Pressure dependence of shallow bound states in galliun

Solid State Communications 53, 1069-1076 DOI: 10.1016/0038-1098(85)90882-8

Citation Report

#	Article	IF	CITATIONS
1	The use of hydrostatic pressure and alloying to introduce deep levels in the forbidden gap of InSb, GaAs, and Ga1â^'xAlxAs. , 1985, , 591-603.		5
2	Zone folding, morphogenesis of charge densities, and the role of periodicity in GaAs-AlxGa1â^'xAs (001) superlattices. Physical Review B, 1986, 34, 2416-2427.	3.2	109
3	High pressure dependence of the electronic properties of bound states in n-type GaAs. Solid State Communications, 1986, 58, 289-293.	1.9	38
4	Magneto-optical studies of n-GaAs under high hydrostatic pressure. Semiconductor Science and Technology, 1986, 1, 264-274.	2.0	63
5	High-pressure study of photoluminescence in indium phosphide at low temperature. Physical Review B, 1986, 33, 5896-5898.	3.2	43
6	Band-structure determination of GaAs from hot-electron luminescence. Physical Review B, 1986, 33, 2953-2956.	3.2	57
7	Hall effect measurement in the diamond anvil highâ€pressure cell. Review of Scientific Instruments, 1986, 57, 2795-2797.	1.3	30
8	Model calculation of nitrogen properties in III-IV compounds. Physical Review B, 1986, 33, 2701-2712.	3.2	35
9	Pressure effect on the luminescence from the deep level in gallium arsenide. Physical Review B, 1986, 33, 5965-5968.	3.2	9
10	Effect of hydrostatic pressure and alloy composition on sulfur- and selenium-related impurity states in heavily dopedn-typeGaxIn1â^xSb. Physical Review B, 1986, 34, 2638-2648.	3.2	6
11	Time decays of donor-bound excitons in GaAs under pressure-inducedΓ-Xcrossover. Physical Review B, 1986, 33, 8373-8378.	3.2	22
12	Probe pressure effect on tunneling current through a GaAsâ€(Al,Ga)Asâ€GaAs heterojunction barrier. Applied Physics Letters, 1986, 49, 1453-1455.	3.3	6
13	Evidence of isovalent impurities in GaAs grown by molecularâ€beam epitaxy. Journal of Applied Physics, 1986, 59, 2996-2998.	2.5	9
14	High-pressure studies of GaAs-Ga1â^'xAlxAs quantum wells of widths 26 to 150 AÌŠ. Physical Review B, 1986, 33, 8416-8423.	3.2	171
15	Semiconductors at high pressure: New physics with the diamond-anvil cell. Contemporary Physics, 1987, 28, 523-546.	1.8	20
16	Photoluminescence Study of GaAs Grown Directly on Si Substrates. Japanese Journal of Applied Physics, 1987, 26, L1468-L1471.	1.5	41
17	High pressure study of GaAs-Al x Ga 1-x As multiple quantum well structure. Chinese Physics Letters, 1987, 4, 261-264.	3.3	1
18	Localization behavior of donor-related complexes in InP under hydrostatic pressure. Physical Review B, 1987, 36, 1090-1093.	3.2	1

ARTICLE IF CITATIONS # Effect of hydrostatic pressure on GaAs-Ga1â⁻xAlxAs microstructures. Physical Review B, 1987, 35, 19 3.2 64 5630-5634. Quasiparticle energies in GaAs and AlAs. Physical Review B, 1987, 35, 4170-4171. 3.2 Pressure dependence of direct and indirect optical absorption in GaAs. Physical Review B, 1987, 36, 21 3.2 153 1581-1587. Spectroscopy of Ill–Vs Under Hydrostatic Pressure. Materials Research Society Symposia Proceedings, 1987, 104, 533. Effects of alloying and hydrostatic pressure on electronic and optical properties of GaAs-Al_{x}Ga_{1-x}As superlattices and multiple-quantum-well structures. Physical Review B, 1987, 35, 23 3.2 95 1196-1222. Pressure dependence of the lowest direct absorption edge of ZnTe. Solid State Communications, 1987, 61, 275-278. Hot photoluminescence spectroscopy investigations of L-valley splitting and intervalley scattering in 25 1.9 28 uniaxially stressed gallium arsenide. Solid State Communications, 1987, 61, 799-802. Picosecond spectroscopy in III–V compounds and alloy semiconductors. Physica B: Physics of 26 Condensed Matter & C: Átomic, Molecular and Plasma Physics, Optics, 1987, 146, 286-303. Band offsets and zone-folding in GaAsî—AlAs (001) superlattices. Superlattices and Microstructures, 27 3.1 15 1987, 3, 121-126. High pressure study of GaAsî—,AlxGa1â⁻xAs quantum wells at low temperatures. Superlattices and 3.1 Microstructures, 1987, 3, 217-223. The effect of hydrostatic pressure on the 0.15 eV Cu acceptor level in GaAs. Solid State 29 1.9 5 Communications, 1988, 67, 19-21. The hydrostatic pressure dependence of the band-edge photoluminescence of GaInAs. Solid State Communications, 1988, 67, 827-830. Hydrostatic pressure effects on Mn in GaAs1â[°]xPx. Solid State Communications, 1988, 65, 1477-1482. $\mathbf{31}$ 1.9 1 Electronic structure of quantum-well states revealed under high pressures. Superlattices and Microstructures, 1988, 4, 525-535. 3.1 Indirect-direct anticrossing in GaAs-AlAs superlattices induced by an electric field: Evidence of \hat{I} "-X 33 7.8 216 mixing. Physical Review Letters, 1988, 60, 1338-1341. Long-Lived Resonance States inn-doped AlGaAs. Physical Review Letters, 1988, 60, 2410-2413. Effect of pressure and temperature on the Raman spectra of solid CO2. Journal of Chemical Physics, 35 3.071 1988, 88, 4204-4212. NN pair emission in GaAs _{0.15} P _{0.85} :N under hydrostatic pressure. Chinese 3.3 Physics Letters, 1988, 5, 353-356.

#	Article	IF	Citations
37	The use of hydrostatic pressure and alloying to introduce deep levels in the forbidden gap of InSb and GaAS. , 1988, , 61-74.		0
38	Effect of pressure on the optical absorption in GaP andGaxIn1â^'xP (x=0.36and 0.5). Physical Review B, 1989, 39, 3178-3184.	3.2	40
39	Spectroscopic investigations of CdS at high pressure. Physical Review B, 1989, 40, 1257-1264.	3.2	50
40	Phonon coupling andXâ~'Γmixing in GaAs-AlAs short-period superlattices. Physical Review B, 1989, 39, 11191-11194.	3.2	70
41	Uniaxial stress dependence of currentâ€voltage characteristics in GaAsâ€AlxGa1â^'xAsâ€GaAs heterojunction barriers. Applied Physics Letters, 1989, 55, 1336-1338.	3.3	10
42	Piezospectroscopy of GaAs-AlAs superlattices. Physical Review B, 1989, 40, 7802-7813.	3.2	46
43	Dependence on uniaxial stress of deep levels in III-V compound and group-IV elemental semiconductors. Physical Review B, 1989, 39, 7881-7894.	3.2	1
44	Pressure dependence of the valence-band discontinuity in GaAs/AlAs and GaAs/AlxGa1â^'xAs quantum-well structures. Physical Review B, 1989, 39, 5546-5549.	3.2	41
45	Evidence for the Insulator-Metal Transition in Xenon from Optical, X-Ray, and Band-Structure Studies to 170 GPa. Physical Review Letters, 1989, 62, 669-672.	7.8	131
46	Direct-band-gap absorption in germanium under pressure. Physical Review B, 1989, 39, 12921-12924.	3.2	35
47	Photoluminescence of AlInAs under hydrostatic pressure. Semiconductor Science and Technology, 1989, 4, 243-245.	2.0	5
48	Pressure dependence of the direct optical gap and refractive index of Ge and GaAs. Semiconductor Science and Technology, 1989, 4, 246-247.	2.0	26
49	Two-dimensional electrons at a GaAs-AlAs heterojunction under hydrostatic pressure. Semiconductor Science and Technology, 1989, 4, 317-321.	2.0	4
50	Fast, alloy-disorder-induced intervalley scattering in AlxGa1-xAs. Solid-State Electronics, 1989, 32, 1819-1823.	1.4	16
51	2.1.15 GaAs. , 0, , 47-55.		0
52	2.1.29 References for 2.1. , 0, , 103-112.		0
53	Photoluminescence of InGaAs/GaAs strained-layer quantum well structures under high pressure. High Pressure Research, 1990, 3, 48-50.	1.2	3
54	Grüneisen parameter of soft phonons and high pressure phase transitions in semiconductors. Journal of Physics and Chemistry of Solids, 1990, 51, 373-375.	4.0	13

#	Article	IF	CITATIONS
55	High pressure behavior of electronic states in GaAs/Ga1â^'xAlxAs multiple quantum wells. Superlattices and Microstructures, 1990, 7, 175-178.	3.1	2
56	Direct energy gaps in semiconductors: An ab initio calculation of their dependences on hydrostatic pressure. Journal of Physics and Chemistry of Solids, 1990, 51, 1111-1115.	4.0	4
57	Band-gap renormalization in direct-band-gapAlxGa1â^'xAs. Physical Review B, 1990, 42, 7274-7276.	3.2	16
58	High-pressure magneto-optical studies of two-dimensional-electron and exciton transitions in GaAs-AlxGa1â^`xAs quantum-well heterostructures. Physical Review B, 1990, 42, 9657-9663.	3.2	11
59	Strain effects in chemically lifted GaAs thin films. Physical Review B, 1990, 41, 7749-7754.	3.2	7
60	Excitons bound to nitrogen pairs in GaAs. Physical Review B, 1990, 42, 7504-7512.	3.2	70
61	Electronic structure of GaAs/AlAs symmetric superlattices: A high-pressure study near the type-I–type-II crossover. Physical Review B, 1990, 41, 3641-3646.	3.2	42
62	Donor states in GaAs under hydrostatic pressure. Physical Review B, 1990, 42, 11791-11800.	3.2	16
63	Theoretical and experimental study of the longitudinal uniaxial stress dependence oflâ€Vcharacteristics in GaAsâ€AlxGa1â^'xAsâ€GaAs heterojunction barriers. Journal of Applied Physics, 1990, 67, 6360-6367.	2.5	10
64	Nitrogen pair luminescence in GaAs. Applied Physics Letters, 1990, 56, 1451-1453.	3.3	173
65	Picosecond electron-hole droplet formation in indirect-gapAlxGa1â^'xAs. Physical Review B, 1990, 42, 7058-7064.	3.2	34
66	Continuous-wave spectroscopy of femtosecond carrier scattering in GaAs. Physical Review B, 1990, 41, 1461-1478.	3.2	106
67	Effect of pressure on the low-temperature exciton absorption in GaAs. Physical Review B, 1990, 41, 10111-10119.	3.2	117
68	Far-infrared spectroscopy of impurities in semiconductors. Applied Surface Science, 1991, 50, 65-72.	6.1	1
69	Investigation of the band structure of the strained systems InGaAs/GaAs and InGaAs/AIGaAs by high-pressure photoluminescence. Journal of Electronic Materials, 1991, 20, 509-516.	2.2	34
70	High-pressure far-infrared magneto-optical and luminescence studies of electronic states of impurity donors-D(X) centres-in high purity GaAs. Semiconductor Science and Technology, 1991, 6, 476-482.	2.0	15
71	Photoluminescence properties of AlxGa1-xAs and an investigation of a new 1.951 eV transition. Journal of Physics Condensed Matter, 1991, 3, 7179-7191.	1.8	11
72	High-pressure photoluminescence study of GaAs doped with various donor species. Semiconductor Science and Technology, 1991, 6, 514-517.	2.0	11

# 73	ARTICLE Photoluminescence at high pressures from highly strained MOVPE grown GaAs/GaSb/GaAs heterostructures. Semiconductor Science and Technology, 1991, 6, 527-534.	IF 2.0	Citations 5
74	Direct type II–indirect type I conversion of InP/GaAs/InP strained quantum wells induced by hydrostatic pressure. Applied Physics Letters, 1991, 59, 806-808.	3.3	13
75	Pressure dependence of the indirect band gap ofAlxGa1â^'xAs alloys (x=0.70 and 0.92) at low temperatures. Physical Review B, 1991, 44, 2985-2990.	3.2	28
76	Modulation spectroscopy of the complex photoluminescence band ofGa0.7Al0.3As:Si. Physical Review B, 1991, 43, 12335-12340.	3.2	2
77	High-pressure investigation of GaSb andGa1â^'xInxSb/GaSb quantum wells. Physical Review B, 1991, 43, 4994-5000.	3.2	23
78	Photoluminescence spectroscopy in GaAs/AlAs superlattices as a function of temperature and pressure: The influence of sample quality. Physical Review B, 1991, 43, 14091-14098.	3.2	17
79	Pressure tuning of strains in semiconductor heterostructures: (ZnSe epilayer)/(GaAs epilayer). Physical Review B, 1991, 44, 11307-11314.	3.2	76
80	Alloy-disorder-induced intervalley coupling. Physical Review B, 1991, 43, 12364-12373.	3.2	29
81	Pressure-induced resonance broadening of exciton line shapes in semiconductors: Direct determination of intervalley scattering rates in GaAs. Physical Review B, 1991, 44, 11339-11344.	3.2	18
82	Optical investigations of ZnSe crystals grown by the seeded vapour phase transport technique. Semiconductor Science and Technology, 1992, 7, 1407-1415.	2.0	8
83	The pressure dependence of the effective mass in a GaAs/AlGaAs heterojunction. Semiconductor Science and Technology, 1992, 7, 787-792.	2.0	14
84	InP under high pressures. Journal of Materials Research, 1992, 7, 2205-2210.	2.6	5
85	Optical properties and electronic structure of thin (Ga,In)As-AlAs multiple quantum wells and superlattices under internal and external strain fields. Physical Review B, 1992, 45, 8413-8423.	3.2	5
86	Laminated gaskets for absorption and electrical measurements in the diamond anvil cell. Review of Scientific Instruments, 1992, 63, 5760-5763.	1.3	6
87	Properties of thin strained layers of GaAs grown on InP. Physical Review B, 1992, 45, 3628-3635.	3.2	31
88	Photoluminescence studies ofInxGa1â^'xAs/GaAs strained quantum wells under hydrostatic pressure. Physical Review B, 1992, 45, 3489-3493.	3.2	12
89	Observation of strong Si/Si1â^'xGexnarrow quantumâ€well nearâ€edge luminescence under applied hydrostatic pressure. Applied Physics Letters, 1992, 61, 192-194.	3.3	17
90	Deep levels in GaAs:V. High Pressure Research, 1992, 9, 343-346.	1.2	0

#	Article	IF	CITATIONS
91	Electronic transitions in semiconductor quantum wells and epilayers under pressure. High Pressure Research, 1992, 9, 57-82.	1.2	17
92	Spectroscopy of Semiconductor Nano-Crystals at High Pressure. Materials Research Society Symposia Proceedings, 1992, 272, 251.	0.1	2
93	Confined electron states in ultrathin AlAs single quantum wells under pressure. Physical Review B, 1992, 45, 11846-11853.	3.2	16
94	Bound exciton luminescence in ZnSe under hydrostatic pressure. Applied Physics Letters, 1992, 60, 736-738.	3.3	14
95	Deep electronic levels at growth interrupted interfaces in lowâ€ŧemperatureâ€grown GaAs and the pressure dependence of these levels. Journal of Applied Physics, 1992, 71, 1807-1814.	2.5	0
96	Indirect-energy-gap dependence on Al concentration inAlxGa1â^xAs alloys. Physical Review B, 1992, 45, 10951-10957.	3.2	52
97	Pressure Dependent Donor Ionization Energies in a Quantum Well. Physica Status Solidi (B): Basic Research, 1993, 178, 167-172.	1.5	14
98	Γ-Xmixing in GaAs/AlxGa1â^'xAs coupled double quantum wells under hydrostatic pressure. Physical Review B, 1993, 47, 1991-1997.	3.2	63
99	Γâ€Xintervalley transfer in single AlAs barriers under hydrostatic pressure. Applied Physics Letters, 1993, 62, 1955-1957.	3.3	20
100	Correlation between high pressure effect and alloying in GaAs and Ga1-xAlx As. Computational Materials Science, 1993, 1, 369-372.	3.0	3
101	Excitons in indirect-gap AlxGa1-xAs. Semiconductor Science and Technology, 1993, 8, 1966-1972.	2.0	6
102	Pressure dependence of the diamagnetic susceptibility of a donor in low-dimensional semiconductor systems. Physical Review B, 1993, 48, 7986-7990.	3.2	12
103	Band offsets ofGa0.5In0.5P/GaAs single quantum wells from pressure-induced type-II transitions. Physical Review B, 1993, 47, 6465-6469.	3.2	22
104	Observation of luminescence from theEL2 metastable state in liquid-encapsulated Czochralski-grown GaAs under hydrostatic pressure. Physical Review B, 1993, 47, 1265-1269.	3.2	13
105	Influence of pressure on (001)GaAs surfaces. Physical Review B, 1993, 47, 1412-1418.	3.2	0
106	Pressure-Induced Modification of Hydrogenated Amorphous Carbon. Spectroscopy Letters, 1993, 26, 565-574.	1.0	0
107	Motion of electrons in semiconductors under inhomogeneous strain with application to laterally confined quantum wells. Physical Review B, 1994, 49, 14352-14366.	3.2	51
108	Optical detection and imaging of nonequilibrium phonons in GaAs using excitonic photoluminescence. Physical Review B, 1994, 49, 16427-16440.	3.2	4

#	Article	IF	CITATIONS
109	Effect of pressure on defect-related emission in heavily silicon-doped GaAs. Physical Review B, 1994, 50, 14706-14709.	3.2	9
110	Pressure Dependence of III-V Schottky Barriers: A Critical Test of Theories for Fermi Level Pinning. Physical Review Letters, 1994, 73, 581-584.	7.8	19
111	Photoluminescence from strained InAs monolayers in GaAs under pressure. Physical Review B, 1994, 50, 1575-1581.	3.2	49
112	Pressure dependence of photoluminescence in InxGa1 â^ xAs/AlyGa1 â^ yAs strained quantum wells with different widths. Solid-State Electronics, 1994, 37, 885-888.	1.4	8
113	Electronic states in GaAs-AlAs short-period superlattices: energy levels and symmetry. Journal of Luminescence, 1994, 59, 163-184.	3.1	34
114	Effect of the Gamma -X crossover on the binding energies of confined donors in single GaAs/AlxGa1-xAs quantum-well microstructures. Journal of Physics Condensed Matter, 1994, 6, 10025-10030.	1.8	109
115	Photoluminescence of AlxGa1â^'xAs alloys. Journal of Applied Physics, 1994, 75, 4779-4842.	2.5	475
116	Photoluminescence Studies of [(CdSe)1(ZnSe)2]9-ZnSeTe Multiple Quantum Wells Under High Pressure. Materials Research Society Symposia Proceedings, 1994, 358, 1017.	0.1	Ο
117	The alloying and pressure dependence of band gaps in GaAs and GaAsxP1â^'x. Computational Materials Science, 1994, 2, 287-292.	3.0	5
118	Zeeman splitting in the extreme quantum limit through cyclotron resonance on two-dimensional GaAs at high pressure. Journal of Physics and Chemistry of Solids, 1995, 56, 381-384.	4.0	1
119	Photoluminescence of ZnSe/Zn1 â^' xCdxSe strained superlattices under hydrostatic pressure. Thin Solid Films, 1995, 266, 307-310.	1.8	5
120	High pressure determination of AlGaInP band structure. Journal of Physics and Chemistry of Solids, 1995, 56, 349-352.	4.0	27
121	Direct measurement of band offsets in GaInP/AlGaInP using high pressure. Journal of Physics and Chemistry of Solids, 1995, 56, 423-427.	4.0	14
122	Photoluminescence study of bandâ€gap alignment of intermixed InAsP/InGaAsP superlattices. Journal of Applied Physics, 1995, 78, 1944-1947.	2.5	13
123	Pressureâ€dependent photoluminescence study of wurtzite GaN. Applied Physics Letters, 1995, 66, 3492-3494.	3.3	93
124	Impact ionization in GaAs: Distribution of final electron states determined from hydrostatic pressure measurements. Applied Physics Letters, 1995, 67, 3304-3306.	3.3	15
125	Highâ€efficiency energy upâ€conversion at GaAsâ€GaInP2 interfaces. Applied Physics Letters, 1995, 67, 2813-2815.	3.3	64
126	Phonon satellite strengths in the photoluminescence spectra of a type-II GaAs/Al0.3Ga0.7As superlattice at elevated pressures. Physical Review B, 1995, 51, 9735-9741.	3.2	7

C	E A 751	ON	REPO	DT
				ו גוו

	High-pressure photoluminescence of GaAs co-doped with Se and Ge. Semiconductor Science and Technology, 1995, 10, 672-676.	2.0	1
128	Optical study of strained and relaxed epitaxial InxGa1â°'xAs on GaAs. Journal of Applied Physics, 1995, 78, 6745-6751.	2.5	8
	Determination of the band structure of disordered AlGaInP and its influence on visible-laser characteristics. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1, 697-706.	2.9	60
	Band structure calculations of Ga1 â^' xAlxAs, GaAs1 â^' xPx and AlAs under pressure. Computational Materials Science, 1995, 3, 393-401.	3.0	11
131	Many-Body Effects in Multi-Valley Scenarios. Springer Series in Solid-state Sciences, 1996, , 41-124.	0.3	1
132	Excitons in Multi-Valley Semiconductors. Springer Series in Solid-state Sciences, 1996, , 17-40.	0.3	0
133	Intervalley Coupling. Springer Series in Solid-state Sciences, 1996, , 125-172.	0.3	0
134	Introduction to Semiconductor Band Structures. Springer Series in Solid-state Sciences, 1996, , 1-16.	0.3	0
135	Alternative Method for Determining the Shear Deformation Potential of the Valence Band in Illâ€V Semiconductor Quantum Wells. Physica Status Solidi (B): Basic Research, 1996, 198, 343-348.	1.5	1
136	Hydrostatic-pressure coefficient of the direct band-gap energy ofAlxGa1â^'xAsforx=0â^'0.35. Physical Review B, 1996, 53, 10916-10920.	3.2	9
137	Electronic structure of AlxCa1 â ^{~?} xAs and GaPxAs1 â ^{~?} x alloys modified virtual crystal approximation calculation using sp3s* band structures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 41, 304-309.	3.5	18
138	Pressure Dependence of the Electron Effective Mass in GaAs up to the 1s(Γ)-1s(X) Crossover. Physica Status Solidi (B): Basic Research, 1996, 198, 41-47.	1.5	5
139	Determination of the Linear Pressure Coefficients of Semiconductor Bandgaps. Physica Status Solidi (B): Basic Research, 1996, 198, 57-60.	1.5	13
	Cryogenic Pressure and Lifetime Studies of a Defect Related Emission in Heavily Silicon Doped GaAs. Physica Status Solidi (B): Basic Research, 1996, 198, 199-203.	1.5	4
	Plasmon Raman scattering and photoluminescence of heavily dopedn-type InP near the Γ-X crossover. Physical Review B, 1996, 53, 1287-1293.	3.2	41
142	Electroluminescence spectroscopy of intervalley scattering and hot-hole transport in a GaAs/AlxGa1â^'xAs tunneling structure. Physical Review B, 1996, 54, 4472-4475.	3.2	4
143	Ordering along ã€^111〉 and ã€^100〉 directions in GaInP demonstrated by photoluminescence under hyd pressure. Applied Physics Letters, 1996, 68, 1711-1713.	rostatic 3.3	9
144	Analytic solutions for the valence subband mixing at the zone center of a GaAs/AlxGa1â^'xAs quantum well under uniaxial stress perpendicular to the growth direction. Physical Review B, 1996, 54, 5700-5711.	3.2	13

#	Article	IF	Citations
145	Lifetime studies of self-activated photoluminescence in heavily silicon-doped GaAs. Physical Review B, 1996, 53, 1900-1906.	3.2	27
146	Photoluminescence of GaInP under high pressure. Journal of Applied Physics, 1996, 79, 7177-7182.	2.5	6
147	Determination of intervalley scattering times in GaAs from electroluminescence spectroscopy of single barrier tunneling devices. Applied Physics Letters, 1997, 70, 622-624.	3.3	4
148	Er-related trap levels in GaAs:Er,O studied by optical spectroscopy under hydrostatic pressure. Physical Review B, 1997, 56, 10255-10263.	3.2	11
149	Pressure-induced shallow donor transformations in gallium arsenide. Physical Review B, 1997, 55, 10515-10518.	3.2	11
150	Optical studies of GaAs quantum wells strained to GaP. Applied Physics Letters, 1997, 70, 3449-3451.	3.3	17
151	Photoluminescence characterization of biaxial tensile strained GaAs. Journal of Applied Physics, 1997, 82, 5103-5106.	2.5	12
152	High Pressure Study of III-Nitrides and Related Heterostructures. Materials Research Society Symposia Proceedings, 1997, 499, 361.	0.1	1
153	Photoluminescence studies of erbium-doped GaAs under hydrostatic pressure. Journal of Applied Physics, 1997, 82, 368-374.	2.5	18
154	Pressure and strain sensors based on intervalley electron transfer in AlGaAs. Applied Physics Letters, 1997, 70, 3437-3439.	3.3	2
155	Photoluminescence spectroscopy of crystalline semiconductors. Materials Science and Engineering Reports, 1997, 18, 99-399.	31.8	81
156	Reflectance and photomodulated reflectance studies of an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser structure under hydrostatic pressure. Solid State Communications, 1998, 107, 97-100.	1.9	6
157	Pressure dependence of the band-gap energy and the conduction-band mass for an n-type InGaAs/GaAs strained single-quantum well. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 146-150.	2.7	3
158	Optical properties of thin layers of GaAs strained to InP. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 794-798.	2.7	3
159	Pressure dependence of the direct band gap in tetrahedral semiconductors. Physical Review B, 1998, 58, 12579-12582.	3.2	32
160	Effect of interfacial states on the binding energies of electrons and holes in InAs/GaAs quantum dots. Physical Review B, 1998, 58, 6724-6727.	3.2	34
161	Observation of direct and phonon-assisted indirect transitions inGaAs/GaxAl1â^'xAsmultiquantum wells under hydrostatic pressure. Physical Review B, 1998, 57, 6566-6572.	3.2	13
162	Chapter 4 Optical Properties of Semiconductors under Pressure. Semiconductors and Semimetals, 1998, 54, 247-425.	0.7	62

	CITATION RE	PORT	
#	Article	IF	Citations
163	Semiconductor Optoelectronic Devices. Semiconductors and Semimetals, 1998, 55, 301-352.	0.7	42
164	Energy levels in self-assembled InAs/GaAs quantum dots above the pressure-inducedΓâ^'Xcrossover. Physical Review B, 1998, 58, R4250-R4253.	3.2	66
165	Quantum-Size Effects on the Pressure-Induced Direct-to-Indirect Band-Gap Transition in InP Quantum Dots. Physical Review Letters, 1998, 80, 5397-5400.	7.8	39
166	Photoluminescence studies of ã€^100〉 and ã€^111〉InxGa1â^'xAs/GaAssingle quantum wells under hydro pressure. Physical Review B, 1999, 59, 5056-5063.	static 3.2	9
167	Stress Effects on Optical Properties. Semiconductors and Semimetals, 1999, , 209-274.	0.7	18
168	Excited states and selection rules in self-assembled InAs/GaAs quantum dots. Physical Review B, 1999, 60, R2185-R2188.	3.2	60
169	Structural transformations and metastability in semiconductor nanocrystals. Phase Transitions, 1999, 68, 1-25.	1.3	17
170	Dynamics of Gamma-X charge transfer in a double-barrier structure in the presence of pressure-induced Gamma-X mixing. Semiconductor Science and Technology, 1999, 14, 1102-1106.	2.0	0
171	Electronic structure of InAs–GaAs self-assembled quantum dots studied by perturbation spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 348-357.	2.7	8
172	High density photoluminescence induced by laser pulse excitation in InSe under pressure. High Pressure Research, 2000, 18, 81-87.	1.2	4
173	Theory of the anomalously low band-gap pressure coefficients in strained-layer semiconductor alloys. Physical Review B, 2000, 62, 13612-13616.	3.2	36
174	Three-Dimensional Confinement in the Conduction Band Structure of InP. Physical Review Letters, 2000, 84, 4168-4171.	7.8	20
175	All-electron projector-augmented-waveGWapproximation: Application to the electronic properties of semiconductors. Physical Review B, 2000, 62, 4464-4476.	3.2	90
176	Local-field and excitonic effects in the calculated optical properties of semiconductors from first-principles. Physical Review B, 2001, 63, .	3.2	75
177	Type I-Type II Transition of Self-Assembled In0.55Al0.45As/Al0.5Ga0.5As Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 223, 157-162.	1.5	2
178	High Pressure as a Tool to Study Electron Localization. Physica Status Solidi (B): Basic Research, 2001, 223, 555-559.	1.5	1
179	One-dimensional ballistic conductors under high pressure. , 0, , .		0
180	Tuning the electron transport properties of a one-dimensional constriction using hydrostatic pressure. Physical Review B, 2002, 65, .	3.2	13

# 181	ARTICLE Electronic states in GaAs-AlAs short-period superlattices. , 2002, , 99-139.	IF	Citations 0
182	Unusual properties of the fundamental band gap of InN. Applied Physics Letters, 2002, 80, 3967-3969.	3.3	1,380
183	Simultaneous effects of hydrostatic stress and an electric field on donors in a GaAs-(Ga, Al)As quantum well. Journal of Physics Condensed Matter, 2002, 14, 987-995.	1.8	61
184	Effects of electric field and hydrostatic pressure on donor binding energies in a spherical quantum dot. Solid State Communications, 2003, 126, 681-685.	1.9	99
185	Accurate determination of (AlxGa1x)0.5In0.5P alloy pressure coefficients. Physica Status Solidi (B): Basic Research, 2003, 235, 505-508.	1.5	0
186	Effects of hydrostatic stress on the density of impurity states and donor-related optical absorption spectra in GaAs-(Ga,Al)As quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 648-651.	0.8	25
187	Donor-related density of states and polarizability in a GaAs-(Ga, Al)As quantum-well under hydrostatic pressure and applied electric field. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 652-656.	0.8	43
188	Implementation of an all-electron GW approximation based on the projector augmented wave method without plasmon pole approximation: Application to Si, SiC, AlAs, InAs, NaH, and KH. Physical Review B, 2003, 67, .	3.2	199
189	Optical Studies of Non-Metallic Compounds under Pressure. Fundamental Theories of Physics, 2003, 33, 515-589.	0.3	27
190	Binding energy and density of shallow impurity states in GaAs–(Ga, Al)As quantum wells: effects of an applied hydrostatic stress. Semiconductor Science and Technology, 2003, 18, 718-722.	2.0	28
191	Pressure dependence of donor excitation spectra in AlSb. Physical Review B, 2003, 67, .	3.2	4
192	Photoluminescence of doped ZnS nanoparticles under hydrostatic pressure. Physica Status Solidi (B): Basic Research, 2004, 241, 3248-3256.	1.5	16
193	Pressure-dependent photoluminescence study of CuGaSe2. Physica Status Solidi (B): Basic Research, 2004, 241, 3117-3122.	1.5	4
194	Determination of ordering effects on GalnP pressure coefficients. Physica Status Solidi (B): Basic Research, 2004, 241, 3123-3127.	1.5	0
195	Temperature and pressure behavior of the emission bands from Mn-, Cu-, and Eu-doped ZnS nanocrystals. Journal of Applied Physics, 2004, 95, 3344-3349.	2.5	21
196	EFFECT OF Γ-X CROSSOVER ON THE DONOR BINDING ENERGY IN A QUANTUM WELL. International Journal of Modern Physics B, 2005, 19, 3861-3868.	2.0	10
197	Carrier recombination in 1.3μm GaAsSbâ^•GaAs quantum well lasers. Applied Physics Letters, 2006, 89, 173509.	3.3	21
198	Photoreflectance spectroscopy of semiconductor structures at hydrostatic pressure: A comparison of GalnAs/GaAs and GalnNAs/GaAs single quantum wells. Applied Surface Science, 2006, 253, 80-84.	6.1	26

		CITATION RE	PORT	
#	Article		IF	Citations
199	Dresselhaus spin-orbit coupling in a symmetric (100) GaAs quantum well. Physical Review	v B, 2006, 74, .	3.2	17
200	Photoluminescence study of ZnO nanotubes under hydrostatic pressure. Applied Physics 88, 133127.	Letters, 2006,	3.3	34
201	Ab initiostudy ofî"â^'Xintervalley scattering in GaAs under pressure. Physical Review B, 20)06, 74, .	3.2	28
202	Acceptorlike behavior of nitrogen deep traps inGaAs:N. Physical Review B, 2006, 73, .		3.2	1
203	THE ELECTRONIC BAND STRUCTURE OF GaN, GaAs AND InxGa1-xAs1-yNy ALLOYS. Interr Modern Physics B, 2007, 21, 4357-4375.	ational Journal of	2.0	2
204	Stress effects on the binding energy of shallow-donor impurities in symmetrical GaAs/AlC quantum-well wires. Journal of Physics Condensed Matter, 2007, 19, 346218.	aAs double	1.8	19
205	The influence of compressive stress on shallow-donor impurity states in symmetric GaAs- double quantum dots. Journal of Applied Physics, 2007, 101, 073703.	Galâ^'xAlxAs	2.5	23
206	Hydrostatic-pressure effects on the donor binding energy in GaAs–(Ga, Al)As quantum of Physics Condensed Matter, 2007, 19, 026225.	dots. Journal	1.8	48
207	Simultaneous effects of pressure and magnetic field on donors in a parabolic quantum d State Communications, 2008, 147, 296-300.	ot. Solid	1.9	25
209	Transformation of GaAs into an indirect <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>L</mml:mi>-band-gap semiconductor under unia Physical Review B. 2009. 80</mml:math 	axial strain.	3.2	17
210	Hydrostatic pressure, electric and magnetic field effects on shallow donor impurity state photoionization cross section in cylindrical GaAs–Ga _{1–<i>x</i>} Al <i><s (b):="" 2009,="" 246,="" 626-629.<="" basic="" dots.="" physica="" quantum="" research,="" solidi="" status="" td=""><td>s and ub>x</td></s></i> As	s and ub>x	1.5	44
211	Estimation of the location of embedded InGaAs/GaAs quantum dots by measuring strain- blueshift of photoluminescence. Physica E: Low-Dimensional Systems and Nanostructure 2441-2445.		2.7	1
212	Excitons in cylindrical GaAs Pöschl–Teller quantum dots: Hydrostatic pressure and ter effects. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 338-344.	nperature	2.7	31
213	Shallow-donor impurity in coupled GaAs/Ga1â^'xAlxAs quantum well wires: hydrostatic p applied electric field effects. Physica Status Solidi (B): Basic Research, 2010, 247, 1778-1		1.5	5
214	Simultaneous effects of hydrostatic pressure and electric field on impurity binding energ polarizability in coupled InAs/GaAs quantum wires. Physica B: Condensed Matter, 2011, 4		2.7	11
215	Hydrostatic pressure and electric-field effects on the electronic and optical properties of spherical layer quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2 232-235.	InAs 012, 46,	2.7	18
216	Universal behavior of photoluminescence in GaN-based quantum wells under hydrostatic governed by built-in electric field. Journal of Applied Physics, 2012, 112, 053509.	pressure	2.5	15
217	Speeding up the solution of the Bethe-Salpeter equation by a double-grid method and W interpolation. Physical Review B, 2012, 86, .	lannier	3.2	42

#	Article	IF	CITATIONS
218	Lattice dynamics properties of XAs (X=Al, Ga and In) with zinc-blende structure from first-principle calculations. Journal of Physics and Chemistry of Solids, 2012, 73, 1034-1039.	4.0	2
219	Magnetic field-induced direct–indirect crossover in Al <i>_x</i> Ga _{1â^'} <i>_x</i> As. Applied Physics Express, 2014, 7, 111201.	2.4	1
220	The combined effect of pressure and temperature on the impurity binding energy in a cubic quantum dot using the FEM simulation. Superlattices and Microstructures, 2014, 69, 38-52.	3.1	63
221	Bandgap Engineering in Wurtzite GaAs Nanowires by Hydrostatic Pressure. Chinese Physics Letters, 2015, 32, 077803.	3.3	0
222	Effect of geometry on the pressure induced donor binding energy in semiconductor nanostructures. International Journal of Computational Materials Science and Engineering, 2015, 04, 1550018.	0.7	0
223	Hydrostatic pressure and temperature effects on the binding energy and optical absorption of a multilayered quantum dot with a parabolic confinement. Chinese Physics B, 2016, 25, 127302.	1.4	21
224	The effects of polaronic mass and conduction band non-parabolicity on a donor binding energy under the simultaneous effect of pressure and temperature basing on the numerical FEM in a spherical quantum dot. Superlattices and Microstructures, 2017, 104, 93-103.	3.1	29
225	An investigation on the effect of impurity position on the binding energy of quantum box under electric field with pressure and temperature. International Journal of Modern Physics B, 2018, 32, 1850154.	2.0	4
226	Effect of hydrostatic pressure on the electron-phonon scattering in GaAs. Journal of Applied Physics, 2019, 126, .	2.5	2
227	Spontaneous emission of color centers at 4eV in hexagonal boron nitride under hydrostatic pressure. Superlattices and Microstructures, 2019, 131, 1-7.	3.1	7
228	Tailoring Optical Properties of Luminescent Semiconducting Nanocrystals through Hydrostatic, Anisotropic Static, and Dynamic Pressures. Angewandte Chemie - International Edition, 2021, 60, 9772-9788.	13.8	11
229	Tailoring Optical Properties of Luminescent Semiconducting Nanocrystals through Hydrostatic, Anisotropic Static, and Dynamic Pressures. Angewandte Chemie, 2021, 133, 9856-9872.	2.0	0
230	High Pressure Properties of Some Laser Materials. , 1987, , 431-449.		1
231	High Pressure Techniques for Research in Semiconductors: A Review. NATO ASI Series Series B: Physics, 1987, , 281-297.	0.2	1
232	Bulk Optical Absorption. Springer Series in Solid-state Sciences, 2013, , 43-88.	0.3	10
233	Nature of the localized phase in a two-dimensional electron system. Springer Proceedings in Physics, 2001, , 857-858.	0.2	0
234	Far-Infrared Spectroscopy of Quasi-2D Impurity States in Semiconductor Nanostructures Under High Hydrostatic Pressure. , 2001, , 303-319.		0
235	Effects of Perturbations. Springer Series in Solid-state Sciences, 2009, , 347-429.	0.3	0

#	Article	IF	Citations
236	PICOSECOND SPECTROSCOPY IN III–V COMPOUNDS AND ALLOY SEMICONDUCTORS. , 1987, , 286-303.		0
237	High Pressure Transport Experiments in 3 Dimensional Systems. NATO ASI Series Series B: Physics, 1987, , 299-312.	0.2	0
238	Photoluminescence of Strained-Layer Quantum Well Structures Under High Hydrostatic Pressure. NATO ASI Series Series B: Physics, 1991, , 295-315.	0.2	0
239	High Pressure Studies of Impurities in Semiconductors. NATO ASI Series Series B: Physics, 1991, , 339-349.	0.2	0
242	Unbound Excitonic Properties in a Multilayered Quantum Dot under Hydrostatic Pressure and Temperature. Defect and Diffusion Forum, 0, 428, 105-115.	0.4	0