A proposed neural pathway for vocalization in South Af

Physiology Comparative Physiology A: Neuroethology, Sensory 157, 749-761 DOI: 10.1007/bf01350072

Citation Report

#	Article	IF	CITATIONS
1	The ontogeny of androgen receptors in the CNS of Xenopus laevis frogs. Developmental Brain Research, 1986, 26, 193-200.	1.7	24
2	Neuroeffectors for vocalization inXenopus laevis: Hormonal regulation of sexual dimorphism. Journal of Neurobiology, 1986, 17, 231-248.	3.6	80
3	The sexually dimorphic larynx ofXenopus laevis: Development and androgen regulation. American Journal of Anatomy, 1986, 177, 457-472.	1.0	108
4	Androgen-induced alterations in vocalizations of femaleXenopus laevis: modifiability and constraints. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1986, 158, 517-527.	1.6	55
5	Steroid Effects on Excitable Membranes. Current Topics in Membranes and Transport, 1987, 31, 141-190.	0.6	4
6	Vocalizations by a sexually dimorphic isolated larynx: peripheral constraints on behavioral expression. Journal of Neuroscience, 1987, 7, 3191-3197.	3.6	94
7	Acoustic communication in the poison-arrow frogPhyllobates tricolor: advertisement calls and their effects on behavior and metabolic brain activity of recipients. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1987, 160, 693-702.	1.6	12
8	Neurogenesis in the vocalization pathway ofXenopus laevis. Journal of Comparative Neurology, 1987, 257, 614-627.	1.6	25
9	Cobaltic lysine study of the morphology and distribution of the cranial nerve efferent neurons (motoneurons and preganglionic parasympathetic neurons) and rostral spinal motoneurons in the Japanese toad. Journal of Comparative Neurology, 1987, 259, 400-423.	1.6	42
10	Sex differences in the motor nucleus of cranial nerve IX-X inXenopus laevis: A quantitative Golgi study. Journal of Neurobiology, 1988, 19, 413-429.	3.6	51
11	Electrophysiology and dye-coupling are sexually dimorphic characteristics of individual laryngeal muscle fibers in Xenopus laevis. Journal of Neuroscience, 1988, 8, 2422-2429.	3.6	38
12	Sexually dimorphic laryngeal morphology inRana pipiens. Journal of Morphology, 1989, 201, 293-299.	1.2	23
13	Anuran mating calling circuits: Inhibition by prostaglandin. Hormones and Behavior, 1989, 23, 361-367.	2.1	15
14	Mating call phonotaxis in female American toad: Lesions of anterior preoptic nucleus. Hormones and Behavior, 1989, 23, 1-9.	2.1	13
15	Pattern of [–1–4C]2-deoxyglucose concentration associated with potentiation of reproductive behavior by prostaglandin Eâ,, Behavioral Neuroscience, 1989, 103, 1028-1034.	1.2	4
16	Projections of the parabrachial nucleus in the pigeon (Columba livia). Journal of Comparative Neurology, 1990, 293, 499-523.	1.6	104
17	Sexual Selection and the Nervous System. BioScience, 1990, 40, 275-283.	4.9	13
18	Call and skin glands secretion induced by stimulation of midbrain in urodele (Andrias davidianus). Brain Research, 1990, 528, 159-161.	2.2	6

#	Article	IF	CITATIONS
19	Molecular cloning of androgen receptors from divergent species with a polymerase chain reaction technique: Complete cDNA sequence of the mouse androgen receptor and isolation of androgen recepter cDNA probes from dog, guinea pig and clawed frog. Biochemical and Biophysical Research Communications, 1990, 171, 697-704.	2.1	94
20	Thyrotropin-releasing hormone facilitates display of reproductive behavior and locomotor behavior in an amphibian. Hormones and Behavior, 1991, 25, 128-136.	2.1	13
21	Androgen receptor expression and sexual differentiation of effectors for courtship song in Xenopus laevis. Seminars in Neuroscience, 1991, 3, 469-480.	2.2	14
22	Auditory and endocrine inputs to forebrain centers in anuran amphibians. Ethology Ecology and Evolution, 1992, 4, 75-87.	1.4	6
23	Acoustic communication in the fire-bellied toad: an integrative neurobiological approach. Ethology Ecology and Evolution, 1992, 4, 63-74.	1.4	19
24	Opening and Closing a Hormone-Regulated Period for the Development of Courtship Song Annals of the New York Academy of Sciences, 1992, 662, 178-188.	3.8	6
25	Neural correlates of frog calling: production by two semi-independent generators. Behavioural Brain Research, 1992, 50, 17-30.	2.2	53
26	Sexual differences in hormonal control of release calls in bullfrogs. Hormones and Behavior, 1992, 26, 522-535.	2.1	43
27	Central Projections of the Vagus Nerve in <i>Chelon labrosus </i> Risso (Teleostei, O. Perciformes). Brain, Behavior and Evolution, 1992, 40, 297-310.	1.7	17
28	Testicular masculinization of vocal behavior in juvenile female Xenopus laevis reveals sensitive periods for song duration, rate, and frequency spectra. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1992, 171, 343-50.	1.6	32
29	Sexual dimorphism in the vasotocin system of the bullfrog (<i>Rana catesbeiana</i>). Journal of Comparative Neurology, 1992, 325, 313-325.	1.6	90
30	Laryngeal muscle and motor neuron plasticity inXenopus laevis: Testicular masculinization of a developing neuromuscular system. Journal of Neurobiology, 1993, 24, 1615-1625.	3.6	36
31	Sound production evoked by electrical stimulation of the forebrain in the oyster toadfish. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1994, 174, 173-85.	1.6	37
32	The Limbic System of Tetrapods: A Comparative Analysis of Cortical and Amygdalar Populations. Brain, Behavior and Evolution, 1995, 46, 224-234.	1.7	292
33	Autoradiographic localization of dihydrotestosterone and testosterone concentrating neurons in the oyster toadfish. Brain Research, 1996, 709, 65-80.	2.2	31
34	Nonsequential developmental trajectories lead to dimorphic vocal circuitry for males with alternative reproductive tactics. Journal of Neurobiology, 1996, 30, 493-504.	3.6	61
35	Phenotypic Specification of Hindbrain Rhombomeres and the Origins of Rhythmic Circuits in Vertebrates. Brain, Behavior and Evolution, 1997, 50, 3-16.	1.7	97
36	Endocrinology of sound production in fishes. Marine and Freshwater Behaviour and Physiology, 1997, 29, 23-45.	0.9	18

CITATION REPORT

#	Article	IF	CITATIONS
37	Androgen Mitigates Axotomy-Induced Decreases in Calbindin Expression in Motor Neurons. Journal of Neuroscience, 1997, 17, 7396-7403.	3.6	20
38	Projections of the dorsomedial nucleus of the intercollicular complex (DM) in relation to respiratory-vocal nuclei in the brainstem of pigeon (Columba livia) and zebra finch (Taeniopygia) Tj ETQq1 1 0.	.784311 4 rgB	T / Qoe rlock]
39	Basal ganglia organization in amphibians: Afferent connections to the striatum and the nucleus accumbens. Journal of Comparative Neurology, 1997, 378, 16-49.	1.6	114
40	Basal ganglia organization in amphibians: Efferent connections of the striatum and the nucleus accumbens. Journal of Comparative Neurology, 1997, 380, 23-50.	1.6	99
41	Basal ganglia organization in amphibians: Chemoarchitecture. Journal of Comparative Neurology, 1998, 392, 285-312.	1.6	143
42	The Origins of Cerebral Asymmetry: A Review of Evidence of Behavioural and Brain Lateralization in Fishes, Reptiles and Amphibians. Neuroscience and Biobehavioral Reviews, 1998, 22, 411-426.	6.1	447
43	Anurans. , 1998, , 1151-1314.		48
45	Acoustic Communication in Fishes and Frogs. Springer Handbook of Auditory Research, 1999, , 363-411.	0.7	84
46	Generating Sexually Differentiated Vocal Patterns: Laryngeal Nerve and EMG Recordings from Vocalizing Male and Female African Clawed Frogs (Xenopus laevis). Journal of Neuroscience, 2000, 20, 1559-1567.	3.6	64
47	Social Signals Influence Hormones Independently of Calling Behavior in the Treefrog (Hyla cinerea). Hormones and Behavior, 2000, 38, 201-209.	2.1	80
48	Expression of androgen receptor mRNA in the brain ofGekko gecko: Implications for understanding the role of androgens in controlling auditory and vocal processes. Journal of Comparative Neurology, 2001, 438, 136-147.	1.6	26
49	Hormonal Regulation of Motor Output in Amphibians. , 2002, , 445-X.		6
50	Vocal–acoustic circuitry and descending vocal pathways in teleost fish: Convergence with terrestrial vertebrates reveals conserved traits. Journal of Comparative Neurology, 2002, 448, 298-322.	1.6	160
51	Vocal circuitry inXenopus laevis: Telencephalon to laryngeal motor neurons. Journal of Comparative Neurology, 2003, 464, 115-130.	1.6	45
52	Hormonal Mechanisms in Acoustic Communication. , 2003, , 275-323.		7
53	Functional Specialization of Male and Female Vocal Motoneurons. Journal of Neuroscience, 2003, 23, 11568-11576.	3.6	29
54	Social Modulation of Androgens in Vertebrates: Mechanisms and Function. Advances in the Study of Behavior, 2004, 34, 165-239.	1.6	151
55	The vertebrate social behavior network: Evolutionary themes and variations. Hormones and Behavior, 2005, 48, 11-22.	2.1	677

#	Article	IF	CITATIONS
56	Call Production and Neural Basis of Vocalization. , 2007, , 87-112.		8
57	Xenopus Vocalizations Are Controlled by a Sexually Differentiated Hindbrain Central Pattern Generator. Journal of Neuroscience, 2007, 27, 1485-1497.	3.6	63
58	Direct action of gonadotropin in brain integrates behavioral and reproductive functions. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2477-2482.	7.1	58
59	Breathing and calling: Neuronal networks in theXenopus laevis hindbrain. Journal of Comparative Neurology, 2007, 501, 303-315.	1.6	43
60	Homogeneity of intrinsic properties of sexually dimorphic vocal motoneurons in male and female zebra finches. Journal of Comparative Neurology, 2007, 502, 157-169.	1.6	9
61	Central pattern generators for social vocalization: Androgen-dependent neurophysiological mechanisms. Hormones and Behavior, 2008, 53, 659-672.	2.1	68
62	Sexually differentiated central pattern generators in Xenopus laevis. Trends in Neurosciences, 2008, 31, 296-302.	8.6	12
63	Regulation of Respiratory and Vocal Motor Pools in the Isolated Brain of <i>Xenopus laevis</i> . Journal of Neuroscience, 2008, 28, 612-621.	3.6	40
64	Temperature-Dependent Regulation of Vocal Pattern Generator. Journal of Neurophysiology, 2008, 100, 3134-3143.	1.8	26
65	Hormones and acoustic communication in anuran amphibians. Integrative and Comparative Biology, 2009, 49, 452-470.	2.0	36
66	NMDAR-Dependent Control of Call Duration in Xenopus laevis. Journal of Neurophysiology, 2010, 103, 3501-3515.	1.8	21
67	An environmentally relevant endocrine-disrupting antiandrogen, vinclozolin, affects calling behavior of male Xenopus laevis. Hormones and Behavior, 2010, 58, 653-659.	2.1	38
68	Vocal Pathway Degradation in Gonadectomized <i>Xenopus laevis</i> Adults. Journal of Neurophysiology, 2011, 105, 601-614.	1.8	13
69	Effects of environmentally relevant concentrations of the xeno-androgen, methyldihydrotestosterone, on male and female mating behavior in Xenopus laevis. Chemosphere, 2012, 87, 1246-1253.	8.2	31
70	Corticosterone suppresses vasotocin-enhanced clasping behavior in male rough-skinned newts by novel mechanisms interfering with V1a receptor availability and receptor-mediated endocytosis. Hormones and Behavior, 2015, 69, 39-49.	2.1	10
71	Evolution of vocal patterns: tuning hindbrain circuits during species divergence. Journal of Experimental Biology, 2017, 220, 856-867.	1.7	15
72	Acoustic signalling for mate attraction in crickets: Abdominal ganglia control the timing of the calling song pattern. Behavioural Brain Research, 2016, 309, 51-66.	2.2	22
73	The influence of low-dose cadmium on the laryngeal microstructure and ultrastructure of Pelophylax nigromaculata. Environmental Science and Pollution Research, 2016, 23, 17322-17331.	5.3	3

CITATION REPORT

IF ARTICLE CITATIONS # Testing the evolutionary conservation of vocal motoneurons in vertebrates. Respiratory Physiology 74 1.6 23 and Neurobiology, 2016, 224, 2-10. Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator. Journal of 3.6 Neuroscience, 2017, 37, 3264-3275. Premotor Neuron Divergence Reflects Vocal Evolution. Journal of Neuroscience, 2018, 38, 5325-5337. 76 3.6 34 Variation of fitness and reproductive strategy in male Bufo raddei under environmental heavy metal pollution. Ecotoxicology and Environmental Safety, 2018, 164, 253-260. Inspiring song: The role of respiratory circuitry in the evolution of vertebrate vocal behavior. 78 3.0 9 Developmental Neurobiology, 2020, 80, 31-41. Vocal production in anurans., 2021, , 59-79. 79 Cell Generation, Migration, Death, and Growth in Neural Systems Mediating Social Behavior. Advances 80 0.5 11 in Comparative and Environmental Physiology, 1989, , 239-267. Hormonal Regulation of Motor Systems: How Androgens Control Amplexus (Clasping) in Male Frogs. Research Notes in Neural Computing, 1991, , 369-379. Hormones and Vocal Systems: Insights from Xenopus., 2017, , 131-144. 82 3 Lateralization of neural control for vocalization by the frog (Rana pipiens). Cognitive, Affective and 1.3 Behavioral Neuroscience, 1993, 21, 243-248.

CITATION REPORT