-983.	2.9	55
366	Unimolecular Decomposition ofn-C4H9andiso-C4H9Radicals. The Journal of Physical Chemistry, 1996, 100, 5318-5328.	2.9	68
367	An ab Initio Study of the Transition State and Forward and Reverse Rate Constants for C2H5⇌ H + C2H4. The Journal of Physical Chemistry, 1996, 100, 5354-5361.	2.9	66
368	Temperature Dependent Rate Constants for the Gas-Phase Reaction between OH and CH3OCI. The Journal of Physical Chemistry, 1996, 100, 3601-3606.	2.9	28
369	Site-Specific Branching Fractions for the O(3P) and OH + C3H8 Reactions. The Journal of Physical Chemistry, 1996, 100, 4893-4899.	2.9	17
370	Kinetics of the Thermal Decomposition of the CH3SO2Radical and Its Reaction with NO2at 1 Torr and 298 K. The Journal of Physical Chemistry, 1996, 100, 8895-8900.	2.9	32

#	Article	IF	CITATIONS
371	Kinetics of the C2H3+ H2⇄ H + C2H4and CH3+ H2⇄ H + CH4Reactions. The Journal of Physical Chemistry, 1996, 100, 11346-11354.	2.9	116
372	Rate Constant and Product Branching for the Vinyl Radical Self Reaction atT= 298 K. The Journal of Physical Chemistry, 1996, 100, 13594-13602.	2.9	25
373	Effect of Oxygen Additive on Microwave Plasma for Diamond Film Synthesis Studied by the Plasma Impedance Measurement. Japanese Journal of Applied Physics, 1996, 35, L933-L936.	1.5	2
374	Chapter 3 Kinetics databases. Comprehensive Chemical Kinetics, 1997, 35, 235-292.	2.3	5
375	Discharge Flow-Photoionization Mass Spectrometric Study of HNO:Â Photoionization Efficiency Spectrum and Ionization Energy and Proton Affinity of NO. Journal of Physical Chemistry A, 1997, 101, 4035-4041.	2.5	19
376	Experimental and Modeling Study of the Effect of CF3CHFCF3on the Chemical Structure of a Methane—Oxygen—Argon Flame. Combustion Science and Technology, 1997, 122, 33-62.	2.3	14
377	Oxidation of CH3CHO by O3and H2O2Mixtures in Supercritical CO2in a Perfectly Stirred Reactor. Industrial & Engineering Chemistry Research, 1997, 36, 3446-3452.	3.7	7
378	Unimolecular Dissociation in Allene and Propyne:Â The Effect of Isomerization on the Low-Pressure Rate. Journal of Physical Chemistry A, 1997, 101, 4057-4071.	2.5	58
379	Homogeneous Oxidation of Methane to Methanol:Â Effect of CO2, N2, and H2at High Oxygen Conversions. Industrial & Engineering Chemistry Research, 1997, 36, 1401-1409.	3.7	28
380	Hydrogen Transfer Induced Cleavage of Biaryl Bonds. Energy & Fuels, 1997, 11, 61-75.	5.1	15
381	Decomposition of 2-Methylfuran. Experimental and Modeling Study. Journal of Physical Chemistry A, 1997, 101, 1018-1029.	2.5	74
382	Pyrolyses of Aromatic Azines:  Pyrazine, Pyrimidine, and Pyridine. Journal of Physical Chemistry A, 1997, 101, 7061-7073.	2.5	70
383	A Semi-Empirical Reaction Mechanism for n-Heptane Oxidation and Pyrolysis. Combustion Science and Technology, 1997, 123, 107-146.	2.3	204
384	A Kinetic Study on the Reaction of CHF3 with H at High Temperatures. Journal of Physical Chemistry A, 1997, 101, 9105-9110.	2.5	24
385	Modeling the Decomposition of Nitromethane, Induced by Shock Heating. Journal of Physical Chemistry B, 1997, 101, 8717-8726.	2.6	67
386	Upgrading of Methane under Homogeneous Thermal Conditions:  An Environmental and Economic Imperative. Energy & Fuels, 1997, 11, 1204-1218.	5.1	5
387	Application of Isodesmic Reactions to the Calculation of the Enthalpies of H• and OH• Addition to DNA Bases:  Estimated Heats of Formation of DNA Base Radicals and Hydrates. Journal of Physical Chemistry A, 1997, 101, 8935-8941.	2.5	32
388	Raman and photoluminescence microscopy mapping of CVD micro-diamonds. Diamond and Related Materials, 1997, 6, 1587-1594.	3.9	4

#	Article	IF	CITATIONS
389	FTIR and Mass-Spectrometric Measurements of the Rate Constant for the C6H5 + H2 Reaction. Journal of Physical Chemistry A, 1997, 101, 8839-8843.	2.5	26
390	Isomerization and Decomposition of Indole. Experimental Results and Kinetic Modelingâ€. Journal of Physical Chemistry A, 1997, 101, 7787-7801.	2.5	48
391	Kinetic and Reaction Engineering Studies of Dry Reforming of Methane over a Ni/La/Al2O3 Catalyst. Industrial & Engineering Chemistry Research, 1997, 36, 5180-5188.	3.7	120
392	Chemistry of Acetylene Flames. Combustion Science and Technology, 1997, 125, 73-137.	2.3	126
393	Enthalpies of Formation and Group Additivity of Alkyl Peroxides and Trioxides. Journal of Physical Chemistry A, 1997, 101, 9505-9510.	2.5	105
394	Simulation Studies on the Effects of Flame Retardants on Combustion Processes in a Plug Reactor. ACS Symposium Series, 1997, , 275-288.	0.5	5
395	Chemical kinetics in low pressure acetylene radio frequency glow discharges. Journal of Applied Physics, 1997, 82, 4763-4771.	2.5	68
396	Chapter 4 Mathematical tools for the construction, investigation and reduction of combustion mechanisms. Comprehensive Chemical Kinetics, 1997, , 293-437.	2.3	173
397	Experimental investigation and kinetic modeling of the negative temperature coefficient of the reaction rate in rich propane—oxygen mixtures. Russian Chemical Bulletin, 1997, 46, 2006-2010.	1.5	6
398	Characterization of Ni on La modified Al2O3 catalysts during CO2 reforming of methane. Applied Catalysis A: General, 1997, 165, 379-390.	4.3	55
399	Synthesis of zirconia thin films by RPECVD. Surface and Coatings Technology, 1997, 97, 642-648.	4.8	20
400	Modeling of laminar combustion wave propagation in reactive gas/particle mixtures. International Journal of Multiphase Flow, 1997, 23, 93-111.	3.4	1
401	Comprehensive kinetic model for the low temperature oxidation of hydrocarbons. AICHE Journal, 1997, 43, 1278-1286.	3.6	45
402	Hydrogen peroxide decomposition in supercritical water. AICHE Journal, 1997, 43, 2343-2352.	3.6	169
403	Methane Conversion in the Flowing Afterglow of a Dinitrogen Microwave Plasma: Initiation of the Reaction. Contributions To Plasma Physics, 1997, 37, 521-537.	1.1	28
404	Studies on the oxidation mechanism of H2S based on direct examination of the key reactions. International Journal of Chemical Kinetics, 1997, 29, 57-66.	1.6	52
405	Measurement of the rate coefficient of the reaction CH+O2 ? products in the temperature range 2200 to 2600 K. International Journal of Chemical Kinetics, 1997, 29, 781-789.	1.6	34
406	Thermal ignition of acetonitrile. Experimental results and kinetic modeling. International Journal of Chemical Kinetics, 1997, 29, 839-849.	1.6	6

#	Article	IF	CITATIONS
407	A shock tube study of the pyrolysis of NO2. International Journal of Chemical Kinetics, 1997, 29, 483-493.	1.6	26
408	Detailed kinetics of cyclopentadiene decomposition studied in a shock tube. International Journal of Chemical Kinetics, 1997, 29, 505-514.	1.6	64
409	Analysis of fuel decay routes in the high-temperature oxidation of 1-methylnaphthalene. Combustion and Flame, 1997, 108, 139-157.	5.2	22
410	Pyrolysis studies of methylcyclohexane and oxidation studies of methylcyclohexane and methylcyclohexane/toluene blends. Combustion and Flame, 1997, 108, 266-286.	5.2	79
411	Shock tube study of the effect of nitrogen or hydrogen on ignition delays in mixtures of monomethylhydrazine + oxygen + argon. Combustion and Flame, 1997, 109, 37-42.	5.2	7
412	Inhibiting effect of CF3I on the reaction between CH4 and O2 in a jet-stirred reactor. Combustion and Flame, 1997, 109, 285-292.	5.2	11
413	High pressure studies of moist carbon monoxide / nitrous oxide kinetics. Combustion and Flame, 1997, 109, 449-470.	5.2	92
414	On mild and vigorous oxidation of mixtures of chlorinated hydrocarbons in droplet burning. Combustion and Flame, 1997, 110, 222-238.	5.2	13
415	A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combustion and Flame, 1997, 110, 173-221.	5.2	1,070
416	account of work sponsored by the United States Government. Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or applied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process	5.2	124
417	disclosed or rep. Combustion and Flame, 1998, 113, 333-347 Computer-Aided Derivation of Gas-Phase Oxidation Mechanisms: Application to the Modeling of the Oxidation of n-Butane. Combustion and Flame, 1998, 114, 81-102.	5.2	170
418	A Comprehensive Modeling Study of n-Heptane Oxidation. Combustion and Flame, 1998, 114, 149-177.	5.2	1,765
419	Kinetic Modeling of Hydrocarbon/Nitric Oxide Interactions in a Flow Reactor. Combustion and Flame, 1998, 115, 1-27.	5.2	475
420	Incorporation of parametric uncertainty into complex kinetic mechanisms: Application to hydrogen oxidation in supercritical water. Combustion and Flame, 1998, 112, 132-146.	5.2	105
421	MBMS analysis of a fuel-lean ethylene flame. Combustion and Flame, 1998, 115, 456-467.	5.2	45
422	A reduced mechanism for methanol oxidation in supercritical water. Chemical Engineering Science, 1998, 53, 857-867.	3.8	61
423	Development of a model for the wet air oxidation of phenol based on a free radical mechanism. Chemical Engineering Science, 1998, 53, 2575-2586.	3.8	110
424	Halon thermochemistry: Ab initio calculations of the enthalpies of formation of fluoroethanes. Computational and Theoretical Chemistry, 1998, 422, 89-98.	1.5	30

#	Article	IF	CITATIONS
425	A comprehensive mechanism for methanol oxidation. International Journal of Chemical Kinetics, 1998, 30, 805-830.	1.6	172
426	Modeling of the oxidation ofn-octane andn-decane using an automatic generation of mechanisms. International Journal of Chemical Kinetics, 1998, 30, 949-959.	1.6	82
427	Thermal decomposition of acetonitrile. Kinetic modeling. International Journal of Chemical Kinetics, 1998, 30, 341-347.	1.6	28
428	Hydrogen autoignition at pressures above the second explosion limit (0.6-4.0 MPa). International Journal of Chemical Kinetics, 1998, 30, 385-406.	1.6	73
429	Kinetic study and modeling of the hetero-homogeneous pyrolysis and oxidation of isobutane around 800 K. Part I. Pyrolysis in an unpacked pyrex reactor. International Journal of Chemical Kinetics, 1998, 30, 425-437.	1.6	5
430	Kinetics and modeling of the thermal reaction of propene at 800 K. Part iii. Propene in the presence of small amounts of oxygen. International Journal of Chemical Kinetics, 1998, 30, 503-522.	1.6	7
431	Kinetic study and modeling of the hetero-homo-geneous pyrolysis and oxidation of isobutane around 800 K. Part III. Pyrolysis-oxidation in unpacked and in pbO-coated packed Pyrex reactors. International Journal of Chemical Kinetics, 1998, 30, 657-671.	1.6	4
432	Possibility of methane decomposition in a gas discharge. Journal of Engineering Physics and Thermophysics, 1998, 71, 979-986.	0.6	0
433	Kinetics of reactions in CH4N2 afterglow plasma : a simplified model. Vacuum, 1998, 50, 491-495.	3.5	26
434	Planar laser-induced fluorescence imaging of flame heat release rate. Proceedings of the Combustion Institute, 1998, 27, 43-50.	0.3	229
435	High-temperature reactions of C2 with atomic and molecular oxygen. Proceedings of the Combustion Institute, 1998, 27, 193-200.	0.3	5
436	Thermodynamic and kinetic analysis using AB initio calculations on dimethyl-ether radical+O2 reaction system. Proceedings of the Combustion Institute, 1998, 27, 201-209.	0.3	5
437	Kinetic investigations of the reactions of toluene and of p-xylene with molecular oxygen between 1050 and 1400 K. Proceedings of the Combustion Institute, 1998, 27, 211-218.	0.3	26
438	The oxidation and ignition of dimethylether from low to high temperature (500–1600 K): Experiments and kinetic modeling. Proceedings of the Combustion Institute, 1998, 27, 361-369.	0.3	141
439	Formation of NOx, CH4, and C2 species in laminar methanol flames. Proceedings of the Combustion Institute, 1998, 27, 485-493.	0.3	26
440	Influence of gas phase chemistry on the properties of hydrogenated amorphous silicon and silicon–carbon alloys grown by HACVD. Thin Solid Films, 1998, 323, 115-125.	1.8	9
441	Voyager 2 ultraviolet spectrometer solar occultations at neptune: photochemical modeling of the 125–;165 nm lightcurves. Planetary and Space Science, 1998, 46, 1-20.	1.7	28
442	Effect of chemical kinetics uncertainties on hydrocarbon production in the stratosphere of neptune. Planetary and Space Science, 1998, 46, 491-505.	1.7	45

#	Article	IF	CITATIONS
443	Kinetic aspects of the methane oxidative coupling at elevated pressures. Catalysis Today, 1998, 42, 233-240.	4.4	7
444	Kinetics and mechanism of methane oxidation in supercritical water. Journal of Supercritical Fluids, 1998, 12, 141-153.	3.2	71
445	Chemometric analysis of a detailed chemical reaction mechanism for methane oxidation. Chemometrics and Intelligent Laboratory Systems, 1998, 44, 353-361.	3.5	7
446	Chemical Bubble Dynamics and Quantitative Sonochemistry. Journal of Physical Chemistry A, 1998, 102, 6927-6934.	2.5	157
447	Energy Barriers to Chemical Reactions. Why, How, and How Much? Non-Arrhenius Behavior in Hydrogen Abstractions by Radicals. Journal of the American Chemical Society, 1998, 120, 6578-6586.	13.7	47
448	Detonability of H2/CO/C02/Air Mixtures. Combustion Science and Technology, 1998, 135, 85-98.	2.3	22
449	Oxidative Coupling of Methane in the Gas Phase:Â Simulation and Reaction Mechanism. Energy & Fuels, 1998, 12, 828-829.	5.1	10
450	Infrared Chemiluminescence Study of the Reactions of Hydroxyl Radicals with Formaldehyde and Formyl Radicals with H, OH, NO, and NO2. Journal of Physical Chemistry A, 1998, 102, 9715-9728.	2.5	36
451	Kinetic Studies on the Reactions of CF3 with O(3P) and H Atoms at High Temperatures. Journal of Physical Chemistry A, 1998, 102, 8339-8348.	2.5	18
452	Absolute and Relative Rate Constants for the Reactions CH3C(O)O2 + NO and CH3C(O)O2 + NO2 and Thermal Stability of CH3C(O)O2NO2. Journal of Physical Chemistry A, 1998, 102, 1779-1789.	2.5	30
453	Photochemical Studies of Hydrogen Peroxide in Solid Rare Gases: Formation of the HOH···O(3P) Complex. Journal of Physical Chemistry A, 1998, 102, 7643-7648.	2.5	60
454	Thermal Decomposition of 2,5-Dimethylfuran. Experimental Results and Computer Modeling. Journal of Physical Chemistry A, 1998, 102, 10655-10670.	2.5	97
455	Determination of Rate Coefficients for Reactions of Formaldehyde Pyrolysis and Oxidation in the Gas Phase. Journal of Physical Chemistry A, 1998, 102, 5196-5205.	2.5	64
456	Hydrogenation of Carbon Dioxide to Methanol with a Discharge-Activated Catalyst. Industrial & Engineering Chemistry Research, 1998, 37, 3350-3357.	3.7	147
457	Dual-Level Direct Dynamics Calculations of the Reaction Rates for a Jahnâ^'Teller Reaction:Â Hydrogen Abstraction from CH4or CD4by O(3P). Journal of Physical Chemistry A, 1998, 102, 4899-4910.	2.5	109
458	Production of sulfate aerosol precursors in the turbine and exhaust nozzle of an aircraft engine. Journal of Geophysical Research, 1998, 103, 16159-16174.	3.3	36
459	Numerical study of atomic oxygen formation in a reflective shock tube. , 1998, , .		0
460	Diamond film deposition from the reaction of hydrogen atoms with acetaldehyde. Diamond and Related Materials, 1998, 7, 1328-1332.	3.9	3

#	Article	IF	CITATIONS
461	On the Incinerability of Highly Fluorinated Organic Compounds. Combustion Science and Technology, 1998, 139, 385-402.	2.3	44
462	Kinetic modeling of an ionization sensor for combustion processes. , 1999, , .		4
463	Disequilibrium Chemistry in a Brown Dwarf's Atmosphere: Carbon Monoxide in Gliese 229B. Astrophysical Journal, 1999, 519, L85-L88.	4.5	86
464	Non-isothermal regimes and chemical control of branching-chain processes. Russian Chemical Reviews, 1999, 68, 1021-1039.	6.5	39
465	Detailed Reaction Mechanisms for Low Pressure Premixed n-Heptane Flames. Combustion Science and Technology, 1999, 147, 61-109.	2.3	19
467	Microcanonical rates for the unimolecular dissociation of the ethyl radical. Journal of Chemical Physics, 1999, 110, 5485-5488.	3.0	54
468	Investigation of 4% carbon in hydrogen electron cyclotron resonance microwave plasmas using ethane as the source gas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 2456-2462.	2.1	4
469	2-Methyl-Pentane Ignition Kinetics in a Shock-Tube. Combustion Science and Technology, 1999, 147, 1-37.	2.3	9
470	A box model of the photolysis of methane at 123.6 and 147nm—comparison between model and experiment. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 124, 101-112.	3.9	6
471	Model simulations of fuel sulfur conversion efficiencies in an aircraft engine: Dependence on reaction rate constants and initial species mixing ratios. Aerospace Science and Technology, 1999, 3, 417-430.	4.8	34
472	Plasma Destruction of Gaseous and Liquid Wastes. Annals of the New York Academy of Sciences, 1999, 891, 106-123.	3.8	14
473	Kinetics modeling of shock-induced ignition in low-dilution CH4/O2 mixtures at high pressures and intermediate temperatures. Combustion and Flame, 1999, 117, 272-290.	5.2	235
474	Shock-tube and modeling study of ethylene pyrolysis and oxidation. Combustion and Flame, 1999, 117, 755-776.	5.2	93
475	Oxidation of neopentane in a jet-stirred reactor from 1 to 10 atm: an experimental and detailed kinetic modeling study. Combustion and Flame, 1999, 118, 191-203.	5.2	19
476	On the competition between hydrogen abstraction versus C-O bond fission in initiating dimethyl ether combustion. Combustion and Flame, 1999, 118, 312-316.	5.2	23
477	Shock-tube and modeling study of methane pyrolysis and oxidation. Combustion and Flame, 1999, 118, 340-358.	5.2	92
478	Kinetic modeling of a rich, atmospheric pressure, premixed n-heptane/O2/N2 flame. Combustion and Flame, 1999, 118, 381-398.	5.2	58
479	A flow reactor study of neopentane oxidation at 8 atmospheres: experiments and modeling. Combustion and Flame, 1999, 118, 415-430.	5.2	71

#	Article	IF	CITATIONS
480	CO behavior in laminar boundary layer of combustion product flow. Combustion and Flame, 1999, 119, 161-173.	5.2	14
481	Propene pyrolysis and oxidation kinetics in a flow reactor and laminar flames. Combustion and Flame, 1999, 119, 375-399.	5.2	191
482	Methane decomposition and active nitrogen in a N2-CH4glow discharge at low pressures. Plasma Sources Science and Technology, 1999, 8, 463-478.	3.1	55
483	Temperature dependence of chain initiation in pyrolysis of propane studied by direct mass-spectrometric detection of methyl radicals. Reaction Kinetics and Catalysis Letters, 1999, 67, 183-189.	0.6	6
484	Flow reactor studies and kinetic modeling of the H ₂ /O ₂ /NO _X and CO/H ₂ O/O ₂ /NO _X reactions. International Journal of Chemical Kinetics, 1999, 31, 705-724.	1.6	131
485	Flow reactor studies and kinetic modeling of the H2/O2 reaction. International Journal of Chemical Kinetics, 1999, 31, 113-125.	1.6	388
486	A detailed chemical kinetic model for high temperature ethanol oxidation. International Journal of Chemical Kinetics, 1999, 31, 183-220.	1.6	643
487	Experimental and modeling of oxidation of acetylene, propyne, allene and 1,3-butadiene. International Journal of Chemical Kinetics, 1999, 31, 361-379.	1.6	104
488	Shock Tube Study of the Oxidation of C3F6by N2O. Journal of Physical Chemistry A, 1999, 103, 5967-5977.	2.5	13
489	Unimolecular phase space theory rates by inversion of angular momentum-conserved partition function. Physical Chemistry Chemical Physics, 1999, 1, 1283-1291.	2.8	14
490	Studies of the thermal and photochemical decomposition mechanisms of But2Se in the presence or absence of Me2Zn using deuterium labelled analogues. Journal of Materials Chemistry, 1999, 9, 3005-3014.	6.7	7
491	Rate Coefficient Measurements of the Reaction CH3+ O2= CH3O + O. Journal of Physical Chemistry A, 1999, 103, 5949-5958.	2.5	28
492	Analysis of Tertiary Butyl Radical + O2, Isobutene + HO2, Isobutene + OH, and Isobuteneâ^'OH Adducts + O2:A A Detailed Tertiary Butyl Oxidation Mechanism. Journal of Physical Chemistry A, 1999, 103, 9731-9769.	2.5	62
493	Kinetics of the reactions of CF3O2 radicals with Cl and I atoms. Physical Chemistry Chemical Physics, 1999, 1, 761-766.	2.8	23
494	Oxidation of Dimethyl Ether and its Interaction with Nitrogen Oxides. Israel Journal of Chemistry, 1999, 39, 73-86.	2.3	63
495	Ab initio analysis of the transition states on the lowest triplet H2O2 potential surface. Journal of Chemical Physics, 1999, 110, 11918-11927.	3.0	74
496	Chemistry of the Jovian auroral ionosphere. Journal of Geophysical Research, 1999, 104, 16541-16565.	3.3	65
497	Rate Coefficients for the Propargyl Radical Self-Reaction and Oxygen Addition Reaction Measured Using Ultraviolet Cavity Ring-down Spectroscopy. Journal of Physical Chemistry A, 1999, 103, 4242-4252.	2.5	106

#	Article	IF	CITATIONS
498	Rate Constants for CH3+ O2→ CH3O + O at High Temperature and Evidence for H2CO + O2→ HCO + HO2. Journal of Physical Chemistry A, 1999, 103, 5942-5948.	2.5	30
499	Kinetics of the Reaction of OH with HI between 246 and 353 K. Journal of Physical Chemistry A, 1999, 103, 2712-2719.	2.5	20
500	Sonolytic Destruction of Methyltert-Butyl Ether by Ultrasonic Irradiation:Â The Role of O3, H2O2, Frequency, and Power Density. Environmental Science & Technology, 1999, 33, 3199-3205.	10.0	191
501	Chemical Reaction Kinetics and Reactor Modeling of NOxRemoval in a Pulsed Streamer Corona Discharge Reactor. Industrial & Engineering Chemistry Research, 1999, 38, 1844-1855.	3.7	143
502	Ab Initio Calculations on Hydroaromatics:  Hydrogen Abstraction and Dissociation Reaction Pathways. Journal of Physical Chemistry B, 1999, 103, 10506-10516.	2.6	5
503	Absolute Rate Constant and Product Branching Fractions for the Reaction between F and C2H4atT= 202â^298 K. Journal of Physical Chemistry A, 1999, 103, 4470-4479.	2.5	7
504	Investigation of Gas-Phase Reactions and Ignition Delay Occurring at Conditions Typical for Partial Oxidation of Methane to Synthesis Gas. Industrial & Engineering Chemistry Research, 1999, 38, 2582-2592.	3.7	28
505	Kinetics of SiHCl ₃ and SiCl ₄ Evolution in Si(s)–HCl(g) System Simulated by Ab-initio MO. Materials Transactions, JIM, 2000, 41, 383-392.	0.9	2
506	Direct Study on the Unimolecular Decomposition of Methoxy Radicals: The Role of the Tunneling Effect. Bulletin of the Chemical Society of Japan, 2000, 73, 53-60.	3.2	16
508	Kinetics and products of propargyl (C3H3) radical self-reactions and propargyl-methyl cross-combination reactions. International Journal of Chemical Kinetics, 2000, 32, 118-124.	1.6	53
509	Kinetic modeling of the CO/H2O/O2/NO/SO2 system: Implications for high-pressure fall-off in the SO2 + O(+M) = SO3(+M) reaction. International Journal of Chemical Kinetics, 2000, 32, 317-339.	1.6	105
510	The hetero-homogeneous pyrolysis of propane, in the presence or in the absence of dihydrogen, and the measurement of uptake coefficients of hydrogen atoms. International Journal of Chemical Kinetics, 2000, 32, 340-364.	1.6	5
511	Comparisons of CBS-q and G2 calculations on thermodynamic properties, transition states, and kinetics of dimethyl-ether + O2 reaction system. International Journal of Chemical Kinetics, 2000, 32, 435-452.	1.6	33
512	Detailed kinetic modeling of 1,3-butadiene oxidation at high temperatures. International Journal of Chemical Kinetics, 2000, 32, 589-614.	1.6	141
513	Rate constant for the reaction of O with H2 at high temperature by resonance absorption measurements of O atoms. International Journal of Chemical Kinetics, 2000, 32, 686-695.	1.6	17
514	The reaction kinetics of dimethyl ether. I: High-temperature pyrolysis and oxidation in flow reactors. International Journal of Chemical Kinetics, 2000, 32, 713-740.	1.6	373
515	The reaction kinetics of dimethyl ether. II: Low-temperature oxidation in flow reactors. International Journal of Chemical Kinetics, 2000, 32, 741-759.	1.6	337
516	Photochemistry of Saturn's Atmosphere I. Hydrocarbon Chemistry and Comparisons with ISO Observations. Icarus, 2000, 143, 244-298.	2.5	274

#	Article	IF	CITATIONS
517	Photochemistry of Saturn's Atmosphere II. Effects of an Influx of External Oxygen. Icarus, 2000, 145, 166-202.	2.5	147
518	Computer tools for modelling the chemical phenomena related to combustion. Chemical Engineering Science, 2000, 55, 2883-2893.	3.8	64
519	Reactions of CH2(X̃3B1) and CH2(ã1A1) with O2 studied by time-resolved FTIR spectroscopy. Chemical Physics Letters, 2000, 322, 21-26.	2.6	21
520	Pyrolysis of chloromethanes. Combustion and Flame, 2000, 122, 312-326.	5.2	29
521	Shock-tube and modeling study of acetone pyrolysis and oxidation. Combustion and Flame, 2000, 122, 291-311.	5.2	94
522	High-temperature pyrolysis of dimethyl ether in shock waves. Combustion and Flame, 2000, 123, 1-22.	5.2	62
523	The kinetic modeling of soot precursors in a butadiene flame. Combustion and Flame, 2000, 122, 350-358.	5.2	63
524	Shock-tube and modeling study of ethane pyrolysis and oxidation. Combustion and Flame, 2000, 120, 245-264.	5.2	58
525	Experimental and modeling study of the gas-phase oxidation of methyl and ethyl tertiary butyl ethers. Combustion and Flame, 2000, 121, 345-355.	5.2	59
526	Cobalt porphyrin-catalyzed alkane oxidations using dioxygen as oxidant. Inorganica Chimica Acta, 2000, 300-302, 1109-1111.	2.4	25
527	Initiation in H2/O2: Rate constants for H2+O2→H+HO2 at high temperature. Proceedings of the Combustion Institute, 2000, 28, 1471-1478.	3.9	113
528	Exploring old and new benzene formation pathways in low-pressure premixed flames of aliphatic fuels. Proceedings of the Combustion Institute, 2000, 28, 1519-1527.	3.9	144
529	A shock tube kinetic study on the reaction of C3F6 and H atoms at high temperatures. Proceedings of the Combustion Institute, 2000, 28, 1557-1562.	3.9	8
530	Modeling of the gas-phase oxidation of n-decane from 550 to 1600 K. Proceedings of the Combustion Institute, 2000, 28, 1597-1605.	3.9	58
531	Mechanism and rate constants for 1,3-butadiene decomposition. Proceedings of the Combustion Institute, 2000, 28, 1717-1723.	3.9	13
532	Molecular growth and oxygenated species formation in laminar ethylene flames. Proceedings of the Combustion Institute, 2000, 28, 1801-1807.	3.9	35
533	Fundamental reactions of free radicals relevant to pyrolysis reactions. Journal of Analytical and Applied Pyrolysis, 2000, 54, 5-35.	5.5	117
534	Thermal reactions of 2,3-dihydrobenzofuran: Experimental results and computer modeling. Proceedings of the Combustion Institute, 2000, 28, 1733-1739.	3.9	6

ARTICLE IF CITATIONS # Title is missing!. Plasma Chemistry and Plasma Processing, 2000, 20, 165-181. 535 2.4 20 Methane oxidative coupling over SrCoO3-based perovskites in periodic regime. Topics in Catalysis, 2.8 2000, 11/12, 229-237. Modeling of the kinetics of the heterogeneous-homogeneous conversion of methane into ethane and ethylene in the absence of oxygen in the gas phase. Theoretical and Experimental Chemistry, 2000, 36, 537 0 0.8 204-207. Measurements of the apparent rate constant for the reaction of iodine monoxide with chlorine monoxide to form iodine atoms. Kinetics and Catalysis, 2000, 41, 313-319. Nonisothermal effects in the process of soot formation in ethylene pyrolysis behind shock waves. 539 10 1.0 Kinetics and Catalysis, 2000, 41, 76-89. Methane coupling over SrCoO3-based perovskites in the absence of gas-phase oxygen. Studies in Surface Science and Catalysis, 2000, 130, 707-712. 1.5 Probing the new bond in the vibrationally controlled bimolecular reaction of O with HOD(4 $\hat{1}/_{2}$ OH). 541 3.0 22 Journal of Chemical Physics, 2000, 113, 7982-7987. Kinetics and role of C, O, and OH in low-pressure nanocrystalline diamond growth. Journal of Applied 2.5 Physics, 2000, 87, 4572-4579. Free radical addition: factors determining the activation energy. Russian Chemical Reviews, 2000, 69, 543 39 6.5 153-164. 544 Combustion Chemistry of Nitrogen., 2000, , 125-341. Combustion Chemistry Modeling., 2000, , 1-123. 545 9 Heats of Formation of Hydrofluorocarbons Obtained by Gaussian-3 and Related Quantum Chemical 546 Computations. Journal of Physical Chemistry A, 2000, 104, 7600-7611. Plasma Modeling., 2000, , 69-121. 547 0 Plasma abatement of perfluorocompounds in inductively coupled plasma reactors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 213-231. 548 2.1 65 A Simple Method for Calculating Quantum Effects on the Temperature Dependence of Bimolecular Reaction Rates: Application to H2+ H â†' H + H2and CH4+ H â†' CH3+ H2. Journal of the American Chemical 549 13.7 6 Society, 2000, 122, 9189-9195. Low temperature oxidation of methane: the influence of nitrogen oxides. Combustion Science and Technology, 2000, 151, 31-71. Study of Low-Temperature Combustion in a Low-NOxBurner. Combustion Science and Technology, 551 2.34 2000, 160, 1-21. A kinetic modeling study of ethylene pyrolysis. Canadian Journal of Chemistry, 2000, 78, 16-25. 1.1

#	Article	IF	CITATIONS
553	Analytical potential energy surface for the CH4+O(3P)→CH3+OH reaction. Thermal rate constants and kinetic isotope effects. Physical Chemistry Chemical Physics, 2000, 2, 2345-2351.	2.8	62
554	Accurate ab Initio Calculations on the Rate Constants of the Direct Hydrogen Abstraction Reaction C2H + H2 → C2H2 + H. Journal of Physical Chemistry A, 2000, 104, 8375-8381.	2.5	34
555	The Gas-Phase Pyrolysis of 2,2-Dinitropropane:Â Shock-Tube Kinetics. Journal of Physical Chemistry A, 2000, 104, 1217-1225.	2.5	5
556	Experimental Study of the Reaction between Vinyl and Methyl Radicals in the Gas Phase. Temperature and Pressure Dependence of Overall Rate Constants and Product Yields. Journal of Physical Chemistry A, 2000, 104, 9687-9697.	2.5	35
557	Gas-Phase Pyrolyses of 2-Nitropropane and 2-Nitropropanol:Â Shock-Tube Kinetics. Journal of Physical Chemistry A, 2000, 104, 1207-1216.	2.5	8
558	Rate Coefficients for Reaction of OH with Acetone between 202 and 395 K. Journal of Physical Chemistry A, 2000, 104, 2695-2705.	2.5	136
559	Pyrolysis of Furan:Â Ab Initio Quantum Chemical and Kinetic Modeling Studies. Journal of Physical Chemistry A, 2000, 104, 1861-1875.	2.5	102
560	Autocatalytic Behavior of Trimethylindium during Thermal Decomposition. Chemistry of Materials, 2000, 12, 450-460.	6.7	17
561	Thermochemical Property, Pathway and Kinetic Analysis on the Reactions of Allylic Isobutenyl Radical with O2:  an Elementary Reaction Mechanism for Isobutene Oxidation. Journal of Physical Chemistry A, 2000, 104, 9715-9732.	2.5	58
562	Infrared Chemiluminescence Study of the Reaction of Hydroxyl Radical with Acetaldehyde and the Secondary Reactions of Acetyl Radical with NO2, OH, and H. Journal of Physical Chemistry A, 2000, 104, 9428-9435.	2.5	19
563	Reactions of HCO (X̃2Aâ€~, ν1Ĵ½2ν3= 000, 010, 001) with Molecular Oxygen. Journal of Physical Chemistry 2000, 104, 6517-6522.	A. 2.5	8
564	Sensitivity studies of methane photolysis and its impact on hydrocarbon chemistry in the atmosphere of Titan. Journal of Geophysical Research, 2000, 105, 20263-20273.	3.3	27
565	Rate Coefficients of Chemical Reactions. Springer Series on Atomic, Optical, and Plasma Physics, 2000, , 167-191.	0.2	1
566	Ignition Delay Times. , 2001, , 211-VII.		7
567	Infrared frequency-modulation probing of product formation in alkyl + O2 reactions. Part IV.For Part III see ref. 12. Reactions of propyl and butyl radicals with O2Electronic Supplementary Information available. See http://www.rsc.org/suppdata/fd/b1/b102237g/. Faraday Discussions, 2001, 119, 101-120.	3.2	86
568	Prediction of transition state barriers and enthalpies of reaction by a new hybrid density-functional approximation. Journal of Chemical Physics, 2001, 115, 11040-11051.	3.0	177
569	The CH3 + HO2 Reaction:  First-Principles Prediction of Its Rate Constant and Product Branching Probabilities. Journal of Physical Chemistry A, 2001, 105, 6243-6248.	2.5	46
570	UV shielding of NH3and O2by organic hazes in the Archean atmosphere. Journal of Geophysical Research, 2001, 106, 23267-23287.	3.3	225

#	Article	IF	CITATIONS
571	Solar activity variations of the Venus thermosphere/ionosphere. Journal of Geophysical Research, 2001, 106, 21305-21335.	3.3	180
572	Reactivity of methane in nonthermal plasma in the presence of oxygen and inert gases at atmospheric pressure. IEEE Transactions on Industry Applications, 2001, 37, 1618-1624.	4.9	42
573	Plasma chemistry and growth of nanosized particles in a C2H2RF discharge. Journal Physics D: Applied Physics, 2001, 34, 2160-2173.	2.8	112
574	The H+n-C5H12/n-C6H14→H2(v′,j′)+C5H11/C6H13 reactions: State-to-state dynamics and models of ene disposal. Journal of Chemical Physics, 2001, 114, 4837-4845.	rgy 3.0	11
575	Low-energy paths for the unimolecular decomposition of CH3OH: A G2M/statistical theory study. Faraday Discussions, 2001, 119, 191-205.	3.2	41
576	Gas phase reactivity of the cyclohexadienyl radical with O2 and NO and thermochemistry of the association reaction with NO. Physical Chemistry Chemical Physics, 2001, 3, 970-979.	2.8	12
577	Thermal Decomposition of 4-Methylpyrimidine. Experimental Results and Kinetic Modeling. Journal of Physical Chemistry A, 2001, 105, 3542-3554.	2.5	0
578	Kinetics of the Reactions ofn-Alkyl (C2H5,n-C3H7, andn-C4H9) Radicals with CH3. Journal of Physical Chemistry A, 2001, 105, 6490-6498.	2.5	32
579	Kinetics of the Reactions of Allyl and Propargyl Radicals with CH3. Journal of Physical Chemistry A, 2001, 105, 3196-3204.	2.5	35
580	Thermal Reactions of Isodihydrobenzofuran:Â Experimental Results and Computer Modeling. Journal of Physical Chemistry A, 2001, 105, 3148-3157.	2.5	10
581	Homogeneous Aerosol Formation by the Chlorine Atom Initiated Oxidation of Toluene. Journal of Physical Chemistry A, 2001, 105, 82-96.	2.5	26
582	Kinetics of Reactions of H Atoms With Methane and Chlorinated Methanes. Journal of Physical Chemistry A, 2001, 105, 3107-3122.	2.5	72
583	Kinetics of Reactions of H Atoms With Ethane and Chlorinated Ethanes. Journal of Physical Chemistry A, 2001, 105, 6900-6909.	2.5	40
584	Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature. , 0, , .		632
585	Enhancement of Deuterated Ethane on Jupiter. Astrophysical Journal, 2001, 551, L93-L96.	4.5	47
586	A POSSIBLE NEW ROUTE FOR NO FORMATION VIAN2H3. Combustion Science and Technology, 2001, 168, 1-46.	2.3	65
587	Two-dimensional modelling of CH4-H2radio-frequency discharges for a-C:H deposition. EPJ Applied Physics, 2001, 16, 121-130.	0.7	2
588	Detailed combustion kinetics of cyclopentadiene studied in a shock-tube. International Journal of Chemical Kinetics, 2001, 33, 491-508.	1.6	18

#	ARTICLE	IF	Citations
589	Development and testing of a comprehensive chemical mechanism for the oxidation of methane. International Journal of Chemical Kinetics, 2001, 33, 513-538.	1.6	236
590	A new mechanism for initiation of free-radical chain reactions during high-temperature, homogeneous oxidation of unsaturated hydrocarbons: Ethylene, propyne, and allene. International Journal of Chemical Kinetics, 2001, 33, 698-706.	1.6	28
591	Flow reactor studies of methyl radical oxidation reactions in methane-perturbed moist carbon monoxide oxidation at high pressure with model sensitivity analysis. International Journal of Chemical Kinetics, 2001, 33, 75-100.	1.6	37
592	Seasonal Variations of Titan's Atmospheric Composition. Icarus, 2001, 152, 384-406.	2.5	162
593	Matrix Isolation and Ab Initio Study of the Hydrogen-Bonded H2O2-CO Complex. Chemistry - A European Journal, 2001, 7, 1670-1678.	3.3	34
594	Interactions between acetylene and carbon nanotubes at 893 and 1019 K. Carbon, 2001, 39, 1835-1847.	10.3	10
595	Kinetics of C2H radical reactions with ethene, propene and 1-butene measured in a pulsed Laval nozzle apparatus at T=103 and 296 K. Chemical Physics Letters, 2001, 348, 21-26.	2.6	56
596	Kinetic modelling of n-decane combustion and autoignition. Combustion and Flame, 2001, 126, 1456-1475.	5.2	165
597	Modeling the chemical reactions of ammonium dinitramide (ADN) in a flame. Combustion and Flame, 2001, 126, 1516-1523.	5.2	33
598	Comprehensive mechanism for the gas-phase oxidation of propene. Combustion and Flame, 2001, 126, 1780-1802.	5.2	54
599	On the Importance of Prereactive Complexes in Moleculeâ^'Radical Reactions:  Hydrogen Abstraction from Aldehydes by OH. Journal of the American Chemical Society, 2001, 123, 2018-2024.	13.7	244
600	Title is missing!. Combustion, Explosion and Shock Waves, 2001, 37, 123-147.	0.8	17
601	Title is missing!. Plasma Chemistry and Plasma Processing, 2001, 21, 459-481.	2.4	223
602	Correlation Between Homogeneous Propane Pyrolysis and Pyrocarbon Deposition. Journal of the Electrochemical Society, 2001, 148, C695.	2.9	45
603	Experimental Study and Kinetic Modelling of Nitric Oxide Reduction with Ammonia. Combustion Science and Technology, 2001, 163, 25-47.	2.3	27
604	Combustion of Magnesium with Carbon Dioxide and Carbon Monoxide at Low Gravity. Journal of Propulsion and Power, 2001, 17, 852-859.	2.2	38
605	Single-Pulse Shock Tube. , 2001, , 107-III.		7
606	The Gas-Phase Pyrolysis of Nitrocyclobutanes: a Shock-Tube Investigation Supplemented with DFT Calculations of their Thermochemical and Structural Parameters. Zeitschrift Fur Physikalische Chemie, 2001, 215, .	2.8	0

#	Article	IF	CITATIONS
607	Gas phase and surface kinetics of silicon chemical vapor deposition from silane and chlorosilanes. , 2001, , 155-186.		2
608	Investigation of the Thermal Decomposition of Ketene and of the Reaction CH2 + H2 ⇔ CH3 + H. Zeitschrift Fur Physikalische Chemie, 2001, 215, .	2.8	15
609	An Experimental and Modelling Study of Ignition Delays in Shock-Heated Ethane-Oxygen-Argon Mixtures Inhibited by 2H-Heptafluoropropane. Zeitschrift Fur Physikalische Chemie, 2001, 215, .	2.8	6
610	Model of a two-stage rf plasma reactor for SiC deposition. Journal of Applied Physics, 2001, 90, 619-636.	2.5	36
611	Quantification of a radical beam source for methyl radicals. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 101-107.	2.1	37
612	UV photodissociation dynamics of ethyl radical via the Ã 2A′(3s) state. Journal of Chemical Physics, 2001, 114, 5164-5169.	3.0	58
613	The reaction of C2H with H2: Absolute rate coefficient measurements andab initiostudy. Journal of Chemical Physics, 2002, 116, 3700-3709.	3.0	38
614	Modeling and analysis of hydrogen–methane plasma in electron cyclotron resonance chemical vapor deposition of diamond-like carbon. Journal of Applied Physics, 2002, 91, 40.	2.5	27
615	A five-dimensional quantum mechanical study of the H+CH4→H2+CH3 reaction. Journal of Chemical Physics, 2002, 117, 7614-7623.	3.0	12
616	Mathematical Modeling of the Gas-Phase Chemistry in the Decomposition of Chlorosilanes in Mixtures of Carbon Dioxide and Hydrogen at High Temperatures. Journal of the Electrochemical Society, 2002, 149, C112.	2.9	7
617	Signature of life on exoplanets: Can Darwin produce false positive detections?. Astronomy and Astrophysics, 2002, 388, 985-1003.	5.1	147
618	Reactivity of methane in a nitrogen discharge afterglow. New Journal of Physics, 2002, 4, 39-39.	2.9	26
619	The gas-phase destruction of interstellar carbon dioxide: Calculations on the reactions between CO\$mathsf{_{2}}\$ and H\$mathsf{_{2}}\$ and between CO\$mathsf{_{2}}\$ and H. Astronomy and Astrophysics, 2002, 386, 1139-1142.	5.1	19
620	Development of comprehensive detailed and reduced reaction mechanisms for combustion modeling. , 2002, , .		3
621	Progress toward the Mechanistic Description and Simulation of the Pyrolysis of Tetralin. Energy & Fuels, 2002, 16, 964-996.	5.1	29
622	An Experimental and Kinetic Study of Ethene Oxidation at a High Equivalence Ratio. Industrial & Engineering Chemistry Research, 2002, 41, 5659-5667.	3.7	11
623	Computational Study of the Reactions of H Atoms with Chlorinated Alkanes. Isodesmic Reactions for Transition States. Journal of Physical Chemistry A, 2002, 106, 11603-11615.	2.5	21
624	Formation of CO in the Reaction of Oxygen Atoms with CH3:Â Reaction over a Barrier but Not through a Saddle Point. Journal of Physical Chemistry A, 2002, 106, 8741-8756.	2.5	16

#	Article	IF	CITATIONS
625	Computational Study of the Mechanism and Product Yields in the Reaction Systems C2H3+ CH3⇄ C3H6⇄ H + C3H5and C2H3+ CH3→ CH4+ C2H2. Journal of Physical Chemistry A, 2002, 106, 6952-6966.	2.5	12
626	Kinetic Modeling Analysis of the Pyrolysis of Vinyl Bromide. Journal of Physical Chemistry A, 2002, 106, 3128-3138.	2.5	2
627	Modeling the Oxidation of Mixtures of Primary Reference Automobile Fuels. Energy & Fuels, 2002, 16, 1186-1195.	5.1	61
628	In Situ Analysis of the Removal Behavior of Protein Adsorbed on a Titanium Surface by H2O2-Electrolysis Treatment. Langmuir, 2002, 18, 8033-8039.	3.5	15
629	Thermochemical and Kinetic Analysis of the Acetyl Radical (CH3C•O) + O2Reaction System. Journal of Physical Chemistry A, 2002, 106, 7155-7170.	2.5	49
630	Formation and consumption of single-ring aromatic hydrocarbons and their precursors in premixed acetylene, ethylene and benzene flamesElectronic supplementary information (ESI) available: Thermodynamic and kinetic property data. See http://www.rsc.org/suppdata/cp/b1/b110089k/. Physical Chemistry Chemical Physics. 2002. 4, 2038-2055.	2.8	308
631	Influence of water on NO removal by pulsed discharge in N2/H2O/NO mixtures. Plasma Sources Science and Technology, 2002, 11, 152-160.	3.1	63
632	Tests of potential energy surfaces for H+CH4↔CH3+H2: Deuterium and muonium kinetic isotope effects for the forward and reverse reaction. Journal of Chemical Physics, 2002, 117, 10675-10687.	3.0	43
633	Direct Solar Reduction of CO2to Fuel:Â First Prototype Results. Industrial & Engineering Chemistry Research, 2002, 41, 1935-1939.	3.7	76
634	High temperature oxidation of iron atoms by CO2. Physical Chemistry Chemical Physics, 2002, 4, 3665-3668.	2.8	17
635	Investigation of mechanistic aspects of the catalytic CO2 reforming of methane in a dielectric-barrier discharge using optical emission spectroscopy and kinetic modeling. Physical Chemistry Chemical Physics, 2002, 4, 668-675.	2.8	113
636	Reaction between OH and CH3CHO. Physical Chemistry Chemical Physics, 2002, 4, 3628-3638.	2.8	48
637	Quantitative detection of HCO behind shock waves: The thermal decomposition of HCO. Physical Chemistry Chemical Physics, 2002, 4, 5778-5788.	2.8	107
638	Reactions of gas phase H atoms with ethylene, acetylene and ethane adsorbed on Ni(). Surface Science, 2002, 501, 49-73.	1.9	10
639	Methane Conversion and Reforming by Nonthermal Plasma on Pins. Industrial & Engineering Chemistry Research, 2002, 41, 5918-5926.	3.7	73
640	Plasma Pyrolysis of Methane to Hydrogen and Carbon Black. Industrial & Engineering Chemistry Research, 2002, 41, 1425-1435.	3.7	112
641	Uncertainty considerations for describing complex reaction systems. AICHE Journal, 2002, 48, 2875-2889.	3.6	21
642	Experimental and modeling study of the oxidation of 1-butyne and 2-butyne. International Journal of Chemical Kinetics, 2002, 34, 172-183.	1.6	39

#	Article	IF	CITATIONS
643	Direct measurements of the reaction H + CH2O ? H2 + HCO behind shock waves by means of Vis-UV detection of formaldehyde. International Journal of Chemical Kinetics, 2002, 34, 374-386.	1.6	45
644	Oxidation of small alkenes at high temperature. International Journal of Chemical Kinetics, 2002, 34, 666-677.	1.6	70
645	Photochemistry of a Volcanically Driven Atmosphere on Io: Sulfur and Oxygen Species from a Pele-Type Eruption. Icarus, 2002, 156, 76-106.	2.5	96
646	Carbon Monoxide on Jupiter: Evidence for Both Internal and External Sources. Icarus, 2002, 159, 95-111.	2.5	126
647	An investigation of the coking properties of fixed and fluid bed reactors during methane-to-synthesis gas reactions. Applied Catalysis A: General, 2002, 228, 289-303.	4.3	50
648	Mechanisms and rates of the reactions C2H5+O and 1-C3H7+O. Proceedings of the Combustion Institute, 2002, 29, 1247-1255.	3.9	23
649	Modeling ethylene combustion from low to high pressure. Proceedings of the Combustion Institute, 2002, 29, 1257-1266.	3.9	41
650	Oxidation of Fe atoms by O2 based on Fe- and O-concentration measurements. Proceedings of the Combustion Institute, 2002, 29, 1345-1352.	3.9	10
651	Theoretical calculation of heat of formation for a number of moderate sized fluorinated compounds. Journal of Fluorine Chemistry, 2002, 117, 47-53.	1.7	25
652	Formation of polymer-like hydrocarbon films from radical beams of methyl and atomic hydrogen. Thin Solid Films, 2002, 402, 1-37.	1.8	88
653	QSPR models derived for the kinetic data of the gas-phase homolysis of the carbon–methyl bond. Computers & Chemistry, 2002, 26, 237-243.	1.2	8
654	Modelling practical combustion systems and predicting NOx emissions with an integrated CFD based approach. Computers and Chemical Engineering, 2002, 26, 1171-1183.	3.8	47
655	Growth rate predictions of chemical vapor deposited silicon carbide epitaxial layers. Journal of Crystal Growth, 2002, 243, 170-184.	1.5	88
656	A comprehensive modeling study of iso-octane oxidation. Combustion and Flame, 2002, 129, 253-280.	5.2	1,211
657	Shock-tube and modeling study of diacetylene pyrolysis and oxidation. Combustion and Flame, 2002, 130, 62-82.	5.2	31
658	A comprehensive chemical mechanism for the oxidation of methylethylketone in flame conditions. Combustion and Flame, 2002, 130, 225-240.	5.2	33
659	Plasma Thermal Conversion of Methane to Acetylene. Plasma Chemistry and Plasma Processing, 2002, 22, 107-138.	2.4	130
660	Title is missing!. Kinetics and Catalysis, 2002, 43, 149-164.	1.0	3

#	Article	IF	CITATIONS
661	The Order of Product Formation in the Partial Oxidation of Methane to Syngas. Kinetics and Catalysis, 2002, 43, 847-853.	1.0	7
662	Molecular, Thermodynamic, and Kinetic Parameters of the Free Radical C2H5 · in the Gas Phase. Russian Journal of General Chemistry, 2003, 73, 75-84.	0.8	1
663	Contemporary Methods for the Direct Catalytic Conversion of Methane. Theoretical and Experimental Chemistry, 2003, 39, 201-218.	0.8	9
664	Kinetic Parameters for Direct Atomic Substitution Reactions. Kinetics and Catalysis, 2003, 44, 1-4.	1.0	14
665	Direct Non-oxidative Methane Conversion by Non-thermal Plasma: Modeling Study. Plasma Chemistry and Plasma Processing, 2003, 23, 327-346.	2.4	56
666	Kinetic study of the reactions of OH with the simple alkyl iodides: CH3I, C2H5I, 1-C3H7I and 2-C3H7I. Atmospheric Environment, 2003, 37, 1125-1133.	4.1	26
667	Free radicals in catalytic oxidation of light alkanes: kinetic and thermochemical aspects. Journal of Catalysis, 2003, 216, 468-476.	6.2	61
668	Systematic errors in DFT calculations of haloalkane heats of formation. Journal of Computational Chemistry, 2003, 24, 640-646.	3.3	10
669	Capturing pressure-dependence in automated mechanism generation: Reactions through cycloalkyl intermediates. International Journal of Chemical Kinetics, 2003, 35, 95-119.	1.6	123
670	Analytical resolution of a parallel second-order reaction mechanism. International Journal of Chemical Kinetics, 2003, 35, 246-251.	1.6	Ο
671	Experimental and modeling study of shock-tube oxidation of acetylene. International Journal of Chemical Kinetics, 2003, 35, 391-414.	1.6	54
672	Experimental and modeling study of the oxidation of benzene. International Journal of Chemical Kinetics, 2003, 35, 503-524.	1.6	70
673	Investigation of stoichiometric methane/air/benzene (1.5%) and methane/air low pressure flames. Combustion and Flame, 2003, 135, 171-183.	5.2	35
674	Theoretical study of the kinetics of the hydrogen abstraction reaction H2O2+O(3P)→OH+HO2. Computational and Theoretical Chemistry, 2003, 664-665, 189-196.	1.5	3
675	The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars. Icarus, 2003, 165, 277-300.	2.5	140
676	Elementary reaction kinetics studies of interest in H2 supersonic combustion chemistry. Experimental Thermal and Fluid Science, 2003, 27, 371-377.	2.7	44
677	Using N2 as precursor gas in III-nitride CVD growth. Journal of Crystal Growth, 2003, 253, 26-37.	1.5	19
678	A model for plasma modification of polypropylene using atmospheric pressure discharges. Journal Physics D: Applied Physics, 2003, 36, 666-685.	2.8	415

#	Article	IF	CITATIONS
679	Simulation of Hî—,Cî—,S containing gas mixtures relevant to diamond chemical vapour deposition. Diamond and Related Materials, 2003, 12, 2178-2185.	3.9	25
680	Diagnostic studies of H2–Ar–N2microwave plasmas containing methane or methanol using tunable infrared diode laser absorption spectroscopy. Plasma Sources Science and Technology, 2003, 12, S98-S110.	3.1	54
681	Plasma-Assisted Process for Removing NO/NOx from Gas Streams with C2H4 as Additive. Journal of Environmental Engineering, ASCE, 2003, 129, 800-810.	1.4	11
682	Chemical markers of possible hot spots on Mars. Journal of Geophysical Research, 2003, 108, .	3.3	70
683	Thermal Decomposition of 2-Fluoroethanol:  Single Pulse Shock Tube and ab Initio Studies. Journal of Physical Chemistry A, 2003, 107, 9782-9793.	2.5	18
684	Oxygenate, oxyalkyl and alkoxycarbonyl thermochemistry and rates for hydrogen abstraction from oxygenates. Physical Chemistry Chemical Physics, 2003, 5, 3402-3417.	2.8	72
685	Absolute Rate Calculations for Atom Abstractions by Radicals:Â Energetic, Structural and Electronic Factors. Journal of the American Chemical Society, 2003, 125, 5236-5246.	13.7	32
686	Kinetics of the CCl3 + CH3 Radicalâ^'Radical Reaction. Journal of Physical Chemistry A, 2003, 107, 6558-6564.	2.5	3
687	Thermal Decomposition and Ring Expansion in 2,4-Dimethylpyrrole. Single Pulse Shock Tube and Modeling Studies. Journal of Physical Chemistry A, 2003, 107, 4851-4861.	2.5	9
688	Measurements, Theory, and Modeling of OH Formation in Ethyl + O2 and Propyl + O2 Reactions. Journal of Physical Chemistry A, 2003, 107, 4415-4427.	2.5	160
689	Thermochemical and Kinetic Analysis of the Formyl Methyl Radical + O2 Reaction System. Journal of Physical Chemistry A, 2003, 107, 3778-3791.	2.5	53
690	A Theoretical Study on the Kinetics of Disproportionation versus Association Reaction of CH3+ C2H5. Journal of Physical Chemistry A, 2003, 107, 8566-8574.	2.5	21
691	Experimental and Theoretical Studies of the Methylidyne CH(X2Î) Radical Reaction with Ethane (C2H6): Overall Rate Constant and Product Channels. Journal of Physical Chemistry A, 2003, 107, 5419-5426.	2.5	40
692	Kinetics of the Self-Reaction of C2H5 Radicals. Journal of Physical Chemistry A, 2003, 107, 6804-6813.	2.5	19
693	Experiments and Calculations on Rate Coefficients for Pyrolysis of SO2and the Reaction O + SO at High Temperatures. Journal of Physical Chemistry A, 2003, 107, 11020-11029.	2.5	32
694	Reexamination of the Pyrolysis of Polyethylene:Â Data Needs, Free-Radical Mechanistic Considerations, and Thermochemical Kinetic Simulation of Initial Product-Forming Pathways. Macromolecules, 2003, 36, 8931-8957.	4.8	90
695	Molecular Beams in Space: Sources of OH(A→X) Emission in the Space Shuttle Environmentâ€. Journal of Physical Chemistry A, 2003, 107, 10695-10705.	2.5	15
696	A one-dimensional fluid model for an acetylene RF discharge: a study of the plasma chemistry. IEEE Transactions on Plasma Science, 2003, 31, 659-664.	1.3	32

#	Article	IF	CITATIONS
697	Development of Comprehensive Detailed and Reduced Reaction Mechanisms for Combustion Modeling. AIAA Journal, 2003, 41, 1629-1646.	2.6	106
698	Wind Thermo-Chemical Models and Recent Improvements. , 2003, , .		2
699	Ab initiotransition state theory calculation of the rate constant for the hydrogen abstraction reaction H2O2+H→H2+HO2. Journal of Chemical Physics, 2003, 118, 1189-1195.	3.0	14
700	Shortest paths in chemical kinetic applications. Physical Chemistry Chemical Physics, 2003, 5, 3916.	2.8	3
701	Infrared chemiluminescence from water-forming reactions: Characterization of dynamics and mechanisms. International Reviews in Physical Chemistry, 2003, 22, 1-72.	2.3	52
702	Theoretical study and rate constant calculation of the CH2O+CH3 reaction. Journal of Chemical Physics, 2003, 119, 7214-7221.	3.0	14
703	One-dimensional modelling of a capacitively coupled rf plasma in silane/helium, including small concentrations of O2and N2. Journal Physics D: Applied Physics, 2003, 36, 1826-1833.	2.8	31
704	Ab initio studies of alkyl radical reactions: Combination and disproportionation reactions of CH3 with C2H5, and the decomposition of chemically activated C3H8. Journal of Chemical Physics, 2004, 120, 6566-6573.	3.0	33
705	Directab initiodynamics study on the rate constants and kinetics isotope effects of CH3O+H→CH2O+H2 reaction. Journal of Chemical Physics, 2004, 121, 9474-9480.	3.0	9
706	Ab initiorate constants from hyperspherical quantum scattering: Application to H+C2H6 and H+CH3OH. Journal of Chemical Physics, 2004, 121, 6809-6821.	3.0	49
707	Modeling of Pyrolysis of Ammonium Dinitramide Sublimation Products under Low-Pressure Conditions. Combustion, Explosion and Shock Waves, 2004, 40, 92-109.	0.8	18
708	Gaseous Products of Polyethylene Etching by O(3P) Atoms Involving O2(X3–g), O2(b1Σ+g), and O2(a1Âg) Oxygen Molecules and a Possible Mechanism of Their Formation. High Energy Chemistry, 2004, 38, 221-225.	0.9	7
709	Geometric parameters of transition states of radical abstraction reactions with CHC reaction center. Russian Chemical Bulletin, 2004, 53, 727-737.	1.5	0
710	Experimental and modelling investigation of the thermal decomposition of n-dodecane. Journal of Analytical and Applied Pyrolysis, 2004, 71, 865-881.	5.5	118
711	Shock-tube study of methane ignition under engine-relevant conditions: experiments and modeling. Combustion and Flame, 2004, 136, 25-42.	5.2	155
712	Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor. Combustion and Flame, 2004, 136, 91-128.	5.2	157
713	Reduced parabolic model for radical addition reactions. Russian Chemical Bulletin, 2004, 53, 1602-1608.	1.5	4
714	Kinetics of phenyl radical reactions with propane,n-butane,n-hexane, andn-octane: Reactivity of C6H5 toward the secondary C?H bond of alkanes. International Journal of Chemical Kinetics, 2004, 36, 49-56.	1.6	9

#	Article	IF	CITATIONS
715	An updated comprehensive kinetic model of hydrogen combustion. International Journal of Chemical Kinetics, 2004, 36, 566-575.	1.6	958
716	Reactions of CH3O2 radicals on solid surface. International Journal of Chemical Kinetics, 2004, 36, 591-595.	1.6	4
717	A comprehensive modeling study of hydrogen oxidation. International Journal of Chemical Kinetics, 2004, 36, 603-622.	1.6	833
718	Detection of methane in the martian atmosphere: evidence for life?. Icarus, 2004, 172, 537-547.	2.5	459
719	Accurate ab initio calculations on the rate constants of the hydrogen abstraction reaction C2H3+H2→H+C2H4. Computational and Theoretical Chemistry, 2004, 668, 35-39.	1.5	6
720	Ab initio study for the hydrogen abstraction reaction C2H5+H→C2H4+H2. Computational and Theoretical Chemistry, 2004, 682, 163-170.	1.5	7
721	Experimental investigation in rich premixed acetylene flames. Experimental Thermal and Fluid Science, 2004, 28, 715-722.	2.7	12
722	Theoretical study on the reaction path and rate constants of the hydrogen atom abstraction reaction of CH2O with CH3/OH. Chemical Physics, 2004, 307, 35-43.	1.9	17
723	Ab initio and direct dynamics study on the hydrogen abstraction reaction C2H3+HCHO. Chemical Physics, 2004, 306, 51-56.	1.9	6
724	Computational modeling of the SiH3+O2 reaction and silane combustion. Combustion and Flame, 2004, 137, 73-92.	5.2	35
725	The substitution reactions RH+O2→RO2+H: transition state theory calculations based on the ab initio and DFT potential energy surface. Chemical Physics Letters, 2004, 385, 486-490.	2.6	19
726	Matrix isolation and quantum chemical studies on the H2O2–SO2complex. Physical Chemistry Chemical Physics, 2004, 6, 4607-4613.	2.8	19
727	Photodissociation of thetert-butyl Radical, C4H9â€. Journal of Physical Chemistry A, 2004, 108, 8125-8130.	2.5	26
728	Isomerization of Simple Alkoxyl Radicals:  New Temperature-Dependent Rate Data and Structure Activity Relationship. Journal of Physical Chemistry A, 2004, 108, 519-523.	2.5	20
729	Effect of Water Vapor on the Combination and Disproportionation of Ethyl Radicals in the Gas Phase. Journal of Physical Chemistry A, 2004, 108, 1638-1639.	2.5	3
730	Decomposition, Isomerization, and Ring Expansion in 2-Methylindene:Â Single-pulse Shock Tube and Modeling Study. Journal of Physical Chemistry A, 2004, 108, 3430-3438.	2.5	19
731	Modeling the Direct Solar Conversion of CO2to CO and O2. Industrial & Engineering Chemistry Research, 2004, 43, 2446-2453.	3.7	20
732	Unimolecular Dissociation of Formyl Radical, HCO → H + CO, Studied over 1â^'100 Bar Pressure Range. Journal of Physical Chemistry A, 2004, 108, 11526-11536.	2.5	57

#	Article	IF	CITATIONS
733	NCCN and NCCCCN Formation in Titan's Atmosphere: 1. Competing Reactions of Precursor HCCN (3Aâ€~Ââ€~) with H (2S) and CH3(2Aâ€~). Journal of Physical Chemistry A, 2004, 108, 3615-3622.	2.5	25
734	High-Temperature Shock Tube Studies Using Multipass Absorption:Â Rate Constant Results for OH + CH3, OH + CH2, and the Dissociation of CH3OH. Journal of Physical Chemistry A, 2004, 108, 8317-8323.	2.5	41
735	Three-dimensional modeling of ozone on Mars. Journal of Geophysical Research, 2004, 109, .	3.3	170
736	Kinetic Isotope Effects in the Reactions of D Atoms with CH4, C2H6, and CH3OH: Quantum Dynamics Calculationsâ€. Journal of Physical Chemistry A, 2004, 108, 8966-8972.	2.5	49
737	Untangling the formation of the cyclic carbon trioxide isomer in low temperature carbon dioxide ices. Physical Chemistry Chemical Physics, 2004, 6, 735.	2.8	156
738	Thermochemical Properties, Pathway, and Kinetic Analysis on the Reactions of Benzene with OH:  An Elementary Reaction Mechanism. Journal of Physical Chemistry A, 2004, 108, 4632-4652.	2.5	49
739	Combined Quantum Chemical/RRKM-ME Computational Study of the Phenyl + Ethylene, Vinyl + Benzene, and H + Styrene Reactionsâ€. Journal of Physical Chemistry A, 2004, 108, 9697-9714.	2.5	50
740	Elementary reaction rate model for MPA oxidation in supercritical waterElectronic supplementary information (ESI) available: Full MPA SCWO reaction mechanisms. See http://www.rsc.org/suppdata/cp/b4/b402743d/. Physical Chemistry Chemical Physics, 2004, 6, 4310.	2.8	16
741	Sources of OH(A-X) Emission in the Space Shuttle Environment. , 2004, , .		1
742	N2-CH4-Ar Chemical Kinetic Model for Simulations of Atmospheric Entry to Titan. , 2004, , .		28
742 743	N2-CH4-Ar Chemical Kinetic Model for Simulations of Atmospheric Entry to Titan. , 2004, , . Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere. Journal of Geophysical Research, 2004, 109, .	3.3	28 318
	Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and	3.3 4.5	
743	Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere. Journal of Geophysical Research, 2004, 109, . Predicted Abundances of Carbon Compounds in Volcanic Gases on IO. Astrophysical Journal, 2005, 618,		318
743 744	Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere. Journal of Geophysical Research, 2004, 109, . Predicted Abundances of Carbon Compounds in Volcanic Gases on IO. Astrophysical Journal, 2005, 618, 1079-1085.		318 16
743 744 745	Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere. Journal of Geophysical Research, 2004, 109, . Predicted Abundances of Carbon Compounds in Volcanic Gases on IO. Astrophysical Journal, 2005, 618, 1079-1085. Ignition of Lean Methane-Based Fuel Blends at Gas Turbine Pressures. , 2005, , 367. Decomposition and ring expansion in methylcyclopentadiene: single-pulse shock tube and modeling	4.5	318 16 8
743 744 745 746	Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere. Journal of Geophysical Research, 2004, 109, . Predicted Abundances of Carbon Compounds in Volcanic Gases on IO. Astrophysical Journal, 2005, 618, 1079-1085. Ignition of Lean Methane-Based Fuel Blends at Gas Turbine Pressures. , 2005, , 367. Decomposition and ring expansion in methylcyclopentadiene: single-pulse shock tube and modeling study. Proceedings of the Combustion Institute, 2005, 30, 1039-1047. Migration mechanism of aromatic-edge growth. Proceedings of the Combustion Institute, 2005, 30,	4.5 3.9	318 16 8 32
743 744 745 746 747	Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere. Journal of Geophysical Research, 2004, 109, . Predicted Abundances of Carbon Compounds in Volcanic Gases on IO. Astrophysical Journal, 2005, 618, 1079-1085. Ignition of Lean Methane-Based Fuel Blends at Gas Turbine Pressures. , 2005, , 367. Decomposition and ring expansion in methylcyclopentadiene: single-pulse shock tube and modeling study. Proceedings of the Combustion Institute, 2005, 30, 1039-1047. Migration mechanism of aromatic-edge growth. Proceedings of the Combustion Institute, 2005, 30, 1389-1396. Rate constants for the abstraction reactions RO2+C2H6; R=H, CH3, and C2H5. Proceedings of the	4.5 3.9 3.9	 318 16 8 32 57

	Стат	tion Report	
#	Article	IF	CITATIONS
751	Kinetics modelling of ethyl acetate oxidation in flame conditions. Fuel, 2005, 84, 505-518.	6.4	37
752	Theoretical calculations on the reaction of ethylene with oxygen. Chemical Physics, 2005, 311, 335-341.	1.9	15
753	Flame inhibition by phosphorus-containing compounds over a range of equivalence ratios. Combustion and Flame, 2005, 140, 103-115.	5.2	134
754	Decomposition and hydrocarbon growth processes for hexenes in nonpremixed flames. Combustion and Flame, 2005, 143, 246-263.	5.2	18
755	Laminar flame speeds and kinetic modeling of hydrogen/chlorine combustion. Combustion and Flame, 2005, 143, 199-210.	5.2	11
756	Vibrational relaxation of OH by oxygen atoms. Chemical Physics Letters, 2005, 415, 1-5.	2.6	15
757	Sensitivity effects of photochemical parameters uncertainties on hydrocarbon production in the atmosphere of Titan. Advances in Space Research, 2005, 36, 268-273.	2.6	20
758	Autoxidation of Cyclohexane: Conventional Views Challenged by Theory and Experiment. ChemPhysChem, 2005, 6, 637-645.	2.1	117
759	Ab Initio Study of Free-Radical Polymerizations: Cost-Effective Methods to Determine the Reaction Rates. ChemPhysChem, 2005, 6, 180-189.	2.1	45
760	Partial oxidation of methane to synthesis gas by a microwave plasma torch. AICHE Journal, 2005, 51, 2853-2858.	3.6	9
761	Experimental and modeling study of the oxidation of toluene. International Journal of Chemical Kinetics, 2005, 37, 25-49.	1.6	176
762	Direct measurements of the reaction OH + CH2O ? HCO + H2O at high temperatures. International Journal of Chemical Kinetics, 2005, 37, 98-109.	1.6	76
763	Ethane oxidation and pyrolysis from 5 bar to 1000 bar: Experiments and simulation. International Journal of Chemical Kinetics, 2005, 37, 306-331.	1.6	24
764	Thermal stability and bond dissociation energy of fluorinated polymers: A critical evaluation. Journal of Fluorine Chemistry, 2005, 126, 623-630.	1.7	37
765	LIF spectroscopy applied to the study of non-thermal plasmas for atmospheric pollutant abatement. Comptes Rendus Physique, 2005, 6, 908-917.	0.9	27
766	Airglow on Mars: Some model expectations for the OH Meinel bands and the O IR atmospheric band. Icarus, 2005, 176, 75-95.	2.5	61
767	Elementary reactions of formyl (HCO) radical studied by laser photolysis—transient absorption spectroscopy. Proceedings of the Combustion Institute, 2005, 30, 935-943.	3.9	37
768	An optimized kinetic model of H2/CO combustion. Proceedings of the Combustion Institute, 2005, 30, 1283-1292.	3.9	607

#	Article	IF	CITATIONS
769	Conversion of NO in NO/N2, NO/O2/N2, NO/C2H4/N2 and NO/C2H4/O2/N2 Systems by Dielectric Barrier Discharge Plasmas. Plasma Chemistry and Plasma Processing, 2005, 25, 371-386.	2.4	56
770	Radical addition reactions: factors determining the transition-state geometry. Russian Chemical Bulletin, 2005, 54, 914-923.	1.5	2
771	Quantum corrections to the equilibrium rate constants of inelastic processes. Physics-Uspekhi, 2005, 48, 281-294.	2.2	29
772	Removal of formaldehyde from gas streams via packed-bed dielectric barrier discharge plasmas. Journal Physics D: Applied Physics, 2005, 38, 4160-4167.	2.8	76
773	Experimental and theoretical studies of rate coefficients for the reaction O(P3)+CH3OH at high temperatures. Journal of Chemical Physics, 2005, 122, 244314.	3.0	12
774	Potential surfaces and dynamics of the O(P3)+H2O(XA111)→OH(XÎ2)+OH(XÎ2) reaction. Journal of Chemical Physics, 2005, 122, 184307.	3.0	26
775	A Systematically Generated, Pressure-Dependent Mechanism for High-Conversion Ethane Pyrolysis. 1. Pathways to the Minor Products. Journal of Physical Chemistry A, 2005, 109, 5332-5342.	2.5	29
776	Kinetic Studies of the Reactions of O2(bΣg+) with Several Atmospheric Molecules. Journal of Physical Chemistry A, 2005, 109, 3912-3920.	2.5	34
777	Kinetics of the CH2Cl + CH3and CHCl2+ CH3Radicalâ^'Radical Reactions. Journal of Physical Chemistry A, 2005, 109, 6249-6254.	2.5	5
778	Detailed Modeling of the Reaction of C2H5+ O2. Journal of Physical Chemistry A, 2005, 109, 2264-2281.	2.5	65
779	Direct Dynamics Study on the Hydrogen Abstraction Reaction CH2O + HO2 → CHO + H2O2. Journal of Physical Chemistry A, 2005, 109, 12027-12035.	2.5	17
780	Effect of CO2on Nonthermal-Plasma Reactions of Nitrogen Oxides in N2. 1. PPM-Level Concentrations. Industrial & Engineering Chemistry Research, 2005, 44, 3925-3934.	3.7	20
781	Effect of CO2on Nonthermal-Plasma Reactions of Nitrogen Oxides in N2. 2. Percent-Level Concentrations. Industrial & Engineering Chemistry Research, 2005, 44, 3935-3946.	3.7	11
782	Reflected Shock Tube Studies of High-Temperature Rate Constants for CH3+ O2, H2CO + O2, and OH + O2. Journal of Physical Chemistry A, 2005, 109, 7902-7914.	2.5	65
783	Integrated Fuel Cell Processor for a 5-kW Proton-Exchange Membrane Fuel Cell. Industrial & Engineering Chemistry Research, 2005, 44, 1535-1541.	3.7	14
784	Measurements and Modeling of HO2Formation in the Reactions ofn-C3H7andi-C3H7Radicals with O2â€. Journal of Physical Chemistry B, 2005, 109, 8374-8387.	2.6	38
785	Theoretical Study on the Reaction Mechanism of Vinyl Radical with Formaldehyde. Journal of Physical Chemistry A, 2005, 109, 8419-8423.	2.5	11
786	Theoretical and Experimental Study of the Product Branching in the Reaction of Acetic Acid with OH Radicals. Journal of Physical Chemistry A, 2005, 109, 2401-2409.	2.5	43

#	ARTICLE	IF	CITATIONS
787	Oligomerization and cyclization reactions of acetylene. Physical Chemistry Chemical Physics, 2005, 7, 326-333.	2.8	14
788	Removal of volatile organic compounds in atmospheric pressure air by means of direct current glow discharges. IEEE Transactions on Plasma Science, 2005, 33, 1416-1425.	1.3	66
789	Contributions of a multimoment multispecies approach in modeling planetary atmospheres: Example of Mars. Journal of Geophysical Research, 2005, 110, .	3.3	11
790	Photochemistry and diffusion in Jupiter's stratosphere: Constraints from ISO observations and comparisons with other giant planets. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	167
791	Kinetics of the Hydrogen Abstraction•CH3+ Alkane → CH4+ Alkyl Reaction Class: An Application of the Reaction Class Transition State Theory. Journal of Physical Chemistry A, 2005, 109, 7742-7750.	2.5	57
792	Assessment of Heating Environments of Venus Entry Capsule for a Trail Balloon Mission. , 2005, , .		3
793	Towards a Kinetics Model of CH Chemiluminescence. , 2005, , .		6
794	Heating Environments of a Venus Entry Capsule in a Trail Balloon Mission. Journal of Thermophysics and Heat Transfer, 2006, 20, 507-516.	1.6	19
795	Predictive theory for the combination kinetics of two alkyl radicals. Physical Chemistry Chemical Physics, 2006, 8, 1133.	2.8	202
796	Unintentional doping and compensation effects of carbon in metal-organic chemical-vapor deposition fabricated ZnO thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 1213-1217.	2.1	27
797	MODELING OF REFERENCE FUEL COMBUSTION WITH PAH FORMATION. , 2006, , .		1
798	MODELING OXIDATION AND HYDROLYSIS REACTIONS IN SUPERCRITICAL WATER—FREE RADICAL ELEMENTARY REACTION NETWORKS AND THEIR APPLICATIONS. Combustion Science and Technology, 2006, 178, 363-398.	2.3	17
799	Effect of CO on NO and N2O conversions in nonthermal argon plasma. Journal of Applied Physics, 2006, 99, 113302.	2.5	21
800	Quantum reactive scattering of H + hydrocarbon reactions. Physical Chemistry Chemical Physics, 2006, 8, 917.	2.8	56
801	Ab Initio Study of the Role of Entropy in the Kinetics of Acetylene Production in Filament-Assisted Diamond Growth Environments. Journal of Physical Chemistry A, 2006, 110, 132-140.	2.5	6
802	Ultraviolet photochemistry of trichlorovinylsilane and allyltrichlorosilane: vinyl radical (HCCH2) and allyl radical (H2CCHCH2) production in 193 nm photolysis. Physical Chemistry Chemical Physics, 2006, 8, 2240.	2.8	18
803	Laser induced fluorescence studies of iodine oxide chemistry : Part II. The reactions of IO with CH3O2, CF3O2 and O3. Physical Chemistry Chemical Physics, 2006, 8, 5185.	2.8	53
804	Wet Oxidation and Catalytic Wet Oxidation. Industrial & Engineering Chemistry Research, 2006, 45, 1221-1258.	3.7	407

#	Article	IF	CITATIONS
805	Determination of Temperatures within Acoustically Generated Bubbles in Aqueous Solutions at Different Ultrasound Frequencies. Journal of Physical Chemistry B, 2006, 110, 13656-13660.	2.6	119
806	Unimolecular Dissociation of the CH3OCO Radical: An Intermediate in the CH3O + CO Reactionâ€. Journal of Physical Chemistry A, 2006, 110, 1625-1634.	2.5	48
807	Theoretical Mechanistic Study on the Radicalâ~'Molecule Reaction of CH2OH with NO2. Journal of Physical Chemistry A, 2006, 110, 2690-2697.	2.5	8
808	Reflected Shock Tube Studies of High-Temperature Rate Constants for OH + NO2→ HO2+ NO and OH + HO2→ H2O + O2â€. Journal of Physical Chemistry A, 2006, 110, 6602-6607.	2.5	50
809	H + CD4 Abstraction Reaction Dynamics:  Product Energy Partitioning. Journal of Physical Chemistry A, 2006, 110, 3017-3027.	2.5	54
810	Kinetic Modeling of the Propyl Radical β-Scission Reaction: An Application of Composite Energy Methods. Industrial & Engineering Chemistry Research, 2006, 45, 530-535.	3.7	10
811	Kinetics of the Reaction C2H5 + HO2 by Time-Resolved Mass Spectrometry. Journal of Physical Chemistry A, 2006, 110, 3330-3337.	2.5	37
812	H + CD4Abstraction Reaction Dynamics: Excitation Function and Angular Distributionsâ€. Journal of Physical Chemistry A, 2006, 110, 677-686.	2.5	52
813	Modeling of the Gas-Phase Oxidation of Cyclohexane. Energy & amp; Fuels, 2006, 20, 1450-1459.	5.1	80
814	Dynamics and Disequilibrium Carbon Chemistry in Hot Jupiter Atmospheres, with Application to HD 209458b. Astrophysical Journal, 2006, 649, 1048-1063.	4.5	204
815	Atomic Oxygen Production and Exploration of Reaction Mechanisms in a He-O2 Atmospheric Pressure Glow Discharge Torch. Plasma Processes and Polymers, 2006, 3, 587-596.	3.0	67
816	Intensification of the oxidation of rich methane/air mixtures by O2 molecules excited to the a 1î"g state. Kinetics and Catalysis, 2006, 47, 487-496.	1.0	15
817	Experimental and kinetic study of autoignition in methane/ethane/air and methane/propane/air mixtures under engine-relevant conditions. Combustion and Flame, 2006, 144, 74-88.	5.2	106
818	Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide. Combustion and Flame, 2006, 145, 316-323.	5.2	257
819	Detailed kinetic modeling of ethane oxidation. Combustion and Flame, 2006, 145, 16-37.	5.2	52
820	A rapid compression facility study of OH time histories during iso-octane ignition. Combustion and Flame, 2006, 145, 552-570.	5.2	65
821	Investigation of the reaction of toluene with molecular oxygen in shock-heated gases. Combustion and Flame, 2006, 147, 195-208.	5.2	56
822	About the co-product of the OH radical in the reaction of acetyl with O2 below atmospheric pressure. Chemical Physics Letters, 2006, 417, 154-158.	2.6	20

#	Article	IF	CITATIONS
823	The interstellar gas-phase formation of CO2 – Assisted or not by water molecules?. Chemical Physics, 2006, 320, 214-228.	1.9	28
824	NO prediction in natural gas flames using GDF-Kin®3.0 mechanism NCN and HCN contribution to prompt-NO formation. Fuel, 2006, 85, 896-909.	6.4	107
825	Some problems related to the origin of methane on Mars. Icarus, 2006, 180, 359-367.	2.5	105
826	Experimental and theoretical study of hydrocarbon photochemistry applied to Titan stratosphere. Icarus, 2006, 185, 287-300.	2.5	52
827	Photochemical kinetics uncertainties in modeling Titan's atmosphere: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2006, 7, 211-230.	11.6	77
828	Impurity effects in ZnO and nitrogen-doped ZnO thin films fabricated by MOCVD. Journal of Crystal Growth, 2006, 287, 94-100.	1.5	60
829	Growth behavior of GaSb by metal–organic vapor-phase epitaxy. Journal of Crystal Growth, 2006, 296, 117-128.	1.5	13
830	The molecular structure, spin–vibronic energy levels, and thermochemistry of CH3O. Journal of Molecular Structure, 2006, 780-781, 163-170.	3.6	27
831	Kinetic study of the hydrogen abstraction reaction H2O2+H→H2+HO2 by ab initio and density functional theory calculations. Computational and Theoretical Chemistry, 2006, 758, 53-60.	1.5	11
832	The chain character of the third self-ignition limit of hydrogen-oxygen mixtures and flame propagation at atmospheric pressure. Russian Journal of Physical Chemistry A, 2006, 80, 72-76.	0.6	1
833	Degradation of alkyl radicals via C-H bond dissociation: Kinetic parameters and transition state geometry. Petroleum Chemistry, 2006, 46, 84-93.	1.4	0
834	Free radicals as intermediates in catalytic oxidation of light alkanes: new opportunities. Research on Chemical Intermediates, 2006, 32, 205-215.	2.7	10
835	Retrieval of the vertical distribution of chemical components in the mesosphere from simultaneous measurements of ozone and hydroxyl distributions. Radiophysics and Quantum Electronics, 2006, 49, 683-691.	0.5	12
836	Effect of nitrogen oxides NOx on gas-phase oxidation of methane by oxygen. Theoretical and Experimental Chemistry, 2006, 42, 126-132.	0.8	0
837	Direct Ab Initio Dynamics Study for the Hydrogen Abstraction Reaction: CH \$\$_{2} ({^{3}}B_{1})\$\$ + H2CO \$\$ightarrow \$\$ CH3 + CHO. Theoretical Chemistry Accounts, 2006, 115, 205-211.	1.4	2
838	A small detailed chemical-kinetic mechanism for hydrocarbon combustion. Combustion and Flame, 2006, 144, 526-544.	5.2	143
839	Rich methane premixed laminar flames doped with light unsaturated hydrocarbonsI. Allene and propyne. Combustion and Flame, 2006, 146, 620-634.	5.2	32
840	Deuterium chemistry and airglow in the jovian thermosphere. Icarus, 2006, 183, 451-470.	2.5	11

#	Article	IF	CITATIONS
841	A wide range modeling study of NOxNOx formation and nitrogen chemistry in hydrogen combustion. International Journal of Hydrogen Energy, 2006, 31, 2310-2328.	7.1	93
842	Theoretical mechanistic study on the radical-molecule reaction of CHCl2/CCl3 with NO2. Journal of Computational Chemistry, 2006, 27, 661-671.	3.3	8
843	Theoretical study on the mechanism of the CH2F + NO2 reaction. Journal of Computational Chemistry, 2006, 27, 894-905.	3.3	5
844	Ab Initio Group Contribution Method for Activation Energies of Hydrogen Abstraction Reactions. ChemPhysChem, 2006, 7, 188-199.	2.1	66
845	Rate constant estimation for C1 to C4 alkyl and alkoxyl radical decomposition. International Journal of Chemical Kinetics, 2006, 38, 250-275.	1.6	200
846	Experimental and kinetic study of shock initiated ignition in homogeneous methane–hydrogen–air mixtures at engine-relevant conditions. International Journal of Chemical Kinetics, 2006, 38, 221-233.	1.6	73
847	Experimental and modeling study of the oxidation of xylenes. International Journal of Chemical Kinetics, 2006, 38, 284-302.	1.6	88
848	Ab initio study of the OH + CH2O reaction: The effect of the OH··OCH2 complex on the H-abstraction kinetics. International Journal of Chemical Kinetics, 2006, 38, 322-326.	1.6	54
849	Room Temperature and Shock Tube Study of the Reaction HCO + O2 Using the Photolysis of Glyoxal as an Efficient HCO Source. Journal of Physical Chemistry A, 2006, 110, 160-170.	2.5	43
850	FLUENT-based modelling of rocket exhaust signatures. , 2006, , .		2
850 851	FLUENT-based modelling of rocket exhaust signatures. , 2006, , . Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels. Physics of Plasmas, 2006, 13, 113501.	1.9	2 29
	Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels. Physics of	1.9	
851	Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels. Physics of Plasmas, 2006, 13, 113501.	1.9	29
851 852	Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels. Physics of Plasmas, 2006, 13, 113501. Carbon-Centered Radicals. , 2006, , 101-134. <i>Ab initio</i> kinetic prediction of branching rate constants for reactions of H atoms with		29 0
851 852 853	Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels. Physics of Plasmas, 2006, 13, 113501. Carbon-Centered Radicals. , 2006, , 101-134. <i>>Ab initio</i>> kinetic prediction of branching rate constants for reactions of H atoms with CH ₃ O and CH ₂ OH. Molecular Physics, 2007, 105, 2763-2776. Seven-dimensional quantum dynamics study of the O(P3)+CH4 reaction. Journal of Chemical Physics,	1.7	29 0 8
851 852 853 854	Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels. Physics of Plasmas, 2006, 13, 113501. Carbon-Centered Radicals., 2006, , 101-134. <i>>Ab initio</i>> kinetic prediction of branching rate constants for reactions of H atoms with CH ₃ O and CH ₂ OH. Molecular Physics, 2007, 105, 2763-2776. Seven-dimensional quantum dynamics study of the O(P3)+CH4 reaction. Journal of Chemical Physics, 2007, 126, 064303.	1.7	29 0 8 78
851 852 853 854 855	Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels. Physics of Plasmas, 2006, 13, 113501. Carbon-Centered Radicals., 2006, , 101-134. <i>>Ab initio</i>> kinetic prediction of branching rate constants for reactions of H atoms with CH ₃ O and CH ₂ OH. Molecular Physics, 2007, 105, 2763-2776. Seven-dimensional quantum dynamics study of the O(P3)+CH4 reaction. Journal of Chemical Physics, 2007, 126, 064303. Investigation of recombination effects in dielectric barrier discharges: A model., 2007, .	1.7 3.0	29 0 8 78 1

#	Article	IF	CITATIONS
859	Theoretical Study on the Kinetic and Mechanism of H+HO2 Reaction. Bulletin of the Chemical Society of Japan, 2007, 80, 1901-1913.	3.2	51
860	Detailed Kinetic Modeling of Gas-Phase Reactions in the Chemical Vapor Deposition of Carbon from Light Hydrocarbons. Industrial & Engineering Chemistry Research, 2007, 46, 3547-3557.	3.7	153
861	Kinetic modelling of the oxidation of large aliphatic hydrocarbons using an automatic mechanism generation. Physical Chemistry Chemical Physics, 2007, 9, 4218.	2.8	30
862	Ab initio methods for reactive potential surfaces. Physical Chemistry Chemical Physics, 2007, 9, 4055.	2.8	158
864	A comprehensive and compact n-heptane oxidation model derived using chemical lumping. Physical Chemistry Chemical Physics, 2007, 9, 1107-1126.	2.8	110
865	Reaction Kinetics of CO + HO2→ Products: Ab Initio Transition State Theory Study with Master Equation Modelingâ€. Journal of Physical Chemistry A, 2007, 111, 4031-4042.	2.5	92
866	Disintegration of water molecules in a steam-plasma torch powered by microwaves. Physics of Plasmas, 2007, 14, .	1.9	22
867	Kinetic modelling of a N2flowing microwave discharge with CH4addition in the post-discharge for nitrocarburizing treatments. Journal Physics D: Applied Physics, 2007, 40, 3620-3632.	2.8	41
868	Computational Chemistry of Polyatomic Reaction Kinetics and Dynamics:  The Quest for an Accurate CH5 Potential Energy Surface. Chemical Reviews, 2007, 107, 5101-5132.	47.7	58
869	Hydrocarbon fuel effects in solid-oxide fuel cell operation: an experimental and modeling study of n-hexane pyrolysis. Physical Chemistry Chemical Physics, 2007, 9, 4245.	2.8	39
870	N2-CH4-Ar Chemical Kinetic Model for Simulations of Atmospheric Entry to Titan. Journal of Thermophysics and Heat Transfer, 2007, 21, 9-18.	1.6	57
871	Reflected shock tube studies of high-temperature rate constants for OH + C2H2 and OH + C2H4. Physical Chemistry Chemical Physics, 2007, 9, 4155.	2.8	29
872	Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies. Review of Scientific Instruments, 2007, 78, 034101.	1.3	44
873	Analysis of HO2and OH Formation Mechanisms Using FM and UV Spectroscopy in Dimethyl Ether Oxidationâ€. Journal of Physical Chemistry A, 2007, 111, 3776-3788.	2.5	20
874	Using Computational Fluid Dynamics Modeling To Improve the Performance of a Solar CO2Converter. Industrial & Engineering Chemistry Research, 2007, 46, 1959-1967.	3.7	8
875	To Better Understand the Formation of Short-Chain Acids in Combustion Systems. Combustion Science and Technology, 2007, 180, 343-370.	2.3	33
876	Pressure and Temperature Dependence of the Reaction of Vinyl Radical with Ethyleneâ€. Journal of Physical Chemistry A, 2007, 111, 6843-6851.	2.5	20
877	Measurements and Modeling of DO2Formation in the Reactions of C2D5and C3D7Radicals with O2â€. Journal of Physical Chemistry A, 2007, 111, 4015-4030.	2.5	31

#	Article	IF	CITATIONS
878	Experimental and Theoretical Studies of Rate Coefficients for the Reaction O(3P) + C2H5OH at High Temperaturesâ€. Journal of Physical Chemistry A, 2007, 111, 6693-6703.	2.5	34
879	Energetics of Câ^'F, Câ^'Cl, Câ^'Br, and Câ^'l Bonds in 2-Haloethanols. Enthalpies of Formation of XCH2CH2OH (X = F, Cl, Br, I) Compounds and of the 2-Hydroxyethyl Radical. Journal of Physical Chemistry A, 2007, 111, 1713-1720.	2.5	29
880	Detailed Kinetic Study of the Partial Oxidation of Methane over La2O3Catalyst. Part 2:Â Mechanism. Industrial & Engineering Chemistry Research, 2007, 46, 1069-1078.	3.7	20
881	Measurements and Automated Mechanism Generation Modeling of OH Production in Photolytically Initiated Oxidation of the Neopentyl Radical‖. Journal of Physical Chemistry A, 2007, 111, 3891-3900.	2.5	29
882	Kinetic Study of the Thermal Oxidation of <i>p-</i> Xylene to Terephthaldehyde. Industrial & Engineering Chemistry Research, 2007, 46, 6228-6234.	3.7	0
883	Secondary Kinetics of Methanol Decomposition:  Theoretical Rate Coefficients for ³ CH ₂ + OH, ³ CH ₂ + ³ CH ₂ , and ³ CH ₂ + CH ₃ . Journal of Physical Chemistry A, 2007, 111, 8699-8707.	2.5	26
884	Ab Initio Study on the Kinetics of Hydrogen Abstraction for the H + Alkene → H2 + Alkenyl Reaction Class. Journal of Physical Chemistry A, 2007, 111, 2156-2165.	2.5	29
885	High-Temperature Rate Constants for CH3OH + Kr → Products, OH + CH3OH → Products, OH + (CH3)2CO → CH2COCH3+ H2O, and OH + CH3→ CH2+ H2Oâ€. Journal of Physical Chemistry A, 2007, 111, 3951-3958.	2.5	64
886	Investigation of Recombination Effects in Dielectric Barrier Discharges: A Model. , 2007, , .		2
887	Role of nitrogen-containing organic compound in plasma exhaust treatment. Catalysis Communications, 2007, 8, 2153-2158.	3.3	2
888	Production and reactivity of the hydroxyl radical in homogeneous high pressure plasmas of atmospheric gases containing traces of light olefins. Journal Physics D: Applied Physics, 2007, 40, 3112-3127.	2.8	52
889	CHEMICAL IMPACT OF CO AND H ₂ ADDITION ON THE AUTO-IGNITION DELAY OF HOMOGENEOUS N-HEPTANE/AIR MIXTURES. Combustion Science and Technology, 2007, 179, 1937-1962.	2.3	27
890	2-D preplanetary accretion disks. Astronomy and Astrophysics, 2007, 463, 369-392.	5.1	29
891	Survey of Reaction Rate Constants in the Reaction System of Hydrazine and NTO. Space Technology Japan the Japan Society for Aeronautical and Space Sciences, 2007, 6, 55-60.	0.2	2
892	Contraâ€ŧhermodynamic Behavior in Intermolecular Hydrogen Transfer of Alkylperoxy Radicals. ChemPhysChem, 2007, 8, 1969-1978.	2.1	4
893	A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. International Journal of Chemical Kinetics, 2007, 39, 109-136.	1.6	683
894	Shock-tube studies on the reactions of dimethyl ether with oxygen and hydrogen atoms. International Journal of Chemical Kinetics, 2007, 39, 97-108.	1.6	40
895	Experimental and theoretical rate constants for CH4 + O2 → CH3 + HO2. Combustion and Flame, 2007, 149, 104-111.	5.2	61

ARTICLE IF CITATIONS # Rich premixed laminar methane flames doped by light unsaturated hydrocarbons. Combustion and 896 5.2 30 Flame, 2007, 151, 245-261. Insights on the nanoparticle formation process in counterflow diffusion flames. Carbon, 2007, 45, 2400-2410. A two dimensional steady-state model of the gasâ€"solidâ€"solid reactor. Chemical Engineering Journal, 898 12.7 9 2007, 134, 209-217. Effect of nature and surface density of oxygen species on product distribution in the oxidative 899 dehydrogenation of propane over óxide cátalysts. Applied Catalysis A: General, 2007, 325, 353-361. Comment on "Methane on Mars: A product of H2O photolysis in the presence of CO―by A. Bar-Nun and 900 2.5 6 V. Dimitrov. Icarus, 2007, 188, 540-542. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds. International 7.1 160 Journal of Hydrogen Énergy, 2007, 32, 3471-3485. High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion. 902 290 3.9 Proceedings of the Combustion Institute, 2007, 31, 439-446. Decomposition of acetaldehyde: Experiment and detailed theory. Proceedings of the Combustion 903 3.9 Institute, 2007, 31, 167-174. A wide-ranging kinetic modeling study of methyl butanoate combustion. Proceedings of the 904 3.9 221 Combustion Institute, 2007, 31, 305-311. Combustion of CO/H2 mixtures at elevated pressures. Proceedings of the Combustion Institute, 2007, 31, 429-437 Rate constants for the H abstraction from alkanes (R–H) by Râ€²O2 radicals: A systematic study on the 906 3.9 89 impact of R and Râ€². Proceedings of the Combustion Institute, 2007, 31, 149-157. Combustion at a crossroads: Status and prospects. Proceedings of the Combustion Institute, 2007, 31, 1-29. Physical and chemical aeronomy of HD 209458b. Planetary and Space Science, 2007, 55, 1426-1455. 908 1.7 294 Discussion on the oxidative and the pyrolysis routes of the CH3 radicals in the partial oxidation of methane over La2O3. Journal of Analytical and Applied Pyrolysis, 2007, 79, 259-267. 909 5.5 Pyrolysis of propane for CVI of pyrocarbon. Journal of Analytical and Applied Pyrolysis, 2007, 79, 910 5.523 268-277. Numerical simulation of ignition of a hydrogen-oxygen mixture in view of electronically excited components. High Temperature, 2007, 45, 395-407. 1.0 Mechanism of the initiation of combustion in CH4(C2H2)/Air/O3 mixtures by laser excitation of the O3 912 1.0 20 molecules. Kinetics and Catalysis, 2007, 48, 348-366. Direct catalytic oxidation of methane to formaldehyde: New investigation opportunities provided by an improved flow circulation method. Kinetics and Catalysis, 2007, 48, 676-692.

#	Article	IF	CITATIONS
914	Synergy Study for Plasma-Facilitated \$hbox{C}_{2} hbox{H}_{4}\$ Selective Catalytic Reduction of \$hbox{NO}_{x}\$ Over \$hbox{Ag}/gammahbox{-}hbox{Al}_{2}hbox{O}_{3}\$ Catalyst. IEEE Transactions on Plasma Science, 2007, 35, 663-669.	1.3	24
915	Modeling of oxidative transformations of light alkanes over heterogeneous catalysts. Russian Journal of Physical Chemistry B, 2007, 1, 412-433.	1.3	24
916	Radical–molecule reaction CH2Cl + NO2: a mechanistic study. Theoretical Chemistry Accounts, 2007, 117, 579-586.	1.4	4
917	Effect Of Propene, n-Decane, and Toluene Plasma Kinetics on NO Conversion in Homogeneous Oxygen-Rich Dry Mixtures at Ambient Temperature. Plasma Chemistry and Plasma Processing, 2007, 27, 414-445.	2.4	12
918	The kinetics of autoignition of rich N2O–H2–O2–Ar mixtures at high temperatures. Combustion and Flame, 2007, 151, 61-73.	5.2	15
919	Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX). Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 1321-1328.	2.9	71
920	Rich methane premixed laminar flames doped by light unsaturated hydrocarbons. Combustion and Flame, 2008, 152, 245-261.	5.2	21
921	An experimental and modeling study of the oxidation of acetylene in a flow reactor. Combustion and Flame, 2008, 152, 377-386.	5.2	58
922	Remaining uncertainties in the kinetic mechanism of hydrogen combustion. Combustion and Flame, 2008, 152, 507-528.	5.2	284
923	"Inversion substitution―reactions with participation of molecular oxygen: ZH3I + O2 → O2ZH3 + I (Z = C,)	Tj ETQq1	1 0,784314 r
923 924		Tj <u>FT</u> Qq1 1.4	1
	"Inversion substitution―reactions with participation of molecular oxygen: ZH3I + O2 â†' O2ZH3 + I (Z = C,) Kinetics of the hydrogen abstraction CHO + Alkane â†' HCHO + Alkyl reaction class: an application of the	1.0	2
924	"Inversion substitution―reactions with participation of molecular oxygen: ZH3I + O2 â†' O2ZH3 + I (Z = C,) Kinetics of the hydrogen abstraction CHO + Alkane â†' HCHO + Alkyl reaction class: an application of the reaction class transition state theory. Theoretical Chemistry Accounts, 2008, 120, 107-118. Shockâ€tube and modeling study of acetaldehyde pyrolysis and oxidation. International Journal of	1.4	10
924 925	 "Inversion substitution―reactions with participation of molecular oxygen: ZH3I + O2 â†' O2ZH3 + I (Z = C,) Kinetics of the hydrogen abstraction CHO + Alkane â†' HCHO + Alkyl reaction class: an application of the reaction class transition state theory. Theoretical Chemistry Accounts, 2008, 120, 107-118. Shockâ€tube and modeling study of acetaldehyde pyrolysis and oxidation. International Journal of Chemical Kinetics, 2008, 40, 73-102. Shockâ€tube and modeling study of chloroethane pyrolysis and oxidation. International Journal of 	1.4	10 61
924 925 926	 "Inversion substitutionâ€-reactions with participation of molecular oxygen: ZH3I + O2 ât' O2ZH3 + I (Z = C,) Kinetics of the hydrogen abstraction CHO + Alkane ât' HCHO + Alkyl reaction class: an application of the reaction class transition state theory. Theoretical Chemistry Accounts, 2008, 120, 107-118. Shockâ€tube and modeling study of acetaldehyde pyrolysis and oxidation. International Journal of Chemical Kinetics, 2008, 40, 73-102. Shockâ€tube and modeling study of chloroethane pyrolysis and oxidation. International Journal of Chemical Kinetics, 2008, 40, 320-339. Methanol oxidation in a flow reactor: Implications for the branching ratio of the 	1.4 1.6 1.6	10 61 10
924 925 926 927	 "Inversion substitutionâ€-reactions with participation of molecular oxygen: ZH3I + O2 â†' O2ZH3 + I (Z = C,) Kinetics of the hydrogen abstraction CHO + Alkane â†' HCHO + Alkyl reaction class: an application of the reaction class transition state theory. Theoretical Chemistry Accounts, 2008, 120, 107-118. Shockâ€tube and modeling study of acetaldehyde pyrolysis and oxidation. International Journal of Chemical Kinetics, 2008, 40, 73-102. Shockâ€tube and modeling study of chloroethane pyrolysis and oxidation. International Journal of Chemical Kinetics, 2008, 40, 320-339. Methanol oxidation in a flow reactor: Implications for the branching ratio of the CH₃OH+OH reaction. International Journal of Chemical Kinetics, 2008, 40, 423-441. Experimental measurements and kinetic modeling of CO/H₂/INO_{X/sub> conversion at high pressure. International} 	1.4 1.6 1.6 1.6	10 61 10 60
924 925 926 927 928	 "Inversion substitutionâ€-reactions with participation of molecular oxygen: ZH3I + O2 â†' O2ZH3 + I (Z = C,) Kinetics of the hydrogen abstraction CHO + Alkane â†' HCHO + Alkyl reaction class: an application of the reaction class transition state theory. Theoretical Chemistry Accounts, 2008, 120, 107-118. Shockâ€tube and modeling study of acetaldehyde pyrolysis and oxidation. International Journal of Chemical Kinetics, 2008, 40, 73-102. Shockâ€tube and modeling study of chloroethane pyrolysis and oxidation. International Journal of Chemical Kinetics, 2008, 40, 320-339. Methanol oxidation in a flow reactor: Implications for the branching ratio of the CH₃ Kinetics, 2008, 40, 423-441. Experimental measurements and kinetic modeling of CO/H₂/O₂/IND/IND/IND/IND/IND/IND/IND/IND/IND/IND/IND/IND/IND/IND/IND<td>1.4 1.6 1.6 1.6 1.6</td><td>2 10 61 10 60 164</td>	1.4 1.6 1.6 1.6 1.6	2 10 61 10 60 164

#		IF	CITATIONS
932	Coupling photochemistry with haze formation in Titan's atmosphere, Part II: Results and validation with Cassini/Huygens data. Planetary and Space Science, 2008, 56, 67-99.	1.7	295
933	Kinetics of hydrogen abstraction O(3P)+alkane→OH+alkyl reaction class: An application of the reaction class transition state theory. Combustion and Flame, 2008, 152, 177-185.	5.2	18
934	On the formation of higher carbon oxides in extreme environments. Chemical Physics Letters, 2008, 465, 1-9.	2.6	17
935	Development of a natural gas reaction mechanism for engine simulations based on rapid compression machine experiments using a multi-objective optimisation strategy. Fuel, 2008, 87, 3046-3054.	6.4	15
936	Formation of CO ₂ on a carbonaceous surface: a quantum chemical study. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1158-1164.	4.4	65
937	Reactions of alkoxy and peroxy radicals with carbon monoxide. Kinetics and Catalysis, 2008, 49, 1-10.	1.0	5
938	Theoretical and Experimental Considerations for Bacteria Sterilization Using a Novel Multielectrode Dielectric-Barrier Discharge System. IEEE Transactions on Plasma Science, 2008, 36, 2805-2815.	1.3	1
939	Experimental and Modeling Study of the Low-Temperature Oxidation of Large Alkanes. Energy & Fuels, 2008, 22, 2258-2269.	5.1	129
940	Syngas Combustion Kinetics and Applications. Combustion Science and Technology, 2008, 180, 1053-1096.	2.3	166
941	Accurate Benchmark Calculation of the Reaction Barrier Height for Hydrogen Abstraction by the Hydroperoxyl Radical from Methane. Implications for C _{<i>n</i>} H _{2<i>n</i>+2} where <i>n</i> = 2 → 4. Journal of Physical Chemistry A, 2008, 112, 7047-7054.	2.5	105
942	Reactions of 1-Naphthyl Radicals with Ethylene. Single Pulse Shock Tube Experiments, Quantum Chemical, Transition State Theory, and Multiwell Calculations. Journal of Physical Chemistry A, 2008, 112, 925-933.	2.5	23
943	Reduced Chemical Model for High Presure Methane Combustion with PAH Formation. , 2008, , .		10
944	Skeletal Mechanism for Kerosene Combustion with PAH Production. , 2008, , .		18
945	Direct Partial Oxidation of Natural Gas to Liquid Chemicals: Chemical Kinetic Modeling and Global Optimization. Industrial & Engineering Chemistry Research, 2008, 47, 6579-6588.	3.7	30
946	Origin of oxygen species in Titan's atmosphere. Journal of Geophysical Research, 2008, 113, .	3.3	129
947	Chemical Effects of a High CO ₂ Concentration in Oxy-Fuel Combustion of Methane. Energy & Fuels, 2008, 22, 291-296.	5.1	348
948	Effects of CHâ^'NO Interactions on Kinetics of Prompt NO in High-Pressure Counterflow Flames. Energy & Fuels, 2008, 22, 250-261.	5.1	8
949	Allenyl Azide Cycloaddition Chemistry: Exploration of the Scope and Mechanism of Cyclopentennelated Dihydropyrrole Synthesis through Azatrimethylenemethane Intermediates. Journal of Organic Chemistry, 2008, 73, 5090-5099.	3.2	25

#	Article	IF	CITATIONS
950	Experimental and Detailed Kinetic Modeling of the Oxidation of Methane and Methane/Syngas Mixtures and Effect of Carbon Dioxide Addition. Combustion Science and Technology, 2008, 180, 2046-2091.	2.3	59
951	New pathways for nanoparticle formation in acetylene dusty plasmas: a modelling investigation and comparison with experiments. Journal Physics D: Applied Physics, 2008, 41, 225201.	2.8	50
952	Determination of the HO ₂ radical in dielectric barrier discharge plasmas using near-infrared cavity ring-down spectroscopy. Journal Physics D: Applied Physics, 2008, 41, 045203.	2.8	9
953	Hydrogen isotope fractionation in the photolysis of formaldehyde. Atmospheric Chemistry and Physics, 2008, 8, 1353-1366.	4.9	31
954	A Computational Study of the Decomposition of Carbon Tetrafluoride in Wet Argon under Electron Beam Irradiation. Plasma and Fusion Research, 2008, 3, 038-038.	0.7	5
955	Decomposition Characteristics of Acetone in a DC Corona Discharge at Atmospheric Pressure. IEEJ Transactions on Fundamentals and Materials, 2008, 128, 407-414.	0.2	2
956	Development and Validation of a Gasoline Surrogate Fuel Kinetic Mechanism. , 2009, , .		2
957	STAR FORMATION AT VERY LOW METALLICITY. IV. FRAGMENTATION DOES NOT DEPEND ON METALLICITY FOR COLD INITIAL CONDITIONS. Astrophysical Journal, 2009, 696, 1065-1074.	4.5	47
958	Experimental observation of carbon dioxide reduction in exhaust gas from hydrocarbon fuel burning. Physics of Plasmas, 2009, 16, 114502.	1.9	2
959	Molecular Tagging Using Vibrationally Excited Nitric Oxide in an Underexpanded Jet Flowfield. AIAA Journal, 2009, 47, 2597-2604.	2.6	60
960	Quasi-Classical Trajectory Dynamics Study on the Reaction of H with HO2. Bulletin of the Chemical Society of Japan, 2009, 82, 953-962.	3.2	6
961	Comprehensive analysis of combustion initiation in methane–air mixture by resonance laser radiation. Journal Physics D: Applied Physics, 2009, 42, 175503.	2.8	27
962	On the importance of the reaction between OH and RO ₂ radicals. Atmospheric Science Letters, 2009, 10, 102-108.	1.9	40
963	Theoretical kinetic study of the formation reactions of methanol and methyl hypohalites in the gas phase. Journal of Molecular Modeling, 2009, 15, 1061-1066.	1.8	7
964	Influence of EGR compounds on the oxidation of an HCCI-diesel surrogate. Proceedings of the Combustion Institute, 2009, 32, 2851-2859.	3.9	31
965	Pressure and temperature dependence of the reaction of vinyl radical with alkenes II: Measured rates and predicted product distributions for vinyl+propene. Proceedings of the Combustion Institute, 2009, 32, 139-148.	3.9	11
966	A study on thermal combustion of lean methane–air mixtures: Simplified reaction mechanism and kinetic equations. Chemical Engineering Journal, 2009, 154, 9-16.	12.7	35
967	A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combustion and Flame, 2009, 156, 181-199.	5.2	721

#	Article	IF	CITATIONS
968	OH time-histories during oxidation of n-heptane and methylcyclohexane at high pressures and temperatures. Combustion and Flame, 2009, 156, 736-749.	5.2	45
969	A lean methane premixed laminar flame doped with components of diesel fuell. n-Butylbenzene. Combustion and Flame, 2009, 156, 954-974.	5.2	37
970	Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes. Combustion and Flame, 2009, 156, 1126-1134.	5.2	56
971	Direct determination of the rate coefficient for the reaction of O(1D) with OCS. Chemical Physics Letters, 2009, 483, 16-20.	2.6	4
972	Improvement of the Diluted Propane Efficiency Treatment Using a Non-thermal Plasma. Plasma Chemistry and Plasma Processing, 2009, 29, 13-25.	2.4	14
973	Oxidation of Acetylene in Atmospheric Pressure Pulsed Corona Discharge Cell Working in the Nanosecond Regime. Plasma Chemistry and Plasma Processing, 2009, 29, 173-195.	2.4	25
974	Kinetics of chemical ionization in shock waves: II. Kinetic model of ionization in methane oxidation. Kinetics and Catalysis, 2009, 50, 73-81.	1.0	9
975	Measurement of the reaction rate constants of oxygen atoms with chlorine and iodomethane using a resonance fluorescence technique. Kinetics and Catalysis, 2009, 50, 474-480.	1.0	1
976	Kinetics of chemical ionization in shock waves: IV. Kinetic model of ionization in acetylene oxidation. Kinetics and Catalysis, 2009, 50, 617-626.	1.0	7
977	A photochemical model of Titan's atmosphere and ionosphere. Icarus, 2009, 201, 226-256.	2.5	298
978	A shock-tube and theory study of the dissociation of acetone and subsequent recombination of methyl radicals. Proceedings of the Combustion Institute, 2009, 32, 123-130.	3.9	38
979	Theoretical rate coefficients for the reaction of methyl radical with hydroperoxyl radical and for methylhydroperoxide decomposition. Proceedings of the Combustion Institute, 2009, 32, 279-286.	3.9	87
980	From elementary reactions to evaluated chemical mechanisms for combustion models. Proceedings of the Combustion Institute, 2009, 32, 27-44.	3.9	46
981	Modeling of autoignition and NO sensitization for the oxidation of IC engine surrogate fuels. Combustion and Flame, 2009, 156, 505-521.	5.2	61
982	Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combustion and Flame, 2009, 156, 588-607.	5.2	406
983	A statistical approach to develop a detailed soot growth model using PAH characteristics. Combustion and Flame, 2009, 156, 896-913.	5.2	117
984	A modelling study of aromatic soot precursors formation in laminar methane and ethene flames. Combustion and Flame, 2009, 156, 1705-1722.	5.2	239
985	Combustion modeling of mono-carbon fuels using the rate-controlled constrained-equilibrium method. Combustion and Flame, 2009, 156, 1871-1885.	5.2	52

#	Article	IF	CITATIONS
986	Theoretical study on kinetics of the H2CO+O2→HCO+HO2 reaction. Chemical Physics Letters, 2009, 469, 81-84.	2.6	8
987	The rate constant for the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si16.gif" display="inline" overflow="scroll"><mml:mrow><mml:mtext>CO</mml:mtext><mml:mo>+</mml:mo><mml:msub><mml:mrow> reaction. Chemical Physics Letters. 2009. 475. 40-43.</mml:mrow></mml:msub></mml:mrow></mml:math>	<mml:mte< td=""><td>ext³H</td></mml:mte<>	ext ³ H
988	lgnition of acetylene-oxygen mixtures behind shock waves. Russian Journal of Physical Chemistry B, 2009, 3, 99-108.	1.3	13
989	The role played by the enthalpy of reactions in the disproportionation of free radicals. Russian Journal of Physical Chemistry B, 2009, 3, 901-909.	1.3	4
990	How Measurements of Rate Coefficients at Low Temperature Increase the Predictivity of Photochemical Models of Titan's Atmosphere. Journal of Physical Chemistry A, 2009, 113, 11227-11237.	2.5	82
991	Kinetics of the Hydrogen Abstraction C ₂ H ₃ [•] + Alkane → C ₂ H ₄ + Alkyl Radical Reaction Class. Journal of Physical Chemistry A, 2009, 113, 8327-8336.	2.5	20
992	Decomposition and Vibrational Relaxation in CH ₃ I and Self-Reaction of CH ₃ Radicals. Journal of Physical Chemistry A, 2009, 113, 8307-8317.	2.5	33
993	Temperature-Dependent Kinetics of the Vinyl Radical (C ₂ H ₃) Self-Reaction. Journal of Physical Chemistry A, 2009, 113, 1278-1286.	2.5	27
994	Pressure and Temperature Dependence of the Reaction of Vinyl Radical with Alkenes III: Measured Rates and Predicted Product Distributions for Vinyl + Butene. Journal of Physical Chemistry A, 2009, 113, 13357-13371.	2.5	9
995	Rate Constant Rules for the Automated Generation of Gas-Phase Reaction Mechanisms. Journal of Physical Chemistry A, 2009, 113, 367-380.	2.5	95
996	Visible and nearâ€infrared nightglow of molecular oxygen in the atmosphere of Venus. Journal of Geophysical Research, 2009, 114, .	3.3	56
997	Shock Tube and Theory Investigation of Cyclohexane and 1-Hexene Decomposition. Journal of Physical Chemistry A, 2009, 113, 13570-13583.	2.5	88
998	OH kinetic in high-pressure plasmas of atmospheric gases containing C ₂ H ₆ studied by absolute measurement of the radical density in a pulsed homogeneous discharge. Journal Physics D: Applied Physics, 2009, 42, 165203.	2.8	28
999	Influence of Kerosene Preheating and Pyrolysis on the PAH and Soot Formation. , 2009, , .		0
1000	Formation mechanisms of oxygen atoms in the O(PJ3) state from the 157nm photoirradiation of amorphous water ice at 90K. Journal of Chemical Physics, 2009, 131, 114511.	3.0	18
1001	Corona discharge experiments in admixtures of N ₂ and CH ₄ : a laboratory simulation of Titan's atmosphere. Plasma Sources Science and Technology, 2009, 18, 034016.	3.1	26
1002	The impact of reduced chemistry on auto-ignition of H ₂ in turbulent flows. Combustion Theory and Modelling, 2009, 13, 607-643.	1.9	24
1003	Fate of SO ₂ in the ancient Martian atmosphere: Implications for transient greenhouse warming. Journal of Geophysical Research, 2009, 114, .	3.3	34

#	Article	IF	Citations
1004	Effect of water adding on kinetics of barrier discharge in air. Plasma Sources Science and Technology, 2009, 18, 045019.	3.1	40
1005	Numerical prediction of the saturation limit of atmospheric pressure AC dielectric barrier discharges. Journal of Plasma Physics, 2009, 75, 53-69.	2.1	0

1006 Chemical reaction kinetics in the afterglow of electrical discharges in hydrogen-oxygen systems (H2 +) Tj ETQq0 0 0 rgBT /Overlock 10 T

1007	Autoignition of ethylene in shock waves. Russian Journal of Physical Chemistry B, 2010, 4, 475-485.	1.3	9
1008	Global model of low-temperature atmospheric-pressure He + H ₂ O plasmas. Plasma Sources Science and Technology, 2010, 19, 025018.	3.1	297
1009	Singlet and triplet potential surfaces for the O2+C2H4 reaction. Journal of Chemical Physics, 2010, 133, 184306.	3.0	17
1010	On the influence of singlet oxygen molecules on the speed of flame propagation in methane–air mixture. Combustion and Flame, 2010, 157, 313-327.	5.2	71
1011	Two-Temperature Two-Dimensional Non Chemical Equilibrium Modeling of Ar–CO2–H2 Induction Thermal Plasmas at Atmospheric Pressure. Plasma Chemistry and Plasma Processing, 2010, 30, 141-172.	2.4	19
1012	Packed Bed DBD Discharge Experiments in Admixtures of N2 and CH4. Plasma Chemistry and Plasma Processing, 2010, 30, 565-577.	2.4	34
1013	Hydrogen Radical Additions to Unsaturated Hydrocarbons and the Reverse βâ€Scission Reactions: Modeling of Activation Energies and Preâ€Exponential Factors. ChemPhysChem, 2010, 11, 195-210.	2.1	50
1014	From a Network of Computed Reaction Enthalpies to Atomâ€Based Thermochemistry (NEAT). Chemistry - A European Journal, 2010, 16, 4826-4835.	3.3	23
1015	Étude expérimental et modèlisation de flammes de prémélangé. Bulletin Des Sociétés Chimiques 1990, 99, 503-507.	s Belges, 0.0	0
1016	Methyl formate oxidation: Speciation data, laminar burning velocities, ignition delay times, and a validated chemical kinetic model. International Journal of Chemical Kinetics, 2010, 42, 527-549.	1.6	134
1017	Key reactions in the photochemistry of hydrocarbons in Neptune's stratosphere. Planetary and Space Science, 2010, 58, 1555-1566.	1.7	37
1018	Laminar burning velocities of three C3H6O isomers at atmospheric pressure. Fuel, 2010, 89, 2864-2872.	6.4	57
1019	Kinetic study of a N2–CH4 afterglow plasma for production of N-containing hydrocarbon species of Titan's atmosphere. Advances in Space Research, 2010, 46, 657-671.	2.6	27
1020	The computational study of the "inversion substitution―reactions CX3Br+O2→CX3O2+Br (X=H, F). Combustion and Flame, 2010, 157, 1382-1389.	5.2	9
1021	Chemical kinetics of catalytic chemical vapor deposition of an acetylene/xylene mixture for improved carbon nanotube production. Carbon, 2010, 48, 4330-4342.	10.3	37

#	Article	IF	CITATIONS
1022	Modelling CO formation in the turbulent interstellar medium. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	126
1023	Tunnelling in the O + CO reaction. Monthly Notices of the Royal Astronomical Society, 2010, 406, 2213-2217.	4.4	47
1024	Gas phase bond dissociation enthalpies and enthalpies of isomerization/reaction for small hydrocarbon combustion related compounds between 300 and 1500 K: A comparison of Gaussian-4 (G4) theoretical values against experimental data. Nature Precedings, 2010, , .	0.1	0
1025	Theoretical study on the gas and solution phase enthalpies, free energies, and equilibrium constants for the isomerization of [1.1]paracyclophane derivatives as potential molecular switches. Nature Precedings, 0, , .	0.1	3
1026	Measurement of OH Radicals in Dielectric Barrier Discharge Plasmas by Cavity Ring-Down Spectroscopy. Plasma Science and Technology, 2010, 12, 166-171.	1.5	11
1027	Analysis of mass transport in an atmospheric pressure remote plasma-enhanced chemical vapor deposition process. Journal of Applied Physics, 2010, 107, 024909.	2.5	10
1028	Lean and Rich Premixed Dimethoxymethane/Oxygen/Argon Flames: Experimental and Modeling. Combustion Science and Technology, 2010, 182, 350-364.	2.3	51
1029	Oxygen Gas Barrier Properties of Hydrogenated Amorphous Carbon Thin Films Deposited with a Pulse-Biased Inductively Coupled Plasma Chemical Vapor Deposition Method. Japanese Journal of Applied Physics, 2010, 49, 08JF10.	1.5	5
1030	A Detailed and Reduced Reaction Mechanism of Biomass-Based Syngas Fuels. Journal of Engineering for Gas Turbines and Power, 2010, 132, .	1.1	7
1031	Global potential energy surfaces for O(P3)+H2O(A11) collisions. Journal of Chemical Physics, 2010, 133, 164312.	3.0	23
1032	Theoretical Validation of Chemical Kinetic Mechanisms: Combustion of Methanol. Journal of Physical Chemistry A, 2010, 114, 8286-8301.	2.5	66
1033	Chapter 7 Pyrolysis of Hydrocarbons. Techniques and Instrumentation in Analytical Chemistry, 2010, , 131-229.	0.0	10
1034	Plasma-chemical reactions: low pressure acetylene plasmas. Journal Physics D: Applied Physics, 2010, 43, 043001.	2.8	127
1035	Experimental and Chemical Kinetic Modeling Study of 3-Pentanone Oxidation. Journal of Physical Chemistry A, 2010, 114, 12176-12186.	2.5	45
1036	Kinetics of the Thermal Reaction of H Atoms with Propyne. Journal of Physical Chemistry A, 2010, 114, 5710-5717.	2.5	14
1037	Absolute Photoionization Cross Section of the Methyl Radical. Journal of Physical Chemistry A, 2010, 114, 6515-6520.	2.5	28
1038	Theoretical Study of the Pyrolysis of Methyltrichlorosilane in the Gas Phase. 3. Reaction Rate Constant Calculations. Journal of Physical Chemistry A, 2010, 114, 2384-2392.	2.5	60
1039	Removal of Fluorinated Compound Gases by an Enhanced Methane Microwave Plasma Burner. Japanese Journal of Applied Physics, 2010, 49, 017101.	1.5	4

ARTICLE IF CITATIONS Chemistry Model for Ablating Carbon-Phenolic Material During Atmospheric Re-Entry., 2010,,. 28 1040 Combustion in a Ramjet Combustor with Cavity Flame Holder., 2010,,. 1041 Water formation at low temperatures by surface O2 hydrogenation II: the reaction network. Physical 1042 2.8 117 Chemistry Chemical Physics, 2010, 12, 12077. A Shock Tube and Chemical Kinetic Modeling Study of Methy Ethyl Ketone Oxidation. Combustion 1043 34 Science and Technology, 2010, 182, 574-587. Experimental studies of surface reactions among OH radicals that yield H2O and CO2 at 40–60 K. 1044 2.8 39 Physical Chemistry Chemical Physics, 2011, 13, 15792. Development and Validation of a Reduced Chemical Kinetic Model for Methanol Oxidation. Energy 1045 5.1 & Fuels, 2011, 25, 60-71. Updated Kinetic Mechanism for High-Pressure Hydrogen Combustion. Journal of Propulsion and 1046 2.2 69 Power, 2011, 27, 383-395. Theoretical study on the reaction of CH3CHCl + NO2. Molecular Physics, 2011, 109, 2525-2532. 1.7 1047 Homogeneous Combustion of Fuel Ultra-Lean Methane–Air Mixtures: Experimental Study and 1048 5.1 17 Simplified Reaction Mechanism. Energy & amp; Fuels, 2011, 25, 3437-3445. Global Sensitivity Analysis of Chemical-Kinetic Reaction Mechanisms: Construction and 1049 Deconstruction of the Probability Density Function. Journal of Physical Chemistry A, 2011, 115, 2.5 1556-1578. Measurements of Laminar Flame Velocity for Components of Natural Gas. Energy & amp; Fuels, 2011, 25, 1050 181 5.13875-3884. Laser Spark Formamide Decomposition Studied by FT-IR Spectroscopy. Journal of Physical Chemistry A, 2011, 115, 12132-12141. 38 Kinetic Modeling of Ethane Pyrolysis at High Conversion. Journal of Physical Chemistry A, 2011, 115, 1052 2.5 41 10470-10490. Shock Tube and Theoretical Studies on the Thermal Decomposition of Propane: Evidence for a Roaming 2.5 Radical Channel. Journal of Physical Chemistry A, 2011, 115, 3366-3379. Is Caffeine a Good Scavenger of Oxygenated Free Radicals?. Journal of Physical Chemistry B, 2011, 115, 1054 2.6 177 4538-4546. Kinetics of the Self Reaction of Cyclohexyl Radicals. Journal of Physical Chemistry A, 2011, 115, 8616-8622. Multichannel RRKM-TST and CVT Rate Constant Calculations for Reactions of CH₂OH or 1056 2.518 CH₃O with HO₂. Journal of Physical Chemistry A, 2011, 115, 3291-3300. Amorphous carbon film deposition on the inner surface of tubes using atmospheric pressure pulsed 2.8 filamentary plasma source. Journal Physics D: Applied Physics, 2011, 44, 355206.

#	Article	IF	CITATIONS
1058	A Critical Assessment of Li/MgO-Based Catalysts for the Oxidative Coupling of Methane. Catalysis Reviews - Science and Engineering, 2011, 53, 424-514.	12.9	205
1059	CFD Implementation of a novel carbon-phenolic-in-air chemistry model for atmospheric re-entry. , 2011,		29
1060	Numerical Simulation of Supersonic Chemically Reacting Turbulent Jets. , 2011, , .		8
1061	Theoretical calculations on the hydrogen elimination of ethene with chemical accuracy. Computational and Theoretical Chemistry, 2011, 978, 57-66.	2.5	3
1062	Plasma kinetics in ethanol/water/air mixture in a â€~tornado'-type electrical discharge. Journal Physics D: Applied Physics, 2011, 44, 145206.	2.8	34
1063	Reaction Energetics for the Abstraction Process C ₂ H ₃ + H ₂ → C ₂ H ₄ + H. Journal of Physical Chemistry Letters, 2011, 2, 2587-2592.	4.6	10
1064	³ CH ₂ + O ₂ : Kinetics and Product Channel Branching Ratios. Zeitschrift Fur Physikalische Chemie, 2011, 225, 957-967.	2.8	17
1065	Innovative Methane Conversion Technology Using Atmospheric Pressure Non-thermal Plasma. Journal of the Japan Petroleum Institute, 2011, 54, 146-158.	0.6	24
1066	lgnition of C3 oxygenated hydrocarbons and chemical kinetic modeling of propanal oxidation. Combustion and Flame, 2011, 158, 1877-1889.	5.2	51
1067	Kinetic parameters of abstraction reactions of OH radical with ethylene, fluoroethylene, cis- and trans-1,2-difluoroethylene and 1,1-difluoroethylene, in the temperature range of 200–400K: Gaussian-3/B3LYP theory. Chemical Physics Letters, 2011, 511, 440-446.	2.6	11
1068	Kinetics of the self reaction of neopentyl radicals. Chemical Physics Letters, 2011, 513, 37-41.	2.6	3
1069	Theoretical Study of the Reaction of Carbon Monoxide with Oxygen Molecules in the Ground Triplet and Singlet Delta States. Journal of Physical Chemistry A, 2011, 115, 1795-1803.	2.5	15
1070	Theoretical analysis of reaction kinetics with singlet oxygen molecules. Physical Chemistry Chemical Physics, 2011, 13, 16424.	2.8	50
1071	Comprehensive reaction mechanism for n-butanol pyrolysis and combustion. Combustion and Flame, 2011, 158, 16-41.	5.2	240
1072	An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements. Combustion and Flame, 2011, 158, 633-644.	5.2	268
1073	Fluid Modeling of the Conversion of Methane into Higher Hydrocarbons in an Atmospheric Pressure Dielectric Barrier Discharge. Plasma Processes and Polymers, 2011, 8, 1033-1058.	3.0	129
1074	Carbon dioxide reforming of methane in kilohertz sparkâ€discharge plasma at atmospheric pressure. AICHE Journal, 2011, 57, 2854-2860.	3.6	48
1075	Peculiarities of βâ€Pinene Autoxidation. ChemSusChem, 2011, 4, 1613-1621.	6.8	39

#	Article	IF	CITATIONS
1076	Reaction rate of propene pyrolysis. Journal of Computational Chemistry, 2011, 32, 2745-2755.	3.3	5
1077	Gasâ€Phase Radical–Radical Reaction Dynamics of O(³ P)+C ₂ H ₃ →C ₂ H ₂ +OH. Chemistry - A European Journal, 2011, 17, 11410-11414.	3.3	2
1078	A single step methane conversion into synthetic fuels using microplasma reactor. Chemical Engineering Journal, 2011, 166, 288-293.	12.7	77
1079	Removal of low-concentration formaldehyde in air by DC corona discharge plasma. Chemical Engineering Journal, 2011, 171, 314-319.	12.7	115
1080	Detailed chemical kinetic mechanism for surrogates of alternative jet fuels. Combustion and Flame, 2011, 158, 434-445.	5.2	135
1081	Measurements of laminar flame speeds of acetone/methane/air mixtures. Combustion and Flame, 2011, 158, 490-500.	5.2	77
1082	Pyrolysis and oxidation of ethyl methyl sulfide in a flow reactor. Combustion and Flame, 2011, 158, 1049-1058.	5.2	16
1083	Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor. Combustion and Flame, 2011, 158, 705-725.	5.2	158
1084	Kinetics of elementary reactions in low-temperature autoignition chemistry. Progress in Energy and Combustion Science, 2011, 37, 371-421.	31.2	586
1085	Uncertainty driven theoretical kinetics studies for CH3OH ignition: HO2+CH3OH and O2+CH3OH. Proceedings of the Combustion Institute, 2011, 33, 351-357.	3.9	149
1086	An experimental and kinetic modeling study of methyl decanoate combustion. Proceedings of the Combustion Institute, 2011, 33, 399-405.	3.9	85
1087	High-rate deposition by microwave RPECVD at atmospheric pressure. Thin Solid Films, 2011, 519, 4177-4185.	1.8	9
1088	Model of Reactive Microwave Plasma Discharge for Growth of Single-Crystal Diamond. Japanese Journal of Applied Physics, 2011, 50, 01AB02.	1.5	6
1089	Using Biogenic Sulfur Gases as Remotely Detectable Biosignatures on Anoxic Planets. Astrobiology, 2011, 11, 419-441.	3.0	144
1090	An efficient route to thermal rate constants in reduced dimensional quantum scattering simulations: Applications to the abstraction of hydrogen from alkanes. Journal of Chemical Physics, 2011, 135, 094311.	3.0	28
1091	Plasma-enhanced gasification of low-grade coals for compact power plants. Physics of Plasmas, 2011, 18, .	1.9	13
1092	The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics. Entropy, 2012, 14, 92-130.	2.2	49
1093	Quasi-classical trajectory study of the H + CO2 → HO + CO reaction on a new ab initio based potential energy surface. Journal of Chemical Physics, 2012, 137, 024308.	3.0	23

	CITATION RE	PORT	
#	Article	IF	CITATIONS
1094	A chemical model for the atmosphere of hot Jupiters. Astronomy and Astrophysics, 2012, 546, A43.	5.1	181
1095	A PHOTOCHEMICAL MODEL FOR THE CARBON-RICH PLANET WASP-12b. Astrophysical Journal, 2012, 745, 77.	4.5	79
1096	Pretreatment of oily sludge. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 2012, 165, 151-155.	0.8	1
1097	O(³ <i>P</i>) + CO ₂ Collisions at Hyperthermal Energies: Dynamics of Nonreactive Scattering, Oxygen Isotope Exchange, and Oxygen-Atom Abstraction. Journal of Physical Chemistry A, 2012, 116, 64-84.	2.5	19
1098	Plasma kinetics of ethanol conversion in a glow discharge. Plasma Physics Reports, 2012, 38, 913-921.	0.9	25
1099	Wet Conversion of Methane and Carbon Dioxide in a DBD Reactor. Plasma Chemistry and Plasma Processing, 2012, 32, 1139-1155.	2.4	22
1100	Prediction of Forebody and Aftbody Heat Transfer Rate for Mars Aerocapture Demonstrator. , 2012, , .		23
1101	Evaluation of Newly Designed Polygeneration System with CO ₂ Recycle. Energy & Fuels, 2012, 26, 1459-1469.	5.1	36
1102	Reaction CH ₃ + OH Studied over the 294–714 K Temperature and 1–100 bar Pressure Ranges. Journal of Physical Chemistry A, 2012, 116, 8661-8670.	2.5	20
1103	Disproportionation Channel of Self-Reaction of Hydroxyl Radical, OH + OH → H ₂ O + O, Studied by Time-Resolved Oxygen Atom Trapping. Journal of Physical Chemistry A, 2012, 116, 11817-11822.	2.5	21
1104	Experimental and Modeling Study of the Oxidation Kinetics of <i>n</i> -Undecane and <i>n</i> -Dodecane in a Jet-Stirred Reactor. Energy & Fuels, 2012, 26, 4253-4268.	5.1	70
1105	Time-Resolved Fourier Transform Emission Spectroscopy of He/CH ₄ in a Positive Column Discharge. Journal of Physical Chemistry A, 2012, 116, 3137-3147.	2.5	18
1106	Improvement of the Modeling of the Low-Temperature Oxidation of <i>n</i> -Butane: Study of the Primary Reactions. Journal of Physical Chemistry A, 2012, 116, 6142-6158.	2.5	72
1107	Determination of the uncertainty domain of the Arrhenius parameters needed for the investigation of combustion kinetic models. Reliability Engineering and System Safety, 2012, 107, 29-34.	8.9	50
1108	Direct dynamics simulation of dioxetane formation and decomposition via the singlet ·O–O–CH2–CH2• biradical: Non-RRKM dynamics. Journal of Chemical Physics, 2012, 137, 044305.	3.0	22
1109	Decomposition of Acetaldehyde in Atmospheric Pressure Filamentary Nitrogen Plasma. Plasma Chemistry and Plasma Processing, 2012, 32, 991-1023.	2.4	31
1110	Ab initio calculations and iodine kinetic modeling in the reactor coolant system of a pressurized water reactor in case of severe nuclear accident. Computational and Theoretical Chemistry, 2012, 990, 194-208.	2.5	25
1111	Experimental and surrogate modeling study of gasoline ignition in a rapid compression machine. Combustion and Flame, 2012, 159, 3066-3078.	5.2	128

#	Article	IF	CITATIONS
1112	Simultaneous Removal of NO and SO ₂ from Flue Gas by UV/H ₂ O ₂ /CaO. Chemical Engineering and Technology, 2012, 35, 1879-1884.	1.5	18
1114	WATER FORMATION THROUGH A QUANTUM TUNNELING SURFACE REACTION, OH + H ₂ , AT 10 K. Astrophysical Journal, 2012, 749, 67.	4.5	97
1115	High pressure study of 1,3,5-trimethylbenzene oxidation. Combustion and Flame, 2012, 159, 3264-3285.	5.2	20
1116	Syngas production from gasification of brown coal in a microwave torch plasma. Energy, 2012, 47, 36-40.	8.8	75
1117	Reaction OH + OH Studied over the 298–834 K Temperature and 1 - 100 bar Pressure Ranges. Journal of Physical Chemistry A, 2012, 116, 6282-6294.	2.5	41
1118	Allenyl Azide Cycloaddition Chemistry: Application to the Total Synthesis of (±)-Meloscine. Organic Letters, 2012, 14, 934-937.	4.6	35
1119	A detailed chemical kinetic mechanism for methanol combustion in laminar flames. Kinetics and Catalysis, 2012, 53, 648-664.	1.0	10
1120	Self-Ignition of Hydrogenous Mixtures. Shock Wave and High Pressure Phenomena, 2012, , 121-163.	0.1	1
1121	A combined crossed-beam and theoretical study of the reaction dynamics of O(3P) + C2H3 → C2H2 + OH: Analysis of the nascent OH products with the preferential population of the <i>Î</i> (A′) component. Journal of Chemical Physics, 2012, 137, 204311.	3.0	5
1122	Film deposition on the inner surface of tubes using atmospheric-pressure Ar–CH ₄ , Ar–C ₂ H ₂ and Ar–C ₂ H ₂ –H ₂ plasmas: interpretation of film properties from plasma-chemical kinetics. Journal Physics D: Applied Physics, 2012, 45, 335202.	2.8	12
1123	Study on the Reaction of CH ₂ with H ₂ at High Temperature. Journal of Physical Chemistry A, 2012, 116, 1891-1896.	2.5	8
1124	Plasma-Chemical Kinetics of Film Deposition in Argon-Methane and Argon-Acetylene Mixtures Under Atmospheric Pressure Conditions. , 0, , .		3
1125	Theoretical Study of the Reaction of Ethane with Oxygen Molecules in the Ground Triplet and Singlet Delta States. Journal of Physical Chemistry A, 2012, 116, 8444-8454.	2.5	27
1126	Fundamental vibrational frequencies and spectroscopic constants for the methylperoxyl radical, CH ₃ O ₂ , and related isotopologues ¹³ CH ₃ OO, CH ₃ ¹⁸ O ¹⁸ O, and CD ₃ OO. Molecular Physics, 2012, 110, 2419-2427.	1.7	13
1127	Low Temperature CVD of Thin, Amorphous Boron arbon Films for Neutron Detectors. Chemical Vapor Deposition, 2012, 18, 221-224.	1.3	22
1128	Catalytic Conversion of Simulated Biogas Mixtures to Synthesis Gas in a Fluidized Bed Reactor Supported by a DBD. Plasma Chemistry and Plasma Processing, 2012, 32, 565-582.	2.4	18
1129	Optimization and efficiency analysis of polygeneration system with coke-oven gas and coal gasified gas by Aspen Plus. Fuel, 2012, 96, 131-140.	6.4	67
1130	Characteristics of planetary-scale waves simulated by a new venusian mesosphere and thermosphere general circulation model. Icarus, 2012, 217, 818-830.	2.5	22

#	Article	IF	CITATIONS
1131	The O2 nightglow in the martian atmosphere by SPICAM onboard of Mars-Express. Icarus, 2012, 219, 596-608.	2.5	45
1132	Kinetic mechanism of CO–H2 system oxidation promoted by excited singlet oxygen molecules. Combustion and Flame, 2012, 159, 16-29.	5.2	23
1133	An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure. Combustion and Flame, 2012, 159, 905-917.	5.2	141
1134	Autoignition of surrogate biodiesel fuel (B30) at high pressures: Experimental and modeling kinetic study. Combustion and Flame, 2012, 159, 996-1008.	5.2	28
1135	Experimental and modeling study of formaldehyde combustion in flames. Combustion and Flame, 2012, 159, 1814-1820.	5.2	40
1136	Comprehensive H ₂ /O ₂ kinetic model for highâ€pressure combustion. International Journal of Chemical Kinetics, 2012, 44, 444-474.	1.6	682
1137	Highâ€ŧemperature rate constants for H/D + C ₂ H ₆ and C ₃ H ₈ . International Journal of Chemical Kinetics, 2012, 44, 194-205.	1.6	45
1138	Process informatics tools for predictive modeling: Hydrogen combustion. International Journal of Chemical Kinetics, 2012, 44, 101-116.	1.6	44
1139	Multispecies laser measurements of n-butanol pyrolysis behind reflected shock waves. International Journal of Chemical Kinetics, 2012, 44, 303-311.	1.6	11
1140	Density functional and chemical model study of the competition between methyl and hydrogen scission of propane and β-scission of the propyl radical. Theoretical Chemistry Accounts, 2013, 132, 1.	1.4	8
1141	Conversion of Methane and Carbon Dioxide in a DBD Reactor: Influence of Oxygen. Plasma Chemistry and Plasma Processing, 2013, 33, 631-646.	2.4	26
1142	Towards a kinetic understanding of the ignition of air-propane mixture by a non-equilibrium discharge: the decomposition mechanisms of propane. International Journal of Aerodynamics, 2013, 3, 135.	0.1	8
1143	Ignition and kinetic modeling of methane and ethane fuel blends with oxygen: A design of experiments approach. Combustion and Flame, 2013, 160, 1153-1167.	5.2	117
1144	Water formation at low temperatures by surface O2 hydrogenation III: Monte Carlo simulation. Physical Chemistry Chemical Physics, 2013, 15, 8287.	2.8	54
1145	Control of a process with unmeasured disturbances that change its steady-state gain sign. Journal of Process Control, 2013, 23, 294-305.	3.3	2
1146	Hydrogen production from methanol reforming inÂmicrowave "tornado―type plasma. International Journal of Hydrogen Energy, 2013, 38, 9145-9157.	7.1	69
1147	Effect of Water on Methane and Ethane Oxidation in the Conditions of Oxidative Coupling of Methane Over Model Catalysts. Topics in Catalysis, 2013, 56, 1858-1866.	2.8	29
1148	Direct Measurements of Rate Constants for the Reactions of CH ₃ Radicals with C ₂ H ₆ , C ₂ H ₄ , and C ₂ H ₂ at High Temperatures. Journal of Physical Chemistry A, 2013, 117, 10228-10238.	2.5	23

#	Article	IF	CITATIONS
1149	Atomic oxygen TALIF measurements in an atmospheric-pressure microwave plasma jet within situxenon calibration. Plasma Sources Science and Technology, 2013, 22, 055010.	3.1	50
1150	Simulation of Gas-Phase Chemistry for Selected Carbon Precursors in Epitaxial Growth of SiC. Materials Science Forum, 0, 740-742, 213-216.	0.3	3
1151	Kinetic study of abatement of low concentration of dibenzofuran by oxidation – Effects of co-reactants. Chemical Engineering Journal, 2013, 218, 154-163.	12.7	8
1152	A Hierarchical and Comparative Kinetic Modeling Study of C ₁ â^ C ₂ Hydrocarbon and Oxygenated Fuels. International Journal of Chemical Kinetics, 2013, 45, 638-675.	1.6	924
1153	Ethanol reforming into hydrogen-rich gas applying microwave â€~tornado'-type plasma. International Journal of Hydrogen Energy, 2013, 38, 14512-14530.	7.1	41
1154	Large Scale Computational Chemistry Modeling of the Oxidation of Highly Oriented Pyrolytic Graphite. Journal of Physical Chemistry A, 2013, 117, 2692-2703.	2.5	44
1155	Surface Processes on Interstellar Amorphous Solid Water: Adsorption, Diffusion, Tunneling Reactions, and Nuclear-Spin Conversion. Chemical Reviews, 2013, 113, 8783-8839.	47.7	245
1156	Low-Temperature Combustion Chemistry of <i>n-</i> Butanol: Principal Oxidation Pathways of Hydroxybutyl Radicals. Journal of Physical Chemistry A, 2013, 117, 11983-12001.	2.5	40
1157	Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. Journal Physics D: Applied Physics, 2013, 46, 275201.	2.8	201
1158	Kinetic mechanism of combustion of hydrogen–oxygen mixtures. Journal of Engineering Physics and Thermophysics, 2013, 86, 987-995.	0.6	23
1159	Kinetics of the Gas Phase Reaction CH ₃ + HO ₂ . Journal of Physical Chemistry A, 2013, 117, 2916-2923.	2.5	17
1160	Study of ozone-enhanced combustion in H2/CO/N2/air premixed flames by laminar burning velocity measurements and kinetic modeling. International Journal of Hydrogen Energy, 2013, 38, 1177-1188.	7.1	36
1161	An experimental and modeling study of the low- and high-temperature oxidation of cyclohexane. Combustion and Flame, 2013, 160, 2319-2332.	5.2	71
1162	The H + CO ⇌ HCO reaction studied by <i>ab initio</i> benchmark calculations. Journal of Chemical Physics, 2013, 139, 164310.	3.0	20
1163	Shortcomings of CVD modeling of SiC today. Theoretical Chemistry Accounts, 2013, 132, 1.	1.4	15
1164	Destruction of sulfonol in its aqueous solutions by contact glow discharge treatment: 2. Mechanisms and kinetic simulation. High Energy Chemistry, 2013, 47, 258-261.	0.9	4
1165	Non-thermal plasma catalysis of methane: Principles, energy efficiency, and applications. Catalysis Today, 2013, 211, 29-38.	4.4	227
1166	Methane Dry Reforming at High Temperature and Elevated Pressure: Impact of Gas-Phase Reactions. Industrial & Engineering Chemistry Research, 2013, 52, 11920-11930.	3.7	79

#	Article	IF	CITATIONS
1167	Quantitative relationship between rate constants and molecular structure descriptors for the gas phase hydrogen abstraction reactions. SAR and QSAR in Environmental Research, 2013, 24, 501-518.	2.2	0
1168	Simplified Kinetic Model for Thermal Combustion of Lean Methane–Air Mixtures in a Wide Range of Temperatures. International Journal of Chemical Reactor Engineering, 2013, 11, 111-121.	1.1	10
1169	Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2,5-Dimethylfuran. Journal of Physical Chemistry A, 2013, 117, 1371-1392.	2.5	108
1170	Removal of formaldehyde by adsorption and plasma treatment of mineral adsorbent. Journal Physics D: Applied Physics, 2013, 46, 045201.	2.8	25
1171	Unimolecular decomposition of 2,5-dimethylfuran: a theoretical chemical kinetic study. Physical Chemistry Chemical Physics, 2013, 15, 596-611.	2.8	50
1173	Development of a reduced biodiesel surrogate model for compression ignition engine modeling. Proceedings of the Combustion Institute, 2013, 34, 401-409.	3.9	54
1174	Conversion of carbon disulfide in air by non-thermal plasma. Journal of Hazardous Materials, 2013, 261, 669-674.	12.4	25
1175	Etching of low-kmaterials for microelectronics applications by means of a N2/H2plasma: modeling and experimental investigation. Plasma Sources Science and Technology, 2013, 22, 025011.	3.1	21
1176	Shock tube study of methanol, methyl formate pyrolysis: CH3OH and CO time-history measurements. Combustion and Flame, 2013, 160, 2669-2679.	5.2	50
1177	Experimental and Modeling Study of Premixed Laminar Flames of Ethanol and Methane. Energy & Fuels, 2013, 27, 2226-2245.	5.1	44
1178	Product-state-resolved dynamics of the elementary reaction of atomic oxygen with molecular hydrogen, O(3P)Â+ÂD2Â→ÂOD(X2Î)Â+ÂD. Nature Chemistry, 2013, 5, 315-319.	13.6	22
1179	An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combustion and Flame, 2013, 160, 995-1011.	5.2	589
1180	A shock tube and kinetic modeling study of n-butanal oxidation. Combustion and Flame, 2013, 160, 1541-1549.	5.2	24
1181	The role of sensitivity and uncertainty analysis in combustion modelling. Proceedings of the Combustion Institute, 2013, 34, 159-176.	3.9	111
1182	Modelling of OH production in cold atmospheric-pressure He–H ₂ O plasma jets. Plasma Sources Science and Technology, 2013, 22, 035015.	3.1	44
1183	Effects of Reagent Rotation and Vibration on H + OH (Ï, <i>j</i>)→ O + H ₂ . Journal of Physical Chemistry A, 2013, 117, 12889-12896.	2.5	3
1184	A Classical Trajectory Study of the Dissociation and Isomerization of C ₂ H ₅ . Journal of Physical Chemistry A, 2013, 117, 11624-11639.	2.5	9
1185	Classical dynamics of state-resolved hyperthermal O(3P) + H2O(1A1) collisions. Journal of Chemical Physics, 2013, 138, 074303.	3.0	15

#	Article	IF	CITATIONS
1186	A new ab initio based global HOOH(13A″) potential energy surface for the O(3P) + H2O(X1A1) ↔ OH(X2Î) + OH(X2Î) reaction. Journal of Chemical Physics, 2013, 138, 194304.	3.0	24
1187	Small hydrocarbon molecules in cloud-forming brown dwarf and giant gas planet atmospheres. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1888-1903.	4.4	28
1188	Modeling Combustion with Detailed Kinetic Mechanisms. Green Energy and Technology, 2013, , 17-57.	0.6	4
1189	A Quantum Chemical Study of the Abnormal Reactivity of 2â€Methoxyfuran. International Journal of Chemical Kinetics, 2013, 45, 531-541.	1.6	9
1190	The UMIST database for astrochemistry 2012. Astronomy and Astrophysics, 2013, 550, A36.	5.1	714
1191	Threeâ€dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km. Journal of Geophysical Research E: Planets, 2013, 118, 2105-2123.	3.6	118
1192	A THREE-PHASE CHEMICAL MODEL OF HOT CORES: THE FORMATION OF GLYCINE. Astrophysical Journal, 2013, 765, 60.	4.5	315
1194	A time-dependent photochemical model for Titan's atmosphere and the origin of H ₂ O. Astronomy and Astrophysics, 2014, 566, A143.	5.1	22
1195	On combustion in a closed rectangular channel with initial vorticity. Combustion Theory and Modelling, 2014, 18, 272-294.	1.9	4
1196	Sensitivity and Uncertainty Analyses. , 2014, , 61-144.		1
1197	Analysis of Kinetic Reaction Mechanisms. , 2014, , .		128
1197 1198	Analysis of Kinetic Reaction Mechanisms. , 2014, , . Constrained-Equilibrium Modeling of Methane Oxidation in Air. Journal of Energy Resources Technology, Transactions of the ASME, 2014, 136, .	2.3	128 13
	Constrained-Equilibrium Modeling of Methane Oxidation in Air. Journal of Energy Resources	2.3	
1198	Constrained-Equilibrium Modeling of Methane Oxidation in Air. Journal of Energy Resources Technology, Transactions of the ASME, 2014, 136, .	2.3	13
1198 1199	Constrained-Equilibrium Modeling of Methane Oxidation in Air. Journal of Energy Resources Technology, Transactions of the ASME, 2014, 136, . Methane Activation. , 2014, , . Non-equilibrium chemistry and cooling in the diffuse interstellar medium - I. Optically thin regime.		13 1
1198 1199 1200	Constrained-Equilibrium Modeling of Methane Oxidation in Air. Journal of Energy Resources Technology, Transactions of the ASME, 2014, 136, . Methane Activation. , 2014, , . Non-equilibrium chemistry and cooling in the diffuse interstellar medium - I. Optically thin regime. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3349-3369. Photolysis of CH3CHO at 248 nm: Evidence of triple fragmentation from primary quantum yield of CH3	4.4	13 1 57
1198 1199 1200 1201	Constrained-Equilibrium Modeling of Methane Oxidation in Air. Journal of Energy Resources Technology, Transactions of the ASME, 2014, 136, . Methane Activation. , 2014, , . Non-equilibrium chemistry and cooling in the diffuse interstellar medium - I. Optically thin regime. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3349-3369. Photolysis of CH3CHO at 248 nm: Evidence of triple fragmentation from primary quantum yield of CH3 and HCO radicals and H atoms. Journal of Chemical Physics, 2014, 140, 214308. Oxygen transport in the internal xenon plasma of a dispenser hollow cathode. Journal of Applied	4.4 3.0	13 1 57 30

#	Article	IF	CITATIONS
1205	Experimental and kinetic modeling study of 2,5-dimethylfuran pyrolysis at various pressures. Combustion and Flame, 2014, 161, 2496-2511.	5.2	103
1206	Oxidation of CH4 by CO2 in a dielectric barrier discharge. Chemical Physics Letters, 2014, 593, 55-60.	2.6	53
1207	Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures. Combustion and Flame, 2014, 161, 2729-2737.	5.2	24
1208	Laminar burning velocity of lean H2–CO mixtures at elevated pressure using the heat flux method. International Journal of Hydrogen Energy, 2014, 39, 1485-1498.	7.1	58
1209	An improved kinetic mechanism for 3-pentanone pyrolysis and oxidation developed using multispecies time histories in shock-tubes. Combustion and Flame, 2014, 161, 1135-1145.	5.2	23
1210	Influence of \$\$ext{ CF }_{3}ext{ H }\$\$ CF 3 H and \$\$ext{ CCI }_{4}\$\$ CCI 4 additives on acetylene detonation. Shock Waves, 2014, 24, 231-237.	1.9	10
1211	The hydrogen abstraction reaction O(3P) + CH4: A new analytical potential energy surface based on fit to <i>ab initio</i> calculations. Journal of Chemical Physics, 2014, 140, 064310.	3.0	41
1212	OH Dynamics in a Nanosecond Pulsed Plasma Filament in Atmospheric Pressure He–H2O upon the Addition of O2. Plasma Chemistry and Plasma Processing, 2014, 34, 605-619.	2.4	25
1213	Recent advances in understanding of flammability characteristics ofÂhydrogen. Progress in Energy and Combustion Science, 2014, 41, 1-55.	31.2	318
1214	OH density measurements in nanosecond pulsed discharges in atmospheric pressure N ₂ –H ₂ O mixtures. Plasma Sources Science and Technology, 2014, 23, 015009.	3.1	18
1215	An updated detailed reaction mechanism for syngas combustion. RSC Advances, 2014, 4, 4564-4585.	3.6	8
1216	Mechanism optimization based on reaction rate rules. Combustion and Flame, 2014, 161, 405-415.	5.2	97
		0.2	
1217	Chemical Kinetics of Methane Pyrolysis in Microwave Plasma at Atmospheric Pressure. Plasma Chemistry and Plasma Processing, 2014, 34, 313-326.	2.4	46
1217 1218			46 43
	Chemistry and Plasma Processing, 2014, 34, 313-326. Evaluation of Combustion Mechanisms Using Global Uncertainty and Sensitivity Analyses: A Case Study for Low emperature Dimethyl Ether Oxidation. International Journal of Chemical Kinetics, 2014, 46,	2.4	
1218	 Chemistry and Plasma Processing, 2014, 34, 313-326. Evaluation of Combustion Mechanisms Using Global Uncertainty and Sensitivity Analyses: A Case Study for Lowâ€Temperature Dimethyl Ether Oxidation. International Journal of Chemical Kinetics, 2014, 46, 662-682. In-Situ Chemical Trapping of Oxygen in the Splitting of Carbon Dioxide by Plasma. Plasma Processes and 	2.4 1.6	43
1218 1219	Chemistry and Plasma Processing, 2014, 34, 313-326. Evaluation of Combustion Mechanisms Using Global Uncertainty and Sensitivity Analyses: A Case Study for Lowâ€Temperature Dimethyl Ether Oxidation. International Journal of Chemical Kinetics, 2014, 46, 662-682. In-Situ Chemical Trapping of Oxygen in the Splitting of Carbon Dioxide by Plasma. Plasma Processes and Polymers, 2014, 11, 985-992. Reaction Rate Constant of CH ₂ O + H = HCO + H ₂ Revisited: A Combined Study of Direct Shock Tube Measurement and Transition State Theory Calculation. Journal of Physical	2.4 1.6 3.0	43 49

#	Article	IF	CITATIONS
1223	Theoretical Kinetics Study of the O(³ P) + CH ₄ /CD ₄ Hydrogen Abstraction Reaction: The Role of Anharmonicity, Recrossing Effects, and Quantum Mechanical Tunneling. Journal of Physical Chemistry A, 2014, 118, 3243-3252.	2.5	57
1224	Kinetic Modeling Study of Polycyclic Aromatic Hydrocarbons and Soot Formation in Acetylene Pyrolysis. Energy & Fuels, 2014, 28, 1489-1501.	5.1	70
1225	High-Energy Chemistry of Formamide: A Simpler Way for Nucleobase Formation. Journal of Physical Chemistry A, 2014, 118, 719-736.	2.5	73
1226	Hybrid model of neutral diffusion, sheaths, and the <i>α</i> to <i>γ</i> transition in an atmospheric pressure He/ H ₂ O bounded rf discharge. Journal Physics D: Applied Physics, 2014, 47, 305203.	2.8	15
1227	A theoretical study of three gas-phase reactions involving the production or loss of methane cations. Physical Chemistry Chemical Physics, 2014, 16, 21867-21875.	2.8	3
1228	Production of reactive species using vacuum ultraviolet photodissociation as a tool for studying their effects in plasma medicine: simulations and measurements. Journal Physics D: Applied Physics, 2014, 47, 445203.	2.8	12
1229	Decomposition of Acetaldehyde Using an Electron Beam. Plasma Chemistry and Plasma Processing, 2014, 34, 1233-1245.	2.4	10
1230	Direct ab initio dynamics calculations of thermal rate constants for the CH4Â+ÂO2Â=ÂCH3Â+ÂHO2 reaction. Structural Chemistry, 2014, 25, 1495-1503.	2.0	57
1231	Benzene combustion: A detailed chemical kinetic modeling in laminar flames conditions. Kinetics and Catalysis, 2014, 55, 278-286.	1.0	5
1232	Low Temperature Kinetics of the CH ₃ OH + OH Reaction. Journal of Physical Chemistry A, 2014, 118, 2693-2701.	2.5	68
1233	Reassessing the photochemical production of methanol from peroxy radical self and cross reactions using the STOCHEM-CRI global chemistry and transport model. Atmospheric Environment, 2014, 99, 77-84.	4.1	17
1234	The chemistry involved in the third explosion limit of H2–O2 mixtures. Combustion and Flame, 2014, 161, 111-117.	5.2	45
1235	Shock Tube Measurements of the Rate Constant for the Reaction Ethanol + OH. Journal of Physical Chemistry A, 2014, 118, 822-828.	2.5	21
1236	Rate constant of the reaction between CH3O2 and OH radicals. Chemical Physics Letters, 2014, 593, 7-13.	2.6	68
1237	Application of a laser induced fluorescence model to the numerical simulation of detonation waves in hydrogen–oxygen–diluent mixtures. International Journal of Hydrogen Energy, 2014, 39, 6044-6060.	7.1	34
1238	A comparison of literature models for the oxidation of normal heptane. Combustion and Flame, 2014, 161, 1984-1992.	5.2	10
1239	Coupling of oxygen, nitrogen, and hydrocarbon species in the photochemistry of Titan's atmosphere. Icarus, 2014, 228, 324-346.	2.5	74
1240	An experimental and modeling study of the influence of flue gases recirculated on ethylene conversion. Combustion and Flame, 2014, 161, 2288-2296.	5.2	8

#	Article	IF	CITATIONS
1241	Experimental and numerical low-temperature oxidation study of ethanol and dimethyl ether. Combustion and Flame, 2014, 161, 384-397.	5.2	76
1242	Molecular Dynamics Simulation of C–C Bond Scission in Polyethylene and Linear Alkanes: Effects of the Condensed Phase. Journal of Physical Chemistry A, 2014, 118, 2187-2195.	2.5	11
1243	Chemical kinetics on extrasolar planets. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130073.	3.4	86
1244	CO <inf>2</inf> dissociation using the versatile atmospheric dielectric barrier discharge experiment (VADER). , 2014, , .		0
1245	Evolution of stratospheric chemistry in the Saturn storm beacon region. Icarus, 2015, 261, 149-168.	2.5	23
1246	The complex chemistry of outflow cavity walls exposed: the case of low-mass protostars. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3836-3856.	4.4	42
1247	Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch. Scientific Reports, 2015, 5, 18436.	3.3	40
1248	Accelerating quantum instanton calculations of the kinetic isotope effects. Journal of Chemical Physics, 2015, 143, 194104.	3.0	15
1249	Calculating the rate constant for the NH 2 • + CO ⇄ NH2CO• ⇄ H + NHCO reactions and thermodynamic properties of NH2CO•. Kinetics and Catalysis, 2015, 56, 245-260.	1.0	4
1250	SO ₂ photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols. Atmospheric Chemistry and Physics, 2015, 15, 1843-1864.	4.9	64
1251	A Computational Study of the Kinetics and Mechanism for the C ₂ H ₃ + CH ₃ OH Reaction. International Journal of Chemical Kinetics, 2015, 47, 764-772.	1.6	3
1252	Theoretical study on the atmospheric reaction of CH ₃ O ₂ with OH. International Journal of Quantum Chemistry, 2015, 115, 1181-1186.	2.0	10
1253	The molecular composition of the planet-forming regions of protoplanetary disks across the luminosity regime. Astronomy and Astrophysics, 2015, 582, A88.	5.1	133
1254	Generation Process and Sterilization Effect of OH Radical in a Steam Plasma Flow at Atmospheric Pressure for a Plasma Autoclave. Plasma Medicine, 2015, 5, 299-314.	0.6	1
1255	Selective production of atomic oxygen by laser photolysis as a tool for studying the effect of atomic oxygen in plasma medicine. Journal Physics D: Applied Physics, 2015, 48, 275201.	2.8	4
1256	Modelling complex organic molecules in dense regions: Eley–Rideal and complex induced reaction. Monthly Notices of the Royal Astronomical Society, 2015, 447, 4004-4017.	4.4	118
1257	Interaction of Matter and Electromagnetic Radiation. Supercritical Fluid Science and Technology, 2015, 7, 41-192.	0.5	7
1258	ATMOSPHERE EXPANSION AND MASS LOSS OF CLOSE-ORBIT GIANT EXOPLANETS HEATED BY STELLAR XUV. II. EFFECTS OF PLANETARY MAGNETIC FIELD; STRUCTURING OF INNER MAGNETOSPHERE. Astrophysical Journal, 2015, 813, 50.	4.5	91

#	Article	IF	CITATIONS
1259	High temperature measurements for the rate constants of C1–C4 aldehydes with OH in a shock tube. Proceedings of the Combustion Institute, 2015, 35, 473-480.	3.9	49
1260	A density functional theory study on the decomposition of aliphatic hydrocarbons and cycloalkanes during coal pyrolysis in hydrogen plasma. Journal of Energy Chemistry, 2015, 24, 65-71.	12.9	4
1261	CO2–CH4 conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge. Journal of CO2 Utilization, 2015, 9, 74-81.	6.8	93
1262	Ionization Mechanism and Chemical Composition of an Argon DC Discharge with Water Cathode. Plasma Chemistry and Plasma Processing, 2015, 35, 107-132.	2.4	12
1263	Oxidation ofn-Alkane (n-C8H18) under Reservoir Conditions, in Context of Gas Mixture Injection (CO2/O2): Construction of a Kinetic Model. Energy & Fuels, 2015, 29, 1913-1922.	5.1	3
1264	Carbon Dioxide Splitting in a Dielectric Barrier Discharge Plasma: A Combined Experimental and Computational Study. ChemSusChem, 2015, 8, 702-716.	6.8	284
1265	Nitrogen Stable Isotope Composition (l´ ¹⁵ N) of Vehicle-Emitted NO _{<i>x</i>} . Environmental Science & Technology, 2015, 49, 2278-2285.	10.0	142
1266	Kinetic modeling study of benzene and PAH formation in laminar methane flames. Combustion and Flame, 2015, 162, 1692-1711.	5.2	67
1267	Post-nitriding on μc-InXGa1â^'XN films using hot-wire chemical vapor deposition technique. Thin Solid Films, 2015, 575, 96-99.	1.8	0
1268	Kinetic Rates for Gas-Phase Chemistry of Phenolic-Based Carbon Ablator in Atmospheric Air. Journal of Thermophysics and Heat Transfer, 2015, 29, 222-240.	1.6	28
1269	Uncertainty of the rate parameters of several important elementary reactions of the H2 and syngas combustion systems. Combustion and Flame, 2015, 162, 2059-2076.	5.2	55
1270	The effect of temperature on the adiabatic burning velocities of diluted hydrogen flames: A kinetic study using an updated mechanism. Combustion and Flame, 2015, 162, 1884-1898.	5.2	110
1271	On the role of excited species in hydrogen combustion. Combustion and Flame, 2015, 162, 3755-3772.	5.2	63
1272	Detonation in hydrogen–nitrous oxide–diluent mixtures: An experimental and numerical study. Combustion and Flame, 2015, 162, 1638-1649.	5.2	40
1273	Pressure-Dependent Kinetics of Initial Reactions in Iso-octane Pyrolysis. Journal of Physical Chemistry A, 2015, 119, 4093-4107.	2.5	25
1274	Precursors for carbon doping of GaN in chemical vapor deposition. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	1.2	32
1275	Infrared absorption of CH3O and CD3O radicals isolated in solid para-H2. Journal of Molecular Spectroscopy, 2015, 310, 57-67.	1.2	30
1276	Kinetics of the Self Reaction of Cyclopentadienyl Radicals. Journal of Physical Chemistry A, 2015, 119, 7418-7429.	2.5	18

#	Article	IF	CITATIONS
1277	Experimental and Modeling Investigation of the Low-Temperature Oxidation of Dimethyl Ether. Journal of Physical Chemistry A, 2015, 119, 7905-7923.	2.5	85
1278	Autoignition of propane behind shock waves. Russian Journal of Physical Chemistry B, 2015, 9, 92-103.	1.3	25
1279	Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Scientific Reports, 2015, 5, 9332.	3.3	367
1280	Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach. Journal of Chemical Theory and Computation, 2015, 11, 2087-2096.	5.3	579
1281	Exploring the formation routes of diatomic hydrogenated radicals using femtosecond laser-induced breakdown spectroscopy of deuterated molecular solids. Journal of Analytical Atomic Spectrometry, 2015, 30, 2343-2352.	3.0	31
1282	Critical Evaluation of Thermochemical Properties of C1–C4 Species: Updated Group-Contributions to Estimate Thermochemical Properties. Journal of Physical and Chemical Reference Data, 2015, 44, .	4.2	93
1283	Gas phase chemical vapor deposition chemistry of triethylboron probed by boron–carbon thin film deposition and quantum chemical calculations. Journal of Materials Chemistry C, 2015, 3, 10898-10906.	5.5	24
1284	Species and temperature measurements of methane oxidation in a nanosecond repetitively pulsed discharge. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140333.	3.4	96
1285	Impact of SO2 on the formation of soot from ethylene pyrolysis. Fuel, 2015, 159, 550-558.	6.4	14
1286	Pyrolysis and combustion chemistry of tetrahydropyran: Experimental and modeling study. Combustion and Flame, 2015, 162, 4283-4303.	5.2	19
1287	THE 2014 KIDA NETWORK FOR INTERSTELLAR CHEMISTRY. Astrophysical Journal, Supplement Series, 2015, 217, 20.	7.7	291
1288	Pyrolysis Pathways of the Furanic Ether 2-Methoxyfuran. Journal of Physical Chemistry A, 2015, 119, 9962-9977.	2.5	9
1289	Kinetic mechanisms of hydrogen abstraction reactions from methanol by methyl, triplet methylene and formyl radicals. Computational and Theoretical Chemistry, 2015, 1074, 73-82.	2.5	2
1290	ABIOTIC O ₂ LEVELS ON PLANETS AROUND F, G, K, AND M STARS: POSSIBLE FALSE POSITIVES FOR LIFE?. Astrophysical Journal, 2015, 812, 137.	4.5	173
1291	Combustion kinetic model uncertainty quantification, propagation and minimization. Progress in Energy and Combustion Science, 2015, 47, 1-31.	31.2	238
1292	A shock tube study of CH 3 OH + OH → Products using OH laser absorption. Proceedings of the Combustion Institute, 2015, 35, 377-384.	3.9	17
1293	Wet peroxide oxidation of oilfield sludge. Arabian Journal of Chemistry, 2015, 8, 208-211.	4.9	0
1294	Experimental and kinetic modeling study of trans-2-butene oxidation in a jet-stirred reactor and a combustion bomb. Proceedings of the Combustion Institute, 2015, 35, 317-324.	3.9	29

#	Article	IF	CITATIONS
1295	A CHEMICAL KINETICS NETWORK FOR LIGHTNING AND LIFE IN PLANETARY ATMOSPHERES. Astrophysical Journal, Supplement Series, 2016, 224, 9.	7.7	102
1296	The Importance of Relative Reaction Rates in the Optimization of Detailed Kinetic Models. International Journal of Chemical Kinetics, 2016, 48, 358-366.	1.6	13
1297	Ignition of cyclopropane in shock waves. Russian Journal of Physical Chemistry B, 2016, 10, 602-614.	1.3	4
1298	Fluid modelling of CO2 dissociation in a dielectric barrier discharge. Journal of Applied Physics, 2016, 119, .	2.5	77
1299	The kinetics of the gas-phase reaction between methanol and boron trichloride. Russian Journal of Physical Chemistry B, 2016, 10, 421-426.	1.3	0
1300	Methylacetylene (CH3CCH) and propene (C3H6) formation in cold dense clouds: A case of dust grain chemistry. Molecular Astrophysics, 2016, 3-4, 1-9.	1.6	37
1301	PMMA Surface Functionalization Using Atmospheric Pressure Plasma for Development of Plasmonically Active Polymer Optical Fiber Probes. Plasma Chemistry and Plasma Processing, 2016, 36, 1067-1083.	2.4	6
1302	Hydrogen transfer between dimethyl ether and the methoxy radical: Understanding and kinetic modeling with anharmonic torsions. Computational and Theoretical Chemistry, 2016, 1089, 43-53.	2.5	6
1303	Progress in the direct catalytic conversion of methane to fuels and chemicals. Progress in Energy and Combustion Science, 2016, 55, 60-97.	31.2	265
1304	Possibility of methane conversion into heavier hydrocarbons using nanosecond lasers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 156, 118-122.	3.9	3
1305	Sulfur isotope fractionation by broadband UV radiation to optically thin SO 2 under reducing atmosphere. Earth and Planetary Science Letters, 2016, 453, 9-22.	4.4	41
1306	Reduction of CO2 with hydrogen in a non-equilibrium microwave plasma reactor. International Journal of Hydrogen Energy, 2016, 41, 21067-21077.	7.1	53
1307	Multispectral actinometry of water and water-derivative molecules in moist, inert gas discharge plasmas. Journal Physics D: Applied Physics, 2016, 49, 395204.	2.8	22
1308	lgnition Delay Time Measurements on CH ₄ /CH ₃ Cl/O ₂ /Ar Mixtures for Kinetic Analysis. Energy & Fuels, 2016, 30, 8711-8719.	5.1	16
1309	Thermal Decomposition of 2-Pentanol: A Shock Tube Study and RRKM Calculations. Journal of Physical Chemistry A, 2016, 120, 8024-8036.	2.5	5
1310	Oxidative Coupling of Methane: Opportunities for Microkinetic Modelâ€Assisted Process Implementations. Chemical Engineering and Technology, 2016, 39, 1996-2010.	1.5	19
1311	High-pressure oxidation of methane. Combustion and Flame, 2016, 172, 349-364.	5.2	157
1312	Perchlorate formation on Mars through surface radiolysisâ€initiated atmospheric chemistry: A potential mechanism. Journal of Geophysical Research E: Planets, 2016, 121, 1472-1487.	3.6	47

#	Article	IF	CITATIONS
1313	Steam reforming of methane in a synthesis gas from biomass gasification. International Journal of Hydrogen Energy, 2016, 41, 18329-18338.	7.1	29
1314	Kinetics of the Reaction of CH ₃ O ₂ Radicals with OH Studied over the 292–526 K Temperature Range. Journal of Physical Chemistry A, 2016, 120, 6111-6121.	2.5	48
1315	Experimental and modelling study of 1CH2 in premixed very rich methane flames. Combustion and Flame, 2016, 171, 198-210.	5.2	37
1316	OH radical production in an atmospheric pressure surface micro-discharge array. Journal Physics D: Applied Physics, 2016, 49, 455202.	2.8	10
1317	A combined CFD modeling and experimental study of pyrolytic carbon deposition. Diamond and Related Materials, 2016, 70, 173-178.	3.9	7
1318	An accurate multi-channel multi-reference full-dimensional global potential energy surface for the lowest triplet state of H2O2. Physical Chemistry Chemical Physics, 2016, 18, 29825-29835.	2.8	14
1319	Shock Tube and Modeling Study of Chemical Ionization in the Oxidation of Acetylene and Methane Mixtures. Combustion Science and Technology, 2016, 188, 1815-1830.	2.3	8
1320	Reactions of initiation of the autoignition of H2–O2 mixtures in shock waves. Russian Journal of Physical Chemistry B, 2016, 10, 456-468.	1.3	17
1321	N ₂ O ₅ Formation Mechanism during the Ozone-Based Low-Temperature Oxidation deNO _{<i>x</i>} Process. Energy & Fuels, 2016, 30, 5101-5107.	5.1	51
1322	Trichloroethylene Combustion in a Submerged Thermal Plasma: Results and Chemical Kinetics Model. Plasma Chemistry and Plasma Processing, 2016, 36, 1085-1110.	2.4	2
1323	Kinetics of the thermal decomposition of tetramethylsilane behind the reflected shock waves between 1058 and 1194 K. Journal of Chemical Sciences, 2016, 128, 573-588.	1.5	6
1324	Laminar burning velocity of acetic acid + air flames. Combustion and Flame, 2016, 170, 12-29.	5.2	45
1325	Extension of Structure–Reactivity Correlations for the Hydrogen Abstraction Reaction to the Methyl Radical and Comparison to the Chlorine Atom, Bromine Atom, and Hydroxyl Radical. Journal of Physical Chemistry A, 2016, 120, 4447-4454.	2.5	1
1326	Reactivity of water vapor in an atmospheric argon flowing post-discharge plasma torch. Plasma Sources Science and Technology, 2016, 25, 025014.	3.1	18
1327	NOx Emissions Modeling and Uncertainty From Exhaust-Gas-Diluted Flames. Journal of Engineering for Gas Turbines and Power, 2016, 138, .	1.1	12
1328	Ab initio and direct dynamics study on the hydrogen abstraction reaction C 2 H 3 + CH 3 CHO. Computational and Theoretical Chemistry, 2016, 1075, 63-69.	2.5	3
1329	Mechanism of thermal decomposition of 2-furyl radical. Chemical Physics, 2016, 465-466, 52-64.	1.9	7
1330	Carbon dioxide elimination and regeneration of resources in a microwave plasma torch. Environmental Pollution, 2016, 211, 191-197.	7.5	27

ARTICLE IF CITATIONS Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond 1331 2.8 43 laser ablation. Physical Chemistry Chemical Physics, 2016, 18, 2398-2408. Role of HOCO Chemistry in Syngas Combustion. Energy & amp; Fuels, 2016, 30, 2443-2457. 5.1 19 Evaluation of Finite-Rate Gas/Surface Interaction Models for Carbon-Based Ablator. Journal of 1333 1.9 4 Spacecraft and Rockets, 2016, 53, 143-152. The (impossible?) formation of acetaldehyde on the grain surfaces: insights from quantum chemical 1334 calculations. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 459, L6-L10. <i>Ab initio</i> and direct dynamics study on the C₂H₃ + 1335 1.7 6 CH₃CH₂OH reaction. Molecular Physics, 2016, 114, 315-324. On the plasma-based growth of â€[~]flowingâ€[™] graphene sheets at atmospheric pressure conditions. Plasma Sources Science and Technology, 2016, 25, 015013. 3.1 A model for carbon incorporation from trimethyl gallium in chemical vapor deposition of gallium 1337 5.5 19 nitride. Journal of Materials Chemistry C, 2016, 4, 863-871. A new approach to the non-oxidative conversion of gaseous alkanes in a barrier discharge and 1338 2.8 19 features of the reaction mechanism. Journal Physics D: Applied Physics, 2016, 49, 025205. Effect of temperature and relative humidity on NOX removal by dielectric barrier discharge with 1339 7.2 37 acetylene. Fuel Processing Technology, 2016, 144, 109-114. Process intensification in the catalytic conversion of natural gas to fuels and chemicals. Proceedings 1340 of the Combustion Institute, 2017, 36, 51-76. Determination of the Rate Coefficients of the <scp>CH₄</scp> + <scp>O₂</scp> → <scp>HO₂</scp> + <scp>CH and <scp>HCO</scp> + <scp>O₂</scp> → <scp>HO₂</scp> a†'a€‰<scp>HO₂</scp> 1341 Reactions at High Temperatures. Bulletin of the Korean Chemical Society, 2017, 38, 228-236. Effect of Translational Nonequilibrium and "Hot―Atoms Reactions on Active Species Production in 1342 High-Voltage Pulsed Discharges., 2017,,. Non-thermal plasma ethanol reforming in bubbles immersed in liquids. Journal Physics D: Applied 1343 2.8 12 Physics, 2017, 50, 085202. The Reaction between CH₃O₂ and OH Radicals: Product Yields and 1344 10.0 Atmospheric Implications. Environmental Science & amp; Technology, 2017, 51, 2170-2177. Development of an Uncertainty Quantification Predictive Chemical Reaction Model for Syngas 1345 5.128 Combustion. Energy & amp; Fuels, 2017, 31, 2274-2297. Investigation on the oxidation chemistry of methanol in laminar premixed flames. Combustion and 1346 5.2 Flame, 2017, 180, 20-31. An extensive experimental and modeling study of 1-butene oxidation. Combustion and Flame, 2017, 181, 1347 5.279 198-213. Chemical kinetics and CFD analysis of supercharged micro-pilot ignited dual-fuel engine combustion 1348 6.4 of syngas. Fuel, 2017, 203, 591-606.

#	Article	IF	CITATIONS
1349	Mechanistic and kinetic study on the reaction of methylperoxy radical with atomic iodine. Journal of Molecular Graphics and Modelling, 2017, 76, 512-520.	2.4	2
1350	Initiation Reactions in Acetylene Pyrolysis. Journal of Physical Chemistry A, 2017, 121, 4203-4217.	2.5	22
1351	Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chemical Reviews, 2017, 117, 8497-8520.	47.7	961
1352	Mechanistic Modeling of the Partial Oxidation of 1,3-Propanediol: Comparison of Free-Radical and Concerted Mechanisms. Industrial & amp; Engineering Chemistry Research, 2017, 56, 6599-6607.	3.7	1
1353	CO oxidation and O2 removal on meteoric material in Venus' atmosphere. Icarus, 2017, 296, 150-162.	2.5	7
1354	Mass spectrometric investigations of plasma chemical reactions in a radiofrequency discharge with Ar/C2H2 and Ar/C2H2/O2 gas mixtures. Journal of Applied Physics, 2017, 121, .	2.5	12
1355	QDB: a new database of plasma chemistries and reactions. Plasma Sources Science and Technology, 2017, 26, 055014.	3.1	42
1356	Hydrogen Generation from Ethanol using Plasma Reforming Technology. Green Energy and Technology, 2017, , .	0.6	6
1357	Modeling of CO ₂ plasma: effect of uncertainties in the plasma chemistry. Plasma Sources Science and Technology, 2017, 26, 115002.	3.1	36
1358	Oneâ€Step Reforming of CO ₂ and CH ₄ into Highâ€Value Liquid Chemicals and Fuels at Room Temperature by Plasmaâ€Driven Catalysis. Angewandte Chemie - International Edition, 2017, 56, 13679-13683.	13.8	244
1359	Oneâ€Step Reforming of CO ₂ and CH ₄ into Highâ€Value Liquid Chemicals and Fuels at Room Temperature by Plasmaâ€Driven Catalysis. Angewandte Chemie, 2017, 129, 13867-13871.	2.0	27
1360	Thermochemical Mechanism Optimization for Accurate Predictions of CH Concentrations in Premixed Flames of C1-C3 Alkane Fuels. , 2017, , .		1
1361	Effects of reaction-kinetic parameters on modeling reaction pathways in GaN MOVPE growth. Journal of Crystal Growth, 2017, 478, 193-204.	1.5	6
1362	Numerical simulation of physicochemical interactions between oxygen atom and phosphatidylcholine due to direct irradiation of atmospheric pressure nonequilibrium plasma to biological membrane with quantum mechanical molecular dynamics. Journal Physics D: Applied Physics, 2017, 50, 395203.	2.8	5
1363	Shock tube study and RRKM calculations on thermal decomposition of 2-chloroethyl methyl ether. Combustion and Flame, 2017, 186, 263-276.	5.2	3
1364	Theoretical and kinetic study of the reaction of C ₂ H ₃ + HO ₂ on the C ₂ H ₃ O ₂ H potential energy surface. RSC Advances, 2017, 7, 44809-44819.	3.6	13
1365	Mechanistic and kinetic study on the reaction of methylperoxyl radical with atomic hydrogen. Chemical Physics Letters, 2017, 687, 276-283.	2.6	0
1367	Theoretical study of the structure and thermochemical proprieties of adducts of the gas phase reaction of NH 2 CO with HCO possibly formed under atmospheric conditions on the prebiotic Earth. Computational and Theoretical Chemistry, 2017, 1118, 81-93.	2.5	1

CITATION REPORT IF CITATIONS

#	Article	IF	CITATIONS
1368	Kinetics and mechanism of the reaction of recombination of vinyl and hydroxyl radicals. Chemical Physics Letters, 2017, 685, 165-170.	2.6	4
1369	Computational study on the mechanisms and reaction pathways of the brominated alkyl radical (CHBr) Tj ETQq1	1 0.78431 2.5	.4 _d gBT /Ov
1370	Low temperature oxidation of n-butanol: Key uncertainties and constraints in kinetics. Fuel, 2017, 207, 776-789.	6.4	9
1371	Reaction of H ₂ with O ₂ in Excited Electronic States: Reaction Pathways and Rate Constants. Journal of Physical Chemistry A, 2017, 121, 9599-9611.	2.5	15
1372	Extreme enrichment in atmospheric ¹⁵ N ¹⁵ N. Science Advances, 2017, 3, eaao6741.	10.3	31
1373	CO 2 conversion in a non-thermal, barium titanate packed bed plasma reactor: The effect of dilution by Ar and N 2. Chemical Engineering Journal, 2017, 327, 764-773.	12.7	77
1374	Mechanism and Rate of Thermal Decomposition of Hexachlorocyclopentadiene and Its Importance in PCDD/F Formation from the Combustion of Cyclodiene Pesticides. Journal of Physical Chemistry A, 2017, 121, 5871-5883.	2.5	8
1375	Modeling study of the acceleration of ignition in ethane–air and natural gas–air mixtures via photochemical excitation of oxygen molecules. Combustion and Flame, 2017, 176, 81-93.	5.2	17
1376	Monte Carlo simulation of the effect of "hot―atoms on active species kinetics in combustible mixtures excited by high-voltage pulsed discharges. Combustion and Flame, 2017, 176, 181-190.	5.2	8
1377	A Comprehensive Chemical Model for the Splitting of CO ₂ in Nonâ€Equilibrium Plasmas. Plasma Processes and Polymers, 2017, 14, 1600155.	3.0	54
1378	Infrared absorption spectra of partially deuterated methoxy radicals CH2DO and CHD2O isolated in solid <i>para</i> -hydrogen. Journal of Chemical Physics, 2017, 147, 154305.	3.0	16
1379	Studies on affecting factors and mechanism of oily wastewater by wet hydrogen peroxide oxidation. Arabian Journal of Chemistry, 2017, 10, S2402-S2405.	4.9	6
1380	Surface Assisted Combustion of Hydrogen-Oxygen Mixture in Nanobubbles Produced by Electrolysis. Energies, 2017, 10, 178.	3.1	13
1381	Consistent dust and gas models for protoplanetary disks. Astronomy and Astrophysics, 2017, 607, A41.	5.1	51
1382	Experimental study of heterogeneous organic chemistry induced by far ultraviolet light: Implications for growth of organic aerosols by CH3 addition in the atmospheres of Titan and early Earth. Icarus, 2018, 307, 25-39.	2.5	3
1383	Mechanisms of Formaldehyde and C ₂ Formation from Methylene Reacting with CO ₂ Adsorbed on Ni(110). Journal of Physical Chemistry C, 2018, 122, 13827-13833.	3.1	6
1384	Reaction Conversion for a Plasma-Based Steady-State Flow Process Is Independent of Reactor Volume. Industrial & Engineering Chemistry Research, 2018, 57, 6048-6056.	3.7	6
1385	Infrared Chemiluminescence Study of the Reaction of Hydroxyl Radical with Formamide and the Secondary Unimolecular Reaction of Chemically Activated Carbamic Acid. Journal of Physical Chemistry A, 2018, 122, 3735-3746.	2.5	6

#	Article	IF	Citations
1386	Assessing impacts of discrepancies in model parameters on autoignition model performance: A case study using butanol. Combustion and Flame, 2018, 190, 284-292.	5.2	5
1387	Effects of ambient air on the characteristics of an atmospheric-pressure plasma jet of a gas mixture of highly N2-diluted O2on a sliding substrate. Japanese Journal of Applied Physics, 2018, 57, 01AAO6.	1.5	2
1388	Shock-Tube Experiments and Chemical Kinetic Modeling Study of CH ₄ Sensitized by CH ₃ NHCH ₃ . Energy & Fuels, 2018, 32, 5588-5595.	5.1	6
1389	Modelling of plasma-based dry reforming: how do uncertainties in the input data affect the calculation results?. Journal Physics D: Applied Physics, 2018, 51, 204003.	2.8	24
1390	Pinpointing energy losses in CO2 plasmas – Effect on CO2 conversion. Journal of CO2 Utilization, 2018, 24, 479-499.	6.8	22
1391	Impact of Argon in Reforming of (CH4 + CO2) in Surface Dielectric Barrier Discharge Reactor to Produce Syngas and Liquid Fuels. Plasma Chemistry and Plasma Processing, 2018, 38, 517-534.	2.4	20
1392	Experimental and numerical investigation of atmospheric laminar premixed n-butane flames in sooting conditions. Fuel, 2018, 211, 548-565.	6.4	12
1393	Reaction mechanism, rate constants, and product yields for the oxidation of Cyclopentadienyl and embedded five-member ring radicals with hydroxyl. Combustion and Flame, 2018, 187, 147-164.	5.2	24
1394	Chemical Ionization of <i>n</i> -Hexane, Acetylene, and Methane behind Reflected Shock Waves. Combustion Science and Technology, 2018, 190, 57-81.	2.3	10
1395	Radical mechanism for the gas-phase thermal decomposition of propane. Reaction Kinetics, Mechanisms and Catalysis, 2018, 123, 607-624.	1.7	6
1396	Plasma generation in aqueous solution containing volatile solutes. Japanese Journal of Applied Physics, 2018, 57, 0102B7.	1.5	5
1397	The reaction of fluorine atoms with methanol: yield of CH ₃ O/CH ₂ OH and rate constant of the reactions CH ₃ O + CH ₃ O and CH ₃ O + HO ₂ . Physical Chemistry Chemical Physics, 2018, 20, 10660-10670.	2.8	29
1398	Atmospheric Pressure and Room Temperature Synthesis of Methanol through Plasma-Catalytic Hydrogenation of CO ₂ . ACS Catalysis, 2018, 8, 90-100.	11.2	206
1399	Thermochemical Mechanism Optimization for Accurate Predictions of CH Concentrations in Premixed Flames of C1–C3 Alkane Fuels. Journal of Engineering for Gas Turbines and Power, 2018, 140, .	1.1	8
1400	Catalyst assisted by non-thermal plasma in dry reforming of methane at low temperature. Catalysis Today, 2018, 299, 263-271.	4.4	48
1401	A chemistry and cooling module for the NIRVANA code. Astronomy and Astrophysics, 2018, 620, A81.	5.1	5
1402	The effect of the composition of elementary chemical reactions and the uncertainty of the rate constants on the accuracy of calculating the rate of hydrogen oxidation. Journal of Physics: Conference Series, 2018, 1111, 012021.	0.4	0
1403	Rate coefficients of the H + H2O2 → H2 + HO2 reaction on an accurate fundamental invariant-neural network potential energy surface. Journal of Chemical Physics, 2018, 149, 174303.	3.0	15

		CITATION REPORT	
#	Article	IF	Citations
1404	Higher Activity Leading to Higher Disorder: A Case of Four Light Hydrocarbons to Variable Morphological Carbonaceous Materials by Pyrolysis. Journal of Physical Chemistry C, 2018, 122, 29516-29525.	3.1	16
1405	Transformations of neutral particles in the discharge plasma in inert gases with water vapor and deuterium. Physics of Plasmas, 2018, 25, .	1.9	11
1406	Theoretical rate constant of methane oxidation from the conventional transition-state theory. Journal of Molecular Modeling, 2018, 24, 294.	1.8	4
1407	The reaction of hydroxyl and methylperoxy radicals is not a major source of atmospheric methanol. Nature Communications, 2018, 9, 4343.	12.8	32
1408	Warm plasma activation of CO2 in a rotating gliding arc discharge reactor. Journal of CO2 Utilization, 2018, 27, 472-479.	6.8	60
1409	Chemical kinetics in an atmospheric pressure helium plasma containing humidity. Physical Chemistry Chemical Physics, 2018, 20, 24263-24286.	2.8	62
1410	Theoretical kinetics of hydrogen abstraction and addition reactions of 3-hexene by á,¢, Ö(3P) and ÄŠH3. Combustion and Flame, 2018, 197, 449-462.	5.2	7
1411	Theoretical Study of the C2H5 + HO2 Reaction: Mechanism and Kinetics. Molecules, 2018, 23, 1919.	3.8	2
1412	Uncertainty Quantification of NOx Emissions Induced Through the Prompt Route in Premixed Alkane Flames. , 2018, , .		1
1413	How Au Outperforms Pt in the Catalytic Reduction of Methane Towards Ethane and Molecular Hydrogen. Topics in Catalysis, 2018, 61, 1290-1299.	2.8	0
1414	O ₂ (b ¹ Σ _g ⁺) Removal by H ₂ , CO, N ₂ O, CH ₄ , and C ₂ H ₄ in the 300–800 K Temperature Range. Journal of Physical Chemistry A, 2018, 122, 5283-5288.	2.5	5
1415	High-Temperature Rate Constants for the Reaction of Hydrogen Atoms with Tetramethoxysilane and Reactivity Analogies between Silanes and Oxygenated Hydrocarbons. Journal of Physical Chemistry A, 2018, 122, 5289-5298.	2.5	8
1416	A comprehensively validated compact mechanism for dimethyl ether oxidation: an experimental and computational study. Combustion and Flame, 2018, 196, 116-128.	5.2	9
1417	Experimental and theoretical investigation of the reaction of RO ₂ radicals with OH radicals: Dependence of the HO ₂ yield on the size of the alkyl group. International Journal of Chemical Kinetics, 2018, 50, 670-680.	1.6	26
1418	Influence of oxygen on generation of reactive chemicals from nitrogen plasma jet. Scientific Reports, 2018, 8, 9318.	3.3	15
1419	Direct methanol synthesis from methane in a plasma-catalyst hybrid system at low temperature using metal oxide-coated glass beads. Scientific Reports, 2018, 8, 9956.	3.3	13

1420	Accurate integral cross sections for the H + CO2 → OH + CO reaction. Chemical Physics Letters, 2 675-679.	2.6 2.6	' 3
------	--	---------	-----

1421	Chemical evolution of the gas in C-type shocks in dark clouds. Astrophysics and Space Science, 2018, 363, 1.	1.4	13
------	--	-----	----

ARTICLE IF CITATIONS Efficiency of radial transport of ices in protoplanetary disks probed with infrared observations: the 1422 5.1 29 case of CO₂. Astronomy and Astrophysics, 2018, 611, A80. Shock tube measurements and kinetic modeling study on autoignition characteristics of 1423 5.2 cyclohexanone. Combustion and Flame, 2018, 192, 358-368. Simulation of the Kinetics of Methane Conversion in the Presence of Water in a Barrier Discharge. 1424 0.9 8 High Energy Chemistry, 2018, 52, 167-170. Understanding the Chemistry in Silicon Carbide Chemical Vapor Deposition. Materials Science Forum, 1425 0.3 0, 924, 100-103. Photoisomerization of Methyl Vinyl Ketone and Methacrolein in the Troposphere: A Theoretical 1426 2.7 8 Investigation of Ground-State Reaction Pathways. ACS Earth and Space Chemistry, 2018, 2, 753-763. Aero-thermodynamic and chemical process interactions in an axial high-pressure turbine of aircraft engines. International Journal of Engine Research, 2019, 20, 653-669. 2.3 Developing detailed chemical kinetic mechanisms for fuel combustion. Proceedings of the Combustion 1428 3.9 228 Institute, 2019, 37, 57-81. Mechanistic study of the reaction of methyl peroxy radical (CH₃O₂) with 1429 1.7 formaldehyde (CH₂O). Molecular Physics, 2019, 117, 298-302. Kinetics Of The H + CH₂ â†' CH + H₂ Reaction At Low Temperature. Journal of 1430 2.5 5 Physical Chemistry A, 2019, 123, 7408-7419. The effect of base chemistry choice in a generated n â€hexane oxidation model using an automated 1431 1.6 mechanism generator. International Journal of Chemical Kinetics, 2019, 51, 786-798 Interaction of CH4 with Electronically Excited O2: Ab Initio Potential Energy Surfaces and Reaction 1432 2.4 13 Kinetics. Plasma Chemistry and Plasma Processing, 2019, 39, 1533-1558. Role of O₃ in the removal of HCHO using a DC streamer plasma. Journal Physics D: Applied 2.8 Physics, 2019, 52, 465203. Internal structure of hydrogen-enriched methane \hat{e} air turbulent premixed flames: Flamelet and 1434 5.2 23 non-flamelet behavior. Combustion and Flame, 2019, 208, 139-157. Reactivity of Polar Compounds in Reactions with Oxygen Atoms. Kinetics and Catalysis, 2019, 60, 1-7. 1435 1.0 Simultaneous Removal of SO₂ and NO Using a Novel Method of Ultraviolet Irradiating 1436 10.0 49 Chlorite–Ammonia Complex. Environmental Science & amp; Technology, 2019, 53, 9014-9023. A numerical analysis of a microwave induced coaxial surface wave discharge fed with a mixture of 1437 oxygen and hexamethyldisiloxane for the purpose of deposition. Plasma Sources Science and 3.1 Technology, 2019, 28, 115003. Methane Disintegration by Water Vapor in a Hot Chamber heated by Using a Microwave Steam Torch. 1438 0.7 2 Journal of the Korean Physical Society, 2019, 75, 367-372. Measurements of Low Temperature Rate Coefficients for the Reaction of CH with CH₂0 1439 4.5 and Application to Dark Cloud and AGB Stellar Wind Models. Astrophysical Journal, 2019, 885, 134.

#	Article	IF	Citations
1440	Molecular dynamics of combustion reactions in supercritical carbon dioxide. Part 4: boxed MD study of formyl radical dissociation and recombination. Journal of Molecular Modeling, 2019, 25, 35.	1.8	6
1441	Pressure-Dependent Kinetics of the Reaction between CH ₃ O ₂ and OH: TRIOX Formation. Journal of Physical Chemistry A, 2019, 123, 8349-8357.	2.5	6
1442	Soot formation and flame structure in swirl-stabilized turbulent non-premixed methane combustion. Combustion and Flame, 2019, 209, 303-312.	5.2	26
1443	Mechanistic Insights into Methane Oxidation by Molecular Oxygen under Photoirradiation: Controlled Radical Chain Reactions. Bulletin of the Chemical Society of Japan, 2019, 92, 1840-1846.	3.2	1
1444	A modelling study of acetylene oxidation and pyrolysis. Combustion and Flame, 2019, 210, 25-42.	5.2	24
1445	New global potential energy surfaces of the ground 3 <i>A</i> ′ and 3 <i>A</i> ″ states of the O(3 <i>P</i>) + H2 system. Journal of Chemical Physics, 2019, 151, 094307.	3.0	6
1446	On the Use of Quantum Thermal Bath in Unimolecular Fragmentation Simulation. Journal of Physical Chemistry A, 2019, 123, 8542-8551.	2.5	5
1447	Influence of boiling on radiolysis of oxygen-containing liquids. Radiation Physics and Chemistry, 2019, 165, 108405.	2.8	9
1448	Kinetic Modeling of the Quenching of Combustion Products during the Synthesis of Acetylene. Russian Journal of Physical Chemistry B, 2019, 13, 577-584.	1.3	3
1449	Experimental and modeling study of chemical-based strategies for mitigating dust formation in fusion reactors. Plasma Physics and Controlled Fusion, 2019, 61, 045007.	2.1	2
1450	Pyrolysis of Hydrocarbons. , 2019, , 35-161.		13
1451	Shock Tube Laser Schlieren Study of the Pyrolysis of Isopropyl Nitrate. Journal of Physical Chemistry A, 2019, 123, 5866-5876.	2.5	11
1452	Investigating the Efficiency of Explosion Chemistry as a Source of Complex Organic Molecules in TMC-1. Astrophysical Journal, 2019, 878, 65.	4.5	2
1453	Fluid model of the positive column in argonâ€oxygen direct current glow discharge. Contributions To Plasma Physics, 2019, 59, e201800190.	1.1	3
1454	Reactive species in cold atmospheric-pressure He + Air plasmas: The influence of humidity. Physics of Plasmas, 2019, 26, .	1.9	11
1455	Uncertainty quantification and minimization. Computer Aided Chemical Engineering, 2019, 45, 723-762.	0.5	6
1456	Kinetic Modeling of NO <i>_x</i> Formation and Consumption during Methanol and Ethanol Oxidation. Combustion Science and Technology, 2019, 191, 1627-1659.	2.3	33
1457	On Simulating the Proton-irradiation of O ₂ and H ₂ O lces Using Astrochemical-type Models, with Implications for Bulk Reactivity. Astrophysical Journal, 2019, 876, 140.	4.5	30

#	ARTICLE Initial-stage reaction of methane examined by optical measurements of weak flames in a micro flow	IF 5.2	Citations
1459	reactor with a controlled temperature profile. Combustion and Flame, 2019, 206, 292-307. Analysis of kinetic models for rich to ultra-rich premixed CH4/air weak flames using a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2019, 206, 68-82.	5.2	16
1460	100 Years of Progress in Gas-Phase Atmospheric Chemistry Research. Meteorological Monographs, 2019, 59, 10.1-10.52.	5.0	11
1461	Insight into gliding arc (GA) plasma reduction of CO ₂ with H ₂ : GA characteristics and reaction mechanism. Journal Physics D: Applied Physics, 2019, 52, 284001.	2.8	9
1462	Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism. Combustion and Flame, 2019, 204, 162-175.	5.2	265
1463	The Effect of Photoionization on the Loss of Water of the Planet. Astrophysical Journal, 2019, 872, 99.	4.5	20
1464	Providing effective constraints for developing ketene combustion mechanisms: A detailed kinetic investigation of diacetyl flames. Combustion and Flame, 2019, 205, 11-21.	5.2	10
1465	The reaction of peroxy radicals with OH radicals. Chemical Physics Letters, 2019, 725, 102-108.	2.6	28
1466	Suppressing the formation of NO _x and N ₂ O in CO ₂ /N ₂ dielectric barrier discharge plasma by adding CH ₄ : scavenger chemistry at work. Sustainable Energy and Fuels, 2019, 3, 1388-1395.	4.9	10
1467	Modeling of plasma-enhanced chemical vapor deposition growth of graphene on cobalt substrates. Diamond and Related Materials, 2019, 93, 84-95.	3.9	7
1468	Numerical simulation of the effect of water admixtures on the evolution of a helium/dry air discharge. Journal Physics D: Applied Physics, 2019, 52, 195203.	2.8	16
1469	Reaction Kinetics of Active Species from an Atmospheric Pressure Plasma Jet Irradiated on the Flowing Water Surface — Effect of Gas-drag by the Sliding Water Surface —. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2019, 32, 535-540.	0.3	0
1470	Conversion of methane to benzene in CVI by density functional theory study. Scientific Reports, 2019, 9, 19496.	3.3	6
1471	Oxygen Behavior in High Temperature Plasma and its Applications to Hydrocarbon Fuels. Journal of the Korean Physical Society, 2019, 75, 917-923.	0.7	0
1472	Unexpected dynamical effects change the lambda-doublet propensity in the tunneling region for the O(³ P) + H ₂ reaction. Physical Chemistry Chemical Physics, 2019, 21, 25389-25396.	2.8	3
1473	A Novel Dual Fuel Reaction Mechanism for Ignition in Natural Gas–Diesel Combustion. Energies, 2019, 12, 4396.	3.1	7
1474	Hydrogen isotopic analysis using molecular emission from laser-induced plasma on liquid and frozen water. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 162, 105716.	2.9	14
1475	Simulating the density of organic species in the atmosphere of Titan with a coupled ion-neutral photochemical model. Icarus, 2019, 324, 120-197.	2.5	125

#	Article	IF	CITATIONS
1476	The Role of Atomic Oxygen and Ozone in the Plasma and Post-plasma Catalytic Removal of N2O. Plasma Chemistry and Plasma Processing, 2019, 39, 89-108.	2.4	11
1477	Shock Tube Measurement of the C ₂ H ₄ + H ⇔ C ₂ H ₃ + H ₂ Rate Constant. Journal of Physical Chemistry A, 2019, 123, 15-20.	2.5	18
1478	Global model of an atmospheric-pressure capacitive discharge in helium with air impurities from 100 to 10 000 ppm. Plasma Sources Science and Technology, 2019, 28, 035006.	3.1	26
1479	Chemical reaction kinetics dataset of Cs-I-B-Mo-O-H system for evaluation of fission product chemistry under LWR severe accident conditions. Journal of Nuclear Science and Technology, 2019, 56, 228-240.	1.3	8
1480	Plasma-assisted CO2 conversion in a gliding arc discharge: Improving performance by optimizing the reactor design. Journal of CO2 Utilization, 2019, 29, 296-303.	6.8	50
1481	A novel method of ultraviolet/NaClO2-NH4OH for NO removal: Mechanism and kinetics. Journal of Hazardous Materials, 2019, 368, 234-242.	12.4	86
1482	OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet. Plasma Science and Technology, 2019, 21, 025402.	1.5	3
1483	Joint probability distribution of Arrhenius parameters in reaction model optimization and uncertainty minimization. Proceedings of the Combustion Institute, 2019, 37, 817-824.	3.9	24
1484	Impact of Kinetic Uncertainties on Accurate Prediction of NO Concentrations in Premixed Alkane-Air Flames. Combustion Science and Technology, 2020, 192, 959-985.	2.3	6
1485	Detailed chemical kinetic modeling of fuel-rich n-heptane flame. Fuel, 2020, 259, 116228.	6.4	3
1486	Comparison of measured and simulated chemical species densities in vacuum ultraviolet photolysis method of Ar/H2O/O2 mixture developed for selectively supplying reactive species. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 387, 112148.	3.9	7
1487	Flue gas treatment with ozone oxidation: An overview on NO , organic pollutants, and mercury. Chemical Engineering Journal, 2020, 382, 123030.	12.7	129
1488	Spatiotemporal measurement of OH density from upstream to downstream in humid helium atmospheric-pressure plasma jet. Plasma Sources Science and Technology, 2020, 29, 035021.	3.1	12
1489	An experimental and modeling study on the reactivity of extremely fuel-rich methane/dimethyl ether mixtures. Combustion and Flame, 2020, 212, 107-122.	5.2	44
1490	Competing pathways in odd oxygen photochemistry of the martian atmosphere. Planetary and Space Science, 2020, 181, 104783.	1.7	3
1491	Comprehensive kinetic study of combustion technologies for low environmental impact: MILD and OXY-fuel combustion of methane. Combustion and Flame, 2020, 212, 142-155.	5.2	139
1492	Theoretical investigation of the formic acid decomposition kinetics. International Journal of Chemical Kinetics, 2020, 52, 188-196.	1.6	5
1493	Vibrational nonequilibrium and reaction heat effect in diluted hydrogen-oxygen mixtures behind reflected shock waves at 1000 < T < 1300ÂK. International Journal of Hydrogen Energy, 2020, 45, 3251-3262.	7.1	4

#	Article	IF	Citations
1494	Kinetics of the hydrogen abstraction alkane + O2 → alkyl + HO2 reaction class: an application of the reaction class transition state theory. Structural Chemistry, 2020, 31, 731-746.	2.0	1
1495	A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs. Renewable and Sustainable Energy Reviews, 2020, 119, 109589.	16.4	161
1496	Simultaneous measurement of local densities of atomic oxygen and ozone in pure oxygen pulsed barrier discharge under atmospheric pressure. Journal Physics D: Applied Physics, 2020, 53, 135201.	2.8	9
1497	CRAHCN-O: A Consistent Reduced Atmospheric Hybrid Chemical Network Oxygen Extension for Hydrogen Cyanide and Formaldehyde Chemistry in CO ₂ -, N ₂ -, H ₂ O-, CH ₄ -, and H ₂ -Dominated Atmospheres. Journal of Physical Chemistry A, 2020, 124, 8594-8606.	2.5	4
1498	Theoretical Investigations of Rate Coefficients for H + O3and HO2+ O Reactions on a Full-Dimensional Potential Energy Surface. Journal of Physical Chemistry A, 2020, 124, 6427-6437.	2.5	16
1499	Kinetic modeling of the thermal destruction of lewisite. Journal of Hazardous Materials, 2020, 398, 123086.	12.4	2
1500	Photochemistry of Methane and Ethane in the Martian Atmosphere. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006491.	3.6	2
1501	Kinetics theoretical study of the O(3P) + C2H6 reaction on an ab initio-based global potential energy surface. Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	2
1502	Photolytic fractionation of seven singly and doubly substituted nitrous oxide isotopocules measured by quantum cascade laser absorption spectroscopy. Atmospheric Environment: X, 2020, 8, 100094.	1.4	2
1503	Review on Mechanisms and Kinetics for Supercritical Water Oxidation Processes. Applied Sciences (Switzerland), 2020, 10, 4937.	2.5	40
1504	Carbon photochemistry at Mars: Updates with recent data. Icarus, 2020, 352, 114001.	2.5	12
1505	Collisional excitation of the formyl radical (HCO) by molecular hydrogen. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5361-5366.	4.4	3
1506	Theoretical study on COS oxidation mechanism. Combustion and Flame, 2020, 221, 311-325.	5.2	9
1507	Recent advances in process and catalyst for CO2 reforming of methane. Renewable and Sustainable Energy Reviews, 2020, 134, 110312.	16.4	116
1508	Development of a Detailed Kinetic Model for Hydrogen Oxidation in Supercritical H ₂ O/CO ₂ Mixtures. Energy & Fuels, 2020, 34, 15379-15388.	5.1	18
1509	Multiphysics modeling of metal surface cleaning using atmospheric pressure plasma. Journal of Applied Physics, 2020, 128, .	2.5	9
1510	A Shock-Tube Study of the Rate Constant of PH3 + M â‡,, PH2 + H + M (M = Ar) Using PH3 Laser Absorption. Journal of Physical Chemistry A, 2020, 124, 7380-7387.	2.5	1
1511	Elucidating the differences in oxidation of high-performance α- and β- diisobutylene biofuels via Synchrotron photoionization mass spectrometry. Scientific Reports, 2020, 10, 21776.	3.3	2

#	Article	IF	CITATIONS
1512	Increasing the Efficiency of Optimized V-SBA-15 Catalysts in the Selective Oxidation of Methane to Formaldehyde by Artificial Neural Network Modelling. Catalysts, 2020, 10, 1411.	3.5	11
1513	Quantitative gas composition analysis method for a wide pressure range up to atmospheric pressure—CO2 plasma case study. Review of Scientific Instruments, 2020, 91, 113501.	1.3	13
1514	Optical and Mass Spectrometric Measurements of the CH4–CO2 Dry Reforming Process in a Low Pressure, Very High Density, and Purely Inductive Plasma. Journal of Physical Chemistry A, 2020, 124, 7271-7282.	2.5	8
1515	Effect of charging solid particles on their growth process and parameters of microwave discharge in liquid <i>n</i> -heptane. Plasma Sources Science and Technology, 2020, 29, 065013.	3.1	9
1516	Establishment of erosion model of gun steel material and study on its erosion performance. Journal of Mechanical Science and Technology, 2020, 34, 2019-2026.	1.5	12
1517	Plasma-enhanced catalytic activation of CO2 in a modified gliding arc reactor. Waste Disposal & Sustainable Energy, 2020, 2, 139-150.	2.5	20
1518	O·, H·, and ·OH radical etching probability of polystyrene obtained for a radio frequency driven atmospheric pressure plasma jet. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	17
1519	Modeling Microsilica Particle Formation and Growth Due to the Combustion Reaction of Silicon Monoxide With Oxygen. SIAM Journal on Applied Mathematics, 2020, 80, 1003-1033.	1.8	4
1520	Cold plasma assisted deoxygenation of liquid phase glycerol at atmospheric pressure. Chemical Engineering Journal, 2020, 393, 124698.	12.7	10
1521	An investigation of ultrasonic based hydrogen production. Energy, 2020, 205, 118006.	8.8	23
1522	Interaction of the HCO radical with molecular hydrogen: <i>Ab initio</i> potential energy surface and scattering calculations. Journal of Chemical Physics, 2020, 152, 224304.	3.0	5
1523	Effects of electrode material and frequency on carbon monoxide formation in carbon dioxide dielectric barrier discharge. Journal of CO2 Utilization, 2020, 40, 101207.	6.8	3
1524	Dayside nitrogen and carbon escape on Titan: the role of exothermic chemistry. Astronomy and Astrophysics, 2020, 633, A8.	5.1	7
1525	Thermal decomposition of N ₂ O near 900 K studied by FTIR spectrometry: Comparison of experimental and theoretical O(³ P) formation kinetics. International Journal of Chemical Kinetics, 2020, 52, 632-644.	1.6	14
1526	Potential Energy Surface for the CH4–H2 van der Waals Interaction. Journal of Physical Chemistry A, 2020, 124, 3242-3248.	2.5	3
1527	Dual Fuel Reaction Mechanism 2.0 including NOx Formation and Laminar Flame Speed Calculations Using Methane/Propane/n-Heptane Fuel Blends. Energies, 2020, 13, 778.	3.1	3
1528	Simulation of Microwave Discharge in Liquid n-Heptane in the Presence of Argon in the Discharge Region. High Energy Chemistry, 2020, 54, 217-226.	0.9	5
1529	Oxidation of phenolic compounds during autothermal pyrolysis of lignocellulose. Journal of Analytical and Applied Pyrolysis, 2020, 149, 104853.	5.5	16

#	Article	IF	CITATIONS
1530	Cold plasma assisted decomposition of alcohols. Chemical Engineering and Processing: Process Intensification, 2020, 153, 107985.	3.6	3
1531	Density Functional Theory Study of the Gas Phase and Surface Reaction Kinetics for the MOVPE Growth of GaAs _{1–<i>y</i>} Bi <i>_y</i> . Journal of Physical Chemistry A, 2020, 124, 1682-1697.	2.5	0
1532	Correcting Rate Constants from Anharmonic Molecular Dynamics for Quantum Effects. ACS Omega, 2020, 5, 2242-2253.	3.5	9
1533	Mass spectrometry of neutrals and positive ions in He/CO ₂ non-equilibrium atmospheric plasma jet. Plasma Physics and Controlled Fusion, 2020, 62, 034005.	2.1	10
1534	Highly selective Si3N4/SiO2etching using an NF3/N2/O2/H2remote plasma. I. Plasma source and critical fluxes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 023007.	2.1	22
1535	A shock-tube study of the N2OÂ+ÂM ⇄ N2Â+ÂOÂ+ÂM (MÂ=ÂAr) rate constant using N2O laser absorption near 4.6µm. Combustion and Flame, 2021, 224, 6-13.	5.2	23
1536	Improvement of H2/O2 chemical kinetic mechanism for high pressure combustion. International Journal of Hydrogen Energy, 2021, 46, 5799-5811.	7.1	14
1537	A chemically consistent rate constant for the reaction of nitrogen dioxide with the oxygen atom. Physical Chemistry Chemical Physics, 2021, 23, 585-596.	2.8	3
1538	The lower dayside ionosphere of Mars from 14Âyears of MaRS radio science observations. Icarus, 2021, 359, 114213.	2.5	18
1539	Kinetic study of reaction C2H5 + HO2 in a photolysis reactor with time-resolved Faraday rotation spectroscopy. Proceedings of the Combustion Institute, 2021, 38, 871-880.	3.9	5
1540	Modeling of Atmospheric-Pressure Dielectric Barrier Discharges in Argon with Small Admixtures of Tetramethylsilane. Plasma Chemistry and Plasma Processing, 2021, 41, 289-334.	2.4	9
1541	Kinetic studies of excited singlet oxygen atom O(1 D) reactions with ethanol. International Journal of Chemical Kinetics, 2021, 53, 688-701.	1.6	1
1542	Analysis of Heterogeneous-Homogeneous Model of Oxidative Coupling of Methane Using Kinetic Scheme Reduction Procedure. Kinetics and Catalysis, 2021, 62, 103-115.	1.0	4
1543	Oxygen Removal from a Hydrocarbon Containing Gas Stream by Plasma Catalysis. Plasma Chemistry and Plasma Processing, 2021, 41, 619-642.	2.4	4
1544	CO2 decomposition to CO in the presence of up to 50% O2 using a non-thermal plasma at atmospheric temperature and pressure. Chemical Engineering Journal, 2021, 405, 126625.	12.7	30
1545	Identification of Known and Novel Monomers for Poly(hydroxyurethanes) from Biobased Materials. Industrial & Engineering Chemistry Research, 2021, 60, 6814-6825.	3.7	9
1546	Effect of Molecular Additives on the Ignition of Methane–Air Mixtures. Combustion, Explosion and Shock Waves, 2021, 57, 138-149.	0.8	0
1547	Main sources of uncertainty in recent methanol/NOx combustion models. International Journal of Chemical Kinetics, 2021, 53, 884-900.	1.6	15

#	Article	IF	CITATIONS
1548	Non-thermal escape on Triton driven by atmospheric and ionospheric chemistry. Astronomy and Astrophysics, 2021, 650, A130.	5.1	4
1549	Theoretical modeling study of the reaction H + CF 4 → HF + CF 3. International Journal of Chemical Kinetics, 2021, 53, 939-945.	1.6	Ο
1550	Simultaneous quantification of atomic oxygen and ozone by full photo-fragmentation two-photon absorption laser-induced fluorescence spectroscopy. Plasma Sources Science and Technology, 2021, 30, 055001.	3.1	7
1551	Effect of non-thermal plasma on carbon dioxide reforming of methane to hydrogen. Proceedings of Institution of Civil Engineers: Energy, 2021, 174, 67-78.	0.6	2
1552	Experimental study of nitropropane pyrolysis with molecular-beam mass spectrometry and tunable synchrotron VUV photoionization. Part I. The flow reactor pyrolysis of 1-nitropropane. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105051.	5.5	8
1553	Liquid oxygenated hydrocarbons produced during reforming of CH4 and CO2 in a surface dielectric barrier discharge: Effects of steam on conversion and products distribution. Journal of Applied Physics, 2021, 129, .	2.5	6
1554	Discovery of the Pure Polycyclic Aromatic Hydrocarbon Indene (c-C9H8) with GOTHAM Observations of TMC-1. Astrophysical Journal Letters, 2021, 913, L18.	8.3	96
1555	Fluid model of plasma–liquid interaction: The effect of interfacial boundary conditions and Henry's law constants. AIP Advances, 2021, 11, .	1.3	7
1556	Chemical kinetics and density measurements of OH in an atmospheric pressure He + O2 + H2O radiofrequency plasma. Journal Physics D: Applied Physics, 2021, 54, 285201.	2.8	17
1557	Simulations of the Formation of Nitrogen Oxides at the Cooling Stage of a Subthreshold Microwave Discharge in Air with Admixtures of Methane. Plasma Physics Reports, 2021, 47, 465-497.	0.9	2
1558	Modeling the Kinetics of Nonoxidative Conversion of a Propane–Water Mixture in Dielectric-Barrier Discharge Plasma. High Energy Chemistry, 2021, 55, 238-242.	0.9	3
1559	Rate Constants for Abstraction of H from the Fluoromethanes by H, O, F, and OH. Journal of Physical and Chemical Reference Data, 2021, 50, .	4.2	8
1560	Thermal Decomposition of 2-Methyltetrahydrofuran behind Reflected Shock Waves over the Temperature Range of 1179–1361 K. Journal of Physical Chemistry A, 2021, 125, 5406-5422.	2.5	2
1561	Toward a More Comprehensive Understanding of the Kinetics of a Common Biomass-Derived Impurity: NH ₃ Oxidation by N ₂ O in a Jet-Stirred Reactor. Energy & Fuels, 2021, 35, 13338-13348.	5.1	10
1562	Flame bands: CO + O chemiluminescence as a measure of gas temperature. Journal Physics D: Applied Physics, 2021, 54, 374005.	2.8	3
1563	Global Gas-Phase Oxidation Rates of Select Products from the Fast Pyrolysis of Lignocellulose. Energy & Fuels, 0, , .	5.1	4
1564	Hydroxide Salts in the Clouds of Venus: Their Effect on the Sulfur Cycle and Cloud Droplet pH. Planetary Science Journal, 2021, 2, 133.	3.6	41
1565	The effect of fine droplets on laminar propagation speed of a strained acetone-methane flame: Experiment and simulations. Combustion and Flame, 2021, 229, 111377.	5.2	8

#	Article	IF	CITATIONS
1566	Experimental and kinetic study on the pyrolysis and oxidation of isopentane in a jet-stirred reactor. Combustion and Flame, 2022, 235, 111678.	5.2	3
1567	A review on the importance of operating conditions and process parameters in sonic hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 28418-28434.	7.1	11
1568	Experimental and Kinetic Modeling Study of 3-Methyl-2-butenol (Prenol) Oxidation. Energy & Fuels, 2021, 35, 13999-14009.	5.1	9
1569	A unified mechanism for oxidative coupling and partial oxidation of methane. Fuel, 2021, 297, 120683.	6.4	6
1570	An experimental and modeling study of ammonia pyrolysis. Combustion and Flame, 2022, 235, 111694.	5.2	48
1571	Comparison of mechanisms for the direct, gas phase, partial oxidation of methane to methanol. Chemical Engineering Science, 2021, 241, 116718.	3.8	7
1572	Mechanisms for gas-phase molecular formation of neutral formaldehyde (H ₂ CO) in cold astrophysical regions. Astronomy and Astrophysics, 2021, 656, A148.	5.1	4
1573	A comprehensive kinetic modeling study of ethylene combustion with data uncertainty analysis. Fuel, 2021, 299, 120833.	6.4	15
1574	Kinetic effects of methyl radicals on PRF lean ignition: a comparative study of skeletal mechanisms. Combustion and Flame, 2021, 232, 111547.	5.2	1
1575	Insight into temperature impact of Ta filaments on high-growth-rate diamond (100) films by hot-filament chemical vapor deposition. Diamond and Related Materials, 2021, 118, 108515.	3.9	8
1576	Development of the chemical kinetic mechanism and modeling study on the ignition delay of liquefied natural gas (LNG) at intermediate to high temperatures and high pressures. Fuel, 2021, 302, 121137.	6.4	9
1577	Partial oxidation of n-pentane to syngas and oxygenates in a dielectric barrier discharge reactor. Fuel, 2022, 307, 121814.	6.4	6
1578	VUV photochemistry and nuclear spin conversion of water and water–orthohydrogen complexes in parahydrogen crystals at 4 K. Physical Chemistry Chemical Physics, 2021, 23, 4094-4106.	2.8	5
1579	Investigation and Improvement of Reaction Mechanisms Using Sensitivity Analysis and Optimization. Green Energy and Technology, 2013, , 411-445.	0.6	13
1581	Development of Chemical Reaction Models. , 1991, , 197-221.		2
1584	Shock Tube Studies on the Stability of Polyatomic Molecules and the Determination of Bond Energies. , 1999, , 323-352.		5
1585	The Direct Conversion of Methane to Methanol (DMTM). , 1992, , 403-425.		14
1586	The Role of Gas-Phase Reactions during Methane Oxidative Coupling. , 1992, , 30-77.		8

ARTICLE IF CITATIONS Measurement of O(15 D) formation during thermal decomposition of CO 25 behind shock waves. 17 1587 1.9 Shock Waves, 1996, 6, 79-83. Kinetics of the molecular oxygen reactions with sodium, magnesium and copper atoms., 1992, , 57-72. 1588 1589 Reactions of CH2 and CH with N2 and CH with NO., 1993, , 101-116. 3 Sonolytic ozonation for the remediation of hazardous pollutants. Advances in Sonochemistry, 2001, , 1590 0.4 111-139. Oxidation of propylene in the presence of water in a barrier discharge reactor. AIP Conference 1591 0.4 1 Proceedings, 2020, , . Performance analysis of a 2.45 GHz microwave plasma torch for CO₂ decomposition in gas swirl configuration. Plasma Sources Science and Technology, 2020, 29, 105009. 3.1 The spatial distribution of hydrogen and oxygen atoms in a cold atmospheric pressure plasma jet. 1593 3.114 Plasma Sources Science and Technology, 2020, 29, 125018. Spectral Methods of Control of Impurities, Their Flows and Localization in an Equilibrium 1594 Low-Temperature Plasma of Low Pressure. Plasma Physics Reports, 2020, 46, 874-919. Mechanisms of the Reactions of Radicals with Ozone. Russian Journal of Physical Chemistry B, 2008, 2, 1595 2 1.3 58-66. 1596 Oxidation of Polymers., 2005, , 1-454. 1 Shock-tube study of the decomposition of octamethylcyclotetrasiloxane and 1597 2.8 6 hexamethylcyclotrisiloxane. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1395-1426. Decomposition of Volatile Organic Compounds and Environmental Hazardous Substances in Water 1598 0.2 using Discharge Plasma. IEEJ Transaction's on Fundamentals and Materials, 2010, 130, 941-948. Partial oxidation of methane initiated by irradiation of ArF excimer laser.. Sekiyu Gakkaishi (Journal of) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 1599 <I>In-situ</I> Measurement and Kinetic Modelling of Diamond Deposition Process under Plasma 1600 0.4 Conditions. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1993, 57, 1158-1165. 1601 Effect of finite rate chemical reactions on ram accelerator thrust characteristics., 1995,,. 3 Distinguishing between Wet and Dry Atmospheres of TRAPPIST-1 e and f. Astrophysical Journal, 2020, 33 901, 126. HCN Production in Titan's Atmosphere: Coupling Quantum Chemistry and Disequilibrium Atmospheric 1604 4.5 11 Modeling. Astrophysical Journal, 2020, 901, 110. Microwave Plasma Enhanced Chemical Vapor Deposition of Carbon Nanotubes. Journal of Surface

CITATION REPORT

Engineered Materials and Advanced Technology, 2014, 04, 196-209.

			_
#	Article	IF	CITATIONS
1607	Model of Reactive Microwave Plasma Discharge for Growth of Single-Crystal Diamond. Japanese Journal of Applied Physics, 2011, 50, 01AB02.	1.5	7
1608	Chemical structure and laminar burning velocity of atmospheric pressure premixed ammonia/hydrogen flames. International Journal of Hydrogen Energy, 2021, 46, 39942-39954.	7.1	34
1609	Oxidant generation in the ice under electron irradiation: Simulation and application to Europa. Icarus, 2022, 373, 114760.	2.5	6
1610	THERMOFLUIDODYNAMIC SIMULATION OF PRACTICAL COMBUSTION SYSTEMS AND PREDICTION OF NOX BY REACTOR NETWORK ANALYSIS. , 2001, , .		0
1611	Shock-tube studies on the reactions of 2H-heptafluoropropane with H and O(3P) atoms and the subsequent reactions. , 2005, , 627-632.		1
1613	Surface and Thin Film Analysis. , 2012, , 269-298.		0
1614	Density functional and chemical model study of the competition between methyl and hydrogen scission of propane and β-scission of the propyl radical. Highlights in Theoretical Chemistry, 2014, , 63-80.	0.0	0
1615	Mercury Speciation Transformation During Coal Combustion. Advanced Topics in Science and Technology in China, 2013, , 29-104.	0.1	0
1617	Open Shell Atomic Beam Scattering and the Spin Orbit Dependence of Potential Energy Surfaces. , 1988, , 179-194.		0
1618	LIF study on the spatial distributions and transport processes of radicals in hydrocarbon plasmas The Review of Laser Engineering, 1989, 17, 568-577.	0.0	0
1619	Kinetic Models to Predict and Control Minor Constituents in Process Reactions. , 1992, , 45-64.		1
1620	Kinetics. , 1993, , 137-160.		0
1621	Gas Phase Homogeneous Kinetics. , 1994, , 69-92.		5
1622	Modeling the Reactive Gas Composition in the H + Methane Etching of Gallium Arsenide. , 1994, , 214-225.		0
1623	The Role of Free Methyl Radicals in the Selective Oxidation of Methane Over Silica-Supported Molybdena. , 1995, , 137-142.		0
1624	Mechanism for the Plasma Reforming of Ethanol. Green Energy and Technology, 2017, , 57-97.	0.6	0
1625	CHEMICAL KINETICS ANALYSIS OF NO AND CO FORMATION BASED ON THERMODYNAMIC DATA FROM AN ETHANOL-FUELED ENGINE COMPUTATIONAL MODEL. , 0, , .		0
1626	The application of chemical kinetic models in numerical simulation of the process of non-catalitic reduction of NOX with amonia in biomass combustion products. Savremena Poljoprivredna Tehnika, 2018, 44, 37-44.	0.2	0

#	Article	IF	CITATIONS
1627	Uma revisão bibliométrica sobre a co-pirólise de biomassa e resÃduo plástico. Research, Society and Development, 2019, 8, e1282585.	0.1	1
1628	Quantifying the Effect of Kinetic Uncertainties on NO Predictions at Engine-Relevant Pressures in Premixed Methane-Air Flames. , 2019, , .		0
1629	Caution with spectroscopic NO ₂ reference cells (cuvettes). Atmospheric Measurement Techniques, 2019, 12, 6259-6272.	3.1	3
1630	Quantifying the Effect of Kinetic Uncertainties on NO Predictions at Engine-Relevant Pressures in Premixed Methane–Air Flames. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	1.1	4
1631	Understanding the dynamic growth environment of silicon dioxide in atmospheric pressure plasma using multiphysics modeling. Surfaces and Interfaces, 2020, 21, 100739.	3.0	7
1632	Shock tube investigation of high-temperature, extremely-rich oxidation of several co-optima biofuels for spark-ignition engines. Combustion and Flame, 2022, 236, 111794.	5.2	8
1633	Uncertainty Quantification of Chemical Kinetic Reaction Rate Coefficients. Mathematics in Industry, 2020, , 35-44.	0.3	1
1634	Kinetic Analysis of the Oxidative Conversion of Methane in Slow Combustion. II. Parametric Characteristics of Directional Conversion. Combustion, Explosion and Shock Waves, 2020, 56, 11-22.	0.8	Ο
1635	Syngas Production, Storage, Compression and Use in Gas Turbines. Biofuels and Biorefineries, 2020, , 323-371.	0.5	0
1636	Kinetic model of the non-oxidative propane conversion in a plasma-chemical reactor in the presence of water. AIP Conference Proceedings, 2020, , .	0.4	0
1637	A Review on Decomposition Mechanism of Odorous Compounds Using Electron Beam Irradiation. Journal of Korean Society for Atmospheric Environment, 2020, 36, 1-24.	1.1	0
1638	A Systematic Method for Predictive <i>In Silico</i> Chemical Vapor Deposition. Journal of Physical Chemistry C, 2020, 124, 7725-7736.	3.1	10
1639	On the role of atomic carbon in diamond growth. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 76-79.	2.1	6
1641	Numerical simulations of thermal environment of the rocket impingement jet with afterburning under different water spray angles. Aerospace Science and Technology, 2022, 121, 107308.	4.8	2
1642	High-temperature oxidation of acetylene by N2O at high Ar dilution conditions and in laminar premixed C2H2 + O2 + N2 flames. Combustion and Flame, 2022, 238, 111924.	5.2	12
1643	Synergetic Effects of Plasma and Catalyst in Formaldehyde Conversion Over a Ni/α-Al ₂ O ₃ Catalyst in a Dielectric Barrier Discharge Reactor. SSRN Electronic Journal, 0, , .	0.4	0
1644	A Comprehensive Kinetic Modeling Study of Hydrogen Combustion with Uncertainty Quantification. SSRN Electronic Journal, 0, , .	0.4	0
1645	Investigation of Afterburning Effects on the Thermal Environment of Flame Deflectors. , 2021, , .		Ο

#	Article	IF	CITATIONS
1646	Realâ€ŧime measurement of axial temperature in a coaxial dielectric barrier discharge reactor and synergistic effect evaluation for inâ€plasma catalytic CO ₂ reduction. Plasma Processes and Polymers, 2022, 19, .	3.0	6
1647	The effect of plasma discharge on methane diffusion combustion in air assisted by an atmospheric pressure microwave plasma torch. Journal Physics D: Applied Physics, 2022, 55, 235203.	2.8	2
1648	Numerical model of species transport and melt stoichiometry in β-Ga2O3 crystal growth. Journal of Crystal Growth, 2022, 583, 126526.	1.5	4
1649	Mechanism of H2-O2 reaction in supercritical water. Fuel, 2022, 315, 122846.	6.4	4
1650	Combustion chemistry of alkenes and alkadienes. Progress in Energy and Combustion Science, 2022, 90, 100983.	31.2	28
1651	Increasing the â‹OH radical concentration synergistically with plasma electrolysis and ultrasound in aqueous DMSO solution. Chinese Physics B, 2022, 31, 048706.	1.4	1
1652	Effect of methane flow rate on gas-jet MPCVD diamond synthesis. Journal Physics D: Applied Physics, 2022, 55, 205202.	2.8	8
1653	Influence of hydrocarbon feed additives on the high-temperature pyrolysis of methane in molten salt bubble column reactors. Reaction Chemistry and Engineering, 2022, 7, 1199-1209.	3.7	7
1654	Toward the limits of complexity of interstellar chemistry: Rotational spectroscopy and astronomical search for <i>n</i> - and <i>i</i> -butanal. Astronomy and Astrophysics, 2022, 666, A114.	5.1	9
1655	Photochemical Synthesis of Ammonia and Amino Acids from Nitrous Oxide. Astrobiology, 2022, 22, 387-398.	3.0	8
1656	Data Programs at NBS/NIST: 1901–2021. Journal of Physical and Chemical Reference Data, 2022, 51, 011501.	4.2	6
1657	A comprehensive kinetic modeling study of hydrogen combustion with uncertainty quantification. Fuel, 2022, 319, 123705.	6.4	9
1658	An optimized kinetic model for H <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> /CO combustion in CO <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:msub><mml="http: 1998="" math="" mathml"<br="" www.w3.org="">altimg="si1.svg"><mml:msub><mml="http: 1998="" math="" mathml"<br="" www.w3.org="">altimg="si1.svg"><mml:msub><mml="http: 1998="" math="" mathml"<="" td="" www.w3.org=""><td>5.2</td><td>9</td></mml="http:></mml:msub></mml="http:></mml:msub></mml="http:></mml:msub></mml:math>	5.2	9
1659	elevated pressures. Combustion and Flame, 2022, 241, 112093. Experimental investigation of the methane combustion assisted by atmospheric pressure oxygen microwave plasma torch. Physics of Plasmas, 2021, 28, .	1.9	3
1660	A chemical kinetic mechanism for combustion and flame propagation of CH ₂ F ₂ /O ₂ /N ₂ mixtures. International Journal of Chemical Kinetics, 2022, 54, 154-187.	1.6	6
1661	Influence of different O ₂ /H ₂ O ratios on He atmospheric pressure plasma jet impinging on a dielectric surface. Journal Physics D: Applied Physics, 2022, 55, 125203.	2.8	8
1662	Cooling of rocket plume using aqueous jets during launching. Engineering Applications of Computational Fluid Mechanics, 2022, 16, 20-35.	3.1	5
1663	Photochemical method for removing methane interference for improved gas analysis. Atmospheric Measurement Techniques, 2021, 14, 8041-8067.	3.1	3

#	Article	IF	CITATIONS
1664	A Comparative Study of Atmospheric Chemistry with VULCAN. Astrophysical Journal, 2021, 923, 264.	4.5	39
1665	Radiative Association between Neutral Radicals in the Interstellar Medium: CH ₃ + CH ₃ O. Astrophysical Journal, 2021, 922, 133.	4.5	9
1666	An investigation of maximum experimental safety gap of <scp> CH ₄ </scp>  <scp> H ₂ </scp> blended fuel at different initial pressures. Process Safety Progress, 0, , .	1.0	1
1667	Experimental study and kinetic modeling of the thermal decomposition of gaseous monomethylhydrazine. Application to detonation sensitivity. Shock Waves, 1996, 6, 139-146.	1.9	0
1669	Reaction mechanism of toluene decomposition in non-thermal plasma: How does it compare with benzene?. Fundamental Research, 2022, , .	3.3	5
1670	70 Years of Evaluated Chemical Kinetics Data in the <i>Journal of Physical and Chemical Reference Data, the National Standard Reference Data System Series,</i> and the NBS Kinetics Data Center. Journal of Physical and Chemical Reference Data, 2022, 51, 021501.	4.2	1
1671	Feasibility study of novel DME fuel injection equipment: Part 2- performance, combustion, regulated and unregulated emissions. Fuel, 2022, 323, 124338.	6.4	4
1677	Current Status of the X + C2H6 [X ≡ H, F(2P), Cl(2P), O(3P), OH] Hydrogen Abstraction Reactions: A Theoretical Review. Molecules, 2022, 27, 3773.	3.8	2
1678	Evaluation of Sublimation Kinetics for Phenolic Impregnated Carbon Ablator. Journal of Spacecraft and Rockets, 2022, 59, 1507-1521.	1.9	1
1679	Experimental and computational studies of the kinetics of the reaction of hydrogen peroxide with the amidogen radical. Journal of Chemical Physics, 2022, 157, .	3.0	3
1680	The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide. Energy, 2022, 255, 124490.	8.8	7
1681	A Joint Hydrogen and Syngas Chemical Kinetic Model Optimized by Particle Swarm Optimization. SSRN Electronic Journal, 0, , .	0.4	0
1682	Toward RNA Life on Early Earth: From Atmospheric HCN to Biomolecule Production in Warm Little Ponds. Astrophysical Journal, 2022, 932, 9.	4.5	15
1683	Vertical Distribution of Cyclopropenylidene and Propadiene in the Atmosphere of Titan. Astrophysical Journal, 2022, 933, 230.	4.5	3
1684	Insights into the limitations to vibrational excitation of CO ₂ : validation of a kinetic model with pulsed glow discharge experiments. Plasma Sources Science and Technology, 2022, 31, 074003.	3.1	13
1685	Removal of air pollutant by a spike-tubular electrostatic device: Multi-stage direct current corona discharge enhanced electrostatic precipitation and oxidation ability. Chemical Engineering Research and Design, 2022, 165, 347-356.	5.6	4
1686	Experimental and kinetic modeling study of the CH4+H2S+air laminar burning velocities at atmospheric pressure. Combustion and Flame, 2022, 244, 112288.	5.2	2
1687	Experimental and Modelling Study of Hydrogen Ignition in Co2 Bath Gas. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1688	Mechanism study on gliding arc (GA) plasma reforming: A combination approach of experiment and modeling. Plasma Processes and Polymers, 2022, 19, .	3.0	7
1689	Circumplanetary disk ices. Astronomy and Astrophysics, 2022, 667, A95.	5.1	5
1690	Sulfur mass-independent fractionation during SO2 photolysis in low-temperature/pressure atmospheres. Chemical Geology, 2022, 609, 121064.	3.3	1
1691	A joint hydrogen and syngas chemical kinetic model optimized by particle swarm optimization. Fuel, 2023, 332, 125945.	6.4	5
1692	Observed versus simulated OH reactivity during KORUS-AQ campaign: Implications for emission inventory and chemical environment in East Asia. Elementa, 2022, 10, .	3.2	4
1693	OPTICAL AND GAS-DYNAMIC MEASUREMENTS IN A MICROWAVE DISCHARGE PLASMA FLOW UNDER CONDITIONS OF GAS-JET SYNTHESIS OF DIAMOND. Journal of Applied Mechanics and Technical Physics, 2022, 63, 418-424.	0.5	3
1694	Engineering Calculation of Nonequilibrium Chemical Processes. Russian Engineering Research, 2022, 42, 891-896.	0.6	0
1695	When hydrogen is slower than methane to ignite. Proceedings of the Combustion Institute, 2023, 39, 253-263.	3.9	12
1696	Alternative Methylated Biosignatures. I. Methyl Bromide, a Capstone Biosignature. Astrophysical Journal, 2022, 938, 6.	4.5	7
1697	Dynamics of the Great Oxidation Event from a 3D photochemical–climate model. Climate of the Past, 2022, 18, 2421-2447.	3.4	6
1698	Chemical structure of premixed ammonia/hydrogen flames at elevated pressures. Combustion and Flame, 2022, 246, 112419.	5.2	11
1699	Experimental and modelling study of hydrogen ignition in CO2 bath gas. Fuel, 2023, 334, 126664.	6.4	4
1700	Spatio-temporal profile of atomic oxygen in a 1 kHz repetition atmospheric-pressure plasma jet in He–O ₂ –H ₂ O mixture. Plasma Sources Science and Technology, 2022, 31, 115014.	3.1	1
1701	NH3 oxidation by NO2 in a jet-stirred reactor: The effect of significant uncertainties in H2NO kinetics. Applications in Energy and Combustion Science, 2022, 12, 100095.	1.5	0
1702	On the laminar flame propagation of C5H10O2 esters up to 10 atm: A comparative experimental and kinetic modeling study. Proceedings of the Combustion Institute, 2022, , .	3.9	0
1703	Atomic-Oxygen Number Densities in Ar-O2 DBDs and Post-discharges with Small Initial O2 Fractions: Plug-Flow Model and Experiments. Plasma Chemistry and Plasma Processing, 2023, 43, 285-314.	2.4	2
1704	Reaction kinetics for high pressure hydrogen oxy-combustion in the presence of high levels of H2O and CO2. Combustion and Flame, 2023, 247, 112498.	5.2	4
1705	Investigating the rocket base flow characteristics and thermal environment of different nozzle configurations considering afterburning. International Journal of Thermal Sciences, 2023, 185, 108073.	4.9	0

#	Article	IF	CITATIONS
1706	Quantum <i>versus</i> classical unimolecular fragmentation rate constants and activation energies at finite temperature from direct dynamics simulations. Physical Chemistry Chemical Physics, 2022, 24, 29357-29370.	2.8	2
1707	Effect of uplift angle on thermal environment of flame deflector during rocket launch. Advances in Space Research, 2023, 71, 4127-4141.	2.6	2
1708	Synergistic Catalytic Oxidation of Typical Volatile Organic Compound Mixtures on Mn-Based Catalysts: Significant Promotion Effect and Reaction Mechanism. Environmental Science & Technology, 2023, 57, 1123-1133.	10.0	16
1709	Towards the impact of GMC collisions on the star formation rate. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4152-4170.	4.4	4
1710	Sulfur chemistry on the surface ice of Europa. Icarus, 2023, 394, 115438.	2.5	2
1711	Three-dimensional modeling of Venus photochemistry and clouds. Icarus, 2023, 395, 115447.	2.5	4
1712	Investigations on plasma parameters of diaphragm discharge plasma based on optical emission spectroscopy. Japanese Journal of Applied Physics, 0, , .	1.5	0
1713	Effect of equilibrium constant for carbon dioxide recombination in hypersonic flow analysis. Case Studies in Thermal Engineering, 2023, 45, 102947.	5.7	1
1714	High temperature ignition of ammonia/di-isopropyl ketone: A detailed kinetic model and a shock tube experiment. Combustion and Flame, 2023, 251, 112692.	5.2	1
1715	Spectroscopic study of CO formation from CO2-enriched pyrolysis of C2H6 and C3H8 under engine-relevant conditions. Applications in Energy and Combustion Science, 2023, 14, 100123.	1.5	0
1716	Reaction mechanism explorations on non-thermal plasma reforming of CO2-CH4 by combining kinetics modeling and emission spectroscopy measurements. Fuel, 2023, 344, 128041.	6.4	2
1717	Growth and Evolution of Secondary Volcanic Atmospheres: 2. The Importance of Kinetics. Journal of Geophysical Research E: Planets, 2023, 128, .	3.6	1
1718	Synergistic effects of plasma and catalyst in formaldehyde conversion over a Ni/α-Al2O3 catalyst in a dielectric barrier discharge reactor. Results in Engineering, 2023, 17, 100997.	5.1	1
1719	The impact of hydrogen substitution by ammonia on low- and high-temperature combustion. Combustion and Flame, 2023, 257, 112733.	5.2	2
1720	Detection of ethanol, acetone, and propanal in TMC-1 New O-bearing complex organics in cold sources. Astronomy and Astrophysics, 2023, 673, A34.	5.1	5
1722	SUPERCRITICAL WATER OXIDATION KINETICS: A TALE OF TWO APPROACHES. , 2023, , .		0
1723	Extremely Low Temperatures for the Synthesis of Ethylene Oxide. Industrial & Engineering Chemistry Research, 2023, 62, 6943-6952.	3.7	2
1724	An experimental and theoretical kinetic modeling study of the thermal decomposition of methyl-2-methyl butanoate behind shock wayes. Combustion and Flame, 2023, 254, 112835.	5.2	0

#	Article	IF	CITATIONS
1725	First principles reaction discovery: from the Schrodinger equation to experimental prediction for methane pyrolysis. Chemical Science, 2023, 14, 7447-7464.	7.4	6
1726	Role of methyldioxy radical chemistry in highâ€pressure methane combustion in CO ₂ . International Journal of Chemical Kinetics, 0, , .	1.6	0
1727	Fully Coupled Photochemistry of the Deuterated Ionosphere of Mars and Its Effects on Escape of H and D. Journal of Geophysical Research E: Planets, 2023, 128, .	3.6	5
1728	An exploratory modelling study of chemiluminescence in ammonia-fuelled flames. Part 2. Combustion and Flame, 2023, 253, 112789.	5.2	0
1729	The molecular chemistry of Type lbc supernovae and diagnostic potential with the <i>James Webb</i> Space Telescope. Astronomy and Astrophysics, 2023, 674, A184.	5.1	2
1730	Study on the formation and development of the white layer in the erosive propellant gas. International Journal of Advanced Manufacturing Technology, 0, , .	3.0	0
1731	Oxidative and Nonoxidative Conversion of Ethylene in Dielectric Barrier Discharge. High Energy Chemistry, 2023, 57, 364-368.	0.9	0
1732	Improving the efficiency of Sabatier reaction through H ₂ O removal with low-pressure plasma catalysis. Japanese Journal of Applied Physics, 2023, 62, SL1028.	1.5	2
1733	A Plant Dye for Photocatalytic Methane Conversion. Chemistry - A European Journal, 2023, 29, .	3.3	0
1734	Photocatalytic Oxidative Coupling of Methane over Au ₁ Ag Singleâ€Atom Alloy Modified ZnO with Oxygen and Water Vapor: Synergy of Gold and Silver. Angewandte Chemie, 2023, 135, .	2.0	2
1735	Photocatalytic Oxidative Coupling of Methane over Au ₁ Ag Singleâ€Atom Alloy Modified ZnO with Oxygen and Water Vapor: Synergy of Gold and Silver. Angewandte Chemie - International Edition, 2023, 62, .	13.8	5
1736	Photodissociation dynamics of the ethyl radical via the $\tilde{A}f2A\hat{a}\in^2(3s)$ state: H-atom product channels and ethylene product vibrational state distribution. Journal of Chemical Physics, 2023, 159, .	3.0	0
1737	Effects of oxygen species in perovskite catalysts on the partial oxidation of methane in a low temperature plasma bed. Journal of Catalysis, 2023, 427, 115116.	6.2	0
1738	Experimental and kinetic modeling studies on oxidation of methanol and di-tert-butyl peroxide in a jet-stirred reactor. Combustion and Flame, 2023, 258, 113093.	5.2	2
1739	Temperature-Dependent Kinetics of Ozone Production in Oxygen Discharges. Plasma Chemistry and Plasma Processing, 0, , .	2.4	1
1740	Experiment and simulation of hydrogen oxidation in a high-pressure turbulent flow reactor. Fuel, 2024, 357, 129714.	6.4	0
1741	New insight into dissociation of molecular oxygen at temperatures below 5000ÂK. Combustion and Flame, 2023, 258, 113096.	5.2	0
1742	Optimizing hierarchical membrane/catalyst systems for oxidative coupling of methane using additive manufacturing. Nature Materials, 2023, 22, 1523-1530.	27.5	3

#	Article	IF	CITATIONS
1743	An extensively validated C/H/O/N chemical network for hot exoplanet disequilibrium chemistry. Astronomy and Astrophysics, 0, , .	5.1	0
1744	High-pressure CO ₂ dissociation with nanosecond pulsed discharges. Plasma Sources Science and Technology, 2023, 32, 115012.	3.1	1
1745	A CFD study of the gas reaction path in growth of InN films in metal–organic chemical vapor deposition. Journal of Crystal Growth, 2024, 626, 127464.	1.5	0
1746	On the decomposition mechanism of propanal: rate constants evaluation and kinetic simulations. Theoretical Chemistry Accounts, 2023, 142, .	1.4	0
1747	Shock Tube Study of Ignition Delay Times for Hydrogen–Oxygen Mixtures. Fire, 2023, 6, 435.	2.8	0
1748	Theoretical study of H-atom abstraction by CH3OÈ® radicals from aldehydes and alcohols: Ab initio and comprehensive kinetic modeling. Combustion and Flame, 2024, 259, 113175.	5.2	0
1749	A theoretical kinetic study of 1-butyne, 2-butyne, and 3-methyl-1-butyne combustion. Combustion and Flame, 2024, 259, 113178.	5.2	0
1751	Understanding the Nonlinear Reactivity Promoting Effect of <i>n</i> -Heptane Addition on the Binary Mixture From Low to Intermediate Temperature: A Case of Methane/ <i>n</i> -Heptane Mixtures. Journal of Engineering for Gas Turbines and Power, 2024, 146, .	1.1	0
1752	\$\$hbox {CO}_2\$\$/\$\$hbox {CH}_4\$\$ Glow Discharge Plasma: Part I—Experimental and Numerical Study of the Reaction Pathways. Plasma Chemistry and Plasma Processing, 0, , .	2.4	1
1753	Comparison of the performance of ethylene combustion mechanisms. Combustion and Flame, 2024, 260, 113201.	5.2	0
1754	Dynamical effects on the O(³ P) + D ₂ reaction and its impact on the Λ-doublet population. Physical Chemistry Chemical Physics, 2024, 26, 6752-6762.	2.8	0
1755	Numerical modelling of Cz-Î ² -Ga2O3 crystal growth in reactive atmosphere. Journal of Crystal Growth, 2024, 630, 127594.	1.5	0
1756	Characterization of Propellant-Surface Collision Byproducts Using MD Simulations and RGA Measurements. , 2024, , .		0
1757	Kinetics of the reaction of OH with methyl nitrate (223–343 K). Physical Chemistry Chemical Physics, 2024, 26, 6646-6654.	2.8	0
1758	Upscaling Plasma-Based CO ₂ Conversion: Case Study of a Multi-Reactor Gliding Arc Plasmatron. ACS Engineering Au, 0, , .	5.1	0
1759	The Composition and Chemistry of Titan's Atmosphere. ACS Earth and Space Chemistry, 2024, 8, 406-456.	2.7	0
1760	Evaluating Atmospheric and Surface Drivers for O ₂ Variations at Gale Crater as Observed by MSL SAM. Planetary Science Journal, 2024, 5, 65.	3.6	0