Shock viscosity and the prediction of shock wave rise ti

Journal of Applied Physics 58, 692-701 DOI: 10.1063/1.336184

Citation Report

#	Article	IF	CITATIONS
2	Viscosity and steady shocks. Applied Physics Letters, 1985, 47, 372-373.	3.3	1
3	A model for dislocation sources in a shock or impact environment. Journal of Applied Physics, 1987, 62, 2727-2732.	2.5	11
4	The response of materials to dynamic loading. International Journal of Impact Engineering, 1987, 5, 69-99.	5.0	62
5	History and application of hydrocodes in hypervelocity impact. International Journal of Impact Engineering, 1987, 5, 423-439.	5.0	45
6	Constitutive model used in computer simulation of time-resolved, shock-wave data. International Journal of Impact Engineering, 1987, 5, 603-611.	5.0	21
7	An overview of the theory of hydrocodes. International Journal of Impact Engineering, 1987, 5, 33-59.	5.0	205
8	The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids*. Journal of the Mechanics and Physics of Solids, 1987, 35, 95-119.	4.8	183
9	Deformation twinning in Al-4.8 wt% Mg. Acta Metallurgica, 1988, 36, 1745-1754.	2.1	122
10	Structure of shock waves and fundamental equations for metals. Journal of Applied Mechanics and Technical Physics, 1988, 28, 910-918.	0.5	4
11	Steady, structured shock waves. Part 1: Thermoelastic materials. Archive for Rational Mechanics and Analysis, 1988, 104, 295-365.	2.4	8
12	Dislocation dynamics and plastic shock waves. Mechanics of Materials, 1988, 7, 177-189.	3.2	8
13	Calculation of strains and failure of steel in shock waves. Strength of Materials, 1988, 20, 1195-1198.	0.5	0
14	Possibility of identification of shock-wave processes. Combustion, Explosion and Shock Waves, 1988, 24, 361-367.	0.8	0
15	Yield strength of MgO to 40 GPa. Journal of Geophysical Research, 1988, 93, 3261-3269.	3.3	123
16	Rateâ€dependent plasticity of copper and stainless steel under shock compression. Journal of Applied Physics, 1989, 66, 1951-1960.	2.5	10
17	Free-surface velocity measurement of shock-compressed alumina powder compact using a Fabry–Perot interferometer. Journal of Applied Physics, 1989, 66, 1662-1666.	2.5	21
18	Analysis of viscoplasticity in 6061â€T6 aluminum. Journal of Applied Physics, 1990, 68, 4523-4530.	2.5	5
19	Efficient time integration of a viscoplastic model for shock waves. Journal of Applied Physics, 1990, 68, 1356-1358.	2.5	2

ATION RED

#	Article	IF	CITATIONS
20	The equation of state of a molten komatiite: 1 Shock wave compression to 36 GPa. Journal of Geophysical Research, 1991, 96, 11831-11848.	3.3	105
21	Plasticity path effects in metals under shock compression. Journal of Applied Physics, 1991, 70, 4233-4237.	2.5	7
22	Shock-wave viscosity measurement. Reviews of Modern Physics, 1991, 63, 919-948.	45.6	59
23	Model for the relation between shock velocity and particle velocity in weak shock waves in metals. Journal of Applied Physics, 1991, 70, 4238-4247.	2.5	4
24	Calculation of pathâ€dependent shockâ€wave hardening. Journal of Applied Physics, 1992, 72, 797-799.	2.5	6
25	Quasielastic release in shockâ€compressed solids. Journal of Applied Physics, 1992, 72, 429-441.	2.5	61
26	Energy Localization and the Initiation of Explosive Crystals by Shock or Impact. Materials Research Society Symposia Proceedings, 1992, 296, 63.	0.1	5
27	High strain rate response of an elastomer. High Pressure Research, 1992, 10, 785-789.	1.2	5
28	Analytical modelling of second order effects in large deformation plasticity. International Journal of Solids and Structures, 1992, 29, 2235-2258.	2.7	10
29	Experimental and numerical simulation of high velocity impact on steel targets. International Journal of Impact Engineering, 1993, 14, 325-334.	5.0	1
30	High-Pressure Shock Compression of Solids. , 1993, , .		113
31	Ultrafast microscopy of shock waves using a shock target array with an optical nanogauge. Journal of Applied Physics, 1994, 75, 4975-4983.	2.5	24
32	Quantum-mechanical aspects of dislocation motion and plastic flow. Physical Review B, 1994, 49, 208-214.	3.2	13
33	Molecular mechanics modeling of shear and the crystal orientation dependence of the elastic precursor shock strength in pentaerythritol tetranitrate. Journal of Applied Physics, 1994, 76, 2726-2737.	2.5	133
34	Atomistic computer simulations of shock waves. Shock Waves, 1995, 5, 149-157.	1.9	96
35	Coherent Raman measurements of polymer thinâ€film pressure and temperature during picosecond laser ablation. Journal of Applied Physics, 1995, 77, 5950-5960.	2.5	90
36	Continuum model of dispersion caused by an inherent material characteristic length. Journal of Applied Physics, 1995, 77, 4054-4063.	2.5	69
37	Experimental constraints on shock-induced microstructures in naturally deformed silicates. Tectonophysics, 1996, 256, 165-217.	2.2	107

#	Article	IF	CITATIONS
38	Shock-wave properties of brittle solids. AIP Conference Proceedings, 1996, , .	0.4	17
39	<title>Measurement of shock waves in nonmetals with a VISAR system</title> . , 1997, 2869, 1065.		3
40	Ultrafast Raman Spectroscopy of Shock Fronts in Molecular Solids. Physical Review Letters, 1997, 78, 4585-4588.	7.8	47
41	Anomalous shock initiation of detonation in pentaerythritol tetranitrate crystals. Journal of Applied Physics, 1997, 81, 601-612.	2.5	102
42	Ultrahigh time-resolution vibrational spectroscopy of shocked molecular solids. Journal of Applied Physics, 1997, 81, 2157-2166.	2.5	73
43	Shock-induced deformation twinning in tantalum. Acta Materialia, 1997, 45, 157-175.	7.9	147
44	Simulation of spall fracture of aluminum and magnesium over a wide range of load duration and temperature. International Journal of Impact Engineering, 1997, 20, 467-478.	5.0	64
45	The birth of dislocations in shock waves and high-speed friction. Journal of Computer-Aided Materials Design, 1998, 5, 207-224.	0.7	19
46	Scattering as a mechanism for structured shock waves in metals. Journal of the Mechanics and Physics of Solids, 1998, 46, 2017-2032.	4.8	27
47	Shock-wave compression of brittle solids. Mechanics of Materials, 1998, 29, 181-203.	3.2	262
48	An estimate of the linear strain rate dependence of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. Journal of Applied Physics, 1999, 86, 6717-6728.	2.5	12
49	Transient x-ray diffraction used to diagnose shock compressed Si crystals on the Nova laser. Review of Scientific Instruments, 1999, 70, 629-632.	1.3	27
50	Discrete-element modeling of shock compression of polycrystalline copper. Physical Review B, 1999, 59, 13672-13680.	3.2	60
51	ULTRAFASTSPECTROSCOPY OFSHOCKWAVES INMOLECULARMATERIALS. Annual Review of Physical Chemistry, 1999, 50, 251-278.	10.8	108
52	Estimate of Temperature Distribution in Steady Shock Wave Front. 1st Report. Theoretical Approach Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2000, 66, 1765-1770.	0.2	0
53	A strength and damage model for rock under dynamic loading. AIP Conference Proceedings, 2000, , .	0.4	2
54	Ultrafast dynamics of nanoshocks in molecular materials. AIP Conference Proceedings, 2000, , .	0.4	1
55	Mechanical and numerical modeling of a porous elastic–viscoplastic material with tensile failure.	2.7	54

	CITATION	Report	
#	Article	IF	CITATIONS
56	Nanoshocks in Molecular Materials. Accounts of Chemical Research, 2000, 33, 37-45.	15.6	45
57	Shock Compression of Organic Polymers and Proteins:Â Ultrafast Structural Relaxation Dynamics and Energy Landscapes. Journal of Physical Chemistry B, 2000, 104, 4239-4252.	2.6	27
58	Estimate of temperature distributions in steady-plane-wave fronts using a Hugoniot function. Journal of Applied Physics, 2001, 89, 105-114.	2.5	14
59	Self-Limiting Hardness Changes in Laser Peened 6061-T6 Aluminium. Surface Engineering, 2001, 17, 477-482.	2.2	19
60	The onset of twinning in metals: a constitutive description. Acta Materialia, 2001, 49, 4025-4039.	7.9	1,390
61	The application of B–P constitutive equations in finite element analysis of high velocity impact. International Journal of Solids and Structures, 2001, 38, 5215-5222.	2.7	3
62	Title is missing!. Journal of Computer-Aided Materials Design, 2001, 8, 213-231.	0.7	18
63	Real time ultrafast spectroscopy of shock front pore collapse. Journal of Applied Physics, 2001, 90, 5139-5146.	2.5	17
64	Shock Compression and Spalling of Cobalt at Normal and Elevated Temperatures. Combustion, Explosion and Shock Waves, 2002, 38, 598-601.	0.8	6
65	Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus, 2003, 164, 149-162.	2.5	164
66	An experimental investigation of shock wave propagation in periodically layered composites. Journal of the Mechanics and Physics of Solids, 2003, 51, 245-265.	4.8	124
67	The formation of shatter cones by shock wave interference during impacting. Earth and Planetary Science Letters, 2003, 216, 43-54.	4.4	58
68	Fast molecular processes in energetic materials. Theoretical and Computational Chemistry, 2003, 13, 125-191.	0.4	42
69	Shock viscosity and rise time of explosion waves in geologic media. Journal of Applied Physics, 2003, 94, 4320-4325.	2.5	13
70	Planar Impact Experiment of 6061-T6 Aluminum and Measurement of Particle Velocity Generated by Elastic-Plastic Shock Waves. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2003, 69, 1028-1032.	0.2	1
71	Shock Compression of Proteins: The Energy Landscape Model. AIP Conference Proceedings, 2004, , .	0.4	0
72	Shear Strength and Viscosity of Metals in Shock Waves. , 2004, , 297-335.		1
73	Laser-induced shock compression of copper: Orientation and pressure decay effects. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 2633-2646.	2.2	39

#	Article	IF	CITATIONS
74	Laser Induced Shock Defects in Copper Aluminum Alloys: Stacking Fault Energy Effects on the Slip-Twinning Transition. Materials Science Forum, 2004, 465-466, 27-34.	0.3	3
75	Fundamental structure of steady plastic shock waves in metals. Journal of Applied Physics, 2004, 95, 1718-1732.	2.5	72
76	Study on the State in a Shock Wave Front in Aluminum by Thermodynamic Theory. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2004, 70, 818-823.	0.2	0
77	Shock Compression and Release Properties of Alumina-Filled Epoxy. AIP Conference Proceedings, 2004, ,	0.4	0
78	Damage Behavior of Ceramic Materials by Impact. Journal of the Ceramic Society of Japan, 2005, 113, 198-209.	1.3	2
79	On the Yield Strength of Single-Crystal Zinc under Uniaxial Compression in a Plane Shock Wave. Technical Physics, 2005, 50, 621.	0.7	8
80	Shock-compression response of an alumina-filled epoxy. Journal of Applied Physics, 2005, 97, 083518.	2.5	46
81	Elastic constants of single-crystalTiNx(001)(0.67⩽x⩽1.0)determined as a function ofxby picosecond ultrasonic measurements. Physical Review B, 2005, 71, .	3.2	78
82	The Mechanics of Pseudotachylite Formation in Impact Events. , 2005, , 55-80.		30
83	Ultrafast Dynamics of Self-Assembled Monolayers under Shock Compression:  Effects of Molecular and Substrate Structure. Journal of Physical Chemistry B, 2005, 109, 5033-5044.	2.6	29
84	Shock properties of H2O ice. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	72
85	Reshock response of shock deformed aluminum. Journal of Applied Physics, 2006, 100, 043514.	2.5	38
86	High pressure, quasi-isentropic compression experiments on the Omega laser. High Energy Density Physics, 2006, 2, 113-125.	1.5	54
87	A theoretical analysis of experimental results of shock wave loading of OFE copper relating the observed internal structure to the deformation mechanism. International Journal of Impact Engineering, 2006, 32, 1339-1356.	5.0	4
88	Thermal and mechanical analysis of material response to non-steady ramp and steady shock wave loading. Journal of the Mechanics and Physics of Solids, 2006, 54, 237-265.	4.8	14
89	Modeling plastic shocks in periodic laminates with gradient plasticity theories. Journal of the Mechanics and Physics of Solids, 2006, 54, 2495-2526.	4.8	17
90	Spall behavior of aluminum with varying microstructures. Journal of Applied Physics, 2006, 99, 023528.	2.5	110
91	Hugoniot and strength behavior of silicon carbide. Journal of Applied Physics, 2006, 99, 023512.	2.5	57

#	Article	IF	CITATIONS
92	Atomistic simulations of shock induced microstructural evolution and spallation in single crystal nickel. Journal of Applied Physics, 2007, 101, 043504.	2.5	66
93	On a viscous critical-stress model of martensitic phase transitions. Journal of Applied Physics, 2007, 102, 064905.	2.5	2
94	Material characterization with ramp wave experiments. Journal of Applied Physics, 2007, 101, 073517.	2.5	14
95	Stiff Response of Aluminum under Ultrafast Shockless Compression to 110ÂGPA. Physical Review Letters, 2007, 98, 065701.	7.8	87
96	Static and dynamic compaction of ceramic powders. International Journal of Solids and Structures, 2007, 44, 636-658.	2.7	91
97	Spall investigations for LY12 Al using triangular waves. International Journal of Impact Engineering, 2007, 34, 395-404.	5.0	8
98	On high-pressure melting of tantalum. Physica B: Condensed Matter, 2007, 388, 139-144.	2.7	33
99	Micro-fluid dynamics via laser–matter interaction: Vortex filament structures, helical instability, reconnection, merging, and undulation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 361, 87-97.	2.1	16
100	Mesodynamics of shock waves in a polycrystalline metal. Shock Waves, 2007, 17, 135-141.	1.9	5
101	Dislocation Mechanics of Shock-Induced Plasticity. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 2605-2610.	2.2	68
102	Constitutive behaviour of anisotropic materials under shock loading. International Journal of Plasticity, 2008, 24, 140-167.	8.8	51
103	Deformation Substructures and Their Transitions in Laser Shock–Compressed Copper-Aluminum Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 304-321.	2.2	32
104	Mesoscale calculations of the dynamic behavior of a granular ceramic. International Journal of Solids and Structures, 2008, 45, 1676-1696.	2.7	60
105	Laser-launched flyer plate and confined laser ablation for shock wave loading: Validation and applications. Review of Scientific Instruments, 2008, 79, 023902.	1.3	66
106	High strain rate properties of metals and alloys. International Materials Reviews, 2008, 53, 105-128.	19.3	275
107	Long pulse laser driven shock wave loading for dynamic materials experiments. , 2008, , .		1
108	DYNAMIC COMPACTION OF SAND. AIP Conference Proceedings, 2008, , .	0.4	16
109	DISLOCATION MECHANICS UNDER EXTREME PRESSURES. , 2008, , .		0

#	Article		CITATIONS
110	PHASE TRANSITIONS, HIGH-RATE STRAINING, AND FRACTURE OF IRON UNDER SPHERICAL EXPLOSIVE LOADING. , 2008, , .		1
111	Stationary shocks in periodic highly nonlinear granular chains. Physical Review E, 2009, 80, 056602.	2.1	63
112	A flyer-impact technique for measuring viscosity of metal under shock compression. Review of Scientific Instruments, 2009, 80, 013903.	1.3	7
113	Ramp wave loading experiments driven by heavy ion beams: A feasibility study. Laser and Particle Beams, 2009, 27, 595-600.	1.0	4
114	Numerical study of rate-dependent strength behavior under ramp and shock wave loading. International Journal of Plasticity, 2009, 25, 695-714.	8.8	16
115	Mechanics of very fine-grained nanocrystalline materials with contributions from grain interior, GB zone, and grain-boundary sliding. International Journal of Plasticity, 2009, 25, 2410-2434.	8.8	86
116	Structural-scaling transitions and thermodynamic and kinetic effects in submicro-(nano-)crystalline bulk materials. Physical Mesomechanics, 2009, 12, 239-248.	1.9	12
117	Dislocation mechanics of copper and iron in high rate deformation tests. Journal of Applied Physics, 2009, 105, .	2.5	90
118	A REVIEW OF MESOSCALE SIMULATIONS OF GRANULAR MATERIALS. AIP Conference Proceedings, 2009, , .	0.4	4
119	Development of wide-range constitutive equations for calculations of high-rate deformation of metals. EPJ Web of Conferences, 2010, 10, 00022.	0.3	2
120	Structural-scale transitions in solids with defects and symmetry aspects of field theory. Physical Mesomechanics, 2010, 13, 306-317.	1.9	18
121	High rate straining of tantalum and copper. Journal Physics D: Applied Physics, 2010, 43, 492002.	2.8	35
122	Dynamic behavior of tungsten carbide and alumina filled epoxy composites. Journal of Applied Physics, 2010, 107, .	2.5	28
123	Park <i>etÂal.</i> Reply:. Physical Review Letters, 2010, 105, .	7.8	3
124	Structured shock waves and the fourth-power law. Journal of Applied Physics, 2010, 107, .	2.5	91
125	The strength of single crystal copper under uniaxial shock compression at 100 GPa. Journal of Physics Condensed Matter, 2010, 22, 065404.	1.8	70
126	Contribution of meso- and macroscale energy exchange to the propagation of steady plastic waves. Physical Mesomechanics, 2011, 14, 154-158.	1.9	0
127	Dynamic yielding of single crystal Ta at strain rates of â^¼5 × 105/s. Journal of Applied Physics, 2011, 2	10295.	27

#	ARTICLE	IF	CITATIONS
128	Role of interfaces in shock-induced plasticity in Cu/Nb nanolaminates. Philosophical Magazine, 2011, 91, 4172-4185.	1.6	62
129	Plastic flow in shock-loaded silver at strain rates from 104 sâ^'1 to 107 sâ^'1 and temperatures from 296 K to 1233 K. Journal of Applied Physics, 2011, 110, . <i>In situ</i> x-ray diffraction measurements of the <mml:math< td=""><td>2.5</td><td>70</td></mml:math<>	2.5	70
130	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>c</mml:mi><mml:mo>/</mml:mo><mml:mi>a</mml:mi></mml:mrow> <br in the high-pressure <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>jµ</mml:mi></mml:mrow></mml:math> phase of shock-compressed	mml:math 3.2	⊳ratio 74
131	polycrystalline iron. Physical Review B, 2011, 83, . A unified approach for extracting strength information from nonsimple compression waves. Part II. Experiment and comparison with simulation. Journal of Applied Physics, 2011, 110, .	2.5	26
132	High strain-rate plastic flow in Al and Fe. Journal of Applied Physics, 2011, 110, .	2.5	110
133	New Developments in the Physical Chemistry of Shock Compression. Annual Review of Physical Chemistry, 2011, 62, 575-597.	10.8	75
134	A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates. International Journal of Plasticity, 2011, 27, 1-24.	8.8	255
135	Invariance of the Dissipative Action at Ultrahigh Strain Rates Above the Strong Shock Threshold. Physical Review Letters, 2011, 107, 144302.	7.8	131
136	Differential Conservation Equations and Time-Dependent Flow. , 2012, , 179-200.		1
137	Mathematical modelling of elastoplasticity at high stress. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 3842-3863.	2.1	9
138	Interscale momentum exchange and stead-wave propagation. , 2012, , .		0
139	Growth of defining relations of beryllium. , 2012, , .		1
140	Time-resolved emission of dye probes in a shock-compressed polymer. Journal of Applied Physics, 2012, 112, 103508.	2.5	24
141	On the scaling of steady structured waves in heterogeneous materials. Journal of Applied Physics, 2012, 112, .	2.5	33
142	Mesoscale simulation of shock wave propagation in discrete Ni/Al powder mixtures. Journal of Applied Physics, 2012, 111, .	2.5	21
143	Molecular dynamics simulations of ramp-compressed copper. Physical Review B, 2012, 85, .	3.2	14
144	Nanosecond white-light Laue diffraction measurements of dislocation microstructure in shock-compressed single-crystal copper. Nature Communications, 2012, 3, 1224.	12.8	46
145	Why Nanoprojectiles Work Differently than Macroimpactors: The Role of Plastic Flow. Physical Review Letters, 2012, 108, 027601.	7.8	16

#	Article		CITATIONS
146	Effect of temperature, strain, and strain rate on the flow stress of aluminum under shock-wave compression. Journal of Applied Physics, 2012, 112, .	2.5	104
147	Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum. International Journal of Plasticity, 2012, 32-33, 134-154.	8.8	94
148	Constitutive modelling of plasticity of fcc metals under extremely high strain rates. International Journal of Plasticity, 2012, 32-33, 121-133.	8.8	163
149	High strain rate deformation and fracture of the magnesium alloy Ma2-1 under shock wave loading. Physics of the Solid State, 2012, 54, 1079-1085.	0.6	32
150	Shockless spalling damage of alumina ceramic. European Physical Journal: Special Topics, 2012, 206, 71-77.	2.6	11
151	Rapid compaction of granular material: characterizing two- and three-dimensional mesoscale simulations. Shock Waves, 2013, 23, 153-176.	1.9	34
152	Strain rate-dependant mechanical properties of OFHC copper. Journal of Materials Science, 2013, 48, 7134-7141.	3.7	44
153	On the power-law pressure dependence of the plastic strain rate of crystals under intense shock wave loading. Physics of the Solid State, 2013, 55, 780-786.	0.6	22
154	A dislocation kinetic model of the formation and propagation of intense shock waves in crystals. Physics of the Solid State, 2013, 55, 787-795.	0.6	7
155	Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations. Physical Review B, 2013, 88, .	3.2	216
156	Response of copper to shock-wave loading at temperatures up to the melting point. Journal of Applied Physics, 2013, 114, .	2.5	93
157	Nano-scale machining of polycrystalline coppers - effects of grain size and machining parameters. Nanoscale Research Letters, 2013, 8, 500.	5.7	34
158	Laser compression of nanocrystalline tantalum. Acta Materialia, 2013, 61, 7767-7780.	7.9	46
159	Two-wave structure of plastic relaxation waves in crystals under intense shock loading. Physics of the Solid State, 2013, 55, 2280-2288.	0.6	7
160	Validation of the Preston–Tonks–Wallace strength model at strain rates approaching â^¼1011Âsâ^'1 for Al-1100, tantalum and copper using hypervelocity impact crater morphologies. International Journal of Impact Engineering, 2013, 52, 1-10.	5.0	24
161	Strength of Shock-Loaded Single-Crystal Tantalum [100] Determined using <i>InÂSitu</i> Broadband X-Ray Laue Diffraction. Physical Review Letters, 2013, 110, 115501.	7.8	61
162	A dislocation-based multi-rate single crystal plasticity model. International Journal of Plasticity, 2013, 44, 129-146.	8.8	109
163	Time-dependence of the alpha to epsilon phase transformation in iron. Journal of Applied Physics, 2013, 114, .	2.5	75

#	Article		CITATIONS
164	Release path temperatures of shock-compressed tin from dynamic reflectance and radiance measurements. Journal of Applied Physics, 2013, 114, .	2.5	32
165	Influence of the strain rate on deformation mechanisms of an AZ31 magnesium alloy. International Journal of Materials Research, 2013, 104, 762-768.	0.3	7
168	Influence of relaxation processes on the wave dynamics of shock compression of solids. Mechanics of Solids, 2014, 49, 605-615.	0.7	4
169	A multiscale model of propagation of steady elasto-plastic waves. Doklady Physics, 2014, 59, 423-426.	0.7	1
170	Comment on "Strength of Shock-Loaded Single-Crystal Tantalum [100] Determined Using <i>inÂsitu</i> Broadband X-Ray Laue Diffraction― Physical Review Letters, 2014, 113, 039601.	7.8	3
171	Comley <i>etÂal.</i> Reply:. Physical Review Letters, 2014, 113, 039602.	7.8	2
172	Dynamics of polymer response to nanosecond shock compression. Applied Physics Letters, 2014, 104, 101914.	3.3	22
173	Unusual behaviour of usual materials in shock waves. Journal of Physics: Conference Series, 2014, 500, 012001.	0.4	16
174	Bertram Hopkinson's pioneering work and the dislocation mechanics of high rate deformations and mechanically induced detonations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130181.	3.4	7
175	Effect of Reloading on Dynamic Recrystallization in Shock Deformed Aluminum Alloy. Materials Science Forum, 0, 794-796, 755-760.	0.3	2
176	Shock propagation and attenuation in Green River oil shale. Journal of Physics: Conference Series, 2014, 500, 112030.	0.4	0
177	Dynamic Discrete Dislocation Plasticity. Advances in Applied Mechanics, 2014, , 93-224.	2.3	10
178	An experimental study of non-Newtonian properties of water under electroexplosive loading. Technical Physics Letters, 2014, 40, 766-768.	0.7	15
179	Dynamic density field measurements of an explosively driven α → ϵ phase transition in iron. Journal of Applied Physics, 2014, 116, 043504.	2.5	4
180	The behaviour of niobium and molybdenum during uni-axial strain loading. Journal of Applied Physics, 2014, 115, 073506.	2.5	11
181	Flow strength of tantalum under ramp compression to 250 GPa. Journal of Applied Physics, 2014, 115, .	2.5	58
182	Elastic constants, Poisson ratios, and the elastic anisotropy of VN(001), (011), and (111) epitaxial layers grown by reactive magnetron sputter deposition. Journal of Applied Physics, 2014, 115, 214908.	2.5	49
183	Multiple-shocks induced nanocrystallization in iron. Applied Physics Letters, 2014, 105, 021902.	3.3	18

		CITATION REPO	ORT	
#	Article	I	IF	CITATIONS
184	Plastic behavior of aluminum in high strain rate regime. Journal of Applied Physics, 2014	, 116,	2.5	14
185	On the ultra-high-strain rate shock deformation in copper single crystals: multiscale dislo dynamics simulations. Philosophical Magazine Letters, 2014, 94, 415-423.	ocation	1.2	21
186	Shock wave propagation through a model one dimensional heterogeneous medium. Inte Journal of Solids and Structures, 2014, 51, 3604-3618.	ernational	2.7	16
187	Simulation of shock wave propagation in single crystal and polycrystalline aluminum. In Journal of Plasticity, 2014, 60, 118-144.	rernational	8.8	81
188	Orientation-dependent response of defective Tantalum single crystals. Computational N Science, 2014, 90, 82-88.	laterials	3.0	18
189	Plane wave simulation of elastic-viscoplastic single crystals. Journal of the Mechanics an Solids, 2014, 69, 14-32.	d Physics of	4.8	60
190	Cumulation of a spherically converging shock wave in metals and its dependence on ela properties, phase transitions, spall and shear fractures. Journal of Physics: Conference Se 490, 012191.	stic-plastic eries, 2014,	0.4	3
191	Nonequilibrium processes in condensed media: Part 1. Experimental studies in light of n transport theory. Physical Mesomechanics, 2015, 18, 228-243.	onlocal	1.9	25
192	Probing the character of ultra-fast dislocations. Scientific Reports, 2015, 5, 16892.		3.3	32
193	Simulations of <i>in situ</i> x-ray diffraction from uniaxially compressed highly textured polycrystalline targets. Journal of Applied Physics, 2015, 118, .		2.5	18
194	The Role of Homogeneous Nucleation in Planar Dynamic Discrete Dislocation Plasticity. Applied Mechanics, Transactions ASME, 2015, 82, .	Journal of	2.2	16
195	The mechanisms governing the activation of dislocation sources in aluminum at differer rates. Journal of the Mechanics and Physics of Solids, 2015, 84, 273-292.	t strain	4.8	65
196	Pulse loading of glycerol by electric explosion of wire. Journal of Physics: Conference Ser 653, 012034.	ies, 2015,	0.4	4
197	Application backwards characteristics analysis method to dynamic response of metals u pressure. EPJ Web of Conferences, 2015, 94, 01007.	nder high	0.3	1
198	Unifying role of dissipative action in the dynamic failure of solids. Journal of Applied Phys.	sics, 2015, 117,	2.5	19
199	The Unifying Role of Dissipative Action in the Dynamic Failure of Solids. Procedia Engine 103, 143-150.	ering, 2015,	1.2	4
200	Dislocation Mechanics of High-Rate Deformations. Metallurgical and Materials Transacti Physical Metallurgy and Materials Science, 2015, 46, 4438-4453.	ons A:	2.2	45
201	Capturing plasticity effects in overdriven shocks on the finite scale. Mathematics and Co Simulation, 2015, 111, 63-79.	omputers in	4.4	0

		CITATION R	EPORT	
#	Article		IF	Citations
202	Multi-scale model of steady-wave shock in medium with relaxation. Acta Mechanica, 2015	5, 226, 917-930.	2.1	9
203	Cumulation of a spherically converging shock wave in metals and its dependence on elast properties, phase transitions, spall and shear fractures. International Journal of Modeling, Simulation, and Scientific Computing, 2015, 06, 1550001.	ic-plastic	1.4	1
204	Ramp compression of tantalum to 330 GPa. High Pressure Research, 2015, 35, 339-3	354.	1.2	25
205	Dislocation-kinetic analysis of FCC and BCC crystal spallation under shock-wave loading. I the Solid State, 2015, 57, 1818-1826.	Physics of	0.6	3
206	Transition of mechanisms underlying the rate effects and its significance. Computational Science, 2015, 98, 70-75.	Materials	3.0	8
207	Shock loading of polymer composites. , 2016, , 337-363.			4
208	Studying plastic shear localization in aluminum alloys under dynamic loading. Journal of A Mechanics and Technical Physics, 2016, 57, 1217-1225.	pplied	0.5	1
209	Change of the kinetics of shock-wave deformation and fracture of VT1-0 titanium as a res annealing. Physics of the Solid State, 2016, 58, 1191-1198.	ult of	0.6	9
210	Dynamic yielding and fracture of grade 4 titanium in plate impact experiments. Journal of Physics, 2016, 119, .	Applied	2.5	12
211	Effect of shear strength on Hugoniot-compression curve and the equation of state of tun Journal of Applied Physics, 2016, 119, .	gsten (W).	2.5	22
212	Ductile mechanisms of metals containing pre-existing nanovoids. Computational Material 2016, 125, 36-50.	s Science,	3.0	16
213	Multiple scales of shock waves in dissipative laminate materials. Physical Review E, 2016,	94, 033002.	2.1	6
214	On the homogeneous nucleation and propagation of dislocations under shock compressi Philosophical Magazine, 2016, 96, 2752-2778.	on.	1.6	27
215	Temperature–rate dependences of the flow stress and the resistance to fracture of a V alloy under shock loading at a temperature of 20 and 600°C. Technical Physics, 2016, 6	16 titanium 1, 1229-1236.	0.7	3
216	The Behaviour of 2169 Steel Under Uniaxial Stress and Uniaxial Strain Loading. Journal of Behavior of Materials, 2016, 2, 337-346.	Dynamic	1.7	11
217	Some regularities of scaling in plasticity, fracture, and turbulence. Physical Mesomechanic 307-318.	cs, 2016, 19,	1.9	11
218	Spalling behaviors of Pb induced by ramp-wave-loading: Effects of the loading rise time st molecular dynamics simulations. Computational Materials Science, 2016, 117, 370-379.	udied by	3.0	19
219	Theoretical interpretation of abnormal ultrafine-grained material deformation dynamics. N and Simulation in Materials Science and Engineering, 2016, 24, 025013.	Иodelling	2.0	11

#	Article	IF	CITATIONS
220	Comparison of Static and Dynamic Powder Compaction: Experiment and Simulation. Journal of Engineering Materials and Technology, Transactions of the ASME, 2016, 138, .	1.4	2
221	Particle velocity non-uniformity and steady-wave propagation. Shock Waves, 2017, 27, 291-297.	1.9	3
222	On the ultimate tensile strength of tantalum. Acta Materialia, 2017, 126, 313-328.	7.9	90
223	The Strength of Two HMX Based Plastic Bonded Explosives During One Dimensional Shock Loading. Journal of Dynamic Behavior of Materials, 2017, 3, 100-109.	1.7	14
224	Deformation and failure in extreme regimes by high-energy pulsed lasers: A review. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 429-458.	5.6	50
225	Collective properties of defects, multiscale plasticity, and shock induced phenomena in solids. Physical Mesomechanics, 2017, 20, 10-30.	1.9	20
226	Chapter 9 Memories of Shock Wave Research at Sandia. Shock Wave and High Pressure Phenomena, 2017, , 275-594.	0.1	1
227	The size effects upon shock plastic compression of nanocrystals. Physics of the Solid State, 2017, 59, 1987-1992.	0.6	4
228	Unusual plasticity and strength of metals at ultra-short load durations. Physics-Uspekhi, 2017, 60, 490-508.	2.2	67
229	The Effects of Nanostructure upon the Dynamic Ductile Fracture of High Purity Copper. Procedia Engineering, 2017, 197, 23-32.	1.2	2
230	Modeling the mechanical response and microstructure evolution of magnesium single crystals under c-axis compression. Computational Materials Science, 2017, 138, 236-245.	3.0	4
231	X-ray diffraction measurements of plasticity in shock-compressed vanadium in the region of 10–70 GPa. Journal of Applied Physics, 2017, 122, .	2.5	18
232	Dynamic response of dry and water-saturated sand systems. Journal of Applied Physics, 2017, 122, .	2.5	15
233	Evaluation of glycerol viscosity through the width of a weak shock wave. High Temperature, 2017, 55, 365-369.	1.0	13
234	Fluorescence depolarization measurements under shock compression. AIP Conference Proceedings, 2017, , .	0.4	0
235	Metastable states, relaxation mechanisms, and fracture of liquids under severe loading conditions. Physical Mesomechanics, 2017, 20, 399-406.	1.9	4
236	METASTABILITY AND DEFECTS-INDUCED CRITICALITY IN SHOCKED MATERIALS. Interfacial Phenomena and Heat Transfer, 2017, 5, 129-141.	0.8	3
237	Effect of Interface Chemistry on the Interface Shock Wave Rise Time in Energetic material using Cohesive Finite Element Method. , 2018, , .		0

	CHAHON	KLI OKI	
#	Article	IF	CITATIONS
238	Plane shock loading on mono- and nano-crystalline silicon carbide. Applied Physics Letters, 2018, 112, .	3.3	22
239	Physical constitutive equations for plastic deformation of FCC metals subjected to high strain rate loading. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2018, 232, 106-120.	1.1	3
240	Multiscale plastic shear instability as mechanism of turbulence. AIP Conference Proceedings, 2018, , .	0.4	0
241	Evaluating the strength of structural materials under dynamic and shock loading in a wide range of strain rates. AIP Conference Proceedings, 2018, , .	0.4	0
242	The dynamic ductile fracture of high purity copper. AIP Conference Proceedings, 2018, , .	0.4	1
243	Nanosecond Freezing of Water at High Pressures: Nucleation and Growth near the Metastability Limit. Physical Review Letters, 2018, 121, 155701.	7.8	29
244	On the impact of the elastic-plastic flow upon the process of destruction of the solenoid in a super strong pulsed magnetic field. Journal of Physics: Conference Series, 2018, 946, 012040.	0.4	5
245	Strength of tantalum shocked at ultrahigh pressures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 732, 220-227.	5.6	4
246	Stepwise shock compression of aluminum at room and elevated temperatures. Journal of Applied Physics, 2019, 126, .	2.5	13
247	On the upturn phenomenon in the strength vs. strain-rate relations of metals. International Journal of Solids and Structures, 2019, 176-177, 185-190.	2.7	12
248	Deformation Twinning in Single Crystals. Shock Wave and High Pressure Phenomena, 2019, , 275-327.	0.1	0
249	Shock Compression of Ductile Polycrystals. Shock Wave and High Pressure Phenomena, 2019, , 195-274.	0.1	0
250	Dislocation Plasticity in Single Crystals. Shock Wave and High Pressure Phenomena, 2019, , 135-193.	0.1	0
251	The effect of interface shock viscosity on the strain rate induced temperature rise in an energetic material analyzed using the cohesive finite element method. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 065008.	2.0	7
252	Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids. Shock Wave and High Pressure Phenomena, 2019, , .	0.1	18
253	Improving Fatigue Performance of Laser-Welded 2024-T3 Aluminum Alloy Using Dry Laser Peening. Metals, 2019, 9, 1192.	2.3	19
254	Simulation guided experimental interface shock viscosity measurement in an energetic material. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 085003.	2.0	9
255	Semi-analytical modeling of steady weak shock wave front for solid metals following the Swegle–Grady relation. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233, 1939-1951.	1.1	0

#	Article	IF	CITATIONS
256	Nonlinear thermomechanics for analysis of weak shock profile data in ductile polycrystals. Journal of the Mechanics and Physics of Solids, 2019, 124, 714-757.	4.8	13
257	Statistics of energy dissipation in the hypervelocity impact shock failure transition. International Journal of Impact Engineering, 2020, 137, 103435.	5.0	5
258	Shock and Spall in the Low-alloy Steel AF9628. Journal of Dynamic Behavior of Materials, 2020, 6, 64-77.	1.7	6
259	Steady shock waves in porous metals: Viscosity and micro-inertia effects. International Journal of Plasticity, 2020, 135, 102816.	8.8	12
260	Dynamic Compressive Strength and Fragmentation in Felsic Crystalline Rocks. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006561.	3.6	10
261	Effects of temperature and strain on the resistance to high-rate deformation of copper in shock waves. Journal of Applied Physics, 2020, 128, .	2.5	20
262	Resistance to high-rate deformation and fracture of lead at normal and elevated temperatures in the sub-microsecond time range. Journal of Applied Physics, 2020, 128, 025902.	2.5	4
263	Shock wave compression behavior and dislocation density evolution in Al microstructures at the atomic scales and the mesoscales. International Journal of Plasticity, 2020, 128, 102678.	8.8	35
264	On Nanosecond Thermophysics (Review). High Temperature, 2020, 58, 550-565.	1.0	4
265	Experimental Study of Deformation of Spheroplastics under Shock Compression. Combustion, Explosion and Shock Waves, 2020, 56, 237-242.	0.8	2
266	Quantum Effects on the Mesoscale. Particles, 2020, 3, 562-575.	1.7	5
267	Material effects on the spallation response of metals and alloys. AIP Conference Proceedings, 2020, , .	0.4	Ο
268	A nonlinear and timeâ€dependent viscoâ€elastoâ€plastic rheology model for studying shockâ€physics phenomena. Engineering Reports, 2020, 2, e12322.	1.7	7
269	The Effect of Strain Rate and Temperature on the Mechanical Behavior of Al/Fe Interface Under Compressive Loading. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2573-2589.	2.2	3
270	Pressure-Shear Plate Impact Experiments at High Pressures. Journal of Dynamic Behavior of Materials, 2020, 6, 489-501.	1.7	10
271	A description of structured waves in shock compressed particulate composites. Journal of Applied Physics, 2020, 127, .	2.5	8
272	Structure of shock waves in particulate composites. Journal of Applied Physics, 2020, 127, .	2.5	6
273	Dynamic Strength of AZ31B-4E and AMX602 Magnesium Alloys Under Shock Loading. Journal of Dynamic Behavior of Materials, 2020, 6, 403-422.	1.7	5

#	Article	IF	CITATIONS
274	Effects of temperature on the flow stress of aluminum in shock waves and rarefaction waves. Journal of Applied Physics, 2020, 127, .	2.5	22
275	Experimental study of shock wave structure in syntactic foams under high-velocity impact. Acta Astronautica, 2021, 178, 900-907.	3.2	13
276	High- and low-entropy layers in solids behind shock and ramp compression waves. International Journal of Mechanical Sciences, 2021, 189, 105971.	6.7	24
277	Multiscale Modelling of Steady Shock Wave Propagation. Shock Wave and High Pressure Phenomena, 2021, , 67-81.	0.1	0
278	Revisiting the Power Law Characteristics of the Plastic Shock Front under Shock Loading. Physical Review Letters, 2021, 126, 085503.	7.8	7
279	Microscale Analysis of Stress Wave Propagation Through Plastic Bonded Explosives Under Micro-Sphere Shock Impact. Journal of Dynamic Behavior of Materials, 2021, 7, 294-306.	1.7	8
281	Bounds on the Rate-Dependent Plastic Flow of Tantalum up to 75ÂGPa. Journal of Dynamic Behavior of Materials, 2021, 7, 307-324.	1.7	3
282	High-Rate Deformation of Titanium in Shock Waves at Normal and Elevated Temperatures. Journal of Experimental and Theoretical Physics, 2021, 132, 438-445.	0.9	4
284	Dislocation and Grain Size Roles in Physical Mesomechanics. Physical Mesomechanics, 2021, 24, 418-425.	1.9	3
285	On Thresholds for Dynamic Strength in Solids. Journal of Dynamic Behavior of Materials, 2021, 7, 325-337.	1.7	2
286	An analytical model to predict the depth of sub-surface damage for grinding of brittle materials. CIRP Journal of Manufacturing Science and Technology, 2021, 33, 454-464.	4.5	18
287	Laser-driven flyer plate impact: Computational studies guided by experiments. Journal of Applied Physics, 2021, 129, .	2.5	8
288	Role of pre-existing dislocations on the shock compression and spall behavior in single-crystal copper at atomic scales. Journal of Applied Physics, 2021, 129, .	2.5	14
289	The role of micro-inertia on the shock structure in porous metals. Journal of the Mechanics and Physics of Solids, 2021, 154, 104508.	4.8	8
290	Mesoscale Mechanisms in Viscoplastic Deformation of Metals and Their Applications to Constitutive Models. Materials, 2021, 14, 4667.	2.9	2
291	Unveiling grain size effect on shock-induced plasticity and its underlying mechanisms in nano-polycrystalline Ta. Mechanics of Materials, 2021, 160, 103952.	3.2	8
292	Dislocation Mechanics of Extremely High Rate Deformations in Iron and Tantalum. Journal of Engineering Materials and Technology, Transactions of the ASME, 2022, 144, .	1.4	4
293	Stress and strain during shock metamorphism. Icarus, 2021, 370, 114687.	2.5	9

#	Article	IF	CITATIONS
294	A Dynamic Finite-Deformation Constitutive Model for Steels Undergoing Slip, Twinning, and Phase Changes. Journal of Dynamic Behavior of Materials, 2021, 7, 217-247.	1.7	5
295	Defect-Induced Transitions as Mechanisms of Plasticity and Failure in Multifield Continua. Modeling and Simulation in Science, Engineering and Technology, 2004, , 75-114.	0.6	54
296	Introduction to High-Pressure Shock Compression of Solids. , 1993, , 1-6.		3
298	Micromechanical Considerations in Shock Compression of Solids. , 1993, , 217-264.		9
299	Effects of Shock Compression on Ceramic Materials. , 1998, , 101-146.		14
300	Paradigms and Challenges in Shock Wave Research. , 2003, , 57-119.		17
301	Elastic-Plastic Response of Solids Under Shock-Wave Loading. , 2004, , 29-82.		2
302	Mesoscale Simulations of Dry Sand. Conference Proceedings of the Society for Experimental Mechanics, 2015, , 379-388.	0.5	3
303	Development of the hybrid numerical simulation to clarify shock viscosity effects in a plastic shock wave front. , 2005, , 1113-1118.		1
304	Elastic–Plastic Shock Waves. , 2007, , 189-224.		1
305	Elements of Phenomenological Plasticity: Geometrical Insight, Computational Algorithms, and Topics in Shock Physics. , 2007, , 225-274.		16
306	Shock Compression Studies on Ceramic Materials. , 1993, , 113-144.		7
307	SHEAR STRESS PREDICTION IN SHOCK LOADED COPPER. , 1992, , 415-418.		1
308	PRESSURE INDUCED MACRO- AND MICROMECHANTCAL PHENOMENA IN PLANAR IMPACTED TIB2. , 1992, , 555-558.		7
310	A unified approach for extracting strength information from nonsimple compression waves. Part II. Experiment and comparison with simulation. , 0, .		1
311	Development of shock-dynamics study with synchrotron-based time-resolved X-ray diffraction using an Nd:glass laser system. Journal of Synchrotron Radiation, 2020, 27, 371-377.	2.4	5
315	Study of plastic shear localization in aluminum alloys under dynamic loading. Computational Continuum Mechanics, 2015, 8, 319-328.	0.5	5
316	The Discontinuous Shock—Fact or Fancy?. , 2003, , 297-321.		0

#	Article	IF	CITATIONS
319	Molecular dynamics investigation of shock front in nanocrystalline copper. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 036201.	0.5	1
320	Steady, Structured Shock Waves. Part 1: Thermoelastic Materials. , 1989, , 747-817.		4
321	ELASTIC-PLASTIC BEHAVIOR OF SHOCK-LOADED Fe - SIO2 COMPOSITE MATERIALS. , 1992, , 435-438.		1
322	HYDRODYNAMIC THEORY OF SHOCK INDUCED ANOMALOUS MASS TRANSFER IN SOLIDS. , 1992, , 237-240.		0
323	NON-STEADY WAVE PROFILES AND THE FOURTH-POWER LAW. , 1992, , 249-252.		1
324	Mechanisms of Elastoplastic Response of Metals to Impact. , 1998, , 59-80.		0
326	Chapter 4 The 1970s: New Opportunities. Shock Wave and High Pressure Phenomena, 2017, , 85-125.	0.1	0
328	Low-Pressure Dynamic Compression Response of Porous Materials. Shock Wave and High Pressure Phenomena, 2019, , 29-62.	0.1	0
329	Statistics of energy dissipation in the hypervelocity impact shock failure transition. , 2019, , .		1
330	Features of fourth power behavior of structured shock waves in selected solids. AIP Conference Proceedings, 2020, , .	0.4	1
331	Dry Laser Peening: Ultrashort Pulsed Laser Peening Without Sacrificial Overlay Under Atmospheric Conditions. Springer Series in Materials Science, 2020, , 163-184.	0.6	0
332	Surfactant solutions behavior under electric explosion wire loading. Procedia Structural Integrity, 2021, 33, 1146-1151.	0.8	0
333	Inelastic behavior of tungsten carbide at high pressures. Journal of the Mechanics and Physics of Solids, 2022, 159, 104762.	4.8	6
334	Hugoniot elastic limit of single-crystal tantalum at normal and elevated temperatures subjected to extreme strain rates. Physical Review B, 2022, 105, .	3.2	6
335	A broad study of tantalum strength from ambient to extreme conditions. Acta Materialia, 2022, 231, 117875.	7.9	16
336	Constitutive relations for slip and twinning in high rate deformations: A review and update. Journal of Applied Physics, 2021, 130, .	2.5	11
337	Viscoplastic behavior of AA7075 aluminum alloy at high strain rate. Journal of Mechanical Science and Technology, 2021, 35, 5405-5413.	1.5	0
338	On the transition from weak to strong shock response. Journal of Applied Physics, 2022, 131,	2.5	5

#	Article	IF	CITATIONS
339	Laser pulses into bullets: tabletop shock experiments. Physical Chemistry Chemical Physics, 2022, 24, 10653-10666.	2.8	4
340	Phase transitions in high-purity zirconium under dynamic compression. Physical Review B, 2022, 105, .	3.2	2
341	High-Rate Crystal/Polycrystal Dislocation Dynamics. Crystals, 2022, 12, 705.	2.2	2
342	Manipulating shock waves with metallurgy. Acta Materialia, 2022, 234, 118042.	7.9	6
343	X-ray diffraction study of phase transformation dynamics of Fe and Fe-Si alloys along the shock Hugoniot using an x-ray free electron laser. Physical Review B, 2022, 105, .	3.2	1
347	Development of slurry targets for high repetition-rate x-ray free electron laser experiments. Journal of Applied Physics, 2022, 131, .	2.5	3
348	Shock resistance capability of multi-principal elemental alloys as a function of lattice distortion and grain size. Journal of Applied Physics, 2022, 132, .	2.5	12
349	Assessment of the time-dependent behavior of dislocation multiplication under shock loading. International Journal of Plasticity, 2022, 158, 103434.	8.8	5
350	Femtosecond diffraction and dynamic high pressure science. Journal of Applied Physics, 2022, 132, .	2.5	6
351	Dynamical Models of Plasticity with Nonmonotonic Deformation Curves for Nanomaterials. Metals, 2022, 12, 1835.	2.3	0
352	Structure of Shock Wave in Nanoscale Porous Nickel at Pressures up to 7 GPa. Materials, 2022, 15, 8501.	2.9	3
353	Theory of Shock Wave and Detonation. Shock Wave and High Pressure Phenomena, 2023, , 7-58.	0.1	0
354	Shock response of polymer composites. , 2023, , 309-336.		1
355	Experimental Investigation of Shock Waves under Steady State Conditions in a Polymerized Epoxy Resin. High Temperature, 2022, 60, 854-859.	1.0	0
356	Evidence for a rosiaite-structured high-pressure silica phase and its relation to lamellar amorphization in quartz. Nature Communications, 2023, 14, .	12.8	5
357	Mesoscale shock structure in particulate composites. Journal of the Mechanics and Physics of Solids, 2023, 174, 105239.	4.8	2
358	Strain-Rate Dependence of Plasticity and Phase Transition in [001]-Oriented Single-Crystal Iron. Crystals, 2023, 13, 250.	2.2	3
359	Ultrafast measurement of laser-induced shock waves. Photoacoustics, 2023, 30, 100465.	7.8	2

IF ARTICLE CITATIONS # How plane are plane shock waves in solids. AIP Advances, 2023, 13, . 360 1.3 1 Localized shear as a quasi-plastic mechanism of momentum transfer in liquids. Letters on Materials, 2023, 13, 93-97. Scaling Law for the Onset of Solidification at Extreme Undercooling. Physical Review Letters, 2023, 362 7.8 0 131,. Deformation and Failure of Ductile and Brittle Solids in Extreme Dynamic Environments., 2023,,. The Effect of Viscous Drag on the Maximum Residual Stresses Achievable in High-Yield-Strength 364 2.9 0 Materials in Laser Shock Processing. Materials, 2023, 16, 6858. Finite element modeling of steady plastic shockwaves in porous metals: Role of size, shape, and spatial distribution of voids. International Journal of Impact Engineering, 2024, 184, 104817. 5.0 Empirical scaling of formation fracturing by high-energy impulsive mechanical loads. International 366 5.8 3 Journal of Rock Mechanics and Minings Sciences, 2024, 173, 105613. Effect of porosity on rapid dynamic compaction of nickel nanopowder. Physical Chemistry Chemical 2.8 Physics, Ó, , . Dislocation storage-release-recovery model for metals under strain rates from 10â^{-,}3 to 107 sâ^{-,1}1, and 368 2.5 0 application to tantalum. Journal of Ápplied Physics, 2024, 135, . Impact response of physical analog of Martian regolith. International Journal of Impact Engineering, 2024, 188, 104949.

CITATION REPORT