Double-bond location in monounsaturated fatty acids be and mass spectrometry: Application to analysis of fatty lepidoptera

Journal of Chemical Ecology 11, 265-277

DOI: 10.1007/bf01411414

Citation Report

#	Article	IF	CITATIONS
1	Phospholipid Ester-linked Fatty Acid Biomarkers of Acetate-oxidizing Sulphate-reducers and Other Sulphide-forming Bacteria. Microbiology (United Kingdom), 1986, 132, 1815-1825.	0.7	91
2	Sexual behaviour and pheromone titre in the tomato looper, Plusia chalcites (Esp.) (Lepidoptera:) Tj ETQq1 1 0.784	4314 rgBT	<i>L</i> Qverlock 1
3	Determination of monosaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. Journal of Microbiological Methods, 1986, 5, 49-55.	0.7	388
4	Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions. Journal of Bacteriology, 1986, 167, 238-242.	1.0	54
5	Mass spectrometric localization of carbon-carbon double bonds: A critical review of recent methods. Chemistry and Physics of Lipids, 1986, 39, 285-311.	1.5	60
6	Lipids of the antarctic sea ice diatom Nitzschia cylindrus. Phytochemistry, 1986, 25, 1649-1653.	1.4	82
7	Spruce budworm (Choristoneura fumiferana) pheromone chemistry and behavioral responses to pheromone components and analogs. Journal of Chemical Ecology, 1986, 12, 367-383.	0.9	16
8	Fatty acid composition and microbial activity of benthic marine sediment from McMurdo Sound, Antarctica. FEMS Microbiology Letters, 1986, 38, 219-231.	0.7	45
9	Determination of double-bond position in diunsaturated compounds by mass spectrometry of dimethyl disulfide derivatives. Analytical Chemistry, 1987, 59, 694-699.	3.2	193
10	Measurement of methanotroph and methanogen signature phosopholipids for use in assessment of biomass and community structure in model systems. Organic Geochemistry, 1987, 11, 451-461.	0.9	61
11	Biogenetic pattern of straight chain marking compounds in male bumble bees. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1987, 88, 631-636.	0.2	13
12	Stability of hydrocarbon samples on solid-phase extraction columns. Analytical Chemistry, 1987, 59, 699-703.	3.2	55
13	The phylogenetic position of the budding bacteria Blastobacter aggregatus and Gemmobacter aquatilis gen., nov. sp. nov Archives of Microbiology, 1987, 147, 92-99.	1.0	59
14	Identification of sex pheromone components from pheromone gland volatiles of the tomato looper,Plusia chalcites (Esp.). Journal of Chemical Ecology, 1987, 13, 991-1003.	0.9	19
15	Reinvestigation confirms action of ?11-desaturases in spruce budworm moth sex pheromone biosynthesis. Journal of Chemical Ecology, 1987, 13, 1019-1027.	0.9	37
16	Detection of a microbial consortium, including type II methanotrophs, by use of phospholipid fatty acids in an aerobic halogenated hydrocarbonâ€degrading soil column enriched with natural gas. Environmental Toxicology and Chemistry, 1987, 6, 89-97.	2.2	65
17	Sex pheromone precursors in Spodoptera littoralis (Lepidoptera: Noctuidae). Insect Biochemistry, 1987, 17, 877-881.	1.8	21
18	LIPIDS AND CHEMOTAXONOMY OF PROCHLOROTHRIX HOLLANDICA, A PLANKTONIC PROKARYOTE CONTAINING CHLOROPHYLLS a AND b. Journal of Phycology, 1988, 24, 554-559.	1.0	17

#	Article	IF	CITATIONS
19	Strukturbestimmung mit Nanogrammâ€Mengen durch Kombination mikrochemischer und gaschromatographischer Methoden am Beispiel von Pheromonen. Angewandte Chemie, 1988, 100, 475-494.	1.6	16
20	Derivatization in mass spectrometry: Strategies for controlling fragmentation. Mass Spectrometry Reviews, 1988, 7, 395-424.	2.8	51
21	Pheromones in Nanogram Quantities: Structure Determination by Combined Microchemical and Gas Chromatographic Methods [New Analytical Methods (35)]. Angewandte Chemie International Edition in English, 1988, 27, 460-478.	4.4	45
22	Mass spectrometric indication of double bond position in dodecenals without any chemical derivatization. Biological Mass Spectrometry, 1988, 17, 301-306.	0.5	9
23	Precise characterization of cuticular compounds in youngDrosophila by mass spectrometry. Journal of Chemical Ecology, 1988, 14, 1071-1085.	0.9	61
24	The budding bacteria, Pirellula and Planctomyces, with atypical 16S rRNA and absence of peptidoglycan, show eubacterial phospholipids and uniquely high proportions of long chain beta-hydroxy fatty acids in the lipopolysaccharide lipid A. Archives of Microbiology, 1988, 149, 255-260.	1.0	55
25	Phospholipid fatty acid and infra-red spectroscopic analysis of a sulphate-reducing consortium. FEMS Microbiology Letters, 1988, 53, 325-333.	0.7	34
26	Dufour gland alkenes from the four ant species: F. polyctena, F. lugubris, F. truncorum, and F. uranlensis. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1988, 91, 729-734.	0.2	3
27	Sex Pheromones and Behavioral Biology of the Coniferophagous Choristoneura. Annual Review of Entomology, 1988, 33, 83-101.	5.7	44
28	Sex pheromone precursors in the processionary moth Thaumetopoea pityocampa (Lepidoptera:) Tj ETQq $1\ 1\ 0.784$	1314 rgBT 1.8	/Overlock
29	Taxonomy of Heterotermes (Isoptera: Rhinotermitidae) in south-eastern Australia: cuticular hydrocarbons of workers, and soldier and alate morphology. Systematic Entomology, 1989, 14, 299-325.	1.7	23
30	Female sex pheromone components ofHeliothis peltigera (Lepidoptera: Noctuidae). Journal of Chemical Ecology, 1989, 15, 2233-2245.	0.9	43
31	Influence of diel rhythm and brain hormone on pheromone production in two lepidopteran species. Journal of Chemical Ecology, 1989, 15, 447-455.	0.9	68
32	Identification of sex pheromone component of spruce budmothZeiraphera canadensis. Journal of Chemical Ecology, 1989, 15, 2435-2444.	0.9	4
33	Microscopic examination and fatty acid characterization of filamentous bacteria colonizing substrata around subtidal hydrothermal vents. Archives of Microbiology, 1989, 152, 64-71.	1.0	44
34	Lipid composition and metabolic activities of benthic near-shore microbial communities of Arthur Harbor, antarctic peninsula: Comparisons with McMurdo Sound. Polar Biology, 1989, 9, 517-524.	0.5	5
35	Triacylglycerol fatty acid and sterol composition of sediment microorganisms from McMurdo Sound, Antarctica. Polar Biology, 1989, 9, 273-279.	0.5	9
36	Validation of signature polarlipid fatty acid biomarkers for alkane-utilizing bacteria in soils and subsurface aquifer materials. FEMS Microbiology Letters, 1989, 62, 39-50.	0.7	100

#	Article	IF	CITATIONS
37	Dimethyl disulfide derivatives of long chain alkenes, alkadienes, and alkatrienes for gas chromatography/mass spectrometry. Analytical Chemistry, 1989, 61, 1564-1571.	3.2	168
38	Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology, 1989, 128, 219-240.	0.7	900
39	Utilization of spectrometric information in linked gas chromatography-Fourier transform infrared spectroscopy-mass spectrometry. Analytical Chemistry, 1989, 61, 1571-1577.	3.2	17
40	High incorporation of esential fatty acids by the Rotifer Brachionus plicatilis fed on the Prymnesiophyte Alga Pavlova lutheri. Marine and Freshwater Research, 1989, 40, 645.	0.7	27
41	Nutritional Interactions Revealed by Tissue Fatty Acid Profiles of an Obligate Myrmecophilous Predator, Microdon albicomatus, and Its Prey, Myrmica incompleta, (Diptera: Syrphidae) (Hymenoptera:) Tj ETQo	q0 (1.(9 rgB	T/Ozwerlock 1
42	Lactococcus pisciumsp. nov. a newLactococcusspecies from salmonid fish. FEMS Microbiology Letters, 1990, 68, 109-113.	0.7	101
43	Behavioral responses of maleHeliothis armigera (Lepidoptera: Noctuidae) moths in a flight tunnel to combinations of components identified from female sex pheromone glands. Journal of Insect Behavior, 1990, 3, 75-83.	0.4	84
44	Novel internally branched, internal alkenes as major components of the cuticular hydrocarbons of the primitive australian antNothomyrmecia macrops Clark (Hymenoptera: Formicidae). Journal of Chemical Ecology, 1990, 16, 2623-2635.	0.9	15
45	Chemistry of male mandibular gland secretions of Philanthus triangulum. Journal of Chemical Ecology, 1990, 16, 2135-2143.	0.9	12
46	Taxonomic and Phylogenetic Studies on a New Taxon of Budding, Hyphal Proteobacteria, Hirschia baltica gen. nov., sp. nov International Journal of Systematic Bacteriology, 1990, 40, 443-451.	2.8	78
47	Volatile compounds from the red deer (Cervus elaphus). substances secreted via the urin. Comparative Biochemistry and Physiology A, Comparative Physiology, 1990, 97, 427-431.	0.7	16
48	Determination of Double Bond Position and Geometry in Linear and Highly Branched Hydrocarbons and Fatty Acids from Gas Chromatography-Mass Spectrometry of Epoxides and Diols Generated by Stereospecific Resin Hydration. Journal of Chromatographic Science, 1990, 28, 421-427.	0.7	32
49	The Phospholipid Ester-linked Fatty Acid Composition of Members of the Family Halomonadaceae and Genus Flavobacterium: A Chemotaxonomic Guide. Systematic and Applied Microbiology, 1991, 14, 8-13.	1.2	32
50	The Phospholipid Ester-linked Fatty Acid Composition of Thermophilic Bacteria. Systematic and Applied Microbiology, 1991, 14, 311-316.	1.2	17
51	Fatty acids as biomarkers of planktonic inputs in the stratified estuary of the Krka River, Adriatic Sea: relationship with pigments. Marine Chemistry, 1991, 32, 299-312.	0.9	57
52	Fatty acids from microalgae of the genus Pavlova. Phytochemistry, 1991, 30, 1855-1859.	1.4	76
53	Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. FEMS Microbiology Ecology, 1991, 8, 15-21.	1.3	6
54	Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. FEMS Microbiology Letters, 1991, 85, 15-22.	0.7	157

#	Article	IF	CITATIONS
55	Sex pheromone components of female <i>Cornutiplusia circumflexa</i> . Entomologia Experimentalis Et Applicata, 1991, 60, 167-172.	0.7	7
56	Determination of double-bond positions in methylene-interrupted dienoic fatty acids by GC-MS as their dimethyl disulfide adducts. Chemistry and Physics of Lipids, 1991, 60, 39-50.	1.5	88
57	Isolation and identification of the sex pheromone of females of Heliothis maritima (Lepidoptera,) Tj ETQq0 0 0 rg	BT/Qverlo	ck 10 Tf 50 6
58	Unusual polymethyl alkenes in tsetse flies acting as abstinon inGlossina morsitans. Journal of Chemical Ecology, 1991, 17, 267-284.	0.9	33
59	Evolutionary trends in the lipid biomarker approach for investigating the biogeochemistry of organic matter in the marine environment. Marine Chemistry, 1991, 36, 233-248.	0.9	102
60	Desulfohalobium retbaense gen. nov., sp. nov., a Halophilic Sulfate-Reducing Bacterium from Sediments of a Hypersaline Lake in Senegal. International Journal of Systematic Bacteriology, 1991, 41, 74-81.	2.8	124
61	Organic geochemical features of an extremely acid crater lake (Yugama) of Kusatsu-Shirane Volcano in Japan Geochemical Journal, 1992, 26, 117-136.	0.5	14
62	Phospholipid Fatty Acid Composition and Distribution Patterns of Prostaglandins in Malpighian Tubules of the Yellow Mealworm (Coleoptera: Tenebrionidae). Annals of the Entomological Society of America, 1992, 85, 489-498.	1.3	18
63	Chemotaxonomic Investigation of Budding and/or Hyphal Bacteria. Systematic and Applied Microbiology, 1992, 15, 209-222.	1.2	25
64	Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acids. Journal of Experimental Marine Biology and Ecology, 1992, 161, 115-134.	0.7	154
65	Cuticular hydrocarbons from Varroa jacobsoni. Experimental and Applied Acarology, 1992, 16, 331-344.	0.7	37
66	Role of sex pheromone components in behavioral reproductive isolation betweenAutographa gamma (L.) and eitherTrichoplusia ni (H�bner) ORChrysodeixis chalcites (Esp.) (Lepidoptera: Noctuidae:) Tj ETQq1 1 0.3	7 8:49 14 rg	:BIgOverlock
67	Female sex pheromone of oriental tobacco budworm, Helicoverpa assulta (Guenee) (Lepidoptera:) Tj ETQq0 0 0 rg	BT /Overlo	ock 10 Tf 50
68	Mandibular gland secretions of the male beewolvesPhilanthus crabroniformis, P. barbatus, andP. pulcher (Hymenoptera: Sphecidae). Journal of Chemical Ecology, 1992, 18, 27-37.	0.9	15
69	Anaerobic production of polyunsaturated fatty acids by Shewanella putrefaciens strain ACAM 342. FEMS Microbiology Letters, 1992, 98, 117-122.	0.7	27
70	Determination of the double-bond position in hexadecenols by mass spectrometry without prior chemical modification. Organic Mass Spectrometry, 1992, 27, 944-948.	1.3	11
71	Double bond location in monounsaturated wax esters by gas chromatography/mass spectrometry of their dimethyl disulphide derivatives. Organic Mass Spectrometry, 1993, 28, 1365-1367.	1.3	14
72	Chemical characterization and species specificity of sex pheromones of plusiinae moths in Israel. Archives of Insect Biochemistry and Physiology, 1993, 22, 413-424.	0.6	13

#	ARTICLE	IF	Citations
73	Determination of double-bond position in some unsaturated terpenes and other branched compounds by alkylthiolation. Analytical Chemistry, 1993, 65, 2528-2533.	3.2	20
74	Revised Taxonomy of the Methanotrophs: Description of Methylobacter gen. nov., Emendation of Methylococcus, Validation of Methylosinus and Methylocystis Species, and a Proposal that the Family Methylococcaceae Includes Only the Group I Methanotrophs. International Journal of Systematic Bacteriology, 1993, 43, 735-753.	2.8	408
75	Identification and synthesis of female sex pheromone of Oriental beetle, Anomala orientalis (Coleoptera: Scarabaeidae). Journal of Chemical Ecology, 1994, 20, 2415-2427.	0.9	63
76	Lipids of heliobacteria are characterised by a high proportion of monoenoic fatty acids with variable double bond positions. Photosynthesis Research, 1994, 41, 67-74.	1.6	12
77	Lipopolysaccharide ofRhodospirillum salinarum 40: structural studies on the core and lipid A region. Archives of Microbiology, 1995, 164, 280-289.	1.0	12
78	Estimation of cell numbers of methanotrophic bacteria in boreal peatlands based on analysis of specific phospholipid fatty acids. FEMS Microbiology Ecology, 1995, 18, 103-112.	1.3	79
79	Lipid, fatty acid and squalene composition of liver oil from six species of deep-sea sharks collected in southern australian waters. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1995, 110, 267-275.	0.7	94
80	Phospholipid fatty acid composition of gorgonians of the genus Pseudopterogorgia: Identification of tetracosapolyenoic acids. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1996, 113, 781-783.	0.7	15
81	Simultaneous estimation of microbial phospholipid fatty acids and diether lipids by capillary gas chromatography. Journal of Microbiological Methods, 1996, 25, 177-185.	0.7	37
82	The use of a classic lipid extraction method for simultaneous recovery of organic pollutants and microbial lipids from sediments. Journal of Microbiological Methods, 1996, 27, 63-71.	0.7	60
83	A geolipid characterization of Organic Lake â€" a hypersaline meromictic Antarctic lake. Organic Geochemistry, 1996, 25, 1-8.	0.9	4
84	Role of cuticular hydrocarbons of aphid parasitoids in their relationship to aphid-attending ants. Journal of Chemical Ecology, 1996, 22, 695-707.	0.9	61
86	Reproductive trade-off in male Antarctic krill, Euphausia superba. Marine Biology, 1996, 126, 521-527.	0.7	63
87	Unusual fatty acid compositions of the hyperthermophilic archaeon Pyrococcus furiosus and the bacterium Thermotoga maritima. Journal of Bacteriology, 1997, 179, 2766-2768.	1.0	59
88	The lipid, fatty acid and fatty alcohol composition of the myctophid fish <i>Electrona antarctica</i> high level of wax esters and food-chain implications. Antarctic Science, 1997, 9, 258-265.	0.5	45
89	The Use of Aromatic Acids and Phospholipid-Ester-Linked Fatty Acids for Delineation of Processes Affecting an Aquifer Contaminated with JP-4 Fuel. ACS Symposium Series, 1997, , 65-76.	0.5	6
90	Phospholipid Fatty Acid Composition of Gorgonians of the Genus Eunicea: Further Identification of Tetracosapolyenoic Acids. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 118, 257-260.	0.7	15
91	The Cuticular Hydrocarbons of the Soil Burrowing Cockroach Geoscapheus dilatatus (Saussure) (Blattodea: Blaberidae: Geoscapheinae) Indicate Species Dimorphism. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 118, 549-562.	0.7	8

#	Article	IF	Citations
92	The fatty acid composition of a Vibrio alginolyticus associated with the alga Cladophora coelothrix. Identification of the novel 9-methyl-10-hexadecenoic acid. Lipids, 1997, 32, 1271-1275.	0.7	30
93	Lipids and buoyancy in Southern Ocean pteropods. Lipids, 1997, 32, 1093-1100.	0.7	52
94	Title is missing!. Journal of Chemical Ecology, 1998, 24, 1141-1151.	0.9	22
95	Fatty acid composition of bacteria associated with the toxic dinoflagellate Ostreopsis lenticularis and with caribbean Palythoa species. Lipids, 1998, 33, 627-632.	0.7	17
96	Chemical mimicry in the root aphid parasitoid Paralipsis eikoae Yasumatsu (Hymenoptera: Aphidiidae) of the aphid-attending ant Lasius sakagamii Yamauchi & Hayashida (Hymenoptera: Formicidae). Chemoecology, 1998, 8, 153-161.	0.6	29
97	5,9-Nonadecadienoic acids in malvaviscus arboreus and allamanda cathartica. Phytochemistry, 1998, 49, 1253-1256.	1.4	15
98	Biogeochemical evidence for microbial community change in a jet fuel hydrocarbons-contaminated aquifer. Organic Geochemistry, 1998, 29, 899-907.	0.9	26
99	Lipids and trophodynamics of Antarctic zooplankton. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 120, 311-323.	0.7	99
100	Identification and Total Synthesis of Novel Fatty Acids from the Caribbean SpongeCalyxpodatypa. Journal of Natural Products, 1998, 61, 1049-1052.	1.5	21
101	SEX PHEROMONE COMPONENTS OF <i>ENARMONIA FORMOSANA</i> Canadian Entomologist, 1999, 131, 85-92.	0.4	7
102	Changes in whole cell-derived fatty acids induced by benzene and occurrence of the unusual 16:1É6c inRhodococcussp. 33. FEMS Microbiology Letters, 1999, 176, 213-218.	0.7	16
103	Lipids of the notothenioid fishes Trematomus spp. and Pagothenia borchgrevinki from East Antarctica. Polar Biology, 1999, 22, 241-247.	0.5	22
104	Mating expenditures reduced via female sex pheromone modulation in the primitively eusocial halictine bee, Lasioglossum (Evylaeus) malachurum (Hymenoptera: Halictidae). Behavioral Ecology and Sociobiology, 1999, 45, 95-106.	0.6	66
105	Comparative studies on the sex pheromones of Ostrinia spp. in Japan: the burdock borer, Ostrinia zealis. Chemoecology, 1999, 9, 25-32.	0.6	26
106	Isopropyl (Z9) -hexadecenoate as a male attractant pheromone from the sternal gland of the rove beetle Aleochara curtala (Coleoptera: Staphylinidae). Chemoecology, 1999, 9, 47-54.	0.6	13
107	Caste- and colony-specific chemical signals on eggs of the bumble bee, Bombus terrestris L. (Hymenoptera: Apidae). Chemoecology, 1999, 9, 119-126.	0.6	31
108	Lipids of abducted Antarctic pteropods, Spongiobranchaea australis, and their hyperiid amphipod host. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1999, 124, 295-307.	0.7	23
109	The Fatty Acid Composition of Tropical Marine Algae of the Genus Halimeda (Chlorophyta). Botanica Marina, 1999, 42, .	0.6	7

#	ARTICLE	IF	CITATIONS
110	EVOLUTION OF REPRODUCTIVE STRATEGIES IN THE SEXUALLY DECEPTIVE ORCHID OPHRYS SPHEGODES: HOW DOES FLOWER-SPECIFIC VARIATION OF ODOR SIGNALS INFLUENCE REPRODUCTIVE SUCCESS?. Evolution; International Journal of Organic Evolution, 2000, 54, 1995-2006.	1.1	191
111	Title is missing!. Journal of Chemical Ecology, 2000, 26, 1135-1149.	0.9	18
112	Unusual lipid composition of a Bacillus sp. Isolated from Lake Pomorie in Bulgaria. Lipids, 2000, 35, 1371-1376.	0.7	11
113	Lipids of gelatinous antarctic zooplankton: Cnidaria and Ctenophora. Lipids, 2000, 35, 551-559.	0.7	65
114	Lipids of Antarctic salps and their commensal hyperiid amphipods. Polar Biology, 2000, 23, 329-337.	0.5	37
115	Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): patterns of hydrocarbons as the key mechanism for pollination by sexual deception. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2000, 186, 567-574.	0.7	164
116	A sex pheromone component novel to Ostrinia identified from Ostrinia latipennis (Lepidoptera:) Tj ETQq0 0 0 rg	BT Overlo	ck 10 Tf 50 5
117	Distribution and Compositions of Diacyl Glyceryl Ethers in Different Tissues of th Mature and Immature Spiny Dogfish, Squalus acanthias. Journal of Japan Oil Chemists' Society, 2000, 49, 325-331,388.	0.3	7
118	EVOLUTION OF REPRODUCTIVE STRATEGIES IN THE SEXUALLY DECEPTIVE ORCHID OPHRYS SPHEGODES: HOW DOES FLOWER-SPECIFIC VARIATION OF ODOR SIGNALS INFLUENCE REPRODUCTIVE SUCCESS?. Evolution; International Journal of Organic Evolution, 2000, 54, 1995.	1.1	63
119	A Delta 9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9449-9454.	3.3	227
120	A direct comparison between fatty acid analysis and intact phospholipid profiling for microbial identification. Organic Geochemistry, 2000, 31, 881-887.	0.9	33
121	Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Organic Geochemistry, 2000, 31, 1685-1701.	0.9	321
122	The cuticular hydrocarbons of the giant soil-burrowing cockroach Macropanesthia rhinoceros Saussure (Blattodea: Blaberidae: Geoscapheinae): analysis with respect to age, sex and location. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2000, 127, 261-277.	0.7	19
123	Two Novellso-Branched Octadecenoic Acids from aMicrococcusSpecies. Journal of Natural Products, 2000, 63, 1573-1575.	1.5	15
124	Characterization of Novel Methyl-Branched Chain Fatty Acids from a HalophilicBacillusSpecies. Journal of Natural Products, 2001, 64, 256-259.	1.5	27
125	New Methoxylated Fatty Acids from the Caribbean SpongeCallyspongiafallax. Journal of Natural Products, 2001, 64, 620-623.	1.5	34
126	Identification and Total Synthesis of Novel Fatty Acids from the Siphonarid LimpetSiphonaria denticulata. Journal of Natural Products, 2001, 64, 1426-1429.	1.5	18
127	Trail and recruitment pheromones in Camponotus socius (Hymenoptera: Formicidae). Chemoecology, 2001, 11, 67-73.	0.6	30

#	Article	IF	Citations
128	Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Archives of Microbiology, 2001, 176, 435-442.	1.0	149
129	The first naturally occurring \hat{I}_{\pm} -methoxylated branched-chain fatty acids from the phospholipids of Amphimedon complanata. Lipids, 2001, 36, 83-87.	0.7	111
130	Lipids of Antarctic Ocean amphipods: food chain interactions and the occurrence of novel biomarkers. Marine Chemistry, 2001, 73, 53-64.	0.9	97
131	Methods for psychrophilic bacteria. Methods in Microbiology, 2001, 30, 591-614.	0.4	19
132	Intraspecific Variation of Cuticular Hydrocarbon Composition in Formica japonica Motschoulsky (Hymenoptera: Formicidae). Zoological Science, 2002, 19, 1155-1165.	0.3	48
133	Phospholipid fatty acid composition of Gorgonia mariae and Gorgonia ventalina. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2002, 131, 83-87.	0.7	22
134	Pheromone biosynthetic pathways in the moths Helicoverpa zea and Helicoverpa assulta. Insect Biochemistry and Molecular Biology, 2002, 32, 1353-1359.	1.2	34
135	Seasonal Lipid Composition in Macroalgae of the Northeastern Pacific Ocean. Botanica Marina, 2002, 45, .	0.6	129
136	Novel methoxylated FA from the Caribbean sponge Spheciospongia cuspidifera. Lipids, 2002, 37, 305-308.	0.7	12
137	Total synthesis of 2-methoxy-14-methylpentadecanoic acid and the novel 2-methoxy-14-methylhexadecanoic acid identified in the sponge agelas dispar. Lipids, 2002, 37, 1033-1037.	0.7	6
138	Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono- and disaccharides. Archives of Microbiology, 2002, 177, 468-474.	1.0	102
139	Interspecific differences in cuticular hydrocarbon profiles of Myrmica ants are sufficiently consistent to explain host specificity by Maculinea (large blue) butterflies. Oecologia, 2002, 130, 525-535.	0.9	70
140	Isotopic composition of fatty acids of extremely piezophilic bacteria from the Mariana Trench at 11,000 m. Marine Chemistry, 2002, 80, 1-9.	0.9	29
141	A method for the identification of the double-bond position of isomeric linear tetradecenols and related compounds based on mass spectra of dimethyl disulfide derivatives. Rapid Communications in Mass Spectrometry, 2002, 16, 11-14.	0.7	3
142	Sex pheromone of the cranberry blossom worm, Epiglaea apiata. Journal of Chemical Ecology, 2003, 29, 2153-2164.	0.9	10
143	Comparative benzene-induced fatty acid changes in a Rhodococcus species and its benzene-sensitive mutant: possible role of myristic and oleic acids in tolerance. Journal of Chemical Ecology, 2003, 29, 2369-2378.	0.9	9
144	(S)-2,3-dihydrofarnesoic acid, a new component in cephalic glands of male European beewolves Philanthus triangulum. Journal of Chemical Ecology, 2003, 29, 2469-2479.	0.9	19
145	Fatty acids bound to Fasciola hepatica 12 kDa fatty acid-binding protein, a candidate vaccine, differ from fatty acids in extracts of adult flukes. Lipids, 2003, 38, 769-772.	0.7	2

#	Article	IF	Citations
146	Phospholipid FA of piezophilic bacteria from the deep sea. Lipids, 2003, 38, 885-887.	0.7	38
147	Trail pheromones and Dufour gland contents in three Camponotus species (C. castaneus, C. balzani, C.) Tj ETQq1	10.7843	14 rgBT /O
148	Evidence for contact sex recognition pheromone of the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae). Die Naturwissenschaften, 2003, 90, 410-413.	0.6	84
149	Do social parasitic bumblebees use chemical weapons? (Hymenoptera, Apidae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2003, 189, 769-775.	0.7	40
150	Sex Pheromone of the Noctuid Moth, Tyta luctuosa (Lepidoptera: Noctuidae), a Candidate Biological Control Agent of Field Bindweed. Environmental Entomology, 2003, 32, 17-22.	0.7	7
151	Lipid Composition of the Digestive Gland, Mantle and Stomach Fluid of the Gonatid Squid Berryteuthis anonychus. Journal of Oleo Science, 2004, 53, 1-8.	0.6	7
152	New Type of Sesiidae Sex Pheromone Identified from the Hornet Moth Sesia apiformis. Journal of Chemical Ecology, 2004, 30, 805-817.	0.9	16
153	Biosynthesis and dietary uptake of polyunsaturated fatty acids by piezophilic bacteria. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2004, 137, 455-461.	0.7	37
154	The use of isotopic and lipid analysis techniques linking toluene degradation to specific microorganisms: applications and limitations. Water Research, 2004, 38, 2529-2536.	5.3	35
155	Sex pheromone biosynthesis in the pine caterpillar moth, Dendrolimus punctatus (Lepidoptera:) Tj ETQq1 1 0.784. Biochemistry and Molecular Biology, 2004, 34, 261-271.	314 rgBT / 1.2	Overlock 1 10
156	In vitro activity of extracts and constituents of Pelagonium against rapidly growing mycobacteria. International Journal of Antimicrobial Agents, 2004, 23, 613-619.	1.1	149
157	Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae). Applied Entomology and Zoology, 2004, 39, 381-387.	0.6	156
158	Derivatization in Mass Spectrometry—5. Specific Derivatization of Monofunctional Compounds. European Journal of Mass Spectrometry, 2005, 11, 127-160.	0.5	42
159	Location of double bonds in diene and triene acetates by partial reduction followed by methylthiolation. Journal of Chromatography A, 2005, 1077, 57-67.	1.8	11
160	High contents of 24:6(n-3) and 20:1(n-13) fatty acids in the brittle star Amphiura elandiformis from Tasmanian coastal sediments. Biochemical Systematics and Ecology, 2005, 33, 659-674.	0.6	35
161	Pollinator attracting odour signals in sexually deceptive orchids of the Ophrys fusca group. Plant Systematics and Evolution, 2005, 254, 105-120.	0.3	57
162	Cuticular Hydrocarbons as Sex Pheromone of the Bee Colletes cunicularius and the Key to its Mimicry by the Sexually Deceptive Orchid, Ophrys exaltata. Journal of Chemical Ecology, 2005, 31, 1765-1787.	0.9	113
163	Pheromone Components from Body Scales of Female Anarsia lineatella Induce Contacts by Conspecific Males. Journal of Chemical Ecology, 2005, 31, 2897-2911.	0.9	18

#	Article	IF	CITATIONS
164	Sex pheromone biosynthesis in Ostrinia zaguliaevi, a congener of the European corn borer moth O. nubilalis. Insect Biochemistry and Molecular Biology, 2005, 35, 621-626.	1.2	10
165	Mutations in the desat1 gene reduces the production of courtship stimulatory pheromones through a marked effect on fatty acids in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2005, 35, 911-920.	1.2	40
166	Sex pheromone of the large aspen tortrix, Choristoneura conflictana (Lepidoptera: Tortricidae). Chemoecology, 2006, 16, 115-122.	0.6	7
167	Fractionation of carbon isotopes in biosynthesis of fatty acids by a piezophilic bacterium Moritella japonica strain DSK1. Geochimica Et Cosmochimica Acta, 2006, 70, 1753-1760.	1.6	29
168	Biomarker analysis of microbial diversity in sediments of a saline groundwater seep of Salt Basin, Nebraska. Organic Geochemistry, 2006, 37, 912-931.	0.9	31
169	Cuticular hydrocarbons of Formica truncorum (Hymenoptera: Formicidae): Description of new very long chained hydrocarbon components. Applied Entomology and Zoology, 2006, 41, 667-677.	0.6	41
170	Microbial diversity of cold-seep sediments in Sagami Bay, Japan, as determined by 16S rRNA gene and lipid analyses. FEMS Microbiology Ecology, 2006, 57, 429-441.	1.3	36
171	Determination of phospholipid fatty acid structures and stable carbon isotope compositions of deep-sea sediments of the Northwest Pacific, ODP site 1179. Marine Chemistry, 2006, 98, 197-209.	0.9	22
172	Lipid Markers for Marine Organic Matter. , 0, , 27-70.		67
173	Identification of Queen Sex Pheromone Components of the Bumblebee Bombus terrestris. Journal of Chemical Ecology, 2006, 32, 453-471.	0.9	38
174	Sex Pheromone of the Cranberry Root Grub Lichnanthe vulpina. Journal of Chemical Ecology, 2006, 32, 1663-72.	0.9	4
175	(2S,12Z)-2-Acetoxy-12-heptadecene: Major Sex Pheromone Component of Pistachio Twig Borer, Kermania pistaciella. Journal of Chemical Ecology, 2006, 32, 2667-2677.	0.9	15
176	Comparative citation analysis of duplicate or highly related publications. Journal of the Association for Information Science and Technology, 2006, 57, 1830-1839.	2.6	13
177	Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 701-707.	0.8	99
178	Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study. Organic Geochemistry, 2007, 38, 2070-2097.	0.9	184
179	Microbial biomass and community structure of a stromatolite from an acid mine drainage system as determined by lipid analysis. Chemical Geology, 2007, 243, 191-204.	1.4	31
180	Effect of a Fullerene Water Suspension on Bacterial Phospholipids and Membrane Phase Behavior. Environmental Science & Environ	4.6	232
182	The Chemistry of the Postpharyngeal Gland of Female European Beewolves. Journal of Chemical Ecology, 2008, 34, 575-583.	0.9	25

#	Article	IF	CITATIONS
183	Unusual Fatty Acids in the Fat Body of the Early Nesting Bumblebee, <i>Bombus pratorum</i> . Lipids, 2008, 43, 441-450.	0.7	16
184	An Improved Method for Preparing Dimethyl Disulfide Adducts for GC/MS Analysis. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 93-94.	0.8	18
185	Tropical parabiotic ants: Highly unusual cuticular substances and low interspecific discrimination. Frontiers in Zoology, 2008, 5, 16.	0.9	33
186	A cuckoo in wolves' clothing? Chemical mimicry in a specialized cuckoo wasp of the European beewolf (Hymenoptera, Chrysididae and Crabronidae). Frontiers in Zoology, 2008, 5, 2.	0.9	44
187	Role of odour compounds in the attraction of gamete vectors in endophytic <i> Epichloë</i> fungi. New Phytologist, 2008, 178, 401-411.	3.5	44
188	Chemical profiles of mated and virgin queens, egg-laying intermorphs and workers of the ant Crematogaster smithi. Journal of Insect Physiology, 2008, 54, 672-679.	0.9	11
189	Microbial signature lipid profiling and exopolysaccharides: Experiences initiated with Professor David C White and transported to Tasmania, Australia. Journal of Microbiological Methods, 2008, 74, 33-46.	0.7	14
190	Variable temperature-related changes in fatty acid composition of bacterial isolates from German Wadden sea sediments representing different bacterial phyla. Organic Geochemistry, 2008, 39, 1427-1438.	0.9	15
191	Subsurface Microbial Diversity in Deep-Granitic-Fracture Water in Colorado. Applied and Environmental Microbiology, 2008, 74, 143-152.	1.4	122
192	Identification of Host Attractants for the Ethiopian Fruit Fly, Dacus ciliatus Loew. Journal of Chemical Ecology, 2009, 35, 542-551.	0.9	36
193	Identification and biological activity of sex pheromone components from females of the plum moth Illiberis rotundata Jordan (Lepidoptera: Zygaenidae: Procridinae). Chemoecology, 2009, 19, 47-54.	0.6	14
194	Hydrocarbons in the antennal gland secretion of female European beewolves, Philanthus triangulum (Hymenoptera, Crabronidae). Chemoecology, 2009, 19, 219-225.	0.6	10
195	Gammaproteobacteria as a Possible Source of Eicosapentaenoic Acid in Anoxic Intertidal Sediments. Microbial Ecology, 2009, 57, 444-454.	1.4	38
196	Sex pheromone chemistry and field trapping studies of the elm spanworm Ennomos subsignaria (HÃ $^1\!\!4$ bner) (Lepidoptera:Geometridae). Die Naturwissenschaften, 2010, 97, 717-724.	0.6	8
197	Biosynthesis of Unusual Moth Pheromone Components Involves Two Different Pathways in the Navel Orangeworm, Amyelois transitella. Journal of Chemical Ecology, 2010, 36, 535-547.	0.9	24
198	A novel formula for location of double bond in alkenyl acetates and alcohols based on mass spectral data of dimethyl disulfide derivatives. Chinese Journal of Chemistry, 1997, 15, 534-540.	2.6	1
199	Desulfopila inferna sp. nov., a sulfate-reducing bacterium isolated from the subsurface of a tidal sand-flat. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1626-1630.	0.8	29
200	Neofunctionalization in an ancestral insect desaturase lineage led to rare î"6 pheromone signals in the Chinese tussah silkworm. Insect Biochemistry and Molecular Biology, 2010, 40, 742-751.	1.2	67

#	Article	IF	CITATIONS
201	Microbial carbon cycling in oligotrophic regional aquifers near the Tono Uranium Mine, Japan as inferred from $\hat{\Gamma}$ 13C and $\hat{\Gamma}$ 14C values of in situ phospholipid fatty acids and carbon sources. Geochimica Et Cosmochimica Acta, 2010, 74, 3785-3805.	1.6	40
202	Mid-chain methoxylated fatty acids within the chemocline of the Cariaco Basin: A chemoautotrophic source?. Organic Geochemistry, 2010, 41, 498-512.	0.9	12
203	Rapid Identification of Insect Cuticular Hydrocarbons Using Gas Chromatography—Ion-Trap Mass Spectrometry. Journal of Chemical Ecology, 2011, 37, 420-427.	0.9	19
204	Two phylogenetically distinct species of sexually deceptive orchids mimic the sex pheromone of their single common pollinator, the cuckoo bumblebee Bombus vestalis. Chemoecology, 2011, 21, 243-252.	0.6	8
205	Nonâ€Polar Lipid Components of Human Cerumen. Lipids, 2011, 46, 781-788.	0.7	18
206	Cytotoxic Fatty Acid Amides from <i>Xenorhabdus</i> . ChemBioChem, 2011, 12, 2011-2015.	1.3	23
207	Contact Sex Pheromones Identified for Two Species of Longhorned Beetles (Coleoptera:) Tj ETQq0 0 0 rgBT /Over Environmental Entomology, 2011, 40, 714-726.	lock 10 Tf 0.7	50 507 Td (42
208	Comparative analysis of floral scents in four sympatric species of Serapias L. (Orchidaceae): clues on their pollination strategies. Plant Systematics and Evolution, 2012, 298, 1837-1843.	0.3	16
209	STRUCTURAL ANALYSIS OF FATTY ACIDS. , 2012, , 119-169.		10
210	Pre-adaptations and the evolution of pollination by sexual deception: Cope's rule of specialization revisited. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4786-4794.	1.2	72
211	Biosynthesis of sterols and wax esters by Euglena of acid mine drainage biofilms: Implications for eukaryotic evolution and the early Earth. Chemical Geology, 2012, 306-307, 139-145.	1.4	19
212	Isolation and identification of C-19 fatty acids with anti-tumor activity from the spores of Ganoderma lucidum (reishi mushroom). Fìtoterapìâ, 2012, 83, 490-499.	1.1	39
213	Populations of the Gall Midge Dasineura oxycoccana on Cranberry and Blueberry Produce and Respond to Different Sex Pheromones. Journal of Chemical Ecology, 2013, 39, 37-49.	0.9	18
214	Microbial biomass and community structure in alkaline lakes of the Nebraska Sand Hills, USA. Chemical Geology, 2013, 356, 171-180.	1.4	8
215	The relative contribution of methanotrophs to microbial communities and carbon cycling in soil overlying a coal-bed methane seep. FEMS Microbiology Ecology, 2013, 84, 474-494.	1.3	20
216	Identification of Sex Pheromone Components of Blueberry Spanworm Itame argillacearia (Lepidoptera:) Tj ETQq1	10.78431	- 14 rgBT /Ove -
217	A new fluorescent derivatization reagent and its application to free fatty acid analysis in pomegranate samples using HPLC with fluorescence detection. Journal of Separation Science, 2013, 36, 3853-3859.	1.3	7
218	A pollinators' eye view of a shelter mimicry system. Annals of Botany, 2013, 111, 1155-1165.	1.4	38

#	Article	IF	CITATIONS
219	(Z)-3-Dodecenoic Acid Is the Main Component of Full-Body n-Hexane Extracts from Two Acacia Gall-Inducing Thrips (Thysanoptera) and May Function as an Alarm Pheromone. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2014, 69, 335-345.	0.6	1
220	Cuticular hydrocarbons of Drosophila montana: Geographic variation, sexual dimorphism and potential roles as pheromones. Journal of Insect Physiology, 2014, 61, 16-24.	0.9	39
221	Sex-Specific Trail Pheromone Mediates Complex Mate Finding Behavior in Anoplophora glabripennis. Journal of Chemical Ecology, 2014, 40, 169-180.	0.9	33
222	Identification and Biosynthesis of Novel Male Specific Esters in the Wings of the Tropical Butterfly, Bicyclus martius sanaos. Journal of Chemical Ecology, 2014, 40, 549-559.	0.9	17
223	Capturing volatile natural products by mass spectrometry. Natural Product Reports, 2014, 31, 838.	5.2	49
224	Protocols for Microcosms for Growing Biofilms on Hydrophobic Substrates: A Polyphasic Approach to Study Biodiversity, Metabolic Activity, and Biofilm Architecture. Springer Protocols, 2014, , 111-133.	0.1	0
225	Cuticular Hydrocarbons as Potential Close Range Recognition Cues in Orchid Bees. Journal of Chemical Ecology, 2015, 41, 1080-1094.	0.9	9
226	Separation Behavior of Octadecadienoic Acid Isomers and Identification of ⟨i⟩cis⟨/i⟩―and ⟨i>trans⟨/i>â€Isomers Using Gas Chromatography. Lipids, 2015, 50, 85-100.	0.7	7
227	Identification of the Female-Produced Sex Pheromone of the Leafminer Holocacista capensis Infesting Grapevine in South Africa. Journal of Chemical Ecology, 2015, 41, 724-731.	0.9	10
228	Analysis of diacylglycerols by ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry: Double bond location and isomers separation. Analytica Chimica Acta, 2016, 925, 23-33.	2.6	13
229	Evidence for a Nest Defense Pheromone in Bald-Faced Hornets, Dolichovespula Maculata, and Identification of Components. Journal of Chemical Ecology, 2016, 42, 414-424.	0.9	15
230	Microbial Biomass and Community Composition Analysis Using Phospholipid Fatty Acids. Springer Protocols, 2016, , 65-76.	0.1	4
231	Determination of Double Bond Positions and Geometry of Methyl Linoleate Isomers with Dimethyl Disulfide Adducts by GC/MS. Lipids, 2016, 51, 1077-1081.	0.7	13
232	Factors controlling the co-occurrence of microbial sulfate reduction and methanogenesis in coal bed reservoirs. International Journal of Coal Geology, 2016, 165, 121-132.	1.9	9
233	Elucidating the chemical structure of native 1-deoxysphingosine. Journal of Lipid Research, 2016, 57, 1194-1203.	2.0	42
234	Identification of the oleic acid ethanolamide (OEA) isomer cis-vaccenic acid ethanolamide (VEA) as a highly abundant 18:1 fatty acid ethanolamide in blood plasma from rats and humans. Analytical and Bioanalytical Chemistry, 2016, 408, 6141-6151.	1.9	10
235	Disentangling the effect of insemination and ovary development on the cuticular hydrocarbon profile in the bumblebee Bombus terrestris (Hymenoptera: Apidae). Apidologie, 2016, 47, 101-113.	0.9	7
236	Identification of a novel fatty acid in the cell membrane of Chryseobacterium frigidisoli PB4 T isolated from an East Antarctic glacier forefield. Organic Geochemistry, 2017, 106, 68-75.	0.9	7

#	ARTICLE	IF	CITATIONS
237	Optimizing the yield of transient mono-dimethyl disulfide adducts for elucidating double bond positions of long chain alkenones. Organic Geochemistry, 2017, 109, 58-66.	0.9	6
238	The ontogeny of oil gland chemistry in the oribatid mite Archegozetes longisetosus Aoki (Oribatida,) Tj ETQq1 1 (0.784314 0.3	rgBT /Overloo
239	Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols, 2017, , .	0.1	2
240	Analytical method for metabolites involved in biosynthesis of plant volatile compounds. RSC Advances, 2017, 7, 19363-19372.	1.7	16
241	Biomarker function and nutritional stoichiometry of neutral lipid fatty acids and amino acids in oribatid mites. Soil Biology and Biochemistry, 2017, 115, 35-43.	4.2	30
242	Unsaturated Cuticular Hydrocarbons Enhance Responses to Sex Pheromone in Spruce Budworm, Choristoneura fumiferana. Journal of Chemical Ecology, 2017, 43, 753-762.	0.9	8
243	Fatty Acid Methyl Esters with Two Vicinal Alkylthio Side Chains and Their NMR Characterization. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 537-549.	0.8	1
244	Patterns and dynamics of neutral lipid fatty acids in ants – implications for ecological studies. Frontiers in Zoology, 2017, 14, 36.	0.9	14
245	Cuticular hydrocarbons determine sex, caste, and nest membership in each of four species of yellowjackets (Hymenoptera: Vespidae). Insectes Sociaux, 2018, 65, 581-591.	0.7	12
246	Chemical and behavioral integration of army ant-associated rove beetles – a comparison between specialists and generalists. Frontiers in Zoology, 2018, 15, 8.	0.9	39
247	Identification and field testing of floral odorants that attract the rove beetle Pelecomalium testaceum (Mannerheim) to skunk cabbage, Lysichiton americanus (L.). Arthropod-Plant Interactions, 2018, 12, 591-599.	0.5	10
248	Preparation of Dimethyl Disulfide Adducts from the Monoâ€ <i>Trans</i> Octadecadienoic Acid Methyl Esters. Lipids, 2018, 53, 653-659.	0.7	2
249	Phospholipids as Life Markers in Geological Habitats. , 2019, , 1-29.		3
250	Lipid Biomarkers in Geomicrobiology: Analytical Techniques and Applications. , 2019, , 341-359.		0
251	Advertisement of unreceptivity – Perfume modifications of mason bee females (Osmia bicornis and O.) Tj ETQc	10 0 0 rgB	T /Overlock 1
252	The chemical and visual bases of the pollination of the Neotropical sexually deceptive orchid Telipogon peruvianus. New Phytologist, 2019, 223, 1989-2001.	3 . 5	13
253	Multi-Functional Desaturases in Two Spodoptera Moths with $\hat{a}^{\dagger}11$ and $\hat{a}^{\dagger}12$ Desaturation Activities. Journal of Chemical Ecology, 2019, 45, 378-387.	0.9	27
254	⟨sup>14Câ€Free Carbon Is a Major Contributor to Cellular Biomass in Geochemically Distinct Groundwater of Shallow Sedimentary Bedrock Aquifers. Water Resources Research, 2019, 55, 2104-2121.	1.7	24

#	ARTICLE	IF	CITATIONS
255	Sex Pheromones of Two Leafminer Species, Antispila oinophylla and Holocacista rivillei (Lepidoptera:) Tj ETQq0	0 0 ggBT /C	Oveglock 10 Ti
256	Diapause affects cuticular hydrocarbon composition and mating behavior of both sexes in Drosophila montana. Insect Science, 2020, 27, 304-316.	1.5	27
257	Shedding light on isomeric FAHFA lipid structures using 213 nm ultraviolet photodissociation mass spectrometry. European Journal of Mass Spectrometry, 2020, 26, 311-323.	0.5	12
258	Phospholipids as Life Markers in Geological Habitats. , 2020, , 445-473.		0
259	Fatty Acid Profile as an Indicator of Larval Host for Adult Drosophila suzukii. Insects, 2020, 11, 752.	1.0	0
260	Production of moth sex pheromone precursors inÂNicotianaÂspp.: a worthwhile new approach to pest control. Journal of Pest Science, 2020, 93, 1333-1346.	1.9	22
261	A blend of formic acid, benzoic acid, and aliphatic alkanes mediates alarm recruitment responses in western carpenter ants, <i>Camponotus </i> i> modoc i> Entomologia Experimentalis Et Applicata, 2020, 168, 311-321.	0.7	3
262	Limoniic Acid - Major Component of the Sex Pheromones of the Click Beetles Limonius canus and L. californicus. Journal of Chemical Ecology, 2021, 47, 123-133.	0.9	19
263	Similar Is Not the Same – Mate Recognition in a Parasitoid Wasp. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	7
264	Cuticular hydrocarbons on old museum specimens of the spiny mason wasp, Odynerus spinipes (Hymenoptera: Vespidae: Eumeninae), shed light on the distribution and on regional frequencies of distinct chemotypes. Chemoecology, 2021, 31, 311-322.	0.6	5
265	Tetranorsesquiterpenoids as Attractants of Yucca Moths to Yucca Flowers. Journal of Chemical Ecology, 2021, 47, 1025-1041.	0.9	7
267	Multiple phenotypic traits as triggers of host attacks towards ant symbionts: body size, morphological gestalt, and chemical mimicry accuracy. Frontiers in Zoology, 2021, 18, 46.	0.9	11
269	Microchemical Techniques. , 1998, , 207-294.		19
270	Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Applied and Environmental Microbiology, 1986, 52, 794-801.	1.4	460
271	Variation in Phospholipid Ester-Linked Fatty Acids and Carotenoids of Desiccated Nostoc commune (Cyanobacteria) from Different Geographic Locations. Applied and Environmental Microbiology, 1987, 53, 4-9.	1.4	61
272	Soluble Methane Monooxygenase Production and Trichloroethylene Degradation by a Type I Methanotroph, <i>Methylomonas methanica</i> 68-1. Applied and Environmental Microbiology, 1993, 59, 960-967.	1.4	150
273	Linking Toluene Degradation with Specific Microbial Populations in Soil. Applied and Environmental Microbiology, 1999, 65, 5403-5408.	1.4	94
274	Location of double bonds in monounsaturated fatty acids of Campylobacter cryaerophila with dimethyl disulfide derivatives and combined gas chromatography-mass spectrometry. Journal of Clinical Microbiology, 1989, 27, 1467-1470.	1.8	73

#	ARTICLE	IF	CITATIONS
275	Identification of monounsaturated fatty acids of Aerococcus viridans with dimethyl disulfide derivatives and combined gas chromatography-mass spectrometry. Journal of Clinical Microbiology, 1989, 27, 2130-2132.	1.8	7
276	Fuzzy Classification of Location of Double Bonds in Tetradecenyl Acetates by Electron Impact Mass Spectrometry Agricultural and Biological Chemistry, 1991, 55, 2521-2526.	0.3	13
277	Telipogon peruvianus (Orchidaceae) Flowers Elicit Pre-Mating Behaviour in Eudejeania (Tachinidae) Males for Pollination. PLoS ONE, 2016, 11, e0165896.	1.1	24
278	Methyl-Branched Fatty Acids, Inhibitors of Enoyl-ACP Reductase with Antibacterial Activity from Streptomyces sp. A251. Journal of Microbiology and Biotechnology, 2010, 20, 875-880.	0.9	8
279	Amount and Composition of Wax Esters in Various Tissue Lipids of Forked Hake Laemonema longipes Journal of Oleo Science, 2002, 51, 439-445.	0.6	2
280	Amount and Composition of Diacyl Glyceryl Ethers in Various Tissue Lipids of the Deep-sea Squid Berryteuthis magister Journal of Oleo Science, 2002, 51, 523-529.	0.6	22
281	Determination of 2-Acyl Positional Fatty Acid Distribution in Vegetable Oils by High Resolution 13C Nuclear Magnetic Resonance Spectroscopy. Journal of Japan Oil Chemists' Society, 1998, 47, 179-185,210.	0.3	2
282	Amount and Composition of Wax Esters in Salted and Dried Roe from Mullet of Australia. Journal of Japan Oil Chemists' Society, 2000, 49, 1401-1406,1447.	0.3	4
283	The evolution of tachinid pollination in <i>Neotinea ustulata</i> is related to floral cuticular composition and the combined high relative production of $(\langle i \rangle Z \langle i \rangle)$ $\hat{a} \in \mathbb{Z}$ $\hat{a} \in Z$	1.6	3
284	Revealing Medieval culinary practices in Norway: A first metabolomic-based approach. Journal of Archaeological Science: Reports, 2021, 40, 103206.	0.2	2
286	10.1007/BF00177037., 2011,,.		1
287	Desulfohalobium retbaense gen. nov., sp. nov., a Halophilic Sulfate-Reducing Bacterium from Sediments of a Hypersaline Lake in Senegal. International Journal of Systematic Bacteriology, 1991, 41, 595-595.	2.8	14
288	LIPIDS ANDCHEMOTAXONOMY OF PROCHLOROTHRIX HOLLANDICA, A PLANKTONIC PROKARYOTE CONTAINING CHLOROPHYLLS a AND b. Journal of Phycology, 1988, 24, 554-559.	1.0	21
292	Elucidation of doubleâ€bond positions of polyunsaturated alkenes through gas chromatography/mass spectrometry analysis of monoâ€dimethyl disulfide derivatives. Rapid Communications in Mass Spectrometry, 2022, 36, e9228.	0.7	2
293	Green Chemistry Production of Codlemone, the Sex Pheromone of the Codling Moth (Cydia) Tj ETQq0 0 0 rgBT /CCCC Chemical Ecology, 2021, 47, 950-967.	Overlock 1 0.9	0 Tf 50 187 T 12
294	Preferential formation of monoâ€dimethyl disulfide adducts for determining double bond positions of polyâ€unsaturated fatty acids. JAOCS, Journal of the American Oil Chemists' Society, 2022, 99, 279-288.	0.8	4
295	Determining the double-bond positions of monounsaturated compounds in the alcohol fraction in seep carbonate. Journal of Chromatography A, 2022, 1672, 463009.	1.8	3
296	Release of moth pheromone compounds from Nicotiana benthamiana upon transient expression of heterologous biosynthetic genes. BMC Biology, 2022, 20, 80.	1.7	8

#	Article	IF	CITATIONS
298	Lipopolysaccharide of Rhodospirillum salinarum 40: structural studies on the core and lipid A region. Archives of Microbiology, 1995, 164, 280-289.	1.0	2
299	Increased complexity of worker CHC profiles in Apis dorsata correlates with nesting ecology. PLoS ONE, 2022, 17, e0271745.	1.1	2
300	Insect pest management with sex pheromone precursors from engineered oilseed plants. Nature Sustainability, 2022, 5, 981-990.	11.5	11
301	Determination of double bond positions in methyl ketones by gas chromatography–mass spectrometry using dimethyl disulfide derivatives. Rapid Communications in Mass Spectrometry, 2023, 37, .	0.7	0
302	The volatile chemistry of orchid pollination. Natural Product Reports, 2023, 40, 819-839.	5.2	2
303	Cuticular hydrocarbons of alpine bumble bees (Hymenoptera: Bombus) are species-specific, but show little evidence of elevation-related climate adaptation. Frontiers in Ecology and Evolution, 0, 11 , .	1.1	3
304	Evolution of Linoleic Acid Biosynthesis Paved the Way for Ecological Success of Termites. Molecular Biology and Evolution, 2023, 40, .	3.5	1