Formation of gas-phase methyl radicals over magnesium

Journal of the American Chemical Society 107, 58-63 DOI: 10.1021/ja00287a011

Citation Report

#	Article	IF	CITATIONS
1	Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide. Nature, 1985, 314, 721-722.	27.8	533
3	Photoelectron spectroscopy: a strategy for the study of reactions at solid surfaces. International Reviews in Physical Chemistry, 1986, 5, 57-87.	2.3	22
4	Oxidative Dimerization of Methane over Promoted Magnesium Oxide Catalysts. Important Factors. Chemistry Letters, 1986, 15, 1165-1168.	1.3	58
5	Generation of ground electronic state haloalkyl radicals in the gas phase. International Journal of Chemical Kinetics, 1986, 18, 639-649.	1.6	16
6	Kinetic studies on partial oxidation of methane over samarium oxides. Inorganica Chimica Acta, 1986, 121, 237-241.	2.4	98
7	Specific role of transient Oâ^'(s) at Mg(0001) surfaces in activation of ammonia by dioxygen and nitrous oxide. Nature, 1986, 319, 206-208.	27.8	62
8	Active and selective catalysts for the synthesis of C2H4 and C2H6 via oxidative coupling of methane. Journal of Catalysis, 1986, 100, 353-359.	6.2	335
9	Surface-Generated Gas-Phase Radicals: Formation, Detection, and Role in Catalysis. Advances in Catalysis, 1987, , 139-186.	0.2	64
10	The Role of [M+Oâ^'] Centers (M+– Group IA Ion) in the Activation of Methane on Metal Oxides. Materials Research Society Symposia Proceedings, 1987, 111, 305.	0.1	3
11	Deactivation of Alkali Promoted Magnesia in Oxidative Coupling of Methane. Studies in Surface Science and Catalysis, 1987, , 183-195.	1.5	22
12	Peroxide Anions as Possible Active Species in Oxidative Coupling of Methane. Chemistry Letters, 1987, 16, 77-80.	1.3	83
13	Adsorption of Na atoms and oxygen-containing molecules on MgO(100) and (111) surfaces. Surface Science, 1987, 191, 479-491.	1.9	256
14	Prospects for the direct conversion of light alkanes to petrochemicalfeedstocks and liquid fuels - a review. Applied Catalysis, 1987, 32, 1-22.	0.8	136
15	Catalysis in Combustion. Catalysis Reviews - Science and Engineering, 1987, 29, 219-267.	12.9	427
16	Oxidative catalytic methane conversion. Catalysis Today, 1987, 1, 357-363.	4.4	12
17	Free radical processes in heterogeneous oxidation catalysis. Reaction Kinetics and Catalysis Letters, 1987, 35, 315-326.	0.6	15
18	Knoevenagel, wittig and wittig-horner reactions in the presence of magnesium oxide or zinc oxide Tetrahedron, 1987, 43, 537-542.	1.9	140
19	A study of the oxidative coupling and total oxidation of methane over supported antimony oxide catalyst. Catalysis Today, 1988, 3, 137-150.	4.4	10

		CITATION REPORT		
#	Article		IF	CITATIONS
20	Catalytic oxidative coupling of methane. Reaction Kinetics and Catalysis Letters, 1988,	37, 133-138.	0.6	2
21	Oxidative dimerization of methane over sodium-promoted calcium oxide. Journal of Cat 302-316.	alysis, 1988, 111,	6.2	160
22	Oxidative coupling of methane over antimony-based catalysts. Journal of Catalysis, 198	8, 112, 168-175.	6.2	34
23	Activation and oxidative dimerization of methane over lithium-promoted zinc oxide. Jou Catalysis, 1988, 112, 366-374.	irnal of	6.2	85
24	Oxidative coupling of methane over Na+- and Rb+-doped MgO catalysts. Journal of Cata 25-35.	alysis, 1988, 113,	6.2	95
25	Methane utilization by oxidative coupling I. A study of reactions in the gas phase during of methane and oxygen. Journal of Catalysis, 1988, 113, 144-163.	g the cofeeding	6.2	141
26	Room temperature photo-activation of methane on TiO2 supported molybdena. Cataly 1, 109-116.	sis Letters, 1988,	2.6	35
27	A High-Temperature Infrared Cell for In Situ Studies: Application to Methane Oxidative Dehydrogenation Catalysts. Applied Spectroscopy, 1988, 42, 906-911.		2.2	10
28	Catalytic oxidative coupling of methane over alkali, alkaline earth and rare earth metal o Catalysis, 1988, 39, 185-190.	oxides. Applied	0.8	41
29	Direct partial oxidation of methane: Effect of the oxidant on the reaction. Applied Catal 157-165.	ysis, 1988, 38,	0.8	34
30	Oxidative Coupling of Methane to Higher Hydrocarbons. Catalysis Reviews - Science an 1988, 30, 249-280.	d Engineering,	12.9	388
31	Direct Conversion of Methane to Methanol and Higher Hydrocarbons. Studies in Surfac Catalysis, 1988, 36, 359-371.	e Science and	1.5	3
32	Oxidative Coupling of Methane Over Promoted Magnesium Oxide Catalysts; Relation B and Specific Surface Area. Studies in Surface Science and Catalysis, 1988, , 373-382.	etween Activity	1.5	4
33	Effect of O3 versus O2 as Oxidants for Methane. Studies in Surface Science and Cataly 415-419.	sis, 1988, ,	1.5	6
34	Methane conversion and Fischer?Tropsch catalysis over MoS2: Predictions and interpre molecular orbital theory. Journal of Catalysis, 1989, 119, 135-145.	tations from	6.2	16
35	Methane oxidative coupling II. A study of lithium-titania-catalyzed reactions of methane Catalysis, 1989, 119, 161-178.	2. Journal of	6.2	33
36	Measurements of kinetic isotope effects and hydrogen/deuterium distributions over me oxidative coupling catalysts. Journal of Catalysis, 1989, 120, 216-230.	ethane	6.2	50
37	Oxidative dehydrogenation of ethane over a lithium-promoted magnesium oxide cataly Catalysis, 1989, 118, 255-265.	st. Journal of	6.2	197

#	Article	IF	CITATIONS
38	Kinetic analysis of the oxidative coupling of methane over Na+-doped MgO. Journal of Catalysis, 1989, 117, 416-431.	6.2	88
39	Oxidative dimerization of CH4/CD4 mixtures: Evidence for methyl intermediate. Catalysis Letters, 1989, 2, 361-368.	2.6	47
40	The influence of catalytic activity on the ignition of boundary layer flows Part I: Hydroxyl radical measurements. Combustion and Flame, 1989, 76, 325-338.	5.2	60
41	The influence of various parameters on the oxidative coupling of methane reaction over lithium doped lanthanum oxide. Catalysis Today, 1989, 4, 333-344.	4.4	35
42	Partial oxidation of methane over samarium and lanthanum oxides: a study of the reaction mechanism. Catalysis Today, 1989, 4, 371-381.	4.4	41
43	Spontaneous O2 release from SmBa2Cu3O7â^'x high Tc superconductor in contact with water. Solid State Communications, 1989, 70, 71-73.	1.9	14
44	Unusual coordination of the superoxide ion O2 ? with molecules of halogenated hydrocarbons. Journal of Structural Chemistry, 1989, 30, 48-54.	1.0	1
45	Heterogeneous-Homogeneous Mechanism of Catalytic Oxidation. Catalysis Reviews - Science and Engineering, 1989, 31, 355-384.	12.9	38
46	Oxidative coupling of methane over alkali-doped antimony oxide. Applied Catalysis, 1989, 53, 71-80.	0.8	14
47	Catalytic properties of lithium carbonate melts and related slurries for the oxidative dimerization of methane. Applied Catalysis, 1989, 56, 149-161.	0.8	26
48	Kinetics and Mechanism of Oxidative Coupling of Methane over Lanthanum-Boron Oxide. Applied Catalysis, 1989, 47, 277-286.	0.8	21
49	Oxidative Conversion of Methane and C2 Hydrocarbons on Oxides: Homogeneous versus Heterogeneous Processes. Applied Catalysis, 1989, 47, 287-297.	0.8	57
50	Methane activation by hole sites on AlN: A molecular orbital study. Surface Science, 1989, 218, 543-552.	1.9	10
51	X-Ray Fhotoelectron Spectroscopic Studies of Lanthanum Oxide Based Oxidative Coupling of Methane Catalysts. Chemistry Letters, 1990, 19, 967-970.	1.3	46
52	General Mechanism for the oxidative coupling of methane. Studies in Surface Science and Catalysis, 1990, , 417-425.	1.5	5
53	Heterolytic Mechanism of Methane Activation In Oxidative Dehydrodimerization. Studies in Surface Science and Catalysis, 1990, , 437-446.	1.5	6
54	Models of The Direct Catalytic Partial Oxidation of Light Alkanes. Studies in Surface Science and Catalysis, 1990, , 405-415.	1.5	26
55	Comments on the mechanism of oxidative coupling of methane. Reaction Kinetics and Catalysis Letters, 1990, 41, 257-263.	0.6	3

#	Article	IF	CITATIONS
56	Decomposition of NO on Na+-modified MgO evidenced by ESR and temperature programmed desorption (TPD). Catalysis Letters, 1990, 5, 155-159.	2.6	7
57	The conversion of methane to ethylene and ethane with near total selectivity by low temperature (<) Tj ETQq1 255-262.	1 0.784314 2.6	rgBT /Overlo 51
58	Role of defect structure of active oxides in oxidative coupling of methane. Catalysis Letters, 1990, 6, 67-75.	2.6	40
59	Oxidative dimerisation of methane on a supported Pd-Ag catalyst using a diffusion controlled ceramic wall reactor. Catalysis Letters, 1990, 5, 285-292.	2.6	9
60	Oxidative coupling of methane on Mgo. ab initio UHF potential energy surface. Computational and Theoretical Chemistry, 1990, 208, 153-162.	1.5	21
61	Ab initio calculation of gas-phase methyl radical formation over Mg2+O2â^ and Li+Oâ^ adsorption model sites. Computational and Theoretical Chemistry, 1990, 210, 323-328.	1.5	13
62	Fe\$z.sbnd;P\$z.sbnd;0 catalysts for methane utilization?catalyst development and identification. Journal of Catalysis, 1990, 123, 130-146.	6.2	35
63	Oxidative coupling of methane on alkali metal-promoted nickel titanate I. Catalyst characterization and transient studies. Journal of Catalysis, 1990, 124, 451-464.	6.2	34
64	Surface composition and reactivity of lithium-doped magnesium oxide catalysts for oxidative coupling of methane. Journal of Catalysis, 1990, 121, 99-109.	6.2	80
65	Oxidative couplings of methane, ethane, and propane with sodium peroxide at low temperatures. Journal of Catalysis, 1990, 121, 122-130.	6.2	43
66	Generation of gaseous radicals by a V\$z.sbnd;Mg\$z.sbnd;O catalyst during oxidative dehydrogenation of propane. Journal of Catalysis, 1990, 122, 415-428.	6.2	65
67	Effects of temperature and lithium on CH3 radical formation in the CH4 oxidative coupling reaction over MgO. International Journal of Chemical Kinetics, 1990, 22, 975-980.	1.6	7
68	Untersuchungen zur Kinetik der oxidativen Methan-Kopplung an lithium-dotiertem Magnesiumoxid. Chemie-Ingenieur-Technik, 1990, 62, 954-955.	0.8	0
69	Surface processes on oxides and their significance for heterogeneous catalysis. Journal of Molecular Catalysis, 1990, 59, 147-163.	1.2	19
70	The catalytic conversion of methane to higher hydrocarbons. Catalysis Today, 1990, 6, 235-259.	4.4	286
71	The role of heterogeneous reactions during the oxidative coupling of methane over Li/MgO catalysts. Catalysis Today, 1990, 6, 497-502.	4.4	9
72	Oxidative coupling of methane with participation of oxide catalyst lattice oxygen. Catalysis Today, 1990, 6, 543-549.	4.4	38
73	Activation of methane, oxygen and nitrous oxide over surface-doped MgO materials: I. Conversions in N2O, (N2O + CH4) and (O2 + CH4) reactants. Catalysis Today, 1990, 6, 551-558.	4.4	7

#	Article	IF	CITATIONS
74	Working Principle of Li Doped Mgo Applied For The Oxidative Coupling of Methane. Studies in Surface Science and Catalysis, 1990, , 343-349.	1.5	4
75	Behavior of Metallic Oxides Suported On Li/MgO In The Methane Oligomerization. Studies in Surface Science and Catalysis, 1990, 55, 373-380.	1.5	1
76	Differences in catalytic and gas-phase reactions in methane coupling. Journal of the Chemical Society Chemical Communications, 1990, , 223.	2.0	3
77	Molten salts in a bubble column reactor as catalysts for the oxidative coupling of methane. Journal of the Chemical Society Chemical Communications, 1990, , 802.	2.0	10
78	Oxidative Coupling of Methane in Molten Barium Hydroxide at 800°C. Applied Catalysis, 1990, 63, 67-76.	0.8	15
79	Oxidative coupling of methane over cobalt—magnesium and manganese—magnesium mixed oxide catalysts. Applied Catalysis, 1990, 60, 13-31.	0.8	21
80	Oxidative coupling of methane over Y2O3CaO catalysts. Applied Catalysis, 1990, 59, 59-74.	0.8	83
81	Conversion of Methane by Oxidative Coupling. Catalysis Reviews - Science and Engineering, 1990, 32, 163-227.	12.9	390
82	Principles of Oxidative Catalysis on Solid Oxides. Catalysis Reviews - Science and Engineering, 1990, 32, 1-49.	12.9	197
83	A model oxide catalyst system for the activation of methane: Lithium-doped NiO on Ni(111). Surface Science, 1990, 225, L15-L19.	1.9	46
84	Chemisorption and decomposition of trimethylgallium on GaAs(100). Surface Science, 1990, 234, 287-307.	1.9	141
85	Electrical conductivity and defect structure of lithiumdoped magnesium oxide. Applied Catalysis, 1991, 71, 89-102.	0.8	19
86	Partial Oxidation of Methane: The Role of the Gas Phase Reactions. Catalysis Reviews - Science and Engineering, 1991, 33, 169-240.	12.9	108
87	Potassium adsorption on TiO2(100). Journal of Physics Condensed Matter, 1991, 3, S91-S95.	1.8	36
88	Oxidative conversion of methane to C2 hydrocarbons over Li, Mn, Cd and Zn promoted MgO catalysts. Applied Catalysis, 1991, 69, 187-200.	0.8	17
89	Oxidative coupling of methane over yttria-doped zirconia solid electrolyte. Applied Catalysis, 1991, 68, 41-53.	0.8	18
90	Oxidative dimerization of methane over MgO and Li+/MgO monoliths. Applied Catalysis, 1991, 70, 29-42.	0.8	22
91	Oxidative dehydrogenation of ethane on vanadium-molybdenum oxide and vanadium-niobium-molybdenum oxide catalysts. Applied Catalysis, 1991, 70, 129-148.	0.8	112

#	Article	IF	CITATIONS
92	The Catalytic Conversion of Methane to Higher Hydrocarbons. Studies in Surface Science and Catalysis, 1991, 61, 3-13.	1.5	17
93	Theoretical EHT study of oxidative coupling of methane on pure MgO and MgO doped with Li and Na. Journal of Molecular Catalysis, 1991, 64, 191-200.	1.2	11
94	Importance of specific surface area and basic sites of the catalyst in oxidative coupling of CH4 over LiO/MgO catalysts prepared by precipitation methods. Reaction Kinetics and Catalysis Letters, 1991, 44, 95-101.	0.6	4
95	Oxidative coupling of methane over Bi2O3â^'P2O5â^'K2O/Sm2O3. Reaction Kinetics and Catalysis Letters, 1991, 44, 103-108.	0.6	5
96	The active phase in sodium-doped calcium oxide catalysts for oxidative coupling of methane. Journal of Catalysis, 1991, 128, 264-274.	6.2	22
97	Oxygen surface species on lithium nickelate methane coupling catalysts and their interaction with carbon oxides. Journal of Catalysis, 1991, 132, 92-99.	6.2	20
98	Surface phenomena during the oxidative coupling of methane over Li/MgO. Journal of Catalysis, 1991, 131, 143-155.	6.2	67
99	Electrocatalytic methane coupling in the absence of oxygen on a high-temperature proton-conducting electrolyte. Catalysis Letters, 1991, 8, 61-66.	2.6	17
100	Kinetic isotope effects in methane coupling on a reducible oxide catalyst. Catalysis Letters, 1991, 7, 423-430.	2.6	13
101	Li-doped MgO as catalysts for oxidative coupling of methane: A positron annihilation study. Chemical Physics, 1991, 155, 275-284.	1.9	8
102	Surface Studies of La203 Based OCM Catalysts by XPS: Does Surface Peroxycarbonate Play an Important Role in Catalyst Selectivity?. Studies in Surface Science and Catalysis, 1991, 61, 107-114.	1.5	2
103	Methane dissociation on a nonplanar MgO(001) surface. Theoretical modeling of surface defects. Journal of Chemical Physics, 1991, 95, 4626-4631.	3.0	39
104	Periodic operation of the oxidative coupling of methane on Ce/Li/MgO catalyst. Studies in Surface Science and Catalysis, 1992, , 119-121.	1.5	1
105	A methyl free radical source for use in surface studies. Review of Scientific Instruments, 1992, 63, 3930-3935.	1.3	76
106	Partial Oxidation of Hydrocarbons and Oxygenated Compounds on Perovskite Oxides. Catalysis Reviews - Science and Engineering, 1992, 34, 355-371.	12.9	49
107	Thermal decomposition of Ca(Oh)2 from acetylene manufacturing: a route to supports for methane oxidative coupling catalysts. Journal of Materials Science Letters, 1992, 11, 1708-1710.	0.5	20
108	The electrochemical oxidative dimerization of methane. Solid State Ionics, 1992, 53-56, 149-161.	2.7	12
109	Oxidative dehydrodimerization of methane. Catalysis Today, 1992, 14, 415-465.	4.4	14

#	Article	IF	Citations
110	General regularities in the oxidative dehydrodimerization of hydrocarbons. Catalysis Today, 1992, 14, 467-484.	4.4	1
111	Free-radical reactions involved in C1-C3 hydrocarbons interaction with oxide catalysts. Catalysis Today, 1992, 13, 481-486.	4.4	5
112	Uncharged atomic oxygen in oxidative conversion of C1-C2 alkanes. Catalysis Today, 1992, 13, 495-501.	4.4	5
113	The role of chlorine in chlorine-promoted methane coupling catalysts. Catalysis Today, 1992, 13, 311-320.	4.4	29
114	A mechanistic kinetic model for oxidative coupling of methane over Li/MgO catalysts. Catalysis Today, 1992, 13, 361-370.	4.4	12
115	Oxidative methylation of toluene with methane over lead-lithium-magnesium oxide catalysts. Applied Catalysis A: General, 1992, 87, 115-127.	4.3	19
116	Kinetics of methane oxidative coupling on zinc-doped titanium oxide. Applied Catalysis A: General, 1992, 92, 1-15.	4.3	7
117	Catalytic low-temperature oxydehydrogenation of methane to higher hydrocarbons with very high selectivity at 8–12% conversion. Applied Catalysis A: General, 1992, 84, 57-75.	4.3	19
118	Vanadium mixed oxide catalysts for the oxidative coupling of methane. Applied Catalysis A: General, 1992, 83, 235-250.	4.3	13
119	ESR evidence for radicals polymerized from methane on aluminum-supported silica gel by UV irradiation. Journal of Molecular Catalysis, 1992, 75, L45-L48.	1.2	1
120	Interaction between the components of a LiClî—,Co3O4 catalyst for oxidative coupling of methane. Journal of Molecular Catalysis, 1992, 77, 343-351.	1.2	0
121	Kinetic studies of the oxidative dimerization of methane on thin-film MgO and Li/MgO. Catalysis Letters, 1992, 16, 191-196.	2.6	19
122	Oxidative coupling of methane over LaCoO3??-based mixed oxides. Catalysis Letters, 1992, 16, 359-371.	2.6	25
123	Effect of the method of preparation of a Nd2O3-MgO catalyst on its efficiency in the reaction of oxidative coupling of methane. Catalysis Letters, 1992, 13, 323-329.	2.6	13
124	Study of elementary reactions of free radicals formed on oxide and platinum containing catalysts. Catalysis Letters, 1992, 15, 353-362.	2.6	3
125	The state of adsorbed oxygen species formed in the decomposition of N2O on CaO. Catalysis Letters, 1992, 14, 315-320.	2.6	15
126	Investigation of reactivity and selectivity of methane coupling catalysts using isotope exchange techniques. Catalysis Letters, 1992, 13, 103-115.	2.6	28
127	A DV-Xα study of lithium-doped magnesium oxide. Reaction Kinetics and Catalysis Letters, 1992, 46, 285-291.	0.6	7

#	Article	IF	CITATIONS
128	The relationship between catalyst morphology and performance in the oxidative coupling of methane. Journal of Catalysis, 1992, 135, 576-595.	6.2	80
129	Oxidative cross-coupling of methane and toluene over LiCI-added Co3O4. Journal of Catalysis, 1992, 137, 487-496.	6.2	15
130	On the active site of MgO/CaO mixed oxide for oxidative coupling of methane. Journal of Catalysis, 1992, 134, 422-433.	6.2	68
131	Hetero-homogeneous processes involved in oxidative conversion of methane, ethane and hydrocarbon mixtures over basic oxides. Catalysis Today, 1992, 13, 487-494.	4.4	20
132	Total oxidation pathways in oxidative coupling of methane over lanthanum oxide catalysts. Catalysis Today, 1992, 13, 273-282.	4.4	19
133	Relationship between morphology and catalytic performance of lithium and gold doped magnesium oxide catalysts for the oxidative coupling of methane. Catalysis Today, 1992, 13, 401-407.	4.4	18
134	Kinetics and mechanism of oxidative coupling of methane over sodium-manganese oxide catalyst. Chemical Engineering and Technology, 1993, 16, 62-67.	1.5	4
135	Mg-Ni-O based OCM catalyst obtained by carbonate precursor method. Solid State Ionics, 1993, 63-65, 325-331.	2.7	2
136	Oxidative methylation of toluene with methane over Li/MgO promoted by Pb3(Po4)2. Applied Catalysis A: General, 1993, 96, L7-L11.	4.3	8
137	Homogeneous and heterogeneous contributions to the catalytic oxidative dehydrogenation of ethane. Applied Catalysis A: General, 1993, 97, 49-65.	4.3	83
138	Promotional effect of sodium and phosphorus on a V-Mo-O catalyst. Applied Catalysis A: General, 1993, 97, 103-112.	4.3	2
139	Oxidative coupling of methane on perovskite oxides, (Ba,Ca)(Co,Fe)O3-δ. Applied Catalysis A: General, 1993, 101, 63-72.	4.3	28
140	Critical performance evaluation of catalysts and mechanistic implications for oxidative coupling of methane. Applied Catalysis A: General, 1993, 104, 11-59.	4.3	184
141	Influence of surface composition of perovskite-type complex oxides on methane oxidative coupling. Applied Catalysis A: General, 1993, 104, 61-75.	4.3	24
142	EPR study of the stability of the Oâ^'2 species on La2O3 and of their role in the oxidative coupling of methane Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 72, 217-228.	4.7	27
143	The role of carbon dioxide in the oxidative dimerization of methane over Li/MgO. Catalysis Letters, 1993, 20, 169-178.	2.6	19
144	Catalysis in C1 chemistry: Future and prospect. Catalysis Letters, 1993, 22, 67-91.	2.6	79
145	An investigation of catalytic activity in mixed metal oxide nanophase materials. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1993, 26, 46-50.	1.0	12

#	Article	IF	CITATIONS
146	Oxidative Coupling of Methane Over Sol-Gel Magnesium Oxide Catalysts: Effect on Selectivity to Olefin Formation. Studies in Surface Science and Catalysis, 1993, 75, 2213-2216.	1.5	3
147	Influence of the Ion Charge and Coordination State on Catalytic Properties of Barium Ferroniobate for Methane Oxidation. Studies in Surface Science and Catalysis, 1993, , 2217-2220.	1.5	0
148	Correlation corrected periodic Hartree–Fock study of the interactions between water and the (001) magnesium oxide surface. Journal of Chemical Physics, 1993, 99, 2786-2795.	3.0	136
149	An electronic structure study of H2 and CH4 interactions with MgO and Liâ€doped MgO clusters. Journal of Chemical Physics, 1993, 99, 6004-6013.	3.0	65
150	The Catalytic Conversion of Methane to Oxygenates and Higher Hydrocarbons. Studies in Surface Science and Catalysis, 1993, 75, 103-126.	1.5	34
151	Adsorbed Oxygen Species Formed by the Decomposition of N2O on Li/MgO Catalysts. Bulletin of the Chemical Society of Japan, 1993, 66, 2467-2472.	3.2	10
152	Kinetic Expression Effective in Understanding and Exploration of Catalysts for Oxidative Coupling of Methane Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 1994, 37, 112-122.	0.1	1
153	The oxidative coupling of methane over tin promoted lithium magnesium oxide: a TAP investigation. Studies in Surface Science and Catalysis, 1994, 81, 205-210.	1.5	14
154	Methanopyrolysis of coal. Fuel, 1994, 73, 5-9.	6.4	10
155	Surface processes in the catalytic oxidative coupling of methane to ethane. Recueil Des Travaux Chimiques Des Pays-Bas, 1994, 113, 459-464.	0.0	3
156	Redox properties and catalytic performance of complex oxides in oxidative coupling of methane. Catalysis Today, 1994, 21, 371-376.	4.4	2
157	Catalytic combustion of methane over magnesium oxide. Applied Catalysis A: General, 1994, 114, 227-241.	4.3	17
158	Roles of oxygen and carbon dioxide on methane oxidative coupling over CaO and Sm2O3 catalysts. Applied Catalysis A: General, 1994, 115, 243-256.	4.3	9
159	Li/MgO sol-gel catalysts. Journal of Molecular Catalysis, 1994, 88, 71-84.	1.2	18
160	Synthesis and catalytic properties of magnesia fine powders prepared by microwave cold plasma heating. Journal of Materials Chemistry, 1994, 4, 1897.	6.7	5
161	Microkinetic analysis of the oxidative conversion of methane. Dependence of rate constants on the electrical properties of (CaO) x (CeO2)1?x catalysts. Catalysis Letters, 1994, 27, 207-220.	2.6	31
162	One-step hydroxylation of benzene to phenol. II. Gas phase N2O oxidation over Mo/Fe/borosilicate molecular sieve. Catalysis Letters, 1994, 29, 299-310.	2.6	18
163	Catalytic properties of various MgO catalysts for oxidative coupling of methane. Catalysis Letters, 1994, 23, 369-376.	2.6	11

#	Article	IF	CITATIONS
164	Oxidative coupling of methane over some titanates based perovskite oxides. Catalysis Letters, 1994, 23, 59-68.	2.6	14
165	Methane coupling at low temperatures on Ru(0001) and Ru(11�20) catalysts. Catalysis Letters, 1994, 25, 75-86.	2.6	43
166	Transient isotopic labeling studies using12CH4/13CH4 over alkali-promoted molybdate catalysts in the oxidative coupling of methane. Catalysis Letters, 1994, 25, 191-199.	2.6	6
167	Effect of quenching on the methane coupling reaction. Reaction Kinetics and Catalysis Letters, 1994, 52, 341-346.	0.6	4
168	Study on Surface DC Conductivity of Various MgO Catalysts: Nature of Defect and the Role in Methane Activation. Studies in Surface Science and Catalysis, 1994, 81, 177-186.	1.5	4
169	Computer modelling as a technique in materials chemistry. Journal of Materials Chemistry, 1994, 4, 781.	6.7	84
170	In situ Raman spectroscopic study of oxygen adspecies on a Th-La-O x catalyst for methane oxidative coupling reaction. Journal of the Chemical Society Chemical Communications, 1994, , 1871.	2.0	14
171	The Active Oxygen Species in Oxidative Coupling of Methane Over Li/CaO and Na/CaO USING N2O and O2 as Oxidants. Studies in Surface Science and Catalysis, 1994, , 337-344.	1.5	7
172	Spectroscopic Characterization of Surface Oxygen Species on Barium-Containing Methane Coupling Catalysts. Studies in Surface Science and Catalysis, 1994, 82, 345-356.	1.5	6
173	Selectivity Control by Oxygen Pressure in Methane Oxidation Over Phosphate Catalysts. Studies in Surface Science and Catalysis, 1994, 82, 357-365.	1.5	3
174	Oxidative Coupling of Methane Over Ceria Doped Calcium Oxide Studies in Surface Science and Catalysis, 1994, 81, 269-271.	1.5	0
175	Comparison of the Oxidative Coupling Reactions of Benzene with Those of Methane of Rare Earth Oxide Catalysts. Bulletin of the Chemical Society of Japan, 1994, 67, 3339-3345.	3.2	9
176	Ab initio calculations for the adsorption of small molecules on metal oxide surfaces. Part 3. Adsorption of H and CH3 radicals on NiO(100). Journal of Electron Spectroscopy and Related Phenomena, 1994, 69, 99-109.	1.7	10
177	Photoactivation of Methane on Metal Ion-Supported Silica Gel. Chemistry Letters, 1995, 24, 1117-1118.	1.3	2
178	Die katalytische oxidative Kupplung von Methan. Angewandte Chemie, 1995, 107, 1059-1070.	2.0	96
179	The Catalytic Oxidative Coupling of Methane. Angewandte Chemie International Edition in English, 1995, 34, 970-980.	4.4	657
180	Reducing the formation of carbon oxides in the production of C2 hydrocarbons from methane. Journal of Hazardous Materials, 1995, 41, 327-340.	12.4	4
181	The role of the defect structure of oxide catalysts for the oxidative coupling of methane. The activation of the oxidant. Catalysis Today, 1995, 24, 217-223.	4.4	14

#	Article	IF	CITATIONS
182	Cî—,H bond activation in hydrocarbon oxidation on solid catalysts. Journal of Molecular Catalysis A, 1995, 100, 13-33.	4.8	192
183	Defect processes at low coordinate surface sites of MgO and their role in the partial oxidation of hydrocarbons. Journal of Molecular Catalysis A, 1995, 100, 103-114.	4.8	11
184	Surface chemistry in the oxidative coupling of methane. Fuel Processing Technology, 1995, 42, 179-215.	7.2	66
185	Partial oxidation of methane to formaldehyde by lithium promoted VPO catalysts. Applied Catalysis A: General, 1995, 131, 263-281.	4.3	7
186	Kinetic modeling of heterogeneous-homogeneous radical processes of the partial oxidation of low paraffins. Catalysis Today, 1995, 24, 389-393.	4.4	46
187	Correlation between the Madelung field and the reactivity of the MgO low oordinated surface sites. Journal of Chemical Physics, 1995, 102, 5071-5076.	3.0	35
188	Adsorption of Water Vapor on the MgO(100) Single Crystal Surface. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1995, 99, 1333-1337.	0.9	98
189	Experimental Verification of a New Mechanism for Dissociative Chemisorption: Atom Abstraction. Physical Review Letters, 1995, 74, 2603-2606.	7.8	60
190	Heterogeneous free-radical reactions in oxidation processes. Russian Chemical Reviews, 1995, 64, 349-364.	6.5	20
191	Effect of Diffusion Limitations of Surface Produced Radicals on the C2 Selectivity in the Oxidative Coupling of Methane. , 1995, , 113-121.		0
192	Oxidant Activation Over Structural Defects of Oxide Catalysts in Oxidative Methane Coupling. Catalysis Reviews - Science and Engineering, 1995, 37, 101-143.	12.9	119
193	Interaction of water with 1% Li/MgO: dc conductivity of Li/MgO catalyst for methane selective activation. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1805.	1.7	20
194	Oxidative coupling of methane to C2-hydrocarbons over lithium-cerium-promoted MgO and MgO-CaO catalysts. Journal of Chemical Technology and Biotechnology, 1995, 63, 190-194.	3.2	7
195	Carbides of transition metals as catalysts for oxidation reactions. , 1996, , 311-326.		13
196	Theoretical aspects of methane chemisorption on MgO surfaces. Modelling of impurity-induced trapping of a hole, surface defects and site dependence of methane chemisorption on (MgO)9,12 clusters. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2765.	1.7	9
197	The Reaction of Methane with Carbon Dioxide Over the Catalysts Based on LaFeO3 Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1996, 1996, 354-361.	0.1	0
198	Catalytic methane coupling under periodic operation. Canadian Journal of Chemical Engineering, 1996, 74, 683-694.	1.7	4
199	Conductivity properties of Na2SO4/CaCO3 catalysts and their effect on catalytic activities for oxidative coupling of methane. Reaction Kinetics and Catalysis Letters, 1996, 59, 159-164.	0.6	1

#	Article	IF	CITATIONS
200	Acid-base properties and the directions of oxidative transformation of methane over nickel-based catalysts. Catalysis Letters, 1996, 41, 165-169.	2.6	12
201	Promotional effect of molybdenum, chromium and cobalt on a Vî—,Mgî—,O catalyst in oxidative dehydrogenation of ethylbenzene to styrene. Applied Catalysis A: General, 1996, 136, 143-159.	4.3	21
202	Structure, redox properties and catalytic behavior of mixed iron-lithium molybdates. Applied Catalysis A: General, 1996, 148, 41-50.	4.3	5
203	Hydrogen abstraction from methane by Li doped MgO: A periodic quantum mechanical study. Journal of Chemical Physics, 1996, 105, 8937-8943.	3.0	32
204	Kinetics and Mechanisms of CO Oxidation on Nd1-xSrxCoO3-y Catalysts with Static and Flow Methods. The Journal of Physical Chemistry, 1996, 100, 10243-10248.	2.9	32
205	Adsorption kinetics of chemisorption by surface abstraction and dissociative adsorption. Journal of Chemical Physics, 1997, 106, 289-300.	3.0	10
206	Dynamics of Catalytic Methane Coupling. Industrial & Engineering Chemistry Research, 1997, 36, 2970-2975.	3.7	1
207	Probing the Role of Oxygen Coordination in Hydrocarbon Oxidation:Â Methyl Radical Addition to Oxygen on Mo(110). Journal of the American Chemical Society, 1997, 119, 6945-6946.	13.7	40
209	Interaction of Methane with a [Li]OCenter on MgO(100):Â HF, Post-HF, and DFT Cluster Model Studies. Journal of Physical Chemistry B, 1997, 101, 10028-10034.	2.6	21
211	Free radicals as intermediates in oxidative transformations of lower alkanes. Studies in Surface Science and Catalysis, 1997, 110, 327-335.	1.5	13
212	An ab Initio Study on the Oxidative Coupling of Methane over a Lithium-Doped MgO Catalyst:  Surface Defects and Mechanism. Journal of Physical Chemistry B, 1997, 101, 3196-3201.	2.6	48
213	Methane conversion to higher hydrocarbons in a corona discharge over metal oxide catalysts with OH groups. Applied Catalysis A: General, 1997, 164, 21-33.	4.3	91
214	Introductory Lecture Computer modelling as a technique in solid state chemistry. Faraday Discussions, 1997, 106, 1-40.	3.2	46
215	Alkali–Support Interactions on Rubidium Base Catalysts Determined by XANES, EXAFS, CO2Adsorption, and IR Spectroscopy. Journal of Catalysis, 1997, 169, 327-337.	6.2	39
216	Isobutanol and Methanol Synthesis on Copper Catalysts Supported on Modified Magnesium Oxide. Journal of Catalysis, 1997, 171, 130-147.	6.2	79
217	The role of methyl radicals in the reduction of NO by CH4 over a Ba/MgO catalyst. Catalysis Letters, 1997, 43, 1-5.	2.6	12
218	An ab initio study of methane activation on lanthanide oxide. Catalysis Letters, 1997, 49, 53-58.	2.6	14
219	Control of the directions of oxidative transformation of methane over nickel-based catalysts by	0.6	3

ARTICLE IF CITATIONS # The effect of alkali metal salts on ZnOα-Al2O3 and MnO2 catalysts for the oxidative coupling of 220 4.3 5 methane. Applied Catalysis A: General, 1997, 150, 63-76. Studies of CaTio3 based catalysts for the oxidative coupling of methane. Applied Catalysis A: General, 221 4.3 1997, 158, 201-214. Experimental study on the influence of alkaline earth promoters on neodymium oxide performance in 222 4.3 20 the oxidative coupling of methane. Applied Catalysis A: General, 1997, 159, 33-44. Modelling of structure, sorption, synthesis and reactivity in catalytic systems1Communication presented at the First Francqui Colloquium, Brussels, 19–20 February 1996.1. Journal of Molecular Catalysis A, 1997, 115, 431-448. 4.8 Catalytic properties of F-centres at the magnesium oxide surface: hydrogen abstraction from methane. 224 4.8 48 Journal of Molecular Catalysis A, 1997, 119, 253-262. Magnesium salts and oxide: an XPS overview. Applied Surface Science, 1997, 119, 253-259. 6.1 226 Title is missing!. Catalysis Letters, 1998, 53, 43-50. 2.6 30 Raman Spectroscopic and TPR Studies of Oxygen Species over BaO- and BaX2(X=F, Cl, Br)-Promoted 6.2 Nd2O3Catalysts for the Oxidative Coupling of Methane. Journal of Catalysis, 1998, 176, 365-375. Stability of oxygen anions and hydrogen abstraction from methane on reduced SnO2 (110) surface. 228 2.0 23 International Journal of Quantum Chemistry, 1998, 69, 669-678. Catalytic properties of the carbides of transition metals in oxidation reactions. Theoretical and 229 0.8 Experimental Chemistry, 1998, 34, 239-256. Lithium trapped-hole centre in magnesium oxide. An ab initio supercell study. Journal of Physics and 230 4.025 Chemistry of Solids, 1998, 59, 7-12. Methane oxidation reactions on MoO3(100): A theoretical study. Journal of Molecular Catalysis A, 4.8 1998, 129, 297-310. Oxidative coupling of methane â€" the transition from reaction to transport control over La2O3/MgO 232 4.3 40 catalyst. Applied Catalysis A: General, 1998, 169, 237-247. MgO powders: interplay between adsorbed species and localisation of basic sites. Applied Surface Science, 1998, 126, 169-175. 6.1 29 Oxygen coadsorption and reaction with potassium on MgO thin films grown on Ru(001). Surface 234 1.9 6 Science, 1998, 418, 320-328. The oxidation of potassium on MgO(100). Surface Science, 1998, 398, 203-210. FTIR Spectroscopic and Density Functional Model Cluster Studies of Methane Adsorption on MgO. 236 2.6 61 Journal of Physical Chemistry B, 1998, 102, 4548-4555. A Detailed Theoretical Treatment of the Partial Oxidation of Methane to Syngas on Transition and Coinage Metal (M) Catalysts (M = Ni, Pd, Pt, Cu). Journal of Physical Chemistry A, 1998, 102, 3959-3969.

#	Article	IF	CITATIONS
238	Catalytic Conversion of Methane and Ethylene to Propylene. Journal of Physical Chemistry B, 1998, 102, 167-173.	2.6	26
239	Oxidative Methylation of Acetonitrile to Acrylonitrile with CH4. Studies in Surface Science and Catalysis, 1998, , 367-372.	1.5	0
240	Synergism of Plasma and Catalyst on the Dehydrogenative Coupling of Methane. Plasma Science and Technology, 1999, 1, 61-66.	1.5	3
241	Fluorine atom abstraction by Si(100). I. Experimental. Journal of Chemical Physics, 1999, 111, 3679-3695.	3.0	27
242	Study of the oxidative methylation of acetonitrile to acrylonitrile with CH4 over Li/MgO catalysts. Applied Catalysis A: General, 1999, 176, 63-73.	4.3	7
243	Oxidative dehydrodimerization of methane using lead and samarium-based catalysts made by self-propagating high-temperature synthesis. Applied Catalysis A: General, 1999, 185, L185-L192.	4.3	9
244	C–H bond activation in hydrocarbon oxidation on heterogeneous catalysts. Catalysis Today, 1999, 47, 229-234.	4.4	214
245	Catalytic performance, structure, surface properties and active oxygen species of the fluoride-containing rare earth (alkaline earth)-based catalysts for the oxidative coupling of methane and oxidative dehydrogenation of light alkanes. Catalysis Today, 1999, 51, 161-175.	4.4	69
246	Selective oxidation of light alkanes: interaction between the catalyst and the gas phase on different classes of catalytic materials. Catalysis Today, 1999, 51, 561-580.	4.4	217
247	Structure and reactivity of thin-film oxides and metals. Applied Surface Science, 1999, 142, 99-105.	6.1	17
248	The Effect of SnO2Addition to Li/MgO Catalysts for the Oxidative Coupling of Methane. Journal of Catalysis, 1999, 181, 160-164.	6.2	25
249	Study of Oxide-Based Catalysts for the Oxidative Transformation of Acetonitrile to Acrylonitrile with CH4. Journal of Catalysis, 1999, 182, 70-81.	6.2	10
250	Title is missing!. Catalysis Letters, 1999, 60, 101-102.	2.6	2
251	Reaction model for methane oxidation on reduced SnO2 (110) surface. International Journal of Quantum Chemistry, 1999, 74, 423-433.	2.0	16
252	Mg/K2S2O8-promoted direct carboxylation of saturated hydrocarbons with CO. Applied Organometallic Chemistry, 1999, 13, 539-547.	3.5	20
253	Evidence for oxygen vacancy formation in HZSM-5 at high temperature. Physical Chemistry Chemical Physics, 1999, 1, 3845-3851.	2.8	22
254	Ab Initio Study for Selective Oxidation of Methane with NOx(x= 1, 2). Journal of Physical Chemistry A, 1999, 103, 8272-8278.	2.5	38
255	Molecular adsorption of methane and methyl onto MgO(100) An embedded-cluster study. Surface Science, 1999, 421, 296-307.	1.9	22

#	Article	IF	CITATIONS
256	Surface Defect Sites Formed on Partially and Fully Dehydrated MgO:Â An EPR/ENDOR Study. Journal of Physical Chemistry B, 1999, 103, 1944-1953.	2.6	66
257	Spectroscopic Studies of Solâ^'Gel Li/MgO Catalysts. Langmuir, 1999, 15, 32-35.	3.5	10
258	Formation of Defects in Near-Surface Region over Li or Mn-Doped MgO Studied by Mg K-Edge XANES. Chemistry Letters, 1999, 28, 359-360.	1.3	5
259	Synthesis of Carboxylic Acids through the Formation of C–C Bond between Saturated Hydrocarbons and CO in the Presence of Mg/K2S2O8/TFA System. Chemistry Letters, 1999, 28, 449-450.	1.3	11
260	Chemical Modification of MgO(001) Surface by Utilizing Energy Decomposition Analyses for the Purpose of CO2Adsorption. Bulletin of the Chemical Society of Japan, 2000, 73, 315-319.	3.2	2
261	Influence of precursors of Li2O and MgO on surface and catalytic properties of Li-promoted MgO in oxidative coupling of methane. Journal of Chemical Technology and Biotechnology, 2000, 75, 828-834.	3.2	16
262	A density functional theory study of the interaction of oxygen with a reduced SnO2 (110) surface. Chemical Physics Letters, 2000, 316, 477-482.	2.6	44
263	Solid state aspects of oxidation catalysis. Catalysis Today, 2000, 58, 1-53.	4.4	226
264	Oxidative transformation of methane over nickel catalysts supported on rare-earth metal oxides. Catalysis Today, 2000, 61, 303-307.	4.4	18
265	Adsorption and Decomposition of NO on Lanthanum Oxide. Journal of Catalysis, 2000, 192, 29-47.	6.2	148
265 266	Adsorption and Decomposition of NO on Lanthanum Oxide. Journal of Catalysis, 2000, 192, 29-47. An XRD, XPS, and EPR Study of Li/MgO Catalysts: Case of the Oxidative Methylation of Acetonitrile to Acrylonitrile with CH4. Journal of Catalysis, 2000, 192, 174-184.	6.2 6.2	148 22
	An XRD, XPS, and EPR Study of Li/MgO Catalysts: Case of the Oxidative Methylation of Acetonitrile to		
266	An XRD, XPS, and EPR Study of Li/MgO Catalysts: Case of the Oxidative Methylation of Acetonitrile to Acrylonitrile with CH4. Journal of Catalysis, 2000, 192, 174-184. QUANTUM CHEMISTRY OF OXIDE SURFACES: FROM CO CHEMISORPTION TO THE IDENTIFICATION OF THE	6.2	22
266 267	An XRD, XPS, and EPR Study of Li/MgO Catalysts: Case of the Oxidative Methylation of Acetonitrile to Acrylonitrile with CH4. Journal of Catalysis, 2000, 192, 174-184. QUANTUM CHEMISTRY OF OXIDE SURFACES: FROM CO CHEMISORPTION TO THE IDENTIFICATION OF THE STRUCTURE AND NATURE OF POINT DEFECTS ON MgO. Surface Review and Letters, 2000, 07, 277-306.	6.2 1.1	22 170
266 267 268	An XRD, XPS, and EPR Study of Li/MgO Catalysts: Case of the Oxidative Methylation of Acetonitrile to Acrylonitrile with CH4. Journal of Catalysis, 2000, 192, 174-184. QUANTUM CHEMISTRY OF OXIDE SURFACES: FROM CO CHEMISORPTION TO THE IDENTIFICATION OF THE STRUCTURE AND NATURE OF POINT DEFECTS ON MgO. Surface Review and Letters, 2000, 07, 277-306. Fluorine atom abstraction by Si(100) II. Model. Journal of Chemical Physics, 2000, 112, 5190-5204. On the viability of single atom abstraction in the dissociative chemisorption of O2 on the Al(111)	6.2 1.1 3.0	22 170 22
266 267 268 269	An XRD, XPS, and EPR Study of Li/MgO Catalysts: Case of the Oxidative Methylation of Acetonitrile to Acrylonitrile with CH4. Journal of Catalysis, 2000, 192, 174-184. QUANTUM CHEMISTRY OF OXIDE SURFACES: FROM CO CHEMISORPTION TO THE IDENTIFICATION OF THE STRUCTURE AND NATURE OF POINT DEFECTS ON MgO. Surface Review and Letters, 2000, 07, 277-306. Fluorine atom abstraction by Si(100) II. Model. Journal of Chemical Physics, 2000, 112, 5190-5204. On the viability of single atom abstraction in the dissociative chemisorption of O2 on the Al(111) surface. Journal of Chemical Physics, 2000, 113, 1249-1257. Adsorption of CO on MgO supported alkali monolayers: a periodic density functional local density	6.2 1.1 3.0 3.0	22 170 22 13
266 267 268 269 270	An XRD, XPS, and EPR Study of Li/MgO Catalysts: Case of the Oxidative Methylation of Acetonitrile to Acrylonitrile with CH4. Journal of Catalysis, 2000, 192, 174-184. QUANTUM CHEMISTRY OF OXIDE SURFACES: FROM CO CHEMISORPTION TO THE IDENTIFICATION OF THE STRUCTURE AND NATURE OF POINT DEFECTS ON MgO. Surface Review and Letters, 2000, 07, 277-306. Fluorine atom abstraction by Si(100) II. Model. Journal of Chemical Physics, 2000, 112, 5190-5204. On the viability of single atom abstraction in the dissociative chemisorption of O2 on the Al(111) surface. Journal of Chemical Physics, 2000, 113, 1249-1257. Adsorption of CO on MgO supported alkali monolayers: a periodic density functional local density approximation and generalized gradient approximation study. Surface Science, 2000, 445, 495-505.	 6.2 1.1 3.0 3.0 1.9 	22 170 22 13 18

	CHATOWR		1
#	Article	IF	CITATIONS
274	Theory of point defects at the MgO surface. Chemical Physics of Solid Surfaces, 2001, , 94-135.	0.3	15
276	Chemical and Structural Characterization of the Interaction of Bleomycin A2 with d(CGCGAATTCGCG)2. Efficient, Double-Strand DNA Cleavage Accessible without Structural Reorganization. Journal of the American Chemical Society, 2001, 123, 8690-8700.	13.7	29
278	Specific defect sites creation by doping MgO with lithium and titanium. Applied Surface Science, 2001, 173, 296-306.	6.1	27
279	Direct conversion of methane into oxygenates. Applied Catalysis A: General, 2001, 222, 145-161.	4.3	230
280	Interinfluence between Reactions on the Catalyst Surface and Reactions in the Gas Phase during the Catalytic Oxidation of Methane with Air. Journal of Catalysis, 2001, 197, 315-323.	6.2	17
281	Alkali-Loaded Silica, a Solid Base: Investigation by FTIR Spectroscopy of Adsorbed CO2 and Its Catalytic Activity. Journal of Catalysis, 2001, 204, 358-363.	6.2	64
282	New Technological and Industrial Opportunities. Fundamental and Applied Catalysis, 2001, , 25-83.	0.9	0
283	The Interaction of Oxygen with Reduced SnO2and Ti/SnO2(110) Surfaces:Â A Density Functional Theory Study. Journal of Physical Chemistry A, 2002, 106, 411-418.	2.5	18
284	Selective Alkane Transformations via Radicals and Radical Cations:  Insights into the Activation Step from Experiment and Theory. Chemical Reviews, 2002, 102, 1551-1594.	47.7	379
285	Oxide solid solutions as catalysts. Advances in Catalysis, 2002, , 141-306.	0.2	44
286	Activation of methane by oxygen and nitrogen oxides. Catalysis Reviews - Science and Engineering, 2002, 44, 1-58.	12.9	118
287	Surface Properties and Physicochemical Characterizations of a New Type of Anode Material, La1â^'xSrxCr1â^'yRuyO3â^´Î´, for a Solid Oxide Fuel Cell under Methane at Intermediate Temperature. Journal of Catalysis, 2002, 209, 25-34.	6.2	70
288	O- radical ions on MgO: a tool for a structural description of the surface. Research on Chemical Intermediates, 2002, 28, 205-214.	2.7	9
289	Contemporary Methods for the Direct Catalytic Conversion of Methane. Theoretical and Experimental Chemistry, 2003, 39, 201-218.	0.8	9
290	Free radicals in catalytic oxidation of light alkanes: kinetic and thermochemical aspects. Journal of Catalysis, 2003, 216, 468-476.	6.2	61
291	Pyrolysis of liquefied petroleum gas assisted by radicals desorbed from mesh catalyst surface. International Journal of Chemical Kinetics, 2003, 35, 637-646.	1.6	8
292	Cl2 adsorption on MgO(001) surface supported sodium monolayers: a density functional theory study. Solid State Communications, 2003, 126, 107-112.	1.9	12
293	Density functional theory calculations for the interaction of oxygen with reduced M/SnO2 (M=Pd, Pt) surfaces. Surface Science, 2003, 526, 149-158.	1.9	19

#	Article	IF	CITATIONS
294	Effects of radical desorption on catalyst activity and coke formation during the catalytic pyrolysis and oxidation of light alkanes. Applied Catalysis A: General, 2003, 250, 83-94.	4.3	17
295	EPR Study of the Surface Basicity of Calcium Oxide. 2:  The Interaction with Alkanes. Journal of Physical Chemistry B, 2003, 107, 2575-2580.	2.6	24
296	Theoretical Study on the Mechanism of the Reaction of CH4+ MgO. Journal of Physical Chemistry A, 2003, 107, 2316-2323.	2.5	27
297	Looking on Heterogeneous Catalytic Systems from Different Perspectives: Multitechnique Approaches as a New Challenge for In Situ Studies. Catalysis Reviews - Science and Engineering, 2003, 45, 97-150.	12.9	112
298	Dissociation of a Product of a Surface Reaction in the Gas Phase:XeF2Reaction with Si. Physical Review Letters, 2004, 92, 188302.	7.8	9
299	The adsorption and reactions of methyl iodide on powdered Ag/TiO2. Catalysis Today, 2004, 97, 71-79.	4.4	19
300	Surface morphology and interaction between water and MgO, CaO and SrO surfaces. Applied Surface Science, 2004, 221, 53-61.	6.1	38
301	Parallel synthesis of an ester library for substrate mapping of esterases and lipases. Tetrahedron: Asymmetry, 2004, 15, 3005-3009.	1.8	7
302	Assessment of competing mechanisms of the abstraction of hydrogen from CH4 on Li/MgO(001). Surface Science, 2004, 549, 217-226.	1.9	18
303	Roles of desorbed radicals and reaction products during the oxidation of methane using a nickel mesh catalyst. Applied Catalysis A: General, 2004, 258, 63-71.	4.3	20
304	Theoretical Study of the Adsorption of Formaldehyde on Magnesium Oxide Nanosurfaces:Â Size Effects and the Role of Low-Coordinated and Defect Sites. Journal of Physical Chemistry B, 2004, 108, 18140-18148.	2.6	67
305	An EPR study of the surface reactivity of CaO and a comparison with that of MgO. Studies in Surface Science and Catalysis, 2005, 155, 441-449.	1.5	6
306	Reactive Radicals on Reactive Surfaces: Heterogeneous Processes in Catalysis and Environmental Pollution Control. Progress in Reaction Kinetics and Mechanism, 2005, 30, 145-213.	2.1	38
307	The electronic structure of alkali doped alkaline earth metal oxides: Li doping of MgO studied with DFT-GGA and GGA+U. Surface Science, 2005, 586, 25-37.	1.9	65
308	25ÂÂComputer modelling of inorganic materials. Annual Reports on the Progress of Chemistry Section A, 2005, , .	0.8	3
309	Computational approaches to the determination of active site structures and reaction mechanisms in heterogeneous catalysts. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 913-936.	3.4	94
310	First Principles Density Functional Study of the Adsorption and Dissociation of Carbonyl Compounds on Magnesium Oxide Nanosurfaces. Journal of Physical Chemistry B, 2006, 110, 25941-25949.	2.6	37
311	Optimization of Alkaline Earth Metal Oxide and Hydroxide Catalysts for Base-Catalyzed Reactions. Advances in Catalysis, 2006, 49, 239-302.	0.2	82

#	Article	IF	Citations
312	Low-temperature selective oxidation of methane to ethane and ethylene over BaCO3/La2O3 catalysts prepared by urea combustion method. Catalysis Communications, 2006, 7, 59-63.	3.3	18
313	Open-shell rhodium and iridium species in (catalytic) oxygenation reactions. Journal of Molecular Catalysis A, 2006, 251, 291-296.	4.8	27
314	Efficient and selective oxidation of methyl substituted cycloalkanes by heterogeneous methyltrioxorhenium–hydrogen peroxide systems. Tetrahedron, 2006, 62, 12326-12333.	1.9	29
315	Free radicals as intermediates in catalytic oxidation of light alkanes: new opportunities. Research on Chemical Intermediates, 2006, 32, 205-215.	2.7	10
316	Effects of alkali metal cations on the structures, physico-chemical properties and catalytic behaviors of silica-supported vanadium oxide catalysts for the selective oxidation of ethane and the complete oxidation of diesel soot. Topics in Catalysis, 2006, 38, 309-325.	2.8	18
317	Thermal Activation of Methane by Tetranuclear [V4O10]+. Angewandte Chemie - International Edition, 2006, 45, 4681-4685.	13.8	236
319	Physical-Chemical Characterization of Nanodispersed Powders Produced by a Plasma-Chemical Technique. Plasma Science and Technology, 2007, 9, 273-279.	1.5	1
320	Methane Oxyforming for Synthesis Gas Production. Catalysis Reviews - Science and Engineering, 2007, 49, 511-560.	12.9	200
321	Detailed Kinetic Study of the Partial Oxidation of Methane over La2O3Catalyst. Part 2:Â Mechanism. Industrial & Engineering Chemistry Research, 2007, 46, 1069-1078.	3.7	20
322	Surface Sensitivity in Lithium-Doping of MgO:  A Density Functional Theory Study with Correction for on-Site Coulomb Interactions. Journal of Physical Chemistry C, 2007, 111, 7971-7979.	3.1	96
323	Gas-phase epoxidation of propylene through radicals generated by silica-supported molybdenum oxide. Applied Catalysis A: General, 2007, 316, 142-151.	4.3	56
324	Modeling of oxidative transformations of light alkanes over heterogeneous catalysts. Russian Journal of Physical Chemistry B, 2007, 1, 412-433.	1.3	24
325	Isotopic Oxygen Exchange and EPR Studies of Superoxide Species on the SrF2/La2O3 Catalyst. Catalysis Letters, 2007, 118, 238-243.	2.6	21
326	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XMLSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	3.8	33
327	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" In situ IR and pulse reaction studies on the active oxygen species over SrF2/Nd2O3 catalyst for oxidative coupling of methane. Catalysis Today, 2008, 131, 135-139.	4.4	21
328	Microkinetics of methane oxidative coupling. Catalysis Today, 2008, 137, 90-102.	4.4	145
331	Oxidative Conversion of Propane in a Microreactor in the Presence of Plasma over MgO-Based Catalysts:  An Experimental Study. Journal of Physical Chemistry C, 2008, 112, 4267-4274.	3.1	17
332	Lithium ions incorporation in MgO for oxidative dehydrogenation/cracking of propane: Active site characterization and mechanism of regeneration. Catalysis Today, 2009, 145, 19-26.	4.4	14

#	Article	IF	CITATIONS
333	Application of a simple kinetic model for the oxidative coupling of methane to the design of effective catalysts. Catalysis Today, 2009, 145, 45-54.	4.4	28
334	Magnetic resonance spectroscopy of extra-terrestrial methyl radical. Canadian Journal of Physics, 2009, 87, 709-719.	1.1	2
335	Autothermal oxidative coupling of methane on the SrCO3/Sm2O3 catalysts. Catalysis Communications, 2009, 10, 807-810.	3.3	23
337	Microwave activation of catalysts and catalytic processes. Russian Journal of Physical Chemistry A, 2010, 84, 1676-1694.	0.6	31
338	Temperatureâ€Dependent Morphology, Magnetic and Optical Properties of Liâ€Doped MgO. ChemCatChem, 2010, 2, 854-862.	3.7	102
339	Direct oxidation of methyl radicals in OCM process deduced from correlation of product selectivities. Journal of Natural Gas Chemistry, 2010, 19, 534-538.	1.8	9
341	Câ^'H Bond Activation and Organometallic Intermediates on Isolated Metal Centers on Oxide Surfaces. Chemical Reviews, 2010, 110, 656-680.	47.7	396
342	Methylmagnesium Alkoxide Clusters with Mg4O4 Cubane- and Mg7O8 Biscubane-Like Cores: Organometallic Precursors for Low-Temperature Formation of MgO Nanoparticles with Variable Surface Defects. Chemistry of Materials, 2010, 22, 1376-1385.	6.7	29
343	Propene Oxidation on V ₄ O ₁₁ ^{â^'} Cluster: Reaction Dynamics to Acrolein. Journal of Physical Chemistry A, 2010, 114, 6542-6549.	2.5	10
344	Molecular Heterobimetallic Approach to Li-Containing MgO Nanoparticles with Variable Li-Concentrations Using Lithium-Methylmagnesium Alkoxide Clusters. Chemistry of Materials, 2010, 22, 4563-4571.	6.7	23
345	Fabrication of Apatite-Type La _{9.33} (SiO ₄) ₆ O ₂ Hollow Nanoshells as Energy-Saving Oxidative Catalysts. Inorganic Chemistry, 2010, 49, 10244-10246.	4.0	17
346	EPR Characterization and Reactivity of Surface-Localized Inorganic Radicals and Radical Ions. Chemical Reviews, 2010, 110, 1320-1347.	47.7	169
347	A Critical Assessment of Li/MgO-Based Catalysts for the Oxidative Coupling of Methane. Catalysis Reviews - Science and Engineering, 2011, 53, 424-514.	12.9	205
348	Oâ ^{~,} radical anions on oxide catalysts: Formation, properties, and reactions. Kinetics and Catalysis, 2011, 52, 605-619.	1.0	19
349	Kinetic simulation of the oxidative condensation of methane. Kinetics and Catalysis, 2011, 52, 914-921.	1.0	4
350	Acid–base properties of the active sites responsible for C2+ and CO2 formation over MO–Sm2O3 (M=Zn, Mg, Ca and Sr) mixed oxides in OCM reaction. Journal of Molecular Catalysis A, 2011, 346, 46-54.	4.8	68
351	Lithium as a Modifier for Morphology and Defect Structure of Porous Magnesium Oxide Materials Prepared by Gel Combustion Synthesis. ChemCatChem, 2011, 3, 1779-1788.	3.7	30
352	Li-doped MgO From Different Preparative Routes for the Oxidative Coupling of Methane. Topics in Catalysis, 2011, 54, 1266-1285.	2.8	59

#	Article	IF	CITATIONS
353	Modification of surface layer of magnesium oxide via partial dissolution and re-growth of crystallites. Applied Surface Science, 2011, 257, 3412-3416.	6.1	7
354	Oxidative coupling of methane over Ca- and alkali metal-doped ThO2. Applied Catalysis A: General, 2011, 391, 205-214.	4.3	23
355	Tunable work function in MgO/Nb:SrTiO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:mrow>surfaces studied by Kelvin probe technique. Physical Review B, 2011, 83, .</mml:math 	3.2	16
356	Methane conversion to higher hydrocarbons over copper loaded BZSM-5 in the presence of oxygen. International Journal of Oil, Gas and Coal Technology, 2011, 4, 356.	0.2	0
357	Contributions of phase composition and defect structure to the long term stability of Li/MgO catalysts. International Journal of Materials Research, 2012, 103, 1488-1498.	0.3	3
358	Cyclohexane oxidation using Au/MgO: an investigation of the reaction mechanism. Physical Chemistry Chemical Physics, 2012, 14, 16279.	2.8	71
359	Oxidative coupling of methane to C2 hydrocarbons on the Mg–Ti mixed oxide-supported catalysts at the lower reaction temperature: Role of surface oxygen atoms. Applied Catalysis A: General, 2013, 464-465, 68-77.	4.3	39
360	Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron VUV Photoionization Mass Spectroscopy. Scientific Reports, 2013, 3, 1625.	3.3	75
361	Electron Transfer at Oxide Surfaces. The MgO Paradigm: from Defects to Ultrathin Films. Chemical Reviews, 2013, 113, 4035-4072.	47.7	265
362	Oxidative coupling of methane over unsupported and alumina-supported samaria catalysts. Applied Catalysis A: General, 2013, 454, 100-114.	4.3	40
363	Catalysis by Doped Oxides. Chemical Reviews, 2013, 113, 4391-4427.	47.7	687
364	Metal and Non-metal Based Catalysts for Oxidation of Organic Compounds. Catalysis Surveys From Asia, 2013, 17, 20-42.	2.6	19
365	Electronic Structure of Oxygen Radicals on the Surface of VO _{<i>x</i>} /TiO ₂ Catalysts and Their Role in Oxygen Isotopic Exchange. Journal of Physical Chemistry C, 2013, 117, 14701-14709.	3.1	18
366	Methane Dissociation on Li-, Na-, K-, and Cu-Doped Flat and Stepped CaO(001). Journal of Physical Chemistry C, 2013, 117, 7114-7122.	3.1	24
367	Structures and Stabilities of Alkaline Earth Metal Oxide Nanoclusters: A DFT Study. Journal of Theoretical Chemistry, 2013, 2013, 1-14.	1.5	21
368	Unpaired Electrons as Probes of Catalytic Systems. Science Progress, 2014, 97, 303-370.	1.9	3
369	Sites for Methane Activation on Lithiumâ€Doped Magnesium Oxide Surfaces. Angewandte Chemie - International Edition, 2014, 53, 8774-8778.	13.8	152
371	In Situ EPR Spectroscopy in Heterogeneous Catalysis: Stepchild or Ray of Hope?. Chemie-Ingenieur-Technik, 2014, 86, 1871-1882.	0.8	11

#	Article	IF	CITATIONS
372	Fuel-rich methane oxidation in a high-pressure flow reactor studied by optical-fiber laser-induced fluorescence, multi-species sampling profile measurements and detailed kinetic simulations. Combustion and Flame, 2014, 161, 1688-1700.	5.2	22
373	Light hydrocarbons production over bimetallic calcium–actinide oxide catalysts using N2O as oxidant. Journal of Molecular Catalysis A, 2014, 390, 45-51.	4.8	17
374	Methane to Light Hydrocarbons via Oxidative Methane Coupling: Lessons from the Past to Search for a Selective Heterogeneous Catalyst. Journal of Physical Chemistry Letters, 2014, 5, 986-988.	4.6	21
375	Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chemical Society Reviews, 2014, 43, 3480.	38.1	653
376	Oxidative methane coupling over Mg, Al, Ca, Ba, Pb-promoted SrTiO3 and Sr2TiO4: Influence of surface composition and microstructure. Applied Catalysis A: General, 2014, 485, 10-19.	4.3	40
377	Effects of Li Doping on MgO-Supported Sm ₂ O ₃ and TbO _{<i>x</i>} Catalysts in the Oxidative Coupling of Methane. ACS Catalysis, 2014, 4, 1972-1990.	11.2	45
378	Structure sensitivity of the oxidative activation of methane over MgO model catalysts: II. Nature of active sites and reaction mechanism. Journal of Catalysis, 2015, 329, 574-587.	6.2	55
379	Exothermic Mechanism for the Abstraction of Hydrogen from Methane on Li-Doped MgO. Journal of Physical Chemistry C, 2015, 119, 196-215.	3.1	8
380	A unified intermediate and mechanism for soot combustion on potassium-supported oxides. Scientific Reports, 2014, 4, 4725.	3.3	57
381	Imino(phenoxide) compounds of magnesium: Synthesis, structural characterization, and polymerization studies. Journal of Polymer Science Part A, 2015, 53, 1474-1491.	2.3	19
382	Ethylene formation by methane dehydrogenation and C–C coupling reaction on a stoichiometric IrO ₂ (110) surface – a density functional theory investigation. Catalysis Science and Technology, 2015, 5, 4064-4071.	4.1	46
383	Structure sensitivity of the oxidative activation of methane over MgO model catalysts: I. Kinetic study. Journal of Catalysis, 2015, 329, 560-573.	6.2	49
384	Theoretical study of catalytic decomposition of acetic acid on MgO nanosurface. Computational and Theoretical Chemistry, 2015, 1064, 1-6.	2.5	8
385	Effect of CO2 on the structural variation of Na2WO4/Mn/SiO2 catalyst for oxidative coupling of methane to ethylene. Journal of Energy Chemistry, 2015, 24, 394-400.	12.9	22
386	Methane Activation by Heterogeneous Catalysis. Catalysis Letters, 2015, 145, 23-39.	2.6	512
387	Models in Catalysis. Catalysis Letters, 2015, 145, 109-125.	2.6	130
388	Investigation of activity and selectivity of redox catalysts in oxidative coupling of methane in fluidized bed reactor. Journal of Fundamental and Applied Sciences, 2016, 8, 397.	0.2	3
389	Radical attached aluminum nanoclusters: an alternative way of cluster stabilization. Physical Chemistry Chemical Physics, 2016, 18, 21746-21759.	2.8	2

щ		IF	CITATIONS
#	ARTICLE	IF	CITATIONS
390	Progress in the direct catalytic conversion of methane to fuels and chemicals. Progress in Energy and Combustion Science, 2016, 55, 60-97.	31.2	265
391	La ₂ O ₃ catalysts with diverse spatial dimensionality for oxidative coupling of methane to produce ethylene and ethane. RSC Advances, 2016, 6, 34872-34876.	3.6	60
392	Effects of alkali and alkaline-earth metal dopants on magnesium oxide supported rare-earth oxide catalysts in the oxidative coupling of methane. Applied Catalysis A: General, 2016, 528, 175-190.	4.3	55
393	Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nature Communications, 2016, 7, 12273.	12.8	306
394	Oxidative coupling of methane: Mechanism and kinetics. Kinetics and Catalysis, 2016, 57, 647-676.	1.0	72
395	Revisiting the oxidative coupling of methane to ethylene in the golden period of shale gas: A review. Journal of Industrial and Engineering Chemistry, 2016, 37, 1-13.	5.8	174
396	Correlation of Methane Activation and Oxide Catalyst Reducibility and Its Implications for Oxidative Coupling. ACS Catalysis, 2016, 6, 1812-1821.	11.2	134
397	Evidence for Exchange Coupled Electrons and Holes in MgO after Oxidative Activation of CH ₄ : A Multifrequency Transient Nutation EPR Study. Journal of Physical Chemistry C, 2016, 120, 3781-3790.	3.1	18
398	K-supported catalysts for diesel soot combustion: Making a balance between activity and stability. Catalysis Today, 2016, 264, 171-179.	4.4	45
399	Process intensification in the catalytic conversion of natural gas to fuels and chemicals. Proceedings of the Combustion Institute, 2017, 36, 51-76.	3.9	47
400	In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface. Journal of Catalysis, 2017, 350, 1-12.	6.2	70
401	Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chemical Reviews, 2017, 117, 8497-8520.	47.7	961
402	Li/MgO Catalysts Doped with Alioâ€valent Ions. Part I: Structure, Composition, and Catalytic Properties. ChemCatChem, 2017, 9, 3583-3596.	3.7	11
403	Distribution and role of Li in Li-doped MgO catalysts for oxidative coupling of methane. Journal of Catalysis, 2017, 346, 57-61.	6.2	52
404	Surface Reactivity of the Vanadium Phosphate Catalyst for the Oxidation of Methane. Topics in Catalysis, 2017, 60, 1698-1708.	2.8	4
405	First principles studies of CO ₂ and O ₂ chemisorption on La ₂ O ₃ surfaces. Physical Chemistry Chemical Physics, 2017, 19, 26799-26811.	2.8	21
407	TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst for oxidative coupling of methane: Solution combustion synthesis and MnTiO3-dependent low-temperature activity improvement. Applied Catalysis A: General, 2017, 544, 77-83.	4.3	54
408	Insights into the C–H Bond Activation on NiO Surfaces: The Role of Nickel and Oxygen Vacancies and of Low Valent Dopants on the Reactivity and Energetics. Journal of Physical Chemistry C, 2017, 121, 17969-17981.	3.1	44

#	Article	IF	CITATIONS
409	Detailed Reaction Mechanisms for the Oxidative Coupling of Methane over La ₂ O ₃ /CeO ₂ Nanofiber Fabric Catalysts. ChemCatChem, 2017, 9, 4538-4551.	3.7	46
410	Methane activation with nitrous oxide over bimetallic oxide Ca-lanthanide nanocatalysts. Molecular Catalysis, 2017, 443, 155-164.	2.0	20
411	Oxidative Coupling of Methane. , 0, , 172-235.		0
412	A detailed reaction mechanism for oxidative coupling of methane over Mn/Na2WO4/SiO2 catalyst for non-isothermal conditions. Catalysis Today, 2018, 312, 10-22.	4.4	55
413	In search of membrane-catalyst materials for oxidative coupling of methane: Performance and phase stability studies of gadolinium-doped barium cerate and the impact of Zr doping. Applied Catalysis B: Environmental, 2018, 230, 29-35.	20.2	36
414	Investigation into Consecutive Reactions of Ethane and Ethene Under the OCM Reaction Conditions over MnxOy–Na2WO4/SiO2 Catalyst. Catalysis Letters, 2018, 148, 1659-1675.	2.6	14
415	Understanding the Gas Phase Chemistry of Alkanes with First-Principles Calculations. Journal of Chemical & Engineering Data, 2018, 63, 2430-2437.	1.9	1
416	Effect of lanthanum and chlorine doping on strontium titanates for the electrocatalytically-assisted oxidative dehydrogenation of ethane. Applied Catalysis B: Environmental, 2018, 227, 90-101.	20.2	44
417	SnO ₂ Based Catalysts with Lowâ€Temperature Performance for Oxidative Coupling of Methane: Insight into the Promotional Effects of Alkaliâ€Metal Oxides. European Journal of Inorganic Chemistry, 2018, 2018, 1787-1799.	2.0	26
418	Bifurcation analysis of methane oxidative coupling without catalyst. Chemical Engineering Journal, 2018, 343, 770-788.	12.7	19
419	The effect of heat transfer on products of a thermally coupled shell and tube reactor consisting of two processes: Steam reforming of methane and oxidative coupling of methane. Chemical Engineering and Processing: Process Intensification, 2018, 133, 263-277.	3.6	5
420	Oxidative coupling of methane: MO x -modified (M = Ti, Mg, Ga, Zr) Mn 2 O 3 -Na 2 WO 4 /SiO 2 catalysts and effect of MO x modification. Chinese Journal of Catalysis, 2018, 39, 1395-1402.	14.0	26
421	Evidence of radical chemistry in catalytic methane oxybromination. Nature Catalysis, 2018, 1, 363-370.	34.4	41
422	Oxygen pathways in oxidative coupling of methane and related processes. Case study: NaWMn/SiO2 catalyst. Catalysis Today, 2019, 333, 36-46.	4.4	36
423	Recent Advances in Intensified Ethylene Production—A Review. ACS Catalysis, 2019, 9, 8592-8621.	11.2	227
424	Enhanced Methane Conversion to Olefins and Aromatics by H-Donor Molecules under Nonoxidative Condition. ACS Catalysis, 2019, 9, 9045-9050.	11.2	44
425	Combined experimental and density functional theory (DFT) studies on the catalyst design for the oxidative coupling of methane. Journal of Catalysis, 2019, 375, 478-492.	6.2	45
427	Gas-Phase Reaction Network of Li/MgO-Catalyzed Oxidative Coupling of Methane and Oxidative Dehydrogenation of Ethane. ACS Catalysis, 2019, 9, 2514-2520.	11.2	71

#	Article	IF	CITATIONS
428	Electric Field and Mobile Oxygen Promote Low-Temperature Oxidative Coupling of Methane over La _{1–<i>x</i>} Ca _{<i>x</i>} AlO _{3â^Î} Perovskite Catalysts. ACS Omega, 2019, 4, 10438-10443.	3.5	25
429	Dynamic Frustrated Lewis Pairs on Ceria for Direct Nonoxidative Coupling of Methane. ACS Catalysis, 2019, 9, 5523-5536.	11.2	54
430	A K2NiF4-type La2Li0.5Al0.5O4 catalyst for the oxidative coupling of methane (OCM). Catalysis Communications, 2019, 128, 105702.	3.3	22
431	DFT investigation on some nitrogen-doped fullerenes with more antiradical and antioxidant activities than C60. Structural Chemistry, 2019, 30, 1737-1748.	2.0	6
432	Impact of Surface Composition of SrTiO ₃ Catalysts for Oxidative Coupling of Methane. ChemCatChem, 2019, 11, 2107-2117.	3.7	41
433	Constructing La ₂ B ₂ O ₇ (B = Ti, Zr, Ce) Compounds with Three Typical Crystalline Phases for the Oxidative Coupling of Methane: The Effect of Phase Structures, Superoxide Anions, and Alkalinity on the Reactivity. ACS Catalysis, 2019, 9, 4030-4045.	11.2	141
434	Towards Methane Combustion Mechanism on Metal Oxides Supported Catalysts: Ceria Supported Palladium Catalysts. Topics in Catalysis, 2019, 62, 403-412.	2.8	14
435	Mechanism of oxide-catalyzed selective oxidation: A computational perspective. Annual Reports in Computational Chemistry, 2019, 15, 287-333.	1.7	5
436	Tailoring La2Ce2O7 catalysts for low temperature oxidative coupling of methane by optimizing the preparation methods. Catalysis Today, 2020, 355, 518-528.	4.4	56
437	Design and synthesis of porous M-ZnO/CeO2 microspheres as efficient plasmonic photocatalysts for nonpolar gaseous molecules oxidation: Insight into the role of oxygen vacancy defects and M=Ag, Au nanoparticles. Applied Catalysis B: Environmental, 2020, 260, 118151.	20.2	110
438	Photoionization Mass Spectrometry for Online Detection of Reactive and Unstable Gasâ€Phase Intermediates in Heterogeneous Catalytic Reactions. ChemCatChem, 2020, 12, 675-688.	3.7	14
439	Single-Site Catalysis of Li-MgO Catalysts for Oxidative Coupling of Methane Reaction. ACS Catalysis, 2020, 10, 15142-15148.	11.2	34
440	Pressure-induced dehydrogenative coupling of methane to ethane by platinum-loaded gallium oxide photocatalyst. Chemical Communications, 2020, 56, 6348-6351.	4.1	29
441	Synthesis of Value-Added Chemicals via Oxidative Coupling of Methanes over Na ₂ WO ₄ –TiO ₂ –MnO _{<i>x</i>} /SiO ₂ Catalysts with Alkali or Alkali Earth Oxide Additives. ACS Omega, 2020, 5, 13612-13620.	3.5	13
442	Mechanism of selective and complete oxidation in La ₂ O ₃ -catalyzed oxidative coupling of methane. Catalysis Science and Technology, 2020, 10, 2602-2614.	4.1	28
443	What Is the Active Site for the Oxidative Coupling of Methane Catalyzed by MgO? A Metadynamics-Biased Ab Initio Molecular Dynamics Study. Journal of Physical Chemistry C, 2020, 124, 6054-6062.	3.1	7
444	High Catalytic Activity of Crystalline Lithium Calcium Silicate for Oxidative Coupling of Methane Originated from Crystallographic Joint Effects of Multiple Cations. ChemCatChem, 2020, 12, 1968-1972.	3.7	8
445	Catalysis and the Mechanism of Methane Conversion to Chemicals. , 2020, , .		6

#	Article	IF	CITATIONS
	Low-Temperature Methane Oxidation Triggered by Peroxide Radicals over Noble-Metal-Free MgO		
446	Catalyst. ACS Applied Materials & amp; Interfaces, 2020, 12, 21761-21771.	8.0	18
447	The enhancement effects of BaX2 (X = F, Cl, Br) on SnO2-based catalysts for the oxidative coupling of methane (OCM). Catalysis Today, 2021, 364, 35-45.	4.4	9
448	Doped samarium oxide xerogels for oxidative coupling of methane—Effects of high-valence dopants at very low concentrations. Catalysis Today, 2021, 365, 46-57.	4.4	11
449	Alternative Oxidants for the Catalytic Oxidative Coupling of Methane. Angewandte Chemie - International Edition, 2021, 60, 10502-10515.	13.8	57
450	Alternative Oxidants for the Catalytic Oxidative Coupling of Methane. Angewandte Chemie, 2021, 133, 10596-10609.	2.0	3
451	Elucidating the effects of individual components in K _{<i>x</i>} MnO _{<i>y</i>} /SiO ₂ and water on selectivity enhancement in the oxidative coupling of methane. Catalysis Science and Technology, 2021, 11, 5827-5838.	4.1	6
452	Overall Insights into Sustainable Utilization of Methane and Carbon Dioxide in Heterogeneous Catalysis. Engineering Materials, 2021, , 237-270.	0.6	0
453	Morphology Effects of Nanoscale Er2O3 and Sr-Er2O3 Catalysts for Oxidative Coupling of Methane. Catalysis Letters, 2021, 151, 2197.	2.6	10
454	Analysis of Heterogeneous-Homogeneous Model of Oxidative Coupling of Methane Using Kinetic Scheme Reduction Procedure. Kinetics and Catalysis, 2021, 62, 103-115.	1.0	4
455	Exploiting oxidative coupling of methane performed over La ₂ (Ce _{1â^'x} Mg _x) ₂ O _{7â^î^} catalysts with disordered defective cubic fluorite structure. Catalysis Science and Technology, 2021, 11, 4471-4481.	4.1	11
456	C–H bond activation in light alkanes: a theoretical perspective. Chemical Society Reviews, 2021, 50, 4299-4358.	38.1	144
457	Alkali-Added Catalysts Based on LaAlO3 Perovskite for the Oxidative Coupling of Methane. ChemEngineering, 2021, 5, 14.	2.4	5
458	Nanosheet-Like Ho2O3 and Sr-Ho2O3 Catalysts for Oxidative Coupling of Methane. Catalysts, 2021, 11, 388.	3.5	5
459	Surface coupling of methyl radicals for efficient low-temperature oxidative coupling of methane. Chinese Journal of Catalysis, 2021, 42, 1117-1125.	14.0	39
460	Photoelectron Photoion Coincidence Spectroscopy Provides Mechanistic Insights in Fuel Synthesis and Conversion. Energy & amp; Fuels, 2021, 35, 16265-16302.	5.1	55
461	7Li NMR investigations of Li/MgO catalysts for oxidative coupling of methane. Molecular Catalysis, 2021, 513, 111802.	2.0	1
462	Initial Steps in CH ₄ Pyrolysis on Cu and Ni. Journal of Physical Chemistry C, 2021, 125, 18665-18672.	3.1	4
463	Improved Catalytic Activity and Stability of Ba Substituted SrTiO ₃ Perovskite for Oxidative Coupling of Methane. ChemCatChem, 2021, 13, 4182-4191.	3.7	10

	CHATION R		
#	ARTICLE	IF	Citations
464	A unified mechanism for oxidative coupling and partial oxidation of methane. Fuel, 2021, 297, 120683.	6.4	6
465	Active oxygen center in oxidative coupling of methane on La2O3 catalyst. Journal of Energy Chemistry, 2021, 60, 649-659.	12.9	28
466	Ag/AgCl as an efficient plasmonic photocatalyst for greenhouse gaseous methane oxidation. Journal of Environmental Chemical Engineering, 2021, 9, 106435.	6.7	7
467	Oxidative coupling of methane (OCM): An overview of the challenges and opportunities for developing new technologies. Journal of Natural Gas Science and Engineering, 2021, 96, 104254.	4.4	29
468	In-depth understanding of the crystal-facet effect of La2O2CO3 for low-temperature oxidative coupling of methane. Fuel, 2022, 308, 121848.	6.4	10
469	Effects of Product Separation on the Kinetics and Selectivity of Oxidative Coupling. , 1995, , 123-130.		3
470	Evidence for the Production of Methyl Radicals on the Na2WO4/SiO2 Catalyst Upon Interaction with Methane. , 1995, , 45-48.		1
471	Electron Paramagnetic Resonance: Principles and Applications to Catalysis. Fundamental and Applied Catalysis, 1994, , 131-179.	0.9	9
472	Structure and Electronic Factors in Heterogeneous Catalysis: C≡C, C≡O, and C-H Activation Processes on Metals and Oxides. , 1990, , 431-457.		3
473	Catalytic Cracking of Naphthalene on Dolomite. , 1993, , 216-232.		9
474	Computer Modelling as a Technique in Materials Chemistry. , 1997, , 141-194.		3
475	Formation and Reactions of Methyl Radicals over Metal Oxide Catalysts. , 1992, , 3-29.		6
476	The Role of Gas-Phase Reactions during Methane Oxidative Coupling. , 1992, , 30-77.		8
477	Partial Oxidation of Methane over Metal Oxides: Reaction Mechanism and Active Oxygen Species. , 1992, , 78-98.		1
478	Studies of the Mechanism of the Oxidative Coupling of Methane Using Oxide Catalysts. , 1992, , 200-258.		9
479	Thin Films as Model Catalysts. , 1997, , 27-59.		3
480	METAL OXIDES AND THEIR PHYSICO-CHEMICAL PROPERTIES IN CATALYSIS AND SYNTHESIS. , 1987, , 35-60.		3
481	Quantum Chemistry of Oxide Surfaces From CO Chemisorption to the Identification of the Structure and Nature of Point Defects on MgO. Surface Review and Letters, 2000, 7, 277-306.	1.1	15

#	Article	IF	CITATIONS
482	The Use of the “+ <i>U</i> ” Correction in Describing Defect States at Metal Oxide Surfaces: Oxygen Vacancies on CeO ₂ and TiO ₂ , and Li-doping of MgO. E-Journal of Surface Science and Nanotechnology, 2009, 7, 389-394.	0.4	25
483	Competing Defect Mechanisms and Hydrogen Adsorption on Li-Doped MgO Low Index Surfaces: A DFT+U Study. E-Journal of Surface Science and Nanotechnology, 2009, 7, 395-404.	0.4	9

Catalytic and physical properties of Ca2+-doped MgO.. Sekiyu Gakkaishi (Journal of the Japan Petroleum) Tj ETQq0 $\overset{0}{0.1}$ rgBT / $\overset{0}{3}$ verlock 10

485	Studies on activation factors for oxidative coupling of methane over lithium-based silicate/germanate catalysts. Catalysis Science and Technology, 2022, 12, 75-83.	4.1	1
486	Oxidative coupling of methane over Y2O3 and Sr–Y2O3 nanorods. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 711-725.	1.7	3
487	Methane Oxidation at Metal Oxide Surfaces. , 1988, , 265-272.		0
488	Methane Activation Over Lanthanide Oxides. , 1988, , 308-308.		0
489	Oxidative Coupling Reaction of Methane. Journal of Japan Oil Chemists Society, 1990, 39, 1014-1021.	0.1	0
490	Mechanism of Cooxidative Methane Dimerization Catalysis: Kinetic and Thermodynamic Aspects. , 1992, , 320-350.		7
491	Kinetics of Reaction of Dioxygen with Lithium Nickel Oxide, and the Role of Surface Oxygen in Oxidative Coupling of Methane. , 1993, , 97-114.		0
492	The Effect of Addition of Phosphorus to Li/MgO Catalyst on Oxidative Coupling of Methane Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 1994, 37, 202-208.	0.1	0
493	Oxidative Coupling of Methane over Mixed Metal Oxide Catalysts Including Group 5 Metals Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 1995, 38, 209-220.	0.1	1
494	Kinetics of Reaction of Oxygen with Lithium Nickel Oxide, and the Role of Surface Oxygen in Oxidative Coupling of Methane. , 1995, , 85-93.		0
495	The Role of Free Methyl Radicals in the Selective Oxidation of Methane Over Silica-Supported Molybdena. , 1995, , 137-142.		0
496	Computer Simulation of Catalytic Systems. , 1997, , 5-29.		0
497	Upgrading of C1 and C2 Hydrocarbons. , 1998, , 3-34.		0
498	Electronic Structure Problem of Alkaline Earth Metals. International Journal of Scientific Research and Management, 2017, 5, .	0.1	0
499	Surface Species Formed during Methane Oxidation over Some Rare Earth Elements Oxides. Green and Sustainable Chemistry, 2018, 08, 1-18.	1.2	0

#	Article	IF	CITATIONS
500	Overview of Direct Methane Conversion to Chemicals with C–O and C–C Bonds. , 2020, , 1-21.		0
501	C–C Bond Formation via the Condensation of Methane in the Presence or Absence of Oxygen. , 2020, , 103-126.		0
502	Inorganic Catalysis for Methane Conversion to Chemicals. , 2021, , .		0
503	Methane pyrolysis in low-cost, alkali-halide molten salts at high temperatures. Sustainable Energy and Fuels, 2021, 5, 6107-6123.	4.9	31
504	Study on the Lattice Defects in the Mixed Oxides of Neodymium and Alkaline Earth Elements and Their Role on the Oxidative Coupling of Methane. , 2005, , 309-315.		0
507	7.1 Alkoxyls. , 0, , 5-11.		0
508	7.2 Alkylperoxyls. , 0, , 11-15.		0
509	7.4 Referenccs for 7., 0,, 34-35.		0
510	CH ₃ [•] -Generating Capability as a Reactivity Descriptor for Metal Oxides in Oxidative Coupling of Methane. ACS Catalysis, 2021, 11, 14651-14659.	11.2	26
513	Magnetic-field-assisted catalytic oxidation of arsine over Fe/HZSM-5 catalyst: Synergistic effect of Fe species and activated surface oxygen. Journal of Cleaner Production, 2022, 337, 130549.	9.3	12
514	Dynamic chemical processes on ZnO surfaces tuned by physisorption under ambient conditions. Journal of Energy Chemistry, 2022, , .	12.9	3
516	Direct Conversion of Methane to C ₂ Hydrocarbons in Solid-State Membrane Reactors at High Temperatures. Chemical Reviews, 2022, 122, 3966-3995.	47.7	23
518	Electron Paramagnetic Resonance of Alkali Metal Atoms and Dimers on Ultrathin MgO. Nano Letters, 2022, 22, 4176-4181.	9.1	12
519	Elucidating the effect of barium halide promoters on La2O3/CaO catalyst for oxidative coupling of methane. Journal of Energy Chemistry, 2022, 73, 49-59.	12.9	9
520	Optimization of the Oxidative Coupling of Methane Process for Ethylene Production. Processes, 2022, 10, 1085.	2.8	5
521	Constructing Y ₂ B ₂ O ₇ (B = Ti, Sn, Zr, Ce) Compounds to Disclose the Effect of Surface Acidity–Basicity on Product Selectivity for Oxidative Coupling of Methane (OCM). Inorganic Chemistry, 2022, 61, 11419-11431.	4.0	7
523	Catalytic methane removal to mitigate its environmental effect. Science China Chemistry, 2023, 66, 1032-1051.	8.2	8
524	Surface basicity controls C–C coupling rates during carbon dioxide-assisted methane coupling over bifunctional Ca/ZnO catalysts. Physical Chemistry Chemical Physics, 2023, 25, 9859-9867.	2.8	1

#	Article	IF	CITATIONS
525	Selective Photocatalytic Oxidative Coupling of Methane via Regulating Methyl Intermediates over Metal/ZnO Nanoparticles. Angewandte Chemie, 2023, 135, .	2.0	5
526	Co-Generation of Electricity and Chemicals via Solid Oxide Fuel Cells Using Li-Doped LSGM and LSF Composite Anodes. Energy & Fuels, 2023, 37, 3091-3101.	5.1	0
527	On the Importance of Benchmarking the Gasâ€Phase Pyrolysis Reaction in the Oxidative Dehydrogenation of Propane. ChemCatChem, 2023, 15, .	3.7	0
528	Selective Photocatalytic Oxidative Coupling of Methane via Regulating Methyl Intermediates over Metal/ZnO Nanoparticles. Angewandte Chemie - International Edition, 2023, 62, .	13.8	20
529	Boosting the generation of key intermediate methyl radical (CH3•) in OCM reaction on magnesium oxide catalysts by regulating the electronic state of the active site. Molecular Catalysis, 2023, 542, 113125.	2.0	1
530	Importance of Process Variables and Their Optimization for Oxidative Coupling of Methane (OCM). ACS Omega, 2023, 8, 21223-21236.	3.5	0
531	Lithium Promotes Acetylide Formation on MgO During Methane Coupling Under Nonâ€Oxidative Conditions. Angewandte Chemie, 0, , .	2.0	0
532	Lithium Promotes Acetylide Formation on MgO During Methane Coupling Under Nonâ€Oxidative Conditions. Angewandte Chemie - International Edition, 0, , .	13.8	0
533	Monolithic fiber/foam-structured catalysts: beyond honeycombs and micro-channels. Catalysis Reviews - Science and Engineering, 0, , 1-81.	12.9	2
534	Catalytic technologies for direct oxidation of methane to methanol: A critical tutorial on current trends, future perspectives, and techno-feasibility assessment. Coordination Chemistry Reviews, 2023, 497, 215438.	18.8	0
535	Methane Pyrolysis for CO2-free Hydrogen Production. , 2023, , 148-198.		0
536	Perspective on understanding and developing catalysts for oxidative coupling of methane. Annual Reports in Computational Chemistry, 2023, , 45-63.	1.7	0
537	Lithium carbonate-promoted mixed rare earth oxides as a generalized strategy for oxidative coupling of methane with exceptional yields. Nature Communications, 2023, 14, .	12.8	0
538	Toward three-dimensionally ordered nanoporous graphene materials: template synthesis, structure, and applications. Chemical Science, 2024, 15, 1953-1965.	7.4	0
539	Impact of Local Structure in Supported CaO Catalysts for Soft-Oxidant-Assisted Methane Coupling Assessed through Ca K-Edge X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2024, 128, 1165-1176.	3.1	0
540	Structural Features of Lanthanum Aluminum Mixed Oxides and Stability of Their Catalytic Properties in Oxidative Coupling of Methane. Russian Journal of Physical Chemistry B, 2023, 17, 1646-1656.	1.3	0