Primate frontal eye fields. II. Physiological and anatomi evoked eye movements

Journal of Neurophysiology 54, 714-734 DOI: 10.1152/jn.1985.54.3.714

Citation Report

#	Article	IF	CITATIONS
1	The projection of frontal cortical oculomotor areas to the superior colliculus in the domestic cat. Journal of Comparative Neurology, 1986, 253, 342-357.	1.6	25
2	Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. Subcortical connections. Journal of Comparative Neurology, 1986, 253, 415-439.	1.6	380
3	The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields. Experimental Brain Research, 1986, 61, 579-84.	1.5	140
5	The preparation of visually guided saccades. Reviews of Physiology, Biochemistry and Pharmacology, 1987, 106, 1-35.	1.6	205
6	The role of corollary motor discharges, the corpus callosum, and the supplementary motor cortices in bimanual coordination. Behavioral and Brain Sciences, 1987, 10, 322-323.	0.7	6
7	Premotor systems, motor learning, and ipsilateral control: Learning to get set. Behavioral and Brain Sciences, 1987, 10, 323-329.	0.7	3
9	The interstitial nucleus of Cajal and its role in the control of movements of head and eyes. Progress in Neurobiology, 1987, 29, 107-192.	5.7	304
10	Effects of occipital lobectomy upon eye movements in primate. Journal of Neurophysiology, 1987, 58, 883-907.	1.8	178
11	Functional properties of corticotectal neurons in the monkey's frontal eye field. Journal of Neurophysiology, 1987, 58, 1387-1419.	1.8	443
12	Evidence for a supplementary eye field. Journal of Neurophysiology, 1987, 57, 179-200.	1.8	585
13	Frontal eye field lesions in monkeys disrupt visual pursuit. Experimental Brain Research, 1987, 68, 437-41.	1.5	189
14	Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections. Journal of Comparative Neurology, 1987, 265, 332-361.	1.6	373
15	Latencies of visually guided saccades in unilateral hemispheric cerebral lesions. Annals of Neurology, 1987, 21, 138-148.	5.3	82
16	Visuospatial and motor attention in the monkey. Neuropsychologia, 1987, 25, 107-118.	1.6	224
17	Origin of cerebellar projections to the region of the oculomotor complex, medial pontine reticular formation, and superior colliculus in new world monkeys: A retrograde horseradish peroxidase study. Journal of Comparative Neurology, 1988, 268, 508-526.	1.6	69
18	Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic terminal fields. Journal of Comparative Neurology, 1988, 271, 473-492.	1.6	261
19	Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons. Journal of Comparative Neurology, 1988, 271, 493-506.	1.6	331
20	Conditional task-related responses in monkey dorsomedial frontal cortex. Experimental Brain Research, 1988, 69, 460-8.	1.5	121

#	Article	IF	CITATIONS
21	Disconnection of parietal and occipital access to the saccadic oculomotor system. Experimental Brain Research, 1988, 70, 385-98.	1.5	44
22	Direct projection from the supplementary eye field to the nucleus raphe interpositus. Experimental Brain Research, 1988, 73, 215-218.	1.5	36
23	Saccadic disorders caused by cooling the superior colliculus or the frontal eye field, or from combined lesions of both structures. Brain Research, 1988, 438, 247-255.	2.2	53
24	Turning responses evoked by stimulation of visuomotor pathways. Brain Research Reviews, 1988, 13, 235-259.	9.0	39
25	Relation between visual input and motor outflow for eye movements in monkey frontal eye field. Behavioural Brain Research, 1988, 27, 93-98.	2.2	10
26	Unilateral and bilateral lesions of the anteromedial cortex increase perseverative head movements of the rat. Behavioural Brain Research, 1988, 27, 145-160.	2.2	11
27	Chapter 1: Anatomical organization of the superior colliculus in monkeys: corticotectal pathways for visual and visuomotor functions. Progress in Brain Research, 1988, 75, 1-15.	1.4	19
28	Deficits of visual attention and saccadic eye movements after lesions of parietooccipital cortex in monkeys. Journal of Neurophysiology, 1989, 61, 74-90.	1.8	241
29	Premotor Cortex and the Retrieval of Movement. Brain, Behavior and Evolution, 1989, 33, 189-192.	1.7	40
30	Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. Journal of Neurophysiology, 1989, 61, 331-349.	1.8	2,363
31	Inferior frontal eye field projections to the pursuit-related dorsolateral pontine nucleus and middle temporal area (MT) in the monkey. Visual Neuroscience, 1989, 3, 171-180.	1.0	53
32	Loss of Spontaneous Blinking in a Patient With Balint's Syndrome. Archives of Neurology, 1989, 46, 567-570.	4.5	11
33	Cytoarchitectural characteristic of the frontal eye fields in macaque monkeys. Journal of Comparative Neurology, 1989, 282, 415-427.	1.6	119
34	Morphological substrate for eyelid movements: Innervation and structure of primate levator palpebrae superioris and orbicularis oculi muscles. Journal of Comparative Neurology, 1989, 287, 64-81.	1.6	149
35	Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. Journal of Comparative Neurology, 1989, 287, 422-445.	1.6	1,039
36	Distribution of cat-301 immunoreactivity in the frontal and parietal lobes of the macaque monkey. Journal of Comparative Neurology, 1989, 288, 280-296.	1.6	43
37	Thalamocortical connections of the rostral intralaminar nuclei: An autoradiographic analysis in the cat. Journal of Comparative Neurology, 1989, 288, 555-582.	1.6	60
38	A neural network predicting posterior parietal cortex function in the control of goal-directed arm movements. Neural Networks, 1989, 2, 351-358.	5.9	11

#	Article	IF	CITATIONS
39	Prefrontal cortex and spatial sequencing in macaque monkey. Experimental Brain Research, 1989, 78, 447-64.	1.5	201
40	Eye-movement representation in the frontal lobe of rhesus monkeys. Neuroscience Letters, 1989, 106, 157-162.	2.1	78
41	Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications. Behavioral and Brain Sciences, 1990, 13, 519-542.	0.7	575
42	Does visual-field specialization really have implications for coordinated visual-motor behavior?. Behavioral and Brain Sciences, 1990, 13, 542-543.	0.7	1
43	Seeing double: Dichotomizing the visual system. Behavioral and Brain Sciences, 1990, 13, 543-544.	0.7	0
44	The benefits and constraints of visual processing dichotomies. Behavioral and Brain Sciences, 1990, 13, 544-545.	0.7	3
45	Ups and downs of the visual field: Manipulation and locomotion. Behavioral and Brain Sciences, 1990, 13, 545-546.	0.7	1
46	Response field biases in parietal, temporal, and frontal lobe visual areas. Behavioral and Brain Sciences, 1990, 13, 546-547.	0.7	1
47	Twisting the world by 90Ű. Behavioral and Brain Sciences, 1990, 13, 547-548.	0.7	12
48	Visual information in the upper and lower visual fields may be processed differently, but how and why remains to be established. Behavioral and Brain Sciences, 1990, 13, 549-550.	0.7	0
49	The ups and downs of visual fields. Behavioral and Brain Sciences, 1990, 13, 550-551.	0.7	0
50	Ecology and functional specialization: The whole is less than the sum of the parts. Behavioral and Brain Sciences, 1990, 13, 551-551.	0.7	0
51	Pigeons, primates, and division of labor in the vertebrate visual system. Behavioral and Brain Sciences, 1990, 13, 551-552.	0.7	0
52	Attention to near and far space: The third dichotomy. Behavioral and Brain Sciences, 1990, 13, 552-553.	0.7	12
53	The role of dorsal/ventral processing dissociation in the economy of the primate brain. Behavioral and Brain Sciences, 1990, 13, 553-554.	0.7	0
54	Why the computations must not be ignored. Behavioral and Brain Sciences, 1990, 13, 554-555.	0.7	0
55	Peripheral lower visual fields: A neglected factor?. Behavioral and Brain Sciences, 1990, 13, 555-555.	0.7	2
56	Properties of neurons in the dorsal visual pathway of the monkey. Behavioral and Brain Sciences, 1990, 13, 555-556.	0.7	0

#	Article	IF	CITATIONS
57	Different regions of space or different spaces altogether: What are the dorsal/ventral systems processing?. Behavioral and Brain Sciences, 1990, 13, 556-557.	0.7	35
58	The primary visual system does not care about Previc's near-far dichotomy. Why not?. Behavioral and Brain Sciences, 1990, 13, 557-558.	0.7	1
59	Only half way up. Behavioral and Brain Sciences, 1990, 13, 558-558.	0.7	1
60	Visual processing in three-dimensional space: Perceptions and misperceptions. Behavioral and Brain Sciences, 1990, 13, 559-575.	0.7	9
61	Functional specialization in the visual system: Retinotopic or body centered?. Behavioral and Brain Sciences, 1990, 13, 548-549.	0.7	1
62	MAPPING OF BRAINSTEM LESIONS BY THE COMBINED USE OF TESTS OF VISUALLY-INDUCED EYE MOVEMENTS. Brain, 1990, 113, 921-935.	7.6	23
63	The conjoint influence of spatial selective attention and motor set on very short latency vers. Neuropsychologia, 1990, 28, 487-497.	1.6	47
64	Projections from the medial agranular cortex to brain stem visuomotor centers in rats. Experimental Brain Research, 1990, 80, 532-44.	1.5	51
65	Afferents of the caudal fastigial nucleus in a New World monkey (Cebus apella). Experimental Brain Research, 1990, 80, 600-8.	1.5	22
66	Supplementary eye field as defined by intracortical microstimulation: Connections in macaques. Journal of Comparative Neurology, 1990, 293, 299-330.	1.6	367
67	Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. Journal of Comparative Neurology, 1990, 296, 462-495.	1.6	627
68	Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. Journal of Comparative Neurology, 1990, 299, 421-445.	1.6	547
69	Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. Journal of Neurophysiology, 1990, 63, 814-831.	1.8	409
70	Preoccipital cortex receives a differential input from the frontal eye field and projects to the pretectal olivary nucleus and other visuomotor-related structures in the rhesus monkey. Visual Neuroscience, 1990, 5, 123-133.	1.0	39
71	Subcortical gating in the human visual system during spatial selective attention. International Journal of Psychophysiology, 1990, 9, 105-120.	1.0	14
72	Disinhibition in the monkey prefrontal cortex, by injecting bicuculline, induces forelimb movements learned in a GO/NO-GO task. Neuroscience Research, 1990, 8, 202-209.	1.9	13
73	The ipsilateral corticocortical connections of area 7 with the frontal lobe in the monkey. Brain Research, 1990, 509, 31-40.	2.2	82
74	Distributed Hierarchical Processing in the Primate Cerebral Cortex. Cerebral Cortex, 1991, 1, 1-47.	2.9	6,701

#	Article	IF	CITATIONS
75	Chapter 6 Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, "prefrontal―and "limbic―functions. Progress in Brain Research, 1991, 85, 119-146.	1.4	1,839
76	The Neuroanatomy and Neurophysiology of Attention. Journal of Child Neurology, 1991, 6, S90-S118.	1.4	125
77	Cortical control of saccades. Neuro-Ophthalmology, 1991, 11, 63-75.	1.0	19
78	Lack of oculomotor response after transcranial magnetic stimulation. Neuro-Ophthalmology, 1991, 11, 199-208.	1.0	8
79	Myelo―and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate <i>Galago</i> and the anthropoid primate <i>Macaca</i> . Journal of Comparative Neurology, 1991, 310, 429-474.	1.6	345
80	Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys. Journal of Comparative Neurology, 1991, 312, 43-67.	1.6	336
81	Frontal eye field lesions impair predictive and visually-guided pursuit eye movements. Experimental Brain Research, 1991, 86, 311-23.	1.5	145
82	Transcranial stimulation of the human frontal eye field by magnetic pulses. Experimental Brain Research, 1991, 86, 219-23.	1.5	91
83	Smooth-Pursuit Eye Movement Representation in the Primate Frontal Eye Field. Cerebral Cortex, 1991, 1, 95-102.	2.9	323
84	Cognitive Microgenesis. Springer Series in Neuropsychology, 1991, , .	0.3	41
85	Chapter 6 Role of the forebrain in oculomotor function. Progress in Brain Research, 1991, 87, 101-107.	1.4	15
86	SACCADIC REACTION TIMES IN PATIENTS WITH FRONTAL AND PARIETAL LESIONS. Brain, 1992, 115, 1359-1386.	7.6	175
87	Eye Movements and Visual Cognition. Springer Series in Neuropsychology, 1992, , .	0.3	62
88	The frontal eye field provides the goal of saccadic eye movement. Experimental Brain Research, 1992, 89, 300-10.	1.5	50
89	Visuomotor interactions in responses of neurons in the middle and lateral suprasylvian cortices of the behaving cat. Experimental Brain Research, 1992, 88, 15-32.	1.5	31
90	Cortico-cortical connections and cytoarchitectonics of the primate vestibular cortex: A study in squirrel monkeys (Saimiri sciureus). Journal of Comparative Neurology, 1992, 326, 375-401.	1.6	211
91	Organization of the extraocular and preganglionic motoneurons supplying the orbit in the lesser galago. The Anatomical Record, 1993, 237, 89-103.	1.8	23
92	Topography of projections to the frontal lobe from the macaque frontal eye fields. Journal of Comparative Neurology, 1993, 330, 286-301.	1.6	102

#	Article	IF	CITATIONS
93	Cortical connections of inferior temporal area TEO in macaque monkeys. Journal of Comparative Neurology, 1993, 334, 125-150.	1.6	286
94	The dorsomedial frontal cortex of the rhesus monkey: topographic representation of saccades evoked by electrical stimulation. Experimental Brain Research, 1993, 96, 430-42.	1.5	106
95	Neural basis of saccade target selection in frontal eye field during visual search. Nature, 1993, 366, 467-469.	27.8	450
96	Ipsiversive ictal eye and head deviation in a child with cerebral dysgenesis. Journal of Epilepsy, 1993, 6, 277-281.	0.4	1
97	Lesions of the frontal eye field impair pursuit eye movements, but preserve the predictions driving them. Behavioural Brain Research, 1993, 53, 91-104.	2.2	76
98	Topography of supplementary eye field afferents to frontal eye field in macaque: Implications for mapping between saccade coordinate systems. Visual Neuroscience, 1993, 10, 385-393.	1.0	89
99	Epileptic eye deviation. Neuro-Ophthalmology, 1993, 13, 39-44.	1.0	3
100	Cortical afferents of visual area MT in the <i>Cebus</i> monkey: Possible homologies between New and old World monkeys. Visual Neuroscience, 1993, 10, 827-855.	1.0	107
101	Smooth pursuit eye movement deficits after pontine nuclei lesions in humans Journal of Neurology, Neurosurgery and Psychiatry, 1993, 56, 799-807.	1.9	34
102	Chapter 12 Multiple visual areas in the posterior parietal cortex of primates. Progress in Brain Research, 1993, 95, 123-137.	1.4	87
103	The relationship of monkey frontal eye field activity to saccade dynamics. Journal of Neurophysiology, 1993, 69, 1880-1889.	1.8	59
104	Microstimulation in visual area MT: effects of varying pulse amplitude and frequency. Journal of Neuroscience, 1993, 13, 1719-1729.	3.6	133
105	Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic "scotomas". Journal of Neuroscience, 1993, 13, 1479-1497.	3.6	545
106	Frontal eye field activity preceding aurally guided saccades. Journal of Neurophysiology, 1994, 71, 1250-1253.	1.8	108
107	Physiological correlate of fixation disengagement in the primate's frontal eye field. Journal of Neurophysiology, 1994, 72, 2532-2537.	1.8	159
108	Initial tracking conditions modulate the gain of visuo-motor transmission for smooth pursuit eye movements in monkeys. Visual Neuroscience, 1994, 11, 411-424.	1.0	120
109	Transfer of short-term adaptation in human saccadic eye movements. Experimental Brain Research, 1994, 100, 293-306.	1.5	153
110	Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Experimental Brain Research, 1994, 100, 181-6.	1.5	263

#	Article	IF	CITATIONS
111	Stimulation-evoked saccades from the dorsomedial frontal cortex of the rhesus monkey following lesions of the frontal eye fields and superior colliculus. Experimental Brain Research, 1994, 98, 179-90.	1.5	50
112	Connections of Inferior Temporal Areas TEO and TE with Parietal and Frontal Cortex in Macaque Monkeys. Cerebral Cortex, 1994, 4, 470-483.	2.9	549
113	The presaccadic cortical negativity prior to self-paced saccades with and without visual guidance. Electroencephalography and Clinical Neurophysiology, 1994, 91, 219-228.	0.3	33
114	Ipsilateral connections of the anterior cingulate cortex with the frontal and medial temporal cortices in the macaque monkey. Neuroscience Research, 1994, 21, 19-39.	1.9	85
115	Effect of Aging on Smooth Pursuit Eye Movement. Acta Oto-Laryngologica, 1994, 114, 131-134.	0.9	21
116	An effect of structured backgrounds on smooth pursuit eye movements in patients with cerebral lesions. Brain, 1995, 118, 37-48.	7.6	17
117	Topography of projections to posterior cortical areas from the macaque frontal eye fields. Journal of Comparative Neurology, 1995, 353, 291-305.	1.6	336
118	Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: Evidence for subdivisions of superior temporal polysensory cortex. Journal of Comparative Neurology, 1995, 360, 513-535.	1.6	101
119	Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. Journal of Comparative Neurology, 1995, 363, 642-664.	1.6	642
120	Relationship of presaccadic activity in frontal eye field and supplementary eye field to saccade initiation in macaque: Poisson spike train analysis. Experimental Brain Research, 1995, 103, 85-96.	1.5	200
121	Single neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements. Experimental Brain Research, 1995, 104, 357-61.	1.5	81
122	Topographic Distribution of Fixation-related Units in the Dorsomedial Frontal Cortex of the Rhesus Monkey. European Journal of Neuroscience, 1995, 7, 1005-1011.	2.6	52
123	Attention and target selection for smooth pursuit eye movements. Journal of Neuroscience, 1995, 15, 7472-7484.	3.6	140
124	Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. Journal of Neuroscience, 1995, 15, 4464-4487.	3.6	616
125	Comparison of the smooth eye tracking disorder of schizophrenics with that of nonhuman primates with specific brain lesions. International Journal of Neuroscience, 1995, 80, 117-151.	1.6	36
126	Neural Basis of Saccade Target Selection. Reviews in the Neurosciences, 1995, 6, 63-85.	2.9	130
127	A Comparison of the Ipsilateral Cortical Projections to the Dorsal and Ventral Subdivisions of the Macaque Premotor Cortex. Somatosensory & Motor Research, 1995, 12, 359-378.	0.9	110
128	Antisaccades and smooth pursuit eye movements in schizophrenia. Biological Psychiatry, 1995, 37, 394-401.	1.3	173

		CITATION REPORT		
#	Article		IF	CITATIONS
129	The dorsomedial frontal cortex: eye and forelimb fields. Behavioural Brain Research, 199	5, 67, 147-163.	2.2	36
130	Cortical Activation in the Human Brain during Lateral Saccades Using EPISTAR Function Resonance Imaging. NeuroImage, 1996, 3, 53-62.	al Magnetic	4.2	91
131	The role of inhibition in the hierarchical gating of executed and imagined movements. C Research, 1996, 3, 101-113.	ognitive Brain	3.0	73
132	Functional streams in occipito-frontal connections in the monkey. Behavioural Brain Res 76, 89-97.	earch, 1996,	2.2	208
133	The microscopic anatomy and physiology of the mammalian saccadic system. Progress 1996, 50, 133-254.	in Neurobiology,	5.7	327
134	New concepts of the supplementary motor area. Current Opinion in Neurobiology, 1990	6, 6, 782-787.	4.2	204
135	Perceptual and motor processing stages identified in the activity of macaque frontal eye neurons during visual search. Journal of Neurophysiology, 1996, 76, 4040-4055.	e field	1.8	583
136	Functionally defined smooth and saccadic eye movement subregions in the frontal eye monkeys. Journal of Neurophysiology, 1996, 76, 2740-2753.	field of Cebus	1.8	96
137	Abnormal saccadic distractibility in patients with schizophrenia: a ^{99m} Tc-F study. Psychological Medicine, 1996, 26, 265-277.	IMPAO SPET	4.5	57
138	Compensatory saccades made to remembered targets following orbital displacement by stimulating the dorsomedial frontal cortex or frontal eye fields of primates. Brain Resear 727, 221-224.	y electrically rch, 1996,	2.2	10
139	Electrical stimulation of neural tissue to evoke behavioral responses. Journal of Neurosc Methods, 1996, 65, 1-17.	ience	2.5	426
140	Movement representation in the dorsal and ventral premotor areas of owl monkeys: A microstimulation study. , 1996, 371, 649-676.			217
141	Localization of grasp representations in humans by PET: 1. Observation versus executio Brain Research, 1996, 111, 246-52.	n. Experimental	1.5	844
142	Timing and amplitude of saccades during predictive saccadic tracking in schizophrenia. Psychophysiology, 1996, 33, 93-101.		2.4	29
143	Directional defects in pursuit and motion perception in humans with unilateral cerebral Brain, 1996, 119, 1535-1550.	lesions.	7.6	59
144	The effect of a moving distractor on the initiation of smooth-pursuit eye movements. Vi Neuroscience, 1997, 14, 323-338.	sual	1.0	52
145	Cerebellar Output Channels. International Review of Neurobiology, 1997, 41, 61-82.		2.0	218
146	Neuronal activity in the frontal eye field of the monkey is modulated while attention is f a stimulus in the peripheral visual field, irrespective of eye movement. Neuroscience Res 291-298.	ocused on to earch, 1997, 28,	1.9	60

#	Article	IF	CITATIONS
147	Chapter 32 Dentate output channels: motor and cognitive components. Progress in Brain Research, 1997, 114, 553-566.	1.4	138
148	Rapid-rate transcranial magnetic stimulation of human frontal cortex can evoke saccades under facilitating conditions. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1997, 105, 246-254.	1.4	10
149	The effects of combined superior temporal polysensory area and frontal eye field lesions on eye movements in the macaque monkey. Behavioural Brain Research, 1997, 84, 31-46.	2.2	13
150	Spatial cortical patterns of metabolic activity in monkeys performing a visually guided reaching task with one forelimb. Neuroscience, 1997, 76, 1007-1034.	2.3	48
151	Brain activities during visuospatial attention revealed by functional magnetic resonance imaging (fMRI). Japanese Journal of Physiological Psychology and Psychophysiology, 1997, 15, 67-75.	0.1	3
152	Multiple Nonprimary Motor Areas in the Human Cortex. Journal of Neurophysiology, 1997, 77, 2164-2174.	1.8	451
153	Monkey Posterior Parietal Cortex Neurons Antidromically Activated From Superior Colliculus. Journal of Neurophysiology, 1997, 78, 3493-3497.	1.8	172
154	Suppression of Task-Related Saccades by Electrical Stimulation in the Primate's Frontal Eye Field. Journal of Neurophysiology, 1997, 77, 2252-2267.	1.8	121
155	Subcortical Input to the Smooth and Saccadic Eye Movement Subregions of the Frontal Eye Field inCebusMonkey. Journal of Neuroscience, 1997, 17, 9233-9247.	3.6	65
156	Spatial Processing in the Monkey Frontal Eye Field. I. Predictive Visual Responses. Journal of Neurophysiology, 1997, 78, 1373-1383.	1.8	386
157	Response Properties of Saccade-Related Burst Neurons in the Central Mesencephalic Reticular Formation. Journal of Neurophysiology, 1997, 78, 2164-2175.	1.8	49
158	Reversible inactivation of macaque frontal eye field. Experimental Brain Research, 1997, 116, 229-249.	1.5	183
159	Electrically evoked saccades from the dorsomedial frontal cortex and frontal eye fields: a parametric evaluation reveals differences between areas. Experimental Brain Research, 1997, 117, 369-378.	1.5	62
160	The activation pattern in normal humans during suppression, imagination and performance of saccadic eye movements. Acta Physiologica Scandinavica, 1997, 161, 419-434.	2.2	64
161	Saccades induced electrically from the dorsomedial frontal cortex: evidence for a head-centered representation. Brain Research, 1998, 795, 287-291.	2.2	21
162	The organization of the cortical motor system: new concepts. Electroencephalography and Clinical Neurophysiology, 1998, 106, 283-296.	0.3	1,136
163	Neural mechanisms of selection and control of visually guided eye movements. Neural Networks, 1998, 11, 1241-1251.	5.9	66
164	Complex dendritic fields of pyramidal cells in the frontal eye field of the macaque monkey. NeuroReport, 1998, 9, 127-131.	1.2	55

#	Article	IF	CITATIONS
165	Activity of neurons in area 6 of the cat during fixation and eye movements. Visual Neuroscience, 1998, 15, 123-140.	1.0	14
166	The neuropsychology of 3-D space Psychological Bulletin, 1998, 124, 123-164.	6.1	553
167	Intracortical Microstimulation of Bilateral Frontal Eye Field. Journal of Neurophysiology, 1998, 79, 2240-2244.	1.8	17
168	Deficits in Smooth-Pursuit Eye Movements After Muscimol Inactivation Within the Primate's Frontal Eye Field. Journal of Neurophysiology, 1998, 80, 458-464.	1.8	85
169	Matching Patterns of Activity in Primate Prefrontal Area 8a and Parietal Area 7ip Neurons During a Spatial Working MemoryTask. Journal of Neurophysiology, 1998, 79, 2919-2940.	1.8	635
170	Monkey Prefrontal Neuronal Activity Coding the Forthcoming Saccade in an Oculomotor Delayed Matching-to-Sample Task. Journal of Neurophysiology, 1998, 79, 322-333.	1.8	77
171	Neuronal Responses Related to Smooth Pursuit Eye Movements in the Periarcuate Cortical Area of Monkeys. Journal of Neurophysiology, 1998, 80, 28-47.	1.8	140
172	Task-Dependent Selectivity of Movement-Related Neuronal Activity in the Primate Prefrontal Cortex. Journal of Neurophysiology, 1998, 80, 3392-3397.	1.8	136
173	Visualization of the Information Flow Through Human Oculomotor Cortical Regions by Transcranial Magnetic Stimulation. Journal of Neurophysiology, 1998, 80, 936-946.	1.8	86
174	Electrical Microstimulation Distinguishes Distinct Saccade-Related Areas in the Posterior Parietal Cortex. Journal of Neurophysiology, 1998, 80, 1713-1735.	1.8	191
175	Dorsal cortical regions subserving visually guided saccades in humans: an fMRI study. Cerebral Cortex, 1998, 8, 40-47.	2.9	332
176	Interaction of the Two Frontal Eye Fields Before Saccade Onset. Journal of Neurophysiology, 1998, 79, 64-72.	1.8	67
177	Characteristics of Simian Adaptation Fields Produced by Behavioral Changes in Saccade Size and Direction. Journal of Neurophysiology, 1999, 81, 2798-2813.	1.8	107
178	Properties of Delay-Period Neuronal Activity in the Monkey Dorsolateral Prefrontal Cortex During a Spatial Delayed Matching-to-Sample Task. Journal of Neurophysiology, 1999, 82, 2070-2080.	1.8	83
179	Errors of Memory-Guided Saccades in Humans With Lesions of the Frontal Eye Field and the Dorsolateral Prefrontal Cortex. Journal of Neurophysiology, 1999, 82, 1086-1090.	1.8	60
180	Effect of Reversible Inactivation of Macaque Lateral Intraparietal Area on Visual and Memory Saccades. Journal of Neurophysiology, 1999, 81, 1827-1838.	1.8	158
181	Muscimol-Induced Inactivation of Monkey Frontal Eye Field: Effects on Visually and Memory-Guided Saccades. Journal of Neurophysiology, 1999, 81, 2191-2214.	1.8	221
182	Quantitative Analysis of Substantia Nigra Pars Reticulata Activity During a Visually Guided Saccade Task. Journal of Neurophysiology, 1999, 82, 3458-3475.	1.8	79

#	Article	IF	CITATIONS
183	Ocular microtremor in patients with idiopathic Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 1999, 66, 528-531.	1.9	22
184	NEURAL SELECTION AND CONTROL OF VISUALLY GUIDED EYE MOVEMENTS. Annual Review of Neuroscience, 1999, 22, 241-259.	10.7	513
185	Behavioural conditions affecting saccadic eye movements elicited electrically from the frontal lobes of primates. European Journal of Neuroscience, 1999, 11, 2431-2443.	2.6	39
186	Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nature Neuroscience, 1999, 2, 176-185.	14.8	925
187	Effects of similarity and history on neural mechanisms of visual selection. Nature Neuroscience, 1999, 2, 549-554.	14.8	267
188	MR-Eyetracker: a new method for eye movement recording in functional magnetic resonance imaging. Experimental Brain Research, 1999, 126, 443-449.	1.5	65
189	Saccades to mentally rotated targets. Experimental Brain Research, 1999, 126, 563-577.	1.5	12
190	Cortical networks subserving pursuit and saccadic eye movements in humans: An FMRI study. Human Brain Mapping, 1999, 8, 209-225.	3.6	239
191	Effect of Expected Reward Magnitude on the Response of Neurons in the Dorsolateral Prefrontal Cortex of the Macaque. Neuron, 1999, 24, 415-425.	8.1	425
192	Temporal isolation of the neural correlates of spatial mnemonic processing with fMRI. Cognitive Brain Research, 1999, 7, 255-268.	3.0	126
193	14C-Deoxyglucose mapping of the monkey brain during reaching to visual targets. Progress in Neurobiology, 1999, 58, 473-540.	5.7	16
194	Dependence of Impaired Eye Tracking on Deficient Velocity Discrimination in Schizophrenia. Archives of General Psychiatry, 1999, 56, 155.	12.3	93
195	A selective imaging of tinnitus. NeuroReport, 1999, 10, 1-5.	1.2	401
196	Visual activity in the human frontal eye field. NeuroReport, 1999, 10, 925-930.	1.2	73
197	Activity of prefrontal neurons during location and color delayed matching tasks. NeuroReport, 1999, 10, 1315-1322.	1.2	24
198	Location of the human frontal eye field as defined by electrical cortical stimulation. NeuroReport, 2000, 11, 1907-1913.	1.2	117
199	Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. Journal of Comparative Neurology, 2000, 428, 112-137.	1.6	750
200	Vector Subtraction Implemented Neurally: A Neurocomputational Model of Some Sequential Cognitive and Conscious Processes. Consciousness and Cognition, 2000, 9, 117-144.	1.5	5

#	Article	IF	CITATIONS
201	Parallel visuospatial and audiospatial working memory processes in the monkey dorsolateral prefrontal cortex. Nature Neuroscience, 2000, 3, 1075-1076.	14.8	81
202	Representation of a perceptual decision in developing oculomotor commands. Nature, 2000, 404, 390-394.	27.8	539
203	A Drosophila model of Parkinson's disease. Nature, 2000, 404, 394-398.	27.8	1,927
204	Functional adaptation of reactive saccades in humans: a PET study. Experimental Brain Research, 2000, 132, 243-259.	1.5	76
205	Neural correlates of reafference: evoked brain activity during motion perception and saccadic eye movements. Experimental Brain Research, 2000, 133, 312-320.	1.5	8
206	Neural control of behavior: countermanding eye movements. Psychological Research, 2000, 63, 299-307.	1.7	31
207	Functional neuroanatomy of the primate isocortical motor system. Anatomy and Embryology, 2000, 202, 443-474.	1.5	439
208	Role of the Basal Ganglia in the Control of Purposive Saccadic Eye Movements. Physiological Reviews, 2000, 80, 953-978.	28.8	1,061
209	Supplementary Eye Field: Representation of Saccades and Relationship Between Neural Response Fields and Elicited Eye Movements. Journal of Neurophysiology, 2000, 84, 2605-2621.	1.8	50
210	Activity of Smooth Pursuit-Related Neurons in the Monkey Periarcuate Cortex During Pursuit and Passive Whole-Body Rotation. Journal of Neurophysiology, 2000, 83, 563-587.	1.8	103
211	Composition and Topographic Organization of Signals Sent From the Frontal Eye Field to the Superior Colliculus. Journal of Neurophysiology, 2000, 83, 1979-2001.	1.8	321
212	Rostrocaudal Distinction of the Dorsal Premotor Area Based on Oculomotor Involvement. Journal of Neurophysiology, 2000, 83, 1764-1769.	1.8	98
213	Neuronal Activity in the Primate Prefrontal Cortex in the Process of Motor Selection Based on Two Behavioral Rules. Journal of Neurophysiology, 2000, 83, 2355-2373.	1.8	187
214	Electrical Stimulation of the Frontal Eye Field in a Monkey Produces Combined Eye and Head Movements. Journal of Neurophysiology, 2000, 84, 1103-1106.	1.8	66
215	Mental Maze Solving. Journal of Cognitive Neuroscience, 2000, 12, 813-827.	2.3	35
216	Human Cortical Areas Underlying the Perception of Optic Flow: Brain Imaging Studies. International Review of Neurobiology, 2000, 44, 269-292.	2.0	91
217	Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Research Bulletin, 2000, 52, 319-330.	3.0	630
218	Eye fields in the frontal lobes of primates. Brain Research Reviews, 2000, 32, 413-448.	9.0	262

#	Article	IF	CITATIONS
219	Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research Reviews, 2000, 31, 236-250.	9.0	1,677
220	Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cognitive Brain Research, 2000, 10, 51-66.	3.0	266
221	Replication and further studies of neural mechanisms of spatial mnemonic processing in humans. Cognitive Brain Research, 2000, 9, 1-17.	3.0	44
222	The effects of anterior arcuate and dorsomedial frontal cortex lesions on visually guided eye movements in the rhesus monkey:. Vision Research, 2000, 40, 1609-1626.	1.4	24
223	Inhibition of saccade return (ISR): spatio-temporal properties of saccade programming. Vision Research, 2000, 40, 3415-3426.	1.4	67
224	Antecedents and correlates of visual detection and awareness in macaque prefrontal cortex. Vision Research, 2000, 40, 1523-1538.	1.4	83
225	Saccadic eye movement abnormalities in relatives of patients with schizophrenia. Schizophrenia Research, 2000, 45, 235-244.	2.0	63
226	The Emergence of Modern Neuroscience: Some Implications for Neurology and Psychiatry. Annual Review of Neuroscience, 2000, 23, 343-391.	10.7	140
227	The effects of dopamine and its antagonists on directional delay-period activity of prefrontal neurons in monkeys during an oculomotor delayed-response task. Neuroscience Research, 2001, 41, 115-128.	1.9	103
228	A Parametric fMRI Study of Overt and Covert Shifts of Visuospatial Attention. NeuroImage, 2001, 14, 310-321.	4.2	324
229	Cortical and subcortical contributions to coordinated eye and head movements. Vision Research, 2001, 41, 3295-3305.	1.4	46
230	Prefrontal Cortical Representation of Visuospatial Working Memory in Monkeys Examined by Local Inactivation With Muscimol. Journal of Neurophysiology, 2001, 86, 2041-2053.	1.8	81
231	Interaction of the Frontal Eye Field and Superior Colliculus for Saccade Generation. Journal of Neurophysiology, 2001, 85, 804-815.	1.8	182
232	Localization of human frontal eye fields: anatomical and functional findings of functional magnetic resonance imaging and intracerebral electrical stimulation. Journal of Neurosurgery, 2001, 95, 804-815.	1.6	148
233	On the gap effect for saccades evoked by electrical microstimulation of frontal eye fields in monkeys. Experimental Brain Research, 2001, 138, 1-7.	1.5	45
234	Double-pulse transcranial magnetic stimulation over the frontal eye field facilitates triggering of memory-guided saccades. European Journal of Neuroscience, 2001, 14, 571-575.	2.6	31
235	Continuous processing in macaque frontal cortex during visual search. Neuropsychologia, 2001, 39, 972-982.	1.6	66
236	Neural mechanisms of bottom-up selection during visual search. , 0, , .		2

#	Article	IF	CITATIONS
237	Control of eye movements and spatial attention. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1273-1276.	7.1	538
238	Plenary Papers. Neuro-Ophthalmology, 2001, 25, 3-68.	1.0	0
239	The neural selection and control of saccades by the frontal eye field. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1073-1082.	4.0	217
240	Intraoperative frontal eye field stimulation elicits ocular deviation and saccade suppression. NeuroReport, 2002, 13, 1359-1364.	1.2	46
241	Pursuit and Saccadic Eye Movement Subregions in Human Frontal Eye Field: A High-resolution fMRI Investigation. Cerebral Cortex, 2002, 12, 107-115.	2.9	174
242	Functional MRI of Macaque Monkeys Performing a Cognitive Set-Shifting Task. Science, 2002, 295, 1532-1536.	12.6	264
243	Transcranial Magnetic Stimulation of the Human Frontal Eye Field: Effects on Visual Perception and Attention. Journal of Cognitive Neuroscience, 2002, 14, 1109-1120.	2.3	191
244	Sensory & motor. NeuroImage, 2002, 16, 1757-2054.	4.2	0
245	Dynamics of Depolarization and Hyperpolarization in the Frontal Cortex and Saccade Goal. Science, 2002, 295, 862-865.	12.6	134
246	Complex Movements Evoked by Microstimulation of Precentral Cortex. Neuron, 2002, 34, 841-851.	8.1	817
247	Monitoring and Control of Action by the Frontal Lobes. Neuron, 2002, 36, 309-322.	8.1	255
248	Neuronal activity representing visuospatial mnemonic processes associated with target selection in the monkey dorsolateral prefrontal cortex. Neuroscience Research, 2002, 43, 9-22.	1.9	32
249	Corticopontocerebellar pathway from the prearcuate region to hemispheric lobule VII of the cerebellum: an anterograde and retrograde tracing study in the monkey. Neuroscience Letters, 2002, 322, 173-176.	2.1	23
250	Influence of Reward Expectation on Visuospatial Processing in Macaque Lateral Prefrontal Cortex. Journal of Neurophysiology, 2002, 87, 1488-1498.	1.8	210
251	In Multiple-Step Gaze Shifts: Omnipause (OPNs) and Collicular Fixation Neurons Encode Gaze Position Error; OPNs Gate Saccades. Journal of Neurophysiology, 2002, 88, 1726-1742.	1.8	44
252	Comparison of Cortico-Cortical and Cortico-Collicular Signals for the Generation of Saccadic Eye Movements. Journal of Neurophysiology, 2002, 87, 845-858.	1.8	142
253	Visual and Anticipatory Bias in Three Cortical Eye Fields of the Monkey during an Adaptive Decision-Making Task. Journal of Neuroscience, 2002, 22, 5081-5090.	3.6	191
254	The effect of spatial and temporal information on saccades and neural activity in oculomotor structures. Brain, 2002, 125, 123-139.	7.6	67

#	Article	IF	CITATIONS
255	Coordinated control of eye and hand movements in dynamic reaching. Human Movement Science, 2002, 21, 37-64.	1.4	76
256	Neural correlates of decisions. Current Opinion in Neurobiology, 2002, 12, 141-148.	4.2	125
257	Neuronal control and monitoring of initiation of movements. Muscle and Nerve, 2002, 26, 326-339.	2.2	41
258	Ocular fixation and visual activity in the monkey lateral intraparietal area. Experimental Brain Research, 2002, 142, 512-528.	1.5	44
259	Predictive responses of periarcuate pursuit neurons to visual target motion. Experimental Brain Research, 2002, 145, 104-120.	1.5	129
260	Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. European Journal of Neuroscience, 2002, 16, 291-310.	2.6	791
261	Probing cortical function with electrical stimulation. Nature Neuroscience, 2002, 5, 921-921.	14.8	13
262	Serial linkage of target selection for orienting and tracking eye movements. Nature Neuroscience, 2002, 5, 892-899.	14.8	46
263	Direction of saccadic and smooth eye movements induced by electrical stimulation of the human frontal eye field: effect of orbital position. Experimental Brain Research, 2003, 150, 174-183.	1.5	44
264	The human precentral sulcus: chemoarchitecture of a region corresponding to the frontal eye fields. Brain Research, 2003, 972, 16-30.	2.2	53
265	Language evolution: neural homologies and neuroinformaticsâ~†. Neural Networks, 2003, 16, 1237-1260.	5.9	84
266	Prefrontal and agranular cingulate projections to the dorsal premotor areas F2 and F7 in the macaque monkey. European Journal of Neuroscience, 2003, 17, 559-578.	2.6	171
267	Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature, 2003, 421, 373-379.	27.8	493
268	Selective gating of visual signals by microstimulation of frontal cortex. Nature, 2003, 421, 370-373.	27.8	1,049
269	Hide, remember, seek. Nature Neuroscience, 2003, 6, 11-12.	14.8	3
270	Estimating invisible target speed from neuronal activity in monkey frontal eye field. Nature Neuroscience, 2003, 6, 66-74.	14.8	93
271	Functional MRI of brain activation evoked by intentional eye blinking. NeuroImage, 2003, 18, 749-759.	4.2	33
272	Human precentral cortical activation patterns during saccade tasks: an fMRI comparison with activation during intentional eyeblink tasks. NeuroImage, 2003, 19, 1260-1272.	4.2	26

	Сітатіс	n Report	
#	Article	IF	CITATIONS
273	Dynamics of Population Code for Working Memory in the Prefrontal Cortex. Neuron, 2003, 40, 177-188.	8.1	280
274	Visuomotor Origins of Covert Spatial Attention. Neuron, 2003, 40, 671-683.	8.1	341
275	The topography of metabolic deficits in posterior cortical atrophy (the visual variant of Alzheimer's) Tj ETQq	10 0 0 rgBT /Ove	erlock 10 Tf 5 192
276	Success and Failure Suppressing Reflexive Behavior. Journal of Cognitive Neuroscience, 2003, 15, 409-418.	2.3	190
277	Neural Control of Eye Movements. IETE Journal of Research, 2003, 49, 135-143.	2.6	0
278	Involvement of the Dorsolateral Prefrontal Cortex of Monkeys in Visuospatial Target Selection. Journal of Neurophysiology, 2003, 89, 587-599.	1.8	49
279	Effects of Gaze Shifts on Maintenance of Spatial Memory in Macaque Frontal Eye Field. Journal of Neuroscience, 2003, 23, 5446-5454.	3.6	40
280	Effects of Spontaneous Eye Movements on Spatial Memory in Macaque Periarcuate Cortex. Journal of Neuroscience, 2003, 23, 11392-11401.	3.6	10
281	Functional Organization of Human Intraparietal and Frontal Cortex for Attending, Looking, and Pointing. Journal of Neuroscience, 2003, 23, 4689-4699.	3.6	584
282	Contrasting Neuronal Activity in the Supplementary and Frontal Eye Fields During Temporal Organization of Multiple Saccades. Journal of Neurophysiology, 2003, 90, 3054-3065.	1.8	61
283	Suppression of Visually and Memory-Guided Saccades Induced by Electrical Stimulation of the Monkey Frontal Eye Field. I. Suppression of Ipsilateral Saccades. Journal of Neurophysiology, 2004, 92, 2248-2260.	1.8	31
284	Suppression of Visually and Memory-Guided Saccades Induced by Electrical Stimulation of the Monkey Frontal Eye Field. II. Suppression of Bilateral Saccades. Journal of Neurophysiology, 2004, 92, 2261-2273.	1.8	42
285	Using saccades as a research tool in the clinical neurosciences. Brain, 2004, 127, 460-477.	7.6	319
286	MOTOR CORTEX. , 2004, , 973-996.		20
287	Neuronal Representation of Response-Outcome in the Primate Prefrontal Cortex. Cerebral Cortex, 2004, 14, 47-55.	2.9	47
288	Sensorimotor Integration in the Precentral Gyrus: Polysensory Neurons and Defensive Movements. Journal of Neurophysiology, 2004, 91, 1648-1660.	1.8	158
289	Human eye fields in the frontal lobe as studied by epicortical recording of movementâ€related cortical potentials. Brain, 2004, 127, 873-887.	7.6	43
290	Modification of Saccades Evoked by Stimulation of Frontal Eye Field during Invisible Target Tracking. Journal of Neuroscience, 2004, 24, 3260-3267.	3.6	44

#	Article	IF	CITATIONS
291	Oculomotor Areas of the Primate Frontal Lobes: A Transneuronal Transfer of Rabies Virus and [14C]-2-Deoxyglucose Functional Imaging Study. Journal of Neuroscience, 2004, 24, 5726-5740.	3.6	88
292	Dissociation of spatial attention and saccade preparation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15541-15544.	7.1	224
293	Timing of Target Discrimination in Human Frontal Eye Fields. Journal of Cognitive Neuroscience, 2004, 16, 1060-1067.	2.3	151
294	Population Vector Analysis of Primate Prefrontal Activity during Spatial Working Memory. Cerebral Cortex, 2004, 14, 1328-1339.	2.9	73
295	Prefrontal cortex and decision making in a mixed-strategy game. Nature Neuroscience, 2004, 7, 404-410.	14.8	593
296	Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells. Journal of Comparative Neurology, 2004, 479, 360-373.	1.6	169
297	Behavioural state affects saccades elicited electrically from neocortex. Neuroscience and Biobehavioral Reviews, 2004, 28, 13-25.	6.1	14
298	How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Networks, 2004, 17, 471-510.	5.9	247
299	On Building a Bridge Between Brain and Behavior. Annual Review of Psychology, 2004, 55, 23-50.	17.7	166
300	The Microstructural Border Between the Motor and the Cognitive Domain in the Human Cerebral Cortex. Advances in Anatomy, Embryology and Cell Biology, 2004, 174, I-VIII, 1-89.	1.6	136
301	Cognitive neural prosthetics. Trends in Cognitive Sciences, 2004, 8, 486-493.	7.8	105
302	Prefrontal Neurons Coding Suppression of Specific Saccades. Neuron, 2004, 43, 415-425.	8.1	82
303	Eyelid movements in health and disease. The supranuclear impairment of the palpebral motility. Neurophysiologie Clinique, 2004, 34, 3-15.	2.2	83
304	Vestibular projection to the periarcuate cortex in the monkey. Neuroscience Research, 2004, 49, 55-68.	1.9	45
305	Functional Magnetic Resonance Imaging of Macaque Monkeys Performing Visually Guided Saccade Tasks. Neuron, 2004, 41, 795-807.	8.1	246
306	Mapping From Motor Cortex to Biceps and Triceps Altered By Elbow Angle. Journal of Neurophysiology, 2004, 92, 395-407.	1.8	49
307	Microstimulation of the Frontal Eye Field and Its Effects on Covert Spatial Attention. Journal of Neurophysiology, 2004, 91, 152-162.	1.8	427
308	Area-Selective Neuronal Activity in the Dorsolateral Prefrontal Cortex for Information Retrieval and Action Planning. Journal of Neurophysiology, 2004, 91, 2707-2722.	1.8	103

#	Article	IF	CITATIONS
309	Arm Movements Evoked by Electrical Stimulation in the Motor Cortex of Monkeys. Journal of Neurophysiology, 2005, 94, 4209-4223.	1.8	156
310	Neuronal Activity Representing Temporal Prediction of Reward in the Primate Prefrontal Cortex. Journal of Neurophysiology, 2005, 93, 3687-3692.	1.8	59
311	Vestibular Cortical Area in the Periarcuate Cortex. Annals of the New York Academy of Sciences, 2005, 1039, 111-123.	3.8	10
312	Initiation and Suppression of Saccades by the Frontal Eye Field in the Monkey. Annals of the New York Academy of Sciences, 2005, 1039, 220-231.	3.8	5
313	Why your "head is in the clouds―during thinking: The relationship between cognition and upper space. Acta Psychologica, 2005, 118, 7-24.	1.5	24
314	Epilepsy and Mortality in Africa: A Review of the Literature. Epilepsia, 2005, 46, 33-35.	5.1	90
315	Orofacial somatomotor responses in the macaque monkey homologue of Broca's area. Nature, 2005, 435, 1235-1238.	27.8	356
316	Functional interactions between oculomotor regions during prosaccades and antisaccades. Human Brain Mapping, 2005, 26, 119-127.	3.6	35
317	Visual and vergence eye movement-related responses of pursuit neurons in the caudal frontal eye fields to motion-in-depth stimuli. Experimental Brain Research, 2005, 164, 92-108.	1.5	35
318	Cortical afferents to the smooth-pursuit region of the macaque monkey's frontal eye field. Experimental Brain Research, 2005, 165, 179-192.	1.5	55
319	Methods for functional magnetic resonance imaging in normal and lesioned behaving monkeys. Journal of Neuroscience Methods, 2005, 143, 179-195.	2.5	31
320	Chronometry of Visual Responses in Frontal Eye Field, Supplementary Eye Field, and Anterior Cingulate Cortex. Journal of Neurophysiology, 2005, 94, 2086-2092.	1.8	70
321	Discharge Properties of MST Neurons That Project to the Frontal Pursuit Area in Macaque Monkeys. Journal of Neurophysiology, 2005, 94, 1084-1090.	1.8	27
322	Distributed Population Mechanism for the 3-D Oculomotor Reference Frame Transformation. Journal of Neurophysiology, 2005, 93, 1742-1761.	1.8	50
323	Saccade–Vergence Interactions in Macaques. II. Vergence Enhancement as the Product of a Local Feedback Vergence Motor Error and a Weighted Saccadic Burst. Journal of Neurophysiology, 2005, 94, 2312-2330.	1.8	46
325	Context-Dependent Stimulation Effects on Saccade Initiation in the Presupplementary Motor Area of the Monkey. Journal of Neurophysiology, 2005, 93, 3016-3022.	1.8	19
326	Context-dependent Representation of Response-outcome in Monkey Prefrontal Neurons. Cerebral Cortex, 2005, 15, 888-898.	2.9	27
327	Representation of Immediate and Final Behavioral Goals in the Monkey Prefrontal Cortex during an Instructed Delay Period. Cerebral Cortex, 2005, 15, 1535-1546.	2.9	109

#	Article	IF	CITATIONS
328	Microstimulation of the Dorsolateral Prefrontal Cortex Biases Saccade Target Selection. Journal of Cognitive Neuroscience, 2005, 17, 893-904.	2.3	45
329	Neuronal Basis of Covert Spatial Attention in the Frontal Eye Field. Journal of Neuroscience, 2005, 25, 9479-9487.	3.6	354
330	Frontal cortical areas of the monkey brain engaged in reaching behavior: A 14C-deoxyglucose imaging study. NeuroImage, 2005, 27, 442-464.	4.2	16
331	Effects of electrical microstimulation in monkey frontal eye field on saccades to remembered targets. Vision Research, 2005, 45, 3414-3429.	1.4	22
332	Lateral prefrontal cortex: architectonic and functional organization. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 781-795.	4.0	1,000
333	Neural circuitry of judgment and decision mechanisms. Brain Research Reviews, 2005, 48, 509-526.	9.0	76
334	THE ORGANIZATION OF BEHAVIORAL REPERTOIRE IN MOTOR CORTEX. Annual Review of Neuroscience, 2006, 29, 105-134.	10.7	312
335	Organization of frontoparietal cortex in the tree shrew (Tupaia belangeri). I. Architecture, microelectrode maps, and corticospinal connections. Journal of Comparative Neurology, 2006, 497, 133-154.	1.6	42
336	Present concepts of oculomotor organization. Progress in Brain Research, 2006, 151, 1-42.	1.4	106
337	Spatial maps in frontal and prefrontal cortex. NeuroImage, 2006, 29, 567-577.	4.2	214
337 338	Spatial maps in frontal and prefrontal cortex. NeuroImage, 2006, 29, 567-577. Differential correlation of frontal and parietal activity with the number of alternatives for cued choice saccades. NeuroImage, 2006, 33, 307-315.	4.2 4.2	214 16
337 338 339	Spatial maps in frontal and prefrontal cortex. NeuroImage, 2006, 29, 567-577. Differential correlation of frontal and parietal activity with the number of alternatives for cued choice saccades. NeuroImage, 2006, 33, 307-315. MRI and fMRI analysis of oculomotor function. Progress in Brain Research, 2006, 151, 503-526.	4.2 4.2 1.4	214 16 28
337338339340	Spatial maps in frontal and prefrontal cortex. NeuroImage, 2006, 29, 567-577. Differential correlation of frontal and parietal activity with the number of alternatives for cued choice saccades. NeuroImage, 2006, 33, 307-315. MRI and fMRI analysis of oculomotor function. Progress in Brain Research, 2006, 151, 503-526. Event related fMRI studies of voluntary and inhibited eye blinking using a time marker of EOG. Neuroscience Letters, 2006, 395, 196-200.	4.2 4.2 1.4 2.1	214 16 28 34
 3337 3338 3339 340 341 	Spatial maps in frontal and prefrontal cortex. NeuroImage, 2006, 29, 567-577. Differential correlation of frontal and parietal activity with the number of alternatives for cued choice saccades. NeuroImage, 2006, 33, 307-315. MRI and fMRI analysis of oculomotor function. Progress in Brain Research, 2006, 151, 503-526. Event related fMRI studies of voluntary and inhibited eye blinking using a time marker of EOG. Neuroscience Letters, 2006, 395, 196-200. Changes in Visual Receptive Fields with Microstimulation of Frontal Cortex. Neuron, 2006, 50, 791-798.	 4.2 4.2 1.4 2.1 8.1 	214 16 28 34 202
 3337 3338 3339 340 341 342 	Spatial maps in frontal and prefrontal cortex. NeuroImage, 2006, 29, 567-577.Differential correlation of frontal and parietal activity with the number of alternatives for cued choice saccades. NeuroImage, 2006, 33, 307-315.MRI and fMRI analysis of oculomotor function. Progress in Brain Research, 2006, 151, 503-526.Event related fMRI studies of voluntary and inhibited eye blinking using a time marker of EOG. Neuroscience Letters, 2006, 395, 196-200.Changes in Visual Receptive Fields with Microstimulation of Frontal Cortex. Neuron, 2006, 50, 791-798.Prefrontal and parietal contributions to spatial working memory. Neuroscience, 2006, 139, 173-180.	 4.2 4.2 1.4 2.1 8.1 2.3 	 214 16 28 34 202 277
 3337 3338 3339 340 341 342 343 	Spatial maps in frontal and prefrontal cortex. NeuroImage, 2006, 29, 567-577. Differential correlation of frontal and parietal activity with the number of alternatives for cued choice saccades. NeuroImage, 2006, 33, 307-315. MRI and fMRI analysis of oculomotor function. Progress in Brain Research, 2006, 151, 503-526. Event related fMRI studies of voluntary and inhibited eye blinking using a time marker of EOG. Neuroscience Letters, 2006, 395, 196-200. Changes in Visual Receptive Fields with Microstimulation of Frontal Cortex. Neuron, 2006, 50, 791-798. Prefrontal and parietal contributions to spatial working memory. Neuroscience, 2006, 139, 173-180. Visual and oculomotor selection: links, causes and implications for spatial attention. Trends in Cognitive Sciences, 2006, 10, 124-130.	 4.2 4.2 1.4 2.1 8.1 2.3 7.8 	 214 16 28 34 202 277 302
 3337 3338 3339 340 341 342 343 343 344 	Spatial maps in frontal and prefrontal cortex. NeuroImage, 2006, 29, 567-577. Differential correlation of frontal and parietal activity with the number of alternatives for cued choice saccades. NeuroImage, 2006, 33, 307-315. MRI and fMRI analysis of oculomotor function. Progress in Brain Research, 2006, 151, 503-526. Event related fMRI studies of voluntary and inhibited eye blinking using a time marker of EOG. Neuroscience Letters, 2006, 395, 196-200. Changes in Visual Receptive Fields with Microstimulation of Frontal Cortex. Neuron, 2006, 50, 791-798. Prefrontal and parietal contributions to spatial working memory. Neuroscience, 2006, 139, 173-180. Visual and oculomotor selection: links, causes and implications for spatial attention. Trends in Cognitive Sciences, 2006, 10, 124-130. Head Movements Evoked by Electrical Stimulation in the Frontal Eye Field of the Monkey: Evidence for Independent Eye and Head Control. Journal of Neurophysiology, 2006, 95, 3528-3542.	 4.2 4.2 1.4 2.1 8.1 2.3 7.8 1.8 	 214 16 28 34 202 277 302 52

#	Article	IF	CITATIONS
346	Incomplete Suppression of Distractor-Related Activity in the Frontal Eye Field Results in Curved Saccades. Journal of Neurophysiology, 2006, 96, 2699-2711.	1.8	90
347	Microstimulation of Frontal Cortex Can Reorder a Remembered Spatial Sequence. PLoS Biology, 2006, 4, e134.	5.6	50
348	Visual Functions of the Retinorecipient Nuclei in the Midbrain, Pretectum, and Ventral Thalamus of Primates. , 2006, , 213-265.		3
349	Diversity of laminar connections linking periarcuate and lateral intraparietal areas depends on cortical structure. European Journal of Neuroscience, 2006, 23, 161-179.	2.6	105
350	Rule-dependent shifting of sensorimotor representation in the primate prefrontal cortex. European Journal of Neuroscience, 2006, 23, 1895-1909.	2.6	27
351	Top-down gain control of the auditory space map by gaze control circuitry in the barn owl. Nature, 2006, 439, 336-339.	27.8	97
352	Neuronal dynamics of bottom-up and top-down processes in area V4 of macaque monkeys performing a visual search. Experimental Brain Research, 2006, 173, 1-13.	1.5	48
353	Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia, 2006, 44, 845-859.	1.6	412
354	Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia, 2006, 44, 2621-2635.	1.6	325
355	Architectonic organization of the inferior parietal convexity of the macaque monkey. Journal of Comparative Neurology, 2006, 496, 422-451.	1.6	131
356	The oculomotor role of the pontine nuclei and the nucleus reticularis tegmenti pontis. Progress in Brain Research, 2006, 151, 293-320.	1.4	42
357	Contrasting Effects of Reward Expectation on Sensory and Motor Memories in Primate Prefrontal Neurons. Cerebral Cortex, 2006, 16, 1002-1015.	2.9	35
358	Distribution of Activity Across the Monkey Cerebral Cortical Surface, Thalamus and Midbrain during Rapid, Visually Guided Saccades. Cerebral Cortex, 2006, 16, 447-459.	2.9	86
359	Modulation of Visual Responses in Macaque Frontal Eye Field during Covert Tracking of Invisible Targets. Cerebral Cortex, 2006, 17, 918-928.	2.9	37
360	FEF TMS Affects Visual Cortical Activity. Cerebral Cortex, 2006, 17, 391-399.	2.9	176
361	Directional Signals in the Prefrontal Cortex and in Area MT during a Working Memory for Visual Motion Task. Journal of Neuroscience, 2006, 26, 11726-11742.	3.6	213
362	Comparison of Effector-Specific Signals in Frontal and Parietal Cortices. Journal of Neurophysiology, 2006, 96, 1393-1400.	1.8	21
363	Contribution of the Monkey Frontal Eye Field to Covert Visual Attention. Journal of Neuroscience, 2006, 26, 4228-4235.	3.6	214

#	Article	IF	CITATIONS
364	Local Morphology Predicts Functional Organization of the Dorsal Premotor Region in the Human Brain. Journal of Neuroscience, 2006, 26, 2724-2731.	3.6	168
365	Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Progress in Brain Research, 2006, 151, 461-501.	1.4	146
366	Partial tuning of motor cortex neurons to final posture in a free-moving paradigm. Proceedings of the United States of America, 2006, 103, 2909-2914.	7.1	73
367	Topographic Maps in Human Frontal Cortex Revealed in Memory-Guided Saccade and Spatial Working-Memory Tasks. Journal of Neurophysiology, 2007, 97, 3494-3507.	1.8	187
368	Top-Down Control of Multimodal Sensitivity in the Barn Owl Optic Tectum. Journal of Neuroscience, 2007, 27, 13279-13291.	3.6	56
369	Rapid enhancement of visual cortical response discriminability by microstimulation of the frontal eye field. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9499-9504.	7.1	161
370	Plasticity of the Primate Prefrontal Cortex. Neuroscientist, 2007, 13, 229-240.	3.5	17
371	Parietal stimulation destabilizes spatial updating across saccadic eye movements. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9069-9074.	7.1	64
372	Temporal Patterning of Saccadic Eye Movement Signals. Journal of Neuroscience, 2007, 27, 7619-7630.	3.6	27
373	A Microcircuit Model of the Frontal Eye Fields. Journal of Neuroscience, 2007, 27, 9341-9353.	3.6	76
374	Context-Dependent Effects of Substantia Nigra Stimulation on Eye Movements. Journal of Neurophysiology, 2007, 97, 4129-4142.	1.8	45
375	Prediction of relative and absolute time of reward in monkey prefrontal neurons. NeuroReport, 2007, 18, 703-707.	1.2	6
376	Adult age differences in the functional neuroanatomy of visual attention: A combined fMRI and DTI study. Neurobiology of Aging, 2007, 28, 459-476.	3.1	200
377	Mapping Behavioral Repertoire onto the Cortex. Neuron, 2007, 56, 239-251.	8.1	258
378	Attention Governs Action in the Primate Frontal Eye Field. Neuron, 2007, 56, 541-551.	8.1	115
379	Involvement of the lateral prefrontal cortex in conditional suppression of gaze shift. Neuroscience Research, 2007, 59, 431-445.	1.9	9
380	Parietal and superior frontal visuospatial maps activated by pointing and saccades. NeuroImage, 2007, 35, 1562-1577.	4.2	165
381	An effect of context on saccade-related behavior and brain activity. NeuroImage, 2007, 36, 774-784.	4.2	81

#	Article	IF	CITATIONS
382	Cerebral Cortical Folding Patterns in Primates: Why They Vary and What They Signify. , 2007, , 267-276.		21
383	Changing Human Visual Field Organization from Early Visual to Extra-Occipital Cortex. PLoS ONE, 2007, 2, e452.	2.5	45
384	Probabilistic modeling of eye movement data during conjunction search via feature-based attention. Journal of Vision, 2007, 7, 5.	0.3	75
385	Frames of Reference for Gaze Saccades Evoked During Stimulation of Lateral Intraparietal Cortex. Journal of Neurophysiology, 2007, 98, 696-709.	1.8	21
386	Coordination of Smooth Pursuit and Saccade Target Selection in Monkeys. Journal of Neurophysiology, 2007, 98, 2206-2214.	1.8	15
387	TMS Pulses on the Frontal Eye Fields Break Coupling Between Visuospatial Attention and Eye Movements. Journal of Neurophysiology, 2007, 98, 2765-2778.	1.8	65
388	Contribution of the Frontal Eye Field to Gaze Shifts in the Head-Unrestrained Monkey: Effects of Microstimulation. Journal of Neurophysiology, 2007, 97, 618-634.	1.8	54
389	Widespread Presaccadic Recruitment of Neck Muscles by Stimulation of the Primate Frontal Eye Fields. Journal of Neurophysiology, 2007, 98, 1333-1354.	1.8	60
390	Computing vector differences using a gain field-like mechanism in monkey frontal eye field. Journal of Physiology, 2007, 582, 647-664.	2.9	44
391	REVIEW ARTICLE: Cortical control of eye and head movements: integration of movements and percepts. European Journal of Neuroscience, 2007, 25, 1253-1264.	2.6	24
392	Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action. European Journal of Neuroscience, 2007, 26, 2005-2024.	2.6	145
393	A multiarchitectonic approach for the definition of functionally distinct areas and domains in the monkey frontal lobe. Journal of Anatomy, 2007, 211, 199-211.	1.5	36
394	The relationship between covert and overt attention in endogenous cuing. Perception & Psychophysics, 2007, 69, 719-731.	2.3	59
395	Executive control of gaze by the frontal lobes. Cognitive, Affective and Behavioral Neuroscience, 2007, 7, 396-412.	2.0	84
396	The Neural Basis of Decision Making. Annual Review of Neuroscience, 2007, 30, 535-574.	10.7	3,157
397	Subthreshold microstimulation in frontal eye fields updates spatial memories. Experimental Brain Research, 2007, 181, 477-492.	1.5	34
398	Multimodal architectonic subdivision of the caudal ventrolateral prefrontal cortex of the macaque monkey. Brain Structure and Function, 2007, 212, 269-301.	2.3	57
399	Saccade induced cortical activation in patients with post-stroke visual field defects. Journal of Neurology, 2007, 254, 1244-1252.	3.6	15

#	Article	IF	CITATIONS
400	Auditory-motor and cognitive aspects in area 8B of macaque monkey's frontal cortex: a premotor ear–eye field (PEEF). Experimental Brain Research, 2008, 186, 131-141.	1.5	27
401	More than a feeling: sensation from cortical stimulation. Nature Neuroscience, 2008, 11, 10-11.	14.8	6
402	Temporal dynamics of decision-making during motion perception in the visual cortex. Vision Research, 2008, 48, 1345-1373.	1.4	59
403	Eye movement preparation causes spatially-specific modulation of auditory processing: New evidence from event-related brain potentials. Brain Research, 2008, 1224, 88-101.	2.2	13
404	Links between eye movement preparation and the attentional processing of tactile events: An event-related brain potential study. Clinical Neurophysiology, 2008, 119, 2587-2597.	1.5	26
405	Prefrontal Coding of Temporally Discounted Values during Intertemporal Choice. Neuron, 2008, 59, 161-172.	8.1	204
406	Neurophysiology and neuroanatomy of reflexive and voluntary saccades in non-human primates. Brain and Cognition, 2008, 68, 271-283.	1.8	121
407	Hand position modulates saccadic activity in the frontal eye field. Behavioural Brain Research, 2008, 186, 148-153.	2.2	39
408	A Hierarchy of Temporal Receptive Windows in Human Cortex. Journal of Neuroscience, 2008, 28, 2539-2550.	3.6	702
409	Cortical Connections of the Macaque Anterior Intraparietal (AIP) Area. Cerebral Cortex, 2008, 18, 1094-1111.	2.9	390
410	Representation of Eye Movements and Stimulus Motion in Topographically Organized Areas of Human Posterior Parietal Cortex. Journal of Neuroscience, 2008, 28, 8361-8375.	3.6	187
411	Neural Integration of Top-Down Spatial and Feature-Based Information in Visual Search. Journal of Neuroscience, 2008, 28, 6141-6151.	3.6	176
412	Electrical microstimulation thresholds for behavioral detection and saccades in monkey frontal eye fields. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7315-7320.	7.1	37
413	Loss of exploratory vertical saccades after unilateral frontal eye field damage. Journal of Neurology, Neurosurgery and Psychiatry, 2008, 79, 474-477.	1.9	8
414	Effects of luminance and saccadic suppression on perisaccadic spatial distortions. Journal of Vision, 2008, 8, 22-22.	0.3	8
415	Transformation of a Virtual Action Plan into a Motor Plan in the Premotor Cortex. Journal of Neuroscience, 2008, 28, 10287-10297.	3.6	76
416	Cortical Activity Time Locked to the Shift and Maintenance of Spatial Attention. Cerebral Cortex, 2008, 18, 1384-1394.	2.9	48
417	Neuronal Adaptation Caused by Sequential Visual Stimulation in the Frontal Eye Field. Journal of Neurophysiology, 2008, 100, 1923-1935.	1.8	35

#	Article	IF	CITATIONS
418	Connectivity of the Primate Superior Colliculus Mapped by Concurrent Microstimulation and Event-Related fMRI. PLoS ONE, 2008, 3, e3928.	2.5	30
419	The "Diagonal Effect†a Systematic Error in Oblique Antisaccades. Journal of Neurophysiology, 2008, 100, 587-597.	1.8	8
420	Effect of Inactivation of the Cortical Frontal Eye Field on Saccades Generated in a Choice Response Paradigm. Journal of Neurophysiology, 2008, 100, 2726-2737.	1.8	12
421	Neuronal Responses to Moving Targets in Monkey Frontal Eye Fields. Journal of Neurophysiology, 2008, 100, 1544-1556.	1.8	28
422	Shape Selectivity in Primate Frontal Eye Field. Journal of Neurophysiology, 2008, 100, 796-814.	1.8	57
423	Neurophysiology. , 2008, , 221-283.		1
424	Comparing eye movements to detected vs. undetected target stimuli in an Identity Search task. Journal of Vision, 2009, 9, 20-20.	0.3	7
425	Comparison of Perceptual and Motor Decisions Via Confidence Judgments and Saccade Curvature. Journal of Neurophysiology, 2009, 101, 2822-2836.	1.8	13
426	Processing of Visual Signals for Direct Specification of Motor Targets and for Conceptual Representation of Action Targets in the Dorsal and Ventral Premotor Cortex. Journal of Neurophysiology, 2009, 102, 3280-3294.	1.8	32
427	Role of Primate Cerebellar Hemisphere in Voluntary Eye Movement Control Revealed by Lesion Effects. Journal of Neurophysiology, 2009, 101, 934-947.	1.8	53
428	Visual and motor connectivity and the distribution of calcium-binding proteins in macaque frontal eye field: Implications for saccade target selection. Frontiers in Neuroanatomy, 2009, 3, 2.	1.7	103
429	Selection and Maintenance of Spatial Information by Frontal Eye Field Neurons. Journal of Neuroscience, 2009, 29, 15621-15629.	3.6	120
430	Modulation of the Contrast Response Function by Electrical Microstimulation of the Macaque Frontal Eye Field. Journal of Neuroscience, 2009, 29, 10683-10694.	3.6	68
431	Evidence for three-dimensional cortical control of gaze from epileptic patients. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 683-685.	1.9	79
432	Correlates of Perceptual Learning in an Oculomotor Decision Variable. Journal of Neuroscience, 2009, 29, 2136-2150.	3.6	19
433	The Responses of Visual Neurons in the Frontal Eye Field Are Biased for Saccades. Journal of Neuroscience, 2009, 29, 13815-13822.	3.6	16
434	Smooth Pursuit-Related Information Processing in Frontal Eye Field Neurons that Project to the NRTP. Cerebral Cortex, 2009, 19, 1186-1197.	2.9	43
435	Noise Correlations Have Little Influence on the Coding of Selective Attention in Area V1. Cerebral Cortex, 2009, 19, 543-553.	2.9	54

#	Article	IF	CITATIONS
436	Response Properties of Fixation Neurons and Their Location in the Frontal Eye Field in the Monkey. Journal of Neurophysiology, 2009, 102, 2410-2422.	1.8	49
437	Frontal Eye Field Neurons with Spatial Representations Predicted by Their Subcortical Input. Journal of Neuroscience, 2009, 29, 5308-5318.	3.6	52
438	Mirroring of attention by neurons in macaque parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9489-9494.	7.1	175
439	Organization of the posterior parietal cortex in galagos: II. Ipsilateral cortical connections of physiologically identified zones within anterior sensorimotor region. Journal of Comparative Neurology, 2009, 517, 783-807.	1.6	51
440	The Eye of a Mathematical Physicist. Journal of Statistical Physics, 2009, 134, 1033-1057.	1.2	3
441	Frontal eye field neurons signal changes in decision criteria. Nature Neuroscience, 2009, 12, 1458-1462.	14.8	81
442	A method for localizing microelectrode trajectories in the macaque brain using MRI. Journal of Neuroscience Methods, 2009, 176, 104-111.	2.5	25
443	The limits of top-down control of visual attention. Acta Psychologica, 2009, 132, 201-212.	1.5	72
444	The detection of feature singletons defined in two dimensions is based on salience summation, rather than on serial exhaustive or interactive race architectures. Attention, Perception, and Psychophysics, 2009, 71, 1739-1759.	1.3	36
445	Statistical Analysis of Parieto-Frontal Cognitive-Motor Networks. Journal of Neurophysiology, 2009, 102, 1911-1920.	1.8	45
446	Topographic maps in human frontal and parietal cortex. Trends in Cognitive Sciences, 2009, 13, 488-495.	7.8	445
447	Direct Activation of Sparse, Distributed Populations of Cortical Neurons by Electrical Microstimulation. Neuron, 2009, 63, 508-522.	8.1	529
448	Anatomical organization of the eye fields in the human and non-human primate frontal cortex. Progress in Neurobiology, 2009, 89, 220-230.	5.7	138
449	Behavioral and Neural Changes after Gains and Losses of Conditioned Reinforcers. Journal of Neuroscience, 2009, 29, 3627-3641.	3.6	117
450	Substantia Nigra Control of Basal Ganglia Nuclei. , 2009, , 91-101.		9
451	Abundance of Degrees of Freedom. , 2008, , 3-3.		1
452	Towards the Neural Basis of Spatial Attention: Studies in Monkey and Man. Neuro-Ophthalmology, 2009, 33, 132-141.	1.0	1
453	BOLD fMRI activation for anti-saccades in nonhuman primates. NeuroImage, 2009, 45, 470-476.	4.2	50

<u> </u>		<u> </u>	
(15	ГАТІ	NEDC	DT
	IAL	NLPC	ואר

#	Article	IF	CITATIONS
454	fMRI-Guided TMS on Cortical Eye Fields: The Frontal But Not Intraparietal Eye Fields Regulate the Coupling Between Visuospatial Attention and Eye Movements. Journal of Neurophysiology, 2009, 102, 3469-3480.	1.8	35
455	Methodological approaches in developmental neuroimaging studies. Human Brain Mapping, 2010, 31, 863-871.	3.6	39
456	A step towards non-invasive characterization of the human frontal eye fields of individual subjects. Nonlinear Biomedical Physics, 2010, 4, S11.	1.5	5
457	Thalamic projections to the macaque caudal ventrolateral prefrontal areas 45A and 45B. European Journal of Neuroscience, 2010, 32, 1337-1353.	2.6	18
459	Brain activation of eye movements in subjects with refractive error. Eye and Brain, 2010, 2, 57.	2.5	2
460	Roles of Narrow- and Broad-Spiking Dorsal Premotor Area Neurons in Reach Target Selection and Movement Production. Journal of Neurophysiology, 2010, 103, 2124-2138.	1.8	40
461	Similar effect of cueing conditions on attentional and saccadic temporal dynamics. Journal of Vision, 2010, 10, 1-13.	0.3	14
462	Electrical Stimulation of the Frontal Eye Fields in the Head-Free Macaque Evokes Kinematically Normal 3D Gaze Shifts. Journal of Neurophysiology, 2010, 104, 3462-3475.	1.8	30
463	Differential roles for frontal eye fields (FEFs) and intraparietal sulcus (IPS) in visual working memory and visual attention. Journal of Vision, 2010, 10, 28-28.	0.3	31
464	Differential Temporal Storage Capacity in the Baseline Activity of Neurons in Macaque Frontal Eye Field and Area V4. Journal of Neurophysiology, 2010, 103, 2433-2445.	1.8	50
465	Internally Generated Error Signals in Monkey Frontal Eye Field during an Inferred Motion Task. Journal of Neuroscience, 2010, 30, 11612-11623.	3.6	42
466	Topographic organization of macaque area LIP. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4728-4733.	7.1	62
467	A Probabilistic Strategy for Understanding Action Selection. Journal of Neuroscience, 2010, 30, 2340-2355.	3.6	55
468	Models of Horizontal Eye Movements, Part II: A 3rd Order Linear Saccade Model. Synthesis Lectures on Biomedical Engineering, 2010, 5, 1-159.	0.1	17
469	Cooperation and Competition among Frontal Eye Field Neurons during Visual Target Selection. Journal of Neuroscience, 2010, 30, 3227-3238.	3.6	46
470	A Relative Position Code for Saccades in Dorsal Premotor Cortex. Journal of Neuroscience, 2010, 30, 6527-6537.	3.6	46
471	Cortical Connections of the Macaque Caudal Ventrolateral Prefrontal Areas 45A and 45B. Cerebral Cortex, 2010, 20, 141-168.	2.9	145
472	Attention, Intention, and Priority in the Parietal Lobe. Annual Review of Neuroscience, 2010, 33, 1-21.	10.7	850

#	Article	IF	CITATIONS
473	Cognitive Neural Prosthetics. Annual Review of Psychology, 2010, 61, 169-190.	17.7	162
474	The when and where of spatial storage in memory-guided saccades. NeuroImage, 2010, 52, 1611-1620.	4.2	8
475	The eccentricity effect for auditory saccadic reaction times is independent of target frequency. Hearing Research, 2010, 262, 19-25.	2.0	13
476	Neural correlates of fast pupil dilation in nonhuman primates: Relation to behavioral performance and cognitive workload. Behavioural Brain Research, 2010, 212, 1-11.	2.2	39
477	Nonhuman primate event-related potentials associated with pro- and anti-saccades. NeuroImage, 2010, 49, 1650-1658.	4.2	11
478	Models of Horizontal Eye Movements, Part I: Early Models of Saccades and Smooth Pursuit. Synthesis Lectures on Biomedical Engineering, 2010, 5, 1-163.	0.1	20
479	Imaging the Brain with Optical Methods. , 2010, , .		4
480	Frontal cortical regions controlling small and large amplitude saccades – A TMS study. Basal Ganglia, 2011, 1, 221-229.	0.3	9
481	Eye movement suppression interferes with construction of object-centered spatial reference frames in working memory. Brain and Cognition, 2011, 77, 432-437.	1.8	10
482	A Cortical Substrate for Memory-Guided Orienting in the Rat. Neuron, 2011, 72, 330-343.	8.1	286
483	Selective Attention from Voluntary Control of Neurons in Prefrontal Cortex. Science, 2011, 332, 1568-1571.	12.6	138
484	The thalamocortical vestibular system in animals and humans. Brain Research Reviews, 2011, 67, 119-146.	9.0	451
485	Linear Hypergeneralization of Learned Dynamics Across Movement Speeds Reveals Anisotropic, Gain-Encoding Primitives for Motor Adaptation. Journal of Neurophysiology, 2011, 105, 45-59.	1.8	39
486	Parietofrontal circuits in goalâ€oriented behaviour. European Journal of Neuroscience, 2011, 33, 2017-2027.	2.6	59
487	The relationship between spatial attention and saccades in the frontoparietal network of the monkey. European Journal of Neuroscience, 2011, 33, 1973-1981.	2.6	41
488	The auditory dorsal pathway: Orienting vision. Neuroscience and Biobehavioral Reviews, 2011, 35, 2162-2173.	6.1	73
489	Readout of the intrinsic and extrinsic properties of a stimulus from un-experienced neuronal activities: Towards cognitive neuroprostheses. Journal of Physiology (Paris), 2011, 105, 115-122.	2.1	14
490	Transcranial magnetic stimulation of macaque frontal eye fields decreases saccadic reaction time. Experimental Brain Research, 2011, 212, 143-152.	1.5	19

#	Article	IF	CITATIONS
491	Comment on: Exp Brain Res. 2011 May 5th. Transcranial magnetic stimulation of macaque frontal eye fields decreases saccadic reaction time. Gerits A, Ruff CC, Guipponi O, Wenderoth N, Driver J, Vanduffel W. Experimental Brain Research, 2011, 214, 481-482.	1.5	2
492	Cyto-, myelo- and chemoarchitecture of the prefrontal cortex of the Cebus monkey. BMC Neuroscience, 2011, 12, 6.	1.9	18
493	A reliable microinjectrode system for use in behaving monkeys. Journal of Neuroscience Methods, 2011, 194, 218-223.	2.5	32
494	Probing neural circuitry and function with electrical microstimulation. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1121-1130.	2.6	58
495	Hand Modulation of Visual, Preparatory, and Saccadic Activity in the Monkey Frontal Eye Field. Cerebral Cortex, 2011, 21, 853-864.	2.9	15
496	The anatomy and physiology of the ocular motor system. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2011, 102, 21-69.	1.8	35
497	Role of Prefrontal Cortex in Conscious Visual Perception. Journal of Neuroscience, 2011, 31, 64-69.	3.6	61
498	Suppression of smooth pursuit eye movements induced by electrical stimulation of the monkey frontal eye field. Journal of Neurophysiology, 2011, 106, 2675-2687.	1.8	9
499	Differential cortical activation during saccadic adaptation. Journal of Neurophysiology, 2012, 107, 1738-1747.	1.8	25
500	Frontal eye field microstimulation induces task-dependent gamma oscillations in the lateral	1.0	20
500	intraparietal area. Journal of Neurophysiology, 2012, 108, 1392-1402.	1.8	
501	intraparietal area. Journal of Neurophysiology, 2012, 108, 1392-1402. Cortical Network for Gaze Control in Humans Revealed Using Multimodal MRI. Cerebral Cortex, 2012, 22, 765-775.	2.9	44
501 502	 intraparietal area. Journal of Neurophysiology, 2012, 108, 1392-1402. Cortical Network for Gaze Control in Humans Revealed Using Multimodal MRI. Cerebral Cortex, 2012, 22, 765-775. Motor Cortexâ[^] , 2012, , 1012-1035. 	2.9	44
500 501 502 503	 intraparietal area. Journal of Neurophysiology, 2012, 108, 1392-1402. Cortical Network for Gaze Control in Humans Revealed Using Multimodal MRI. Cerebral Cortex, 2012, 22, 765-775. Motor Cortexâ^, 2012, , 1012-1035. Neural Correlates of Perceptual Decision Making before, during, and after Decision Commitment in Monkey Frontal Eye Field. Cerebral Cortex, 2012, 22, 1052-1067. 	2.9	44 11 213
500 501 502 503 504	 intraparietal area. Journal of Neurophysiology, 2012, 108, 1392-1402. Cortical Network for Gaze Control in Humans Revealed Using Multimodal MRI. Cerebral Cortex, 2012, 22, 765-775. Motor Cortexâ[^], 2012, , 1012-1035. Neural Correlates of Perceptual Decision Making before, during, and after Decision Commitment in Monkey Frontal Eye Field. Cerebral Cortex, 2012, 22, 1052-1067. Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. Journal of Neurophysiology, 2012, 107, 2463-2474. 	1.8 2.9 2.9 1.8	44 11 213 112
500 501 502 503 504 505	 intraparietal area. Journal of Neurophysiology, 2012, 108, 1392-1402. Cortical Network for Gaze Control in Humans Revealed Using Multimodal MRI. Cerebral Cortex, 2012, 22, 765-775. Motor Cortexâ[^], 2012, , 1012-1035. Neural Correlates of Perceptual Decision Making before, during, and after Decision Commitment in Monkey Frontal Eye Field. Cerebral Cortex, 2012, 22, 1052-1067. Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. Journal of Neurophysiology, 2012, 107, 2463-2474. Distinct Information Representation and Processing for Goal-Directed Behavior in the Dorsolateral and Ventrolateral Prefrontal Cortex and the Dorsal Premotor Cortex. Journal of Neuroscience, 2012, 32, 12934-12949. 	1.8 2.9 2.9 1.8 3.6	44 11 213 112 67
500 501 502 503 504 505	 intraparietal area. Journal of Neurophysiology, 2012, 108, 1392-1402. Cortical Network for Gaze Control in Humans Revealed Using Multimodal MRI. Cerebral Cortex, 2012, 22, 765-775. Motor Cortexâ[^], 2012, , 1012-1035. Neural Correlates of Perceptual Decision Making before, during, and after Decision Commitment in Monkey Frontal Eye Field. Cerebral Cortex, 2012, 22, 1052-1067. Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. Journal of Neurophysiology, 2012, 107, 2463-2474. Distinct Information Representation and Processing for Goal-Directed Behavior in the Dorsolateral and Ventrolateral Prefrontal Cortex and the Dorsal Premotor Cortex. Journal of Neuroscience, 2012, 32, 12934-12949. Supplementary Eye Field during Visual Search: Salience, Cognitive Control, and Performance Monitoring. Journal of Neuroscience, 2012, 32, 10273-10285. 	1.8 2.9 2.9 1.8 3.6 3.6	44 11 213 112 67 52
500 501 502 503 504 505 506	 intraparietal area. Journal of Neurophysiology, 2012, 108, 1392-1402. Cortical Network for Gaze Control in Humans Revealed Using Multimodal MRI. Cerebral Cortex, 2012, 22, 765-775. Motor Cortexâ°, 2012, , 1012-1035. Neural Correlates of Perceptual Decision Making before, during, and after Decision Commitment in Monkey Frontal Eye Field. Cerebral Cortex, 2012, 22, 1052-1067. Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. Journal of Neurophysiology, 2012, 107, 2463-2474. Distinct Information Representation and Processing for Goal-Directed Behavior in the Dorsolateral and Ventrolateral Prefrontal Cortex and the Dorsal Premotor Cortex. Journal of Neuroscience, 2012, 32, 12934-12949. Supplementary Eye Field during Visual Search: Salience, Cognitive Control, and Performance Monitoring. Journal of Neuroscience, 2012, 32, 10273-10285. Prioritized Maps of Space in Human Frontoparietal Cortex. Journal of Neuroscience, 2012, 32, 17382-17390. 	1.8 2.9 2.9 1.8 3.6 3.6 3.6	 44 11 213 213 67 52 178

#	Article	IF	CITATIONS
509	Understanding How the Brain Changes Its Mind: Microstimulation in the Macaque Frontal Eye Field Reveals How Saccade Plans Are Changed. Journal of Neuroscience, 2012, 32, 4457-4472.	3.6	36
510	Response variability of frontal eye field neurons modulates with sensory input and saccade preparation but not visual search salience. Journal of Neurophysiology, 2012, 108, 2737-2750.	1.8	38
511	Working memory of somatosensory stimuli: An fMRI study. International Journal of Psychophysiology, 2012, 86, 220-228.	1.0	24
512	The role of the brain's frontal eye fields in constructing frame of reference. Cognitive Processing, 2012, 13, 359-363.	1.4	6
513	Cell-Type-Specific Synchronization of Neural Activity in FEF with V4 during Attention. Neuron, 2012, 73, 581-594.	8.1	217
514	Future trends in Neuroimaging: Neural processes as expressed within real-life contexts. NeuroImage, 2012, 62, 1272-1278.	4.2	150
515	Contribution of the frontal eye field to gaze shifts in the head-unrestrained rhesus monkey: Neuronal activity. Neuroscience, 2012, 225, 213-236.	2.3	16
516	What and Where Information in the Caudate Tail Guides Saccades to Visual Objects. Journal of Neuroscience, 2012, 32, 11005-11016.	3.6	113
517	The Postsaccadic Unreliability of Gain Fields Renders It Unlikely that the Motor System Can Use Them to Calculate Target Position in Space. Neuron, 2012, 76, 1201-1209.	8.1	294
518	Neuronal Categorization and Discrimination of Social Behaviors in Primate Prefrontal Cortex. PLoS ONE, 2012, 7, e52610.	2.5	5
519	Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions. Frontiers in Integrative Neuroscience, 2012, 6, 17.	2.1	73
520	Differential effects of parietal and frontal inactivations on reaction times distributions in a visual search task. Frontiers in Integrative Neuroscience, 2012, 6, 39.	2.1	24
521	Neural mechanisms for predictive head movement strategies during sequential gaze shifts. Journal of Neurophysiology, 2012, 108, 2689-2707.	1.8	13
523	Resting-State Connectivity Identifies Distinct Functional Networks in Macaque Cingulate Cortex. Cerebral Cortex, 2012, 22, 1294-1308.	2.9	61
524	Are There Any Left-Right Asymmetries in Saccade Parameters? Examination of Latency, Gain, and Peak Velocity. , 2012, 53, 3340.		47
525	A neural model of sequential movement planning and control of eye movements: Item-Order-Rank working memory and saccade selection by the supplementary eye fields. Neural Networks, 2012, 26, 29-58.	5.9	46
526	Prefrontal Contributions to Visual Selective Attention. Annual Review of Neuroscience, 2013, 36, 451-466.	10.7	231
527	Insights into cortical mechanisms of behavior from microstimulation experiments. Progress in Neurobiology, 2013, 103, 115-130.	5.7	123

#	Article	IF	CITATIONS
528	Visual Sensitivity Shifts with Perceived Eye Position. Journal of Cognitive Neuroscience, 2013, 25, 1180-1189.	2.3	7
529	Perceptual Modulation of Motor—But Not Visual—Responses in the Frontal Eye Field during an Urgent-Decision Task. Journal of Neuroscience, 2013, 33, 16394-16408.	3.6	58
530	Transfer of information by BMI. Neuroscience, 2013, 255, 134-146.	2.3	22
531	Maps of space in human frontoparietal cortex. Journal of Physiology (Paris), 2013, 107, 510-516.	2.1	59
532	Delayed oculomotor inhibition in patients with lesions to the human frontal oculomotor cortex: Evidence from a study on saccade averaging. Brain and Cognition, 2013, 82, 192-200.	1.8	2
533	Distinct neural mechanisms of distractor suppression in the frontal and parietal lobe. Nature Neuroscience, 2013, 16, 98-104.	14.8	231
534	Paroxysmal gaze deviations as the sole manifestation of occipital lobe epilepsy. Seizure: the Journal of the British Epilepsy Association, 2013, 22, 913-915.	2.0	6
535	A new field in monkey's frontal cortex: Premotor ear-eye field (PEEF). Neuroscience and Biobehavioral Reviews, 2013, 37, 1434-1444.	6.1	23
536	A shared inhibitory circuit for both exogenous and endogenous control of stimulus selection. Nature Neuroscience, 2013, 16, 473-478.	14.8	97
537	Frames of reference for eye–head gaze shifts evoked during frontal eye field stimulation. European Journal of Neuroscience, 2013, 37, 1754-1765.	2.6	18
538	FEF-microstimulation causes task-dependent modulation of occipital fMRI activity. NeuroImage, 2013, 67, 42-50.	4.2	18
539	A Functional Hierarchy within the Parietofrontal Network in Stimulus Selection and Attention Control. Journal of Neuroscience, 2013, 33, 8359-8369.	3.6	79
540	Small effects of neck torsion on healthy human voluntary eye movements. European Journal of Applied Physiology, 2013, 113, 3049-3057.	2.5	3
541	Facilitation of face recognition through the retino-tectal pathway. Neuropsychologia, 2013, 51, 2043-2049.	1.6	20
542	Looking at eye dominance from a different angle: Is sighting strength related to hand preference?. Cortex, 2013, 49, 2542-2552.	2.4	22
543	The Role of the Frontal Eye Fields in Oculomotor Competition: Image-Guided TMS Enhances Contralateral Target Selection. Cerebral Cortex, 2013, 23, 824-832.	2.9	17
544	Reward Value-Contingent Changes of Visual Responses in the Primate Caudate Tail Associated with a Visuomotor Skill. Journal of Neuroscience, 2013, 33, 11227-11238.	3.6	108
545	Compression and Suppression of Shifting Receptive Field Activity in Frontal Eye Field Neurons. Journal of Neuroscience, 2013, 33, 18259-18269.	3.6	17

#	Article	IF	Citations
546	The dependencies of frontoâ€parietal <scp>BOLD</scp> responses evoked by covert visual search suggest eyeâ€centred coding. European Journal of Neuroscience, 2013, 37, 1320-1329.	2.6	0
547	Optogenetics in the behaving rat: integration of diverse new technologies in a vital animal model. Optogenetics, 2013, 1, 1-17.	3.0	20
548	Saccade Modulation by Optical and Electrical Stimulation in the Macaque Frontal Eye Field. Journal of Neuroscience, 2013, 33, 16684-16697.	3.6	98
549	Optical imaging of cortical networks via intracortical microstimulation. Journal of Neurophysiology, 2013, 110, 2670-2678.	1.8	36
550	On the origin of event-related potentials indexing covert attentional selection during visual search: timing of selection by macaque frontal eye field and event-related potentials during pop-out search. Journal of Neurophysiology, 2013, 109, 557-569.	1.8	39
551	Contrasting Patterns of Cortical Input to Architectural Subdivisions of the Area 8 Complex: A Retrograde Tracing Study in Marmoset Monkeys. Cerebral Cortex, 2013, 23, 1901-1922.	2.9	91
552	Threshold mechanism for saccade initiation in frontal eye field and superior colliculus. Journal of Neurophysiology, 2013, 109, 2767-2780.	1.8	57
553	Functional connectivity patterns of medial and lateral macaque frontal eye fields reveal distinct visuomotor networks. Journal of Neurophysiology, 2013, 109, 2560-2570.	1.8	30
554	Auditory and visual systems organization in Brodmann Area 8 for gaze-shift control: where we do not see, we can hear. Frontiers in Behavioral Neuroscience, 2013, 7, 198.	2.0	20
555	Auditory Selective Attention Reveals Preparatory Activity in Different Cortical Regions for Selection Based on Source Location and Source Pitch. Frontiers in Neuroscience, 2013, 6, 190.	2.8	60
556	The role of prefrontal catecholamines in attention and working memory. Frontiers in Neural Circuits, 2014, 8, 33.	2.8	75
557	Measuring auditory selective attention using frequency tagging. Frontiers in Integrative Neuroscience, 2014, 8, 6.	2.1	46
558	Saccade-related activity in the prefrontal cortex: its role in eye movement control and cognitive functions. Frontiers in Integrative Neuroscience, 2014, 8, 54.	2.1	41
559	Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Frontiers in Integrative Neuroscience, 2014, 8, 66.	2.1	172
560	Effects of unilateral deactivations of dorsolateral prefrontal cortex and anterior cingulate cortex on saccadic eye movements. Journal of Neurophysiology, 2014, 111, 787-803.	1.8	15
561	Bilateral saccadic deficits following large and reversible inactivation of unilateral frontal eye field. Journal of Neurophysiology, 2014, 111, 415-433.	1.8	29
562	Comparing temporal aspects of visual, tactile, and microstimulation feedback for motor control. Journal of Neural Engineering, 2014, 11, 046025.	3.5	30
563	Models of Horizontal Eye Movements: Part 3, A Neuron and Muscle Based Linear Saccade Model. Synthesis Lectures on Biomedical Engineering, 2014, 9, 1-158.	0.1	5

#	Article	IF	CITATIONS
564	The Effect of FEF Microstimulation on the Responses of Neurons in the Lateral Intraparietal Area. Journal of Cognitive Neuroscience, 2014, 26, 1672-1684.	2.3	2
565	Influence of monkey dorsolateral prefrontal and posterior parietal activity on behavioral choice during attention tasks. European Journal of Neuroscience, 2014, 40, 2910-2921.	2.6	11
566	Manipulation of Object Choice by Electrical Microstimulation in Macaque Frontal Eye Fields. Cerebral Cortex, 2014, 24, 1493-1501.	2.9	2
567	Simultaneous selection by object-based attention in visual and frontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6467-6472.	7.1	59
568	Repetitive antisaccade execution does not increase the unidirectional prosaccade switch-cost. Acta Psychologica, 2014, 146, 67-72.	1.5	16
569	Broad intrinsic functional connectivity boundaries of the macaque prefrontal cortex. NeuroImage, 2014, 88, 202-211.	4.2	24
570	Deliberation and Commitment in the Premotor and Primary Motor Cortex during Dynamic Decision Making. Neuron, 2014, 81, 1401-1416.	8.1	267
571	Neural mechanisms of dual-task interference and cognitive capacity limitation in the prefrontal cortex. Nature Neuroscience, 2014, 17, 601-611.	14.8	167
572	Two-dimensional spatial tuning for saccades in human parieto-frontal cortex. NeuroImage, 2014, 87, 476-489.	4.2	10
573	Descending Control of Neural Bias and Selectivity in a Spatial Attention Network: Rules and Mechanisms. Neuron, 2014, 84, 214-226.	8.1	38
574	Modifying cognition and behavior with electrical microstimulation: Implications for cognitive prostheses. Neuroscience and Biobehavioral Reviews, 2014, 47, 321-335.	6.1	9
575	Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non-human primates. Nature Neuroscience, 2014, 17, 1130-1136.	14.8	123
576	Subdivisions and connectional networks of the lateral prefrontal cortex in the macaque monkey. Journal of Comparative Neurology, 2014, 522, 1641-1690.	1.6	132
577	Response times from ensembles of accumulators. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2848-2853.	7.1	50
579	Topographic organization in the brain: searching for general principles. Trends in Cognitive Sciences, 2014, 18, 351-363.	7.8	74
580	Activity of fixation neurons in the monkey frontal eye field during smooth pursuit eye movements. Journal of Neurophysiology, 2014, 112, 249-262.	1.8	12
581	Isoflurane induces dose-dependent alterations in the cortical connectivity profiles and dynamic properties of the brain's functional architecture. Human Brain Mapping, 2014, 35, 5754-5775.	3.6	122
582	Evidence for a functional subdivision of Premotor Ear-Eye Field (Area 8B). Frontiers in Behavioral Neuroscience, 2015, 8, 454.	2.0	7

#	Article	IF	CITATIONS
583	What makes a frontal area of primate brain the frontal eye field?. Frontiers in Integrative Neuroscience, 2015, 9, 33.	2.1	13
584	Single Session Imaging of Cerebellum at 7 Tesla: Obtaining Structure and Function of Multiple Motor Subsystems in Individual Subjects. PLoS ONE, 2015, 10, e0134933.	2.5	28
585	Neurophysiology. , 2015, , 237-308.		1
586	Effector Specificity in Macaque Frontal and Parietal Cortex. Journal of Neuroscience, 2015, 35, 3446-3459.	3.6	26
587	Neuromagnetic Cortical Activation during Initiation of Optokinetic Nystagmus: An MEG Pilot Study. Audiology and Neuro-Otology, 2015, 20, 189-194.	1.3	1
588	Topography of Visuomotor Parameters in the Frontal and Premotor Eye Fields. Cerebral Cortex, 2015, 25, 3095-3106.	2.9	22
589	Neuronal and behavioural modulations by pathway-selective optogenetic stimulation of the primate oculomotor system. Nature Communications, 2015, 6, 8378.	12.8	78
590	Dynamics of visual receptive fields in the macaque frontal eye field. Journal of Neurophysiology, 2015, 114, 3201-3210.	1.8	23
591	Spatiotemporal patterns of current source density in the prefrontal cortex of a behaving monkey. Neural Networks, 2015, 62, 67-72.	5.9	10
592	Attention modeled as information in learning multisensory integration. Neural Networks, 2015, 65, 44-52.	5.9	12
593	Projections from Caudal Ventrolateral Prefrontal Areas to Brainstem Preoculomotor Structures and to Basal Ganglia and Cerebellar Oculomotor Loops in the Macaque. Cerebral Cortex, 2015, 25, 748-764.	2.9	28
594	Natural Grouping of Neural Responses Reveals Spatially Segregated Clusters in Prearcuate Cortex. Neuron, 2015, 85, 1359-1373.	8.1	92
595	Visuomotor Functions in the Frontal Lobe. Annual Review of Vision Science, 2015, 1, 469-498.	4.4	82
596	Visual attention: Linking prefrontal sources to neuronal and behavioral correlates. Progress in Neurobiology, 2015, 132, 59-80.	5.7	43
597	Visual–Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey. Cerebral Cortex, 2015, 25, 3932-3952.	2.9	45
598	Oculomotor System. , 2015, , 483-488.		0
599	Cortical and Subcortical Contributions to Short-Term Memory for Orienting Movements. Neuron, 2015, 88, 367-377.	8.1	106
600	A Source for Feature-Based Attention in the Prefrontal Cortex. Neuron, 2015, 88, 832-844.	8.1	258

#	Article	IF	Citations
601	Responses of monkey prefrontal neurons during the execution of transverse patterning. Behavioural Brain Research, 2015, 278, 293-302.	2.2	4
602	Task dependence of decision- and choice-related activity in monkey oculomotor thalamus. Journal of Neurophysiology, 2016, 115, 581-601.	1.8	9
603	A New View of the Motor Cortex and Its Relation to Social Behavior. , 2016, , 38-58.		3
604	Dissociated sequential activity and stimulus encoding in the dorsomedial striatum during spatial working memory. ELife, 2016, 5, .	6.0	83
605	Patterns of Activity in the Human Frontal and Parietal Cortex Differentiate Large and Small Saccades. Frontiers in Integrative Neuroscience, 2016, 10, 34.	2.1	4
606	A Probabilistic Approach to Receptive Field Mapping in the Frontal Eye Fields. Frontiers in Systems Neuroscience, 2016, 10, 25.	2.5	7
607	A Causal Role for the Cortical Frontal Eye Fields in Microsaccade Deployment. PLoS Biology, 2016, 14, e1002531.	5.6	60
608	Visual sensitivity of frontal eye field neurons during the preparation of saccadic eye movements. Journal of Neurophysiology, 2016, 116, 2882-2891.	1.8	12
609	Circuits for presaccadic visual remapping. Journal of Neurophysiology, 2016, 116, 2624-2636.	1.8	43
610	Transient Pupil Dilation after Subsaccadic Microstimulation of Primate Frontal Eye Fields. Journal of Neuroscience, 2016, 36, 3765-3776.	3.6	48
611	Ghosts in the Machine II: Neural Correlates of Memory Interference from the Previous Trial. Cerebral Cortex, 2017, 27, bhw106.	2.9	36
612	Similar prevalence and magnitude of auditory-evoked and visually evoked activity in the frontal eye fields: implications for multisensory motor control. Journal of Neurophysiology, 2016, 115, 3162-3173.	1.8	15
613	Distinct fMRI Responses to Self-Induced versus Stimulus Motion during Free Viewing in the Macaque. Journal of Neuroscience, 2016, 36, 9580-9589.	3.6	21
614	Attention Induced Gain Stabilization in Broad and Narrow-Spiking Cells in the Frontal Eye-Field of Macaque Monkeys. Journal of Neuroscience, 2016, 36, 7601-7612.	3.6	39
615	Parieto-frontal gradients and domains underlying eye and hand operations in the action space. Neuroscience, 2016, 334, 76-92.	2.3	13
616	Feature-based attention and spatial selection in frontal eye fields during natural scene search. Journal of Neurophysiology, 2016, 116, 1328-1343.	1.8	30
617	FEF inactivation with improved optogenetic methods. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7297-E7306.	7.1	98
618	Microelectrode array stimulation combined with intrinsic optical imaging: A novel tool for functional brain mapping. Journal of Neuroscience Methods, 2016, 263, 7-14.	2.5	9

#	Article	IF	CITATIONS
619	Multisensory Convergence of Visual and Vestibular Heading Cues in the Pursuit Area of the Frontal Eye Field. Cerebral Cortex, 2016, 26, 3785-3801.	2.9	50
620	The difference between electrical microstimulation and direct electrical stimulation – towards new opportunities for innovative functional brain mapping?. Reviews in the Neurosciences, 2016, 27, 231-258.	2.9	25
621	Decoding of intended saccade direction in an oculomotor brain–computer interface. Journal of Neural Engineering, 2017, 14, 046007.	3.5	12
622	Short-latency allocentric control of saccadic eye movements. Journal of Neurophysiology, 2017, 117, 376-387.	1.8	7
623	Behavioural and computational varieties of response inhibition in eye movements. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160196.	4.0	24
624	Selective TMS-induced modulation of functional connectivity correlates with changes in behavior. NeuroImage, 2017, 149, 361-378.	4.2	12
625	Selective Modulation of the Pupil Light Reflex by Microstimulation of Prefrontal Cortex. Journal of Neuroscience, 2017, 37, 5008-5018.	3.6	90
626	Stable and Dynamic Coding for Working Memory in Primate Prefrontal Cortex. Journal of Neuroscience, 2017, 37, 6503-6516.	3.6	175
627	Simultaneous analysis of the LFP and spiking activity reveals essential components of a visuomotor transformation in the frontal eye field. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6370-6375.	7.1	20
628	Visual and presaccadic activity in area 8Ar of the macaque monkey lateral prefrontal cortex. Journal of Neurophysiology, 2017, 118, 15-28.	1.8	28
629	Functional anatomy of the macaque temporo-parieto-frontal connectivity. Cortex, 2017, 97, 306-326.	2.4	39
630	Mixed selectivity morphs population codes in prefrontal cortex. Nature Neuroscience, 2017, 20, 1770-1779.	14.8	154
631	Visual Responses in FEF, Unlike V1, Primarily Reflect When the Visual Context Renders a Receptive Field Salient. Journal of Neuroscience, 2017, 37, 9871-9879.	3.6	17
632	How thoughts arise from sights: inferotemporal and prefrontal contributions to vision. Current Opinion in Neurobiology, 2017, 46, 208-218.	4.2	17
633	Neuronal Encoding of Self and Others' Head Rotation in the Macaque Dorsal Prefrontal Cortex. Scientific Reports, 2017, 7, 8571.	3.3	18
634	Theta and beta synchrony coordinate frontal eye fields and anterior cingulate cortex during sensorimotor mapping. Nature Communications, 2017, 8, 13967.	12.8	54
635	Functional Specialization of the Primate Frontal Lobe during Cognitive Control of Vocalizations. Cell Reports, 2017, 21, 2393-2406.	6.4	38
636	Saccades evoked in response to electrical stimulation of the posterior bank of the arcuate sulcus. Experimental Brain Research, 2017, 235, 2797-2809.	1.5	6

#	Article	IF	Citations
637	Neural Mechanisms of Saliency, Attention, and Orienting. Cognitive Science and Technology, 2017, , 1-23.	0.4	3
638	Electrical stimulation of macaque lateral prefrontal cortex modulates oculomotor behavior indicative of a disruption of top-down attention. Scientific Reports, 2017, 7, 17715.	3.3	13
639	The Evolution of the Prefrontal Cortex in Early Primates and Anthropoids. , 2017, , 387-422.		6
640	Top-Down Control of Visual Attention by the Prefrontal Cortex. Functional Specialization and Long-Range Interactions. Frontiers in Neuroscience, 2017, 11, 545.	2.8	105
641	Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects. Journal of Vision, 2017, 17, 20.	0.3	4
642	Orientation-dependent biases in length judgments of isolated stimuli. Journal of Vision, 2017, 17, 20.	0.3	7
643	The magnification factor accounts for the greater hypometria and imprecision of larger saccades: Evidence from a parametric human-behavioral study. Journal of Vision, 2017, 17, 2.	0.3	11
644	On the Evolution of the Frontal Eye Field: Comparisons of Monkeys, Apes, and Humans. , 2017, , 249-275.		12
645	Dissonant Representations of Visual Space in Prefrontal Cortex during Eye Movements. Cell Reports, 2018, 22, 2039-2052.	6.4	22
646	Altered brain function in persistent postural perceptual dizziness: A study on resting state functional connectivity. Human Brain Mapping, 2018, 39, 3340-3353.	3.6	78
647	The Computational Anatomy of Visual Neglect. Cerebral Cortex, 2018, 28, 777-790.	2.9	41
648	Prefrontal Control of Visual Distraction. Current Biology, 2018, 28, 414-420.e3.	3.9	83
649	Streamlined sensory motor communication through cortical reciprocal connectivity in a visually guided eye movement task. Nature Communications, 2018, 9, 338.	12.8	66
650	Exploration Disrupts Choice-Predictive Signals and Alters Dynamics in Prefrontal Cortex. Neuron, 2018, 97, 450-461.e9.	8.1	59
651	The neural correlates of visual imagery: AÂco-ordinate-based meta-analysis. Cortex, 2018, 105, 4-25.	2.4	91
652	Hierarchical Organization Within the Ventral Premotor Cortex of the Macaque Monkey. Neuroscience, 2018, 382, 127-143.	2.3	13
653	An Integrative Framework for Sensory, Motor, and Cognitive Functions of the Posterior Parietal Cortex. Neuron, 2018, 97, 1219-1234.	8.1	89
654	A Quadrantic Bias in Prefrontal Representation of Visual-Mnemonic Space. Cerebral Cortex, 2018, 28, 2405-2421.	2.9	30

#	Article	IF	CITATIONS
655	Methods matter: A primer on permanent and reversible interference techniques in animals for investigators of human neuropsychology. Neuropsychologia, 2018, 115, 211-219.	1.6	9
656	Spatio-temporal characteristics of population responses evoked by microstimulation in the barrel cortex. Scientific Reports, 2018, 8, 13913.	3.3	9
657	The Influence of a Memory Delay on Spatial Coding in the Superior Colliculus: Is Visual Always Visual and Motor Always Motor?. Frontiers in Neural Circuits, 2018, 12, 74.	2.8	18
658	Causal Role of Neural Signals Transmitted From the Frontal Eye Field to the Superior Colliculus in Saccade Generation. Frontiers in Neural Circuits, 2018, 12, 69.	2.8	17
659	Comparing frontal eye field and superior colliculus contributions to covert spatial attention. Nature Communications, 2018, 9, 3553.	12.8	43
660	Response properties of saccade-related neurons of the post-arcuate premotor cortex. Journal of Neurophysiology, 2018, 119, 2291-2306.	1.8	6
661	Saccade metrics reflect decision-making dynamics during urgent choices. Nature Communications, 2018, 9, 2907.	12.8	45
662	Motor action of the frontal eye field on the eyes and neck in the monkey. Journal of Neurophysiology, 2018, 119, 2082-2090.	1.8	4
663	Beyond the labeled line: variation in visual reference frames from intraparietal cortex to frontal eye fields and the superior colliculus. Journal of Neurophysiology, 2018, 119, 1411-1421.	1.8	19
664	Selective Changes in Noise Correlations Contribute to an Enhanced Representation of Saccadic Targets in Prefrontal Neuronal Ensembles. Cerebral Cortex, 2018, 28, 3046-3063.	2.9	13
665	Distinct roles of prefrontal and parietal areas in the encoding of attentional priority. Proceedings of the United States of America, 2018, 115, E8755-E8764.	7.1	25
666	A Dynamic Interplay within the Frontoparietal Network Underlies Rhythmic Spatial Attention. Neuron, 2018, 99, 842-853.e8.	8.1	261
667	Modeling gaze position-dependent opsoclonus. Progress in Brain Research, 2019, 249, 35-61.	1.4	5
668	Opening the "Black Box― Functions of the Frontal Lobes and Their Implications for Sociology. Frontiers in Sociology, 2019, 4, 3.	2.0	17
669	The predictive potential of altered spontaneous brain activity patterns in diabetic retinopathy and nephropathy. EPMA Journal, 2019, 10, 249-259.	6.1	17
670	The spread of presaccadic attention depends on the spatial configuration of the visual scene. Scientific Reports, 2019, 9, 14034.	3.3	12
671	All-or-None Context Dependence Delineates Limits of FEF Visual Target Selection. Current Biology, 2019, 29, 294-305.e3.	3.9	9
672	Task-based fMRI of a free-viewing visuo-saccadic network in the marmoset monkey. NeuroImage, 2019, 202, 116147.	4.2	35

#	Article	IF	CITATIONS
673	Both a Gauge and a Filter: Cognitive Modulations of Pupil Size. Frontiers in Neurology, 2018, 9, 1190.	2.4	40
674	Dynamic Causal Modelling of Active Vision. Journal of Neuroscience, 2019, 39, 6265-6275.	3.6	15
675	Eye Movement Compensation and Spatial Updating in Visual Prosthetics: Mechanisms, Limitations and Future Directions. Frontiers in Systems Neuroscience, 2018, 12, 73.	2.5	23
676	The comparative anatomy of frontal eye fields in primates. Cortex, 2019, 118, 51-64.	2.4	17
677	Distinct Sources of Variability Affect Eye Movement Preparation. Journal of Neuroscience, 2019, 39, 4511-4526.	3.6	33
678	Efficacy of dynamic visuo-attentional interventions for reading in dyslexic and neurotypical children: A systematic review. Neuroscience and Biobehavioral Reviews, 2019, 100, 58-76.	6.1	48
679	Directional tuning for eye and arm movements in overlapping regions in human posterior parietal cortex. Neurolmage, 2019, 191, 234-242.	4.2	11
680	Spatial Attention Deficits Are Causally Linked to an Area in Macaque Temporal Cortex. Current Biology, 2019, 29, 726-736.e4.	3.9	39
681	Cell class-specific modulation of attentional signals by acetylcholine in macaque frontal eye field. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20180-20189.	7.1	31
682	Functional Localization of the Frontal Eye Fields in the Common Marmoset Using Microstimulation. Journal of Neuroscience, 2019, 39, 9197-9206.	3.6	41
683	Alpha Oscillations Modulate Preparatory Activity in Marmoset Area 8Ad. Journal of Neuroscience, 2019, 39, 1855-1866.	3.6	49
684	A critical review of the role of impaired spatial remapping processes in spatial neglect. Clinical Neuropsychologist, 2019, 33, 948-970.	2.3	10
685	Neuroanatomy of the Marmoset. , 2019, , 43-62.		8
686	Alternations of interhemispheric functional connectivity in corneal ulcer patients using voxel-mirrored homotopic connectivity: a resting state fMRI study. Acta Radiologica, 2019, 60, 1159-1166.	1.1	9
687	Visual stimulus-driven functional organization of macaque prefrontal cortex. Neurolmage, 2019, 188, 427-444.	4.2	25
688	Large-scale temporo–parieto–frontal networks for motor and cognitive motor functions in the primate brain. Cortex, 2019, 118, 19-37.	2.4	33
689	Rostro-caudal Connectional Heterogeneity of the Dorsal Part of the Macaque Prefrontal Area 46. Cerebral Cortex, 2019, 29, 485-504.	2.9	25
690	Removal of epileptically compromised tissue in the frontal cortex restores oculomotor selection in the antisaccade task. Journal of Neuropsychology, 2019, 13, 289-304.	1.4	2

	CITATIO	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
691	What would a synthetic connectome look like?. Physics of Life Reviews, 2020, 33, 1-15.	2.8	11
692	A bio-inspired model of behavior considering decision-making and planning, spatial attention and basic motor commands processes. Cognitive Systems Research, 2020, 59, 293-303.	2.7	11
693	Prefrontal cortex exhibits multidimensional dynamic encoding during decision-making. Nature Neuroscience, 2020, 23, 1410-1420.	14.8	88
694	Dynamic shifts of visual and saccadic signals in prefrontal cortical regions 8Ar and FEF. Journal of Neurophysiology, 2020, 124, 1774-1791.	1.8	7
695	Suppressive control of optokinetic and vestibular nystagmus by the primate frontal eye field. Journal of Neurophysiology, 2020, 124, 691-702.	1.8	5
696	On the cortical connectivity in the macaque brain: A comparison of diffusion tractography and histological tracing data. NeuroImage, 2020, 221, 117201.	4.2	52
697	Spatiotemporal transformations for gaze control. Physiological Reports, 2020, 8, e14533.	1.7	17
698	Remote, brain region–specific control of choice behavior with ultrasonic waves. Science Advances, 2020, 6, eaaz4193.	10.3	73
699	Integration of Eye-Centered and Landmark-Centered Codes in Frontal Eye Field Gaze Responses. Cerebral Cortex, 2020, 30, 4995-5013.	2.9	11
700	The lateral prefrontal cortex of primates encodes stimulus colors and their behavioral relevance during a match-to-sample task. Scientific Reports, 2020, 10, 4216.	3.3	11
701	A Temporal Sampling Basis for Visual Processing in Developmental Dyslexia. Frontiers in Human Neuroscience, 2020, 14, 213.	2.0	24
702	The Evolution of the Prefrontal Cortex in Early Primates and Anthropoids. , 2020, , 669-707.		1
703	On the Evolution of the Frontal Eye Field: Comparisons of Monkeys, Apes, and Humans. , 2020, , 861-890.		10
704	Frontal eye field neurons selectively signal the reward value of prior actions. Progress in Neurobiology, 2020, 195, 101881.	5.7	6
705	Parietal Cortex Regulates Visual Salience and Salience-Driven Behavior. Neuron, 2020, 106, 177-187.e4.	8.1	37
706	Thalamus Modulates Consciousness via Layer-Specific Control of Cortex. Neuron, 2020, 106, 66-75.e12.	8.1	215
707	Microstimulation of dorsal premotor and primary motor cortex delays the volitional commitment to an action choice. Journal of Neurophysiology, 2020, 123, 927-935.	1.8	13
708	Abnormal Neural Responses During Reflexive Blinking in Blepharospasm: An Eventâ€Related Functional MRI Study. Movement Disorders, 2020, 35, 1173-1180.	3.9	7

		CITATION REPO	RT	
#	Article	IF	-	CITATIONS
709	A proposal for an auditory sensation cognitive architecture and its integration with the motor-system cognitive function. Cognitive Systems Research, 2021, 66, 1-12.	2.	.7	5
710	A proposal of bioinspired motor-system cognitive architecture focused on feed-forward-comovements. Cognitive Systems Research, 2021, 67, 50-59.	ntrol 2	.7	5
711	Frontal Eye Fields. , 2021, , 41-57.			0
712	Human visual search follows a suboptimal Bayesian strategy revealed by a spatiotemporal computational model and experiment. Communications Biology, 2021, 4, 34.	4	.4	4
713	Visual responses in the dorsolateral frontal cortex of marmoset monkeys. Journal of Neurophysiology, 2021, 125, 296-304.	1.	.8	10
715	Contribution of lonotropic Glutamatergic Receptors to Excitability and Attentional Signals Macaque Frontal Eye Field. Cerebral Cortex, 2021, 31, 3266-3284.	in 2	.9	4
716	Dissociable Cortical and Subcortical Mechanisms for Mediating the Influences of Visual Cu Microsaccadic Eye Movements. Frontiers in Neural Circuits, 2021, 15, 638429.	es on 2.	.8	24
717	Seizure focus in the frontal interhemispheric fissure leads to ipsilateral isolated eye deviation Epilepsy and Behavior, 2021, 116, 107772.	on. 1.	.7	1
718	Consciousness depends on integration between parietal cortex, striatum, and thalamus. C 2021, 12, 363-373.e11.	ell Systems, 6	.2	49
719	Generative Models for Active Vision. Frontiers in Neurorobotics, 2021, 15, 651432.	2	.8	17
721	The roles of the lateral intraparietal area and frontal eye field in guiding eye movements in viewing search behavior. Journal of Neurophysiology, 2021, 125, 2144-2157.	free 1.	.8	4
724	Behavioral validation of novel high resolution attention decoding method from multi-units local field potentials. NeuroImage, 2021, 231, 117853.	& 4	.2	14
725	Role of the frontal eye field in human pupil and saccade orienting responses. European Jou Neuroscience, 2021, 54, 4283-4294.	mal of 2	.6	5
726	Organization of the macaque monkey inferior parietal lobule based on multimodal recepto architectonics. NeuroImage, 2021, 231, 117843.	r 4.	.2	20
728	Comparative anatomy of the macaque and the human frontal oculomotor domain. Neuros Biobehavioral Reviews, 2021, 126, 43-56.	cience and 6.	.1	5
729	Errors in visuospatial working memory across space and time. Scientific Reports, 2021, 11,	14449. 3.	.3	0
731	A Canonical Scheme of Bottom-Up and Top-Down Information Flows in the Frontoparietal Frontiers in Neural Circuits, 2021, 15, 691314.	Network. 2	.8	7
732	Structure, function and connectivity fingerprints of the frontal eye field versus the inferior junction: A comprehensive comparison. European Journal of Neuroscience, 2021, 54, 5462	frontal 2. -5506	.6	20

#	Article	IF	CITATIONS
733	Evolution of prefrontal cortex. Neuropsychopharmacology, 2022, 47, 3-19.	5.4	69
734	Dynamic encoding of saccade sequences in primate frontal eye field. Journal of Physiology, 2021, 599, 5061-5084.	2.9	2
735	Joint representation of working memory and uncertainty in human cortex. Neuron, 2021, 109, 3699-3712.e6.	8.1	32
736	Functional Organization of Frontoparietal Cortex in the Marmoset Investigated with Awake Resting-State fMRI. Cerebral Cortex, 2022, 32, 1965-1977.	2.9	1
737	Marmosets: a promising model for probing the neural mechanisms underlying complex visual networks such as the frontal–parietal network. Brain Structure and Function, 2021, 226, 3007-3022.	2.3	8
738	Visuomotor control in mice and primates. Neuroscience and Biobehavioral Reviews, 2021, 130, 185-200.	6.1	4
739	Attention, Eye Movements, and Neurons: Linking Physiology and Behavior. , 2001, , 209-232.		6
740	Microgenetic Theory and the Dual Premotor Systems Hypothesis: Implications for Rehabilitation of the Brain-Damaged Subject. Springer Series in Neuropsychology, 1991, , 32-52.	0.3	2
741	Visuomotor Areas of the Frontal Lobe. Cerebral Cortex, 1997, , 527-638.	0.6	104
742	Visual Circuits. , 2016, , 89-100.		2
743	Premotor systems, attention to action and behavioural choice. , 1992, , 225-249.		8
744	Control of eye movements and spatial attention. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1273-1276.	7.1	288
745	The role of posterior parietal cortex in the regulation of saccadic eye movements. , 2011, , .		5
746	Neurocognitive Modeling of Perceptual Decision Making. , 2015, , .		8
751	The role of experience in demonstrative thought. Mind and Language, 2019, 34, 648-666.	2.3	1
752	Analysis of Perisaccadic Field Potentials in the Occipitotemporal Pathway During Active Vision. Journal of Neurophysiology, 2003, 90, 3455-3478.	1.8	62
753	Macaque Frontal Eye Field Input to Saccade-Related Neurons in the Superior Colliculus. Journal of Neurophysiology, 2003, 90, 1046-1062.	1.8	44
754	Perception, Memory, and Action in Frontal and Parietal Cortex. Focus on "Selection and Maintenance of Saccade Goals in the Human Frontal Eye Fields― Journal of Neurophysiology, 2006, 95, 3309-3310.	1.8	1

ARTICLE IF CITATIONS # Situating the Superior Colliculus within the Gaze Control Network., 2003,,. 755 2 Concurrent, Distributed Control of Saccade Initiation in the Frontal Eye Field and Superior 14 Colliculus., 2003,,. A Functional and Structural Investigation of the Human Fronto-Basal Volitional Saccade Network. 757 2.5 52 PLoS ONE, 2012, 7, e29517. Frontal Non-Invasive Neurostimulation Modulates Antisaccade Preparation in Non-Human Primates. PLoS ONE, 2012, 7, e38674. Spatial Interactions between Successive Eye and Arm Movements: Signal Type Matters. PLoS ONE, 2013, 759 2.5 4 8, e58850. Double Virus Vector Infection to the Prefrontal Network of the Macaque Brain. PLoS ONE, 2015, 10, 2.5 e0132825. 761 Perisaccadic remapping: What? How? Why?. Reviews in the Neurosciences, 2020, 31, 505-520. 2.9 18 Area 8A within the Posterior Middle Frontal Gyrus Underlies Cognitive Selection between Competing 1.9 Visual Targets. ENeuro, 2020, 7, ENEURO.01Ó2-20.2020. Computational Architecture of the Parieto-Frontal Network Underlying Cognitive-Motor Control in 763 1.9 62 Monkeys. ENeuro, 2017, 4, ENEURO.0306-16.2017. Timing Determines Tuning: A Rapid Spatial Transformation in Superior Colliculus Neurons during 764 1.9 Reactive Gaze Shifts. ENeuro, 2020, 7, ENEURO.0359-18.2019. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. 765 528 3.6 Journal of Neuroscience, 1991, 11, 168-190. The redundant-signals paradigm and preattentive visual processing. Frontiers in Bioscience - Landmark, 2008, Volume, 5279. Biologically-Inspired Models for Attentive Robot Vision. Advances in Computational Intelligence and 767 0.4 2 Robotics Book Series, 2016, , 69-98. La plasticité de la transformation sensori-motrice dans le système visuelÂ: l'adaptation saccadique. 768 0.3 Annee Psychologique, 2009, 109, 509. Saccadic eye movements in Parkinsonâ€2s disease. Indian Journal of Ophthalmology, 2014, 62, 538. 769 1.1 27 Visual field map clusters in human frontoparietal cortex. ELife, 2017, 6, . Role of the frontal eye field in human microsaccade responses: A TMS study. Biological Psychology, 771 2.211 2021, 165, 108202. Visual Processing in the Macaque Frontal Eye Field. Frontiers in Neuroscience, 2003, , .

#	Article	IF	CITATIONS
773	Functional magnetic resonance imaging and positron emission tomography studies of motion perception, eye movements, and reading. , 2003, , 92-118.		0
774	Visual Attention and Saccadic Eye Movements. , 2008, , 291-297.		0
775	Optical Imaging of Short–Term Working Memory in Prefrontal Cortex of the Macaque Monkey. , 2009, , 119-133.		0
776	Loss of exploratory vertical saccades after unilateral frontal eye field damage. BMJ Case Reports, 2009, 2009, bcr0820080687-bcr0820080687.	0.5	1
777	Neural expectations: a possible evolutionary path from manual skills to language. , 2012, , 140-166.		34
778	Intention, Response Selection, and Executive-Attention. , 2014, , 69-87.		0
780	Disorders of horizontal and vertical gaze. , 1987, , 173-182.		0
781	Hierarchical Aspects of Eye Movement Disorders. Clinical Medicine and the Nervous System, 1989, , 151-158.	0.2	1
782	Nervous Control of the Eye Movements. , 1990, , 667-753.		0
783	The prefrontal neurons were enhanced or suppressed during visual peripheral attention without eye movement. Primate Research, 1996, 12, 21-32.	0.0	0
784	Topographical Organization of the Frontal Eye Field in Terms of Sensory and Motor Aspects Equilibrium Research, 1998, 57, 461-474.	0.1	0
791	Decision Making, Countermanding Oculomotor Models. , 2019, , 1-12.		0
793	Neuronal Mechanisms Underlying Attention and Visual Search. The Brain & Neural Networks, 2019, 26, 62-71.	0.1	0
796	Deciphering the Neuronal Population Code. , 2020, , 519-534.		0
801	Spatiotemporal Coding in the Macaque Supplementary Eye Fields: Landmark Influence in the Target-to-Gaze Transformation. ENeuro, 2021, 8, ENEURO.0446-20.2020.	1.9	3
803	Completing the puzzle: Why studies in non-human primates are needed to better understand the effects of non-invasive brain stimulation. Neuroscience and Biobehavioral Reviews, 2022, 132, 1074-1085.	6.1	6
805	The macaque ventral intraparietal area has expanded into three homologue human parietal areas. Progress in Neurobiology, 2022, 209, 102185.	5.7	6
806	Temporal synchrony effects of optic flow and vestibular inputs on multisensory heading perception. Cell Reports, 2021, 37, 109999.	6.4	12

#	Article	IF	CITATIONS
807	La plasticité de la transformation sensori-motrice dans le système visuelÂ: l'adaptation saccadique. Annee Psychologique, 2009, Vol. 109, 509-549.	0.3	0
808	Frontal eye fields in macaque monkeys: prefrontal and premotor contributions to visually guided saccades. Cerebral Cortex, 2022, 32, 5083-5107.	2.9	3
809	Neurophysiology of the saccadic system: The reticular formation. Progress in Brain Research, 2022, 267, 355-378.	1.4	1
811	A descriptive study of eye and head movements in versive seizures. Seizure: the Journal of the British Epilepsy Association, 2022, 98, 44-50.	2.0	5
812	Frontal cortical functional connectivity is impacted by anaesthesia in macaques. Cerebral Cortex, 2022, 32, 4050-4067.	2.9	11
813	SC – Motor Map. , 2009, , 3585-3588.		0
814	Premotor cortex in the rat Behavioral Neuroscience, 1988, 102, 101-109.	1.2	38
815	Activity and distribution of learning-related neurons in monkey (Macaca fuscata) prefrontal cortex Behavioral Neuroscience, 1990, 104, 503-531.	1.2	14
816	Structural and functional variations in the prefrontal cortex are associated with learning in pre-adolescent common marmosets (Callithrix jacchus). Behavioural Brain Research, 2022, 430, 113920.	2.2	5
817	Architecture and connectivity of the human angular gyrus and of its homolog region in the macaque brain. Brain Structure and Function, 2023, 228, 47-61.	2.3	9
818	Decision Making, Countermanding Oculomotor Models. , 2022, , 1099-1110.		0
820	Visual Attention in the Prefrontal Cortex. Annual Review of Vision Science, 2022, 8, 407-425.	4.4	10
821	Thalamic deep brain stimulation paradigm to reduce consciousness: Cortico-striatal dynamics implicated in mechanisms of consciousness. PLoS Computational Biology, 2022, 18, e1010294.	3.2	7
822	Representational coding of overt and covert orienting of visuospatial attention in the frontoparietal network. NeuroImage, 2022, 261, 119499.	4.2	4
825	Anorexia Nervosa and Eye Movements. , 2022, , 1-18.		0
828	Interdigitated Columnar Representation of Personal Space and Visual Space in Human Parietal Cortex. Journal of Neuroscience, 2022, 42, 9011-9029.	3.6	6
829	FEF TMS Affects Visual Cortical Activity. SSRN Electronic Journal, 0, , .	0.4	0
830	Decoding the Time Course of Spatial Information from Spiking and Local Field Potential Activities in the Superior Colliculus. ENeuro, 2022, 9, ENEURO.0347-22.2022.	1.9	5

# 831	ARTICLE Sensory and Motor Processing. Brain Science, 2022, , 281-351.	IF 0.0	CITATIONS
833	Pathway-Selective Reversible Perturbations Using a Double-Infection Technique in the Macaque Brain. Neuromethods, 2023, , 185-205.	0.3	3
834	Interacting rhythms enhance sensitivity of target detection in a fronto-parietal computational model of visual attention. ELife, 0, 12, .	6.0	0
835	Visual Circuits. , 2023, , 69-76.		0
836	Neural correlates of cognitively controlled vocalizations in a corvid songbird. Cell Reports, 2023, 42, 112113.	6.4	0
837	Anorexia Nervosa and Eye Movements. , 2023, , 585-602.		0
838	Accurate localization and coactivation profiles of the frontal eye field and inferior frontal junction: an ALE and MACM fMRI meta-analysis. Brain Structure and Function, 2023, 228, 997-1017.	2.3	2
840	The Costs of Paying Overt and Covert Attention Assessed With Pupillometry. Psychological Science, 2023, 34, 887-898.	3.3	3
841	Using Natural Scenes to Enhance our Understanding of the Cerebral Cortex's Role in Visual Search. Annual Review of Vision Science, 2023, 9, .	4.4	0
842	Neural correlates of valueâ€driven spatial orienting. Psychophysiology, 2023, 60, .	2.4	2
843	Maintaining eye fixation relieves pressure of cognitive action control. IScience, 2023, 26, 107520.	4.1	0
844	Distributions of Visual Receptive Fields from Retinotopic to Craniotopic Coordinates in the Lateral Intraparietal Area and Frontal Eye Fields of the Macaque. Neuroscience Bulletin, 2024, 40, 171-181.	2.9	0
845	Cytoarchitectonic, receptor distribution and functional connectivity analyses of the macaque frontal lobe. ELife, 0, 12, .	6.0	6
846	Integration of landmark and saccade target signals in macaque frontal cortex visual responses. Communications Biology, 2023, 6, .	4.4	1
850	Oculomotor feature discrimination is cortically mediated. Frontiers in Systems Neuroscience, 0, 17, .	2.5	1
851	Resilience of FEF Neuronal Saccade Code to V4 Perturbations. Journal of Neurophysiology, 0, , .	1.8	0
852	Dissociating the Contributions of Frontal Eye Field Activity to Spatial Working Memory and Motor Preparation. Journal of Neuroscience, 2023, 43, 8681-8689.	3.6	1
854	Predicting the effect of micro-stimulation on macaque prefrontal activity based on spontaneous circuit dynamics. Physical Review Research, 2023, 5, .	3.6	0

#	Article	IF	CITATIONS
855	Perisaccadic and attentional remapping of receptive fields in lateral intraparietal area and frontal eye fields. Cell Reports, 2024, 43, 113820.	6.4	0
856	Pathways for Naturalistic Looking Behavior in Primate II. Superior Colliculus Integrates Parallel Top-down and Bottom-up Inputs. Neuroscience, 2024, 545, 86-110.	2.3	0