Cardiac output and end-tidal carbon dioxide

Critical Care Medicine 13, 907-909 DOI: 10.1097/00003246-198511000-00011

Citation Report

#	Article	IF	CITATIONS
1	Noninvasive monitoring in emergency resuscitation. Annals of Emergency Medicine, 1986, 15, 1434-1436.	0.3	9
2	End-Tidal Carbon Dioxide Monitoring During Cardiopulmonary Resuscitation. JAMA - Journal of the American Medical Association, 1987, 257, 512.	3.8	224
3	Selective venous hypercarbia during human CPR: Implications regarding blood flow. Annals of Emergency Medicine, 1987, 16, 527-530.	0.3	31
4	Expired carbon dioxide: a noninvasive monitor of cardiopulmonary resuscitation Circulation, 1988, 77, 234-239.	1.6	307
5	End-Tidal Carbon Dioxide Concentration during Cardiopulmonary Resuscitation. New England Journal of Medicine, 1988, 318, 607-611.	13.9	440
6	Effects of Tromethamine and Sodium Bicarbonate Buffers During Cardiac Resuscitation. Journal of Clinical Pharmacology, 1988, 28, 594-599.	1.0	43
7	Noninvasive Carbon Dioxide Monitoring. Critical Care Clinics, 1988, 4, 511-526.	1.0	35
8	Carbon Dioxide Monitoring. Anaesthesia and Intensive Care, 1988, 16, 41-44.	0.2	28
9	Exhaled Gas Analysis: Technical and Clinical Aspects of Capnography and Oxygen Consumption. Critical Care Nursing Clinics of North America, 1989, 1, 669-679.	0.4	5
10	Myocardial acidosis associated with CO2 production during cardiac arrest and resuscitation Circulation, 1989, 80, 684-692.	1.6	124
11	End-Tidal Carbon Dioxide Monitoring During Cardiopulmonary Resuscitation. JAMA - Journal of the American Medical Association, 1989, 262, 1347.	3.8	224
12	Acidosis In Cardiopulmonary Arrest. Journal of Intensive Care Medicine, 1989, 4, 240-242.	1.3	0
13	Mechanism of Blood Flow Generated by Precordial Compression during CPR. Chest, 1989, 95, 1092-1099.	0.4	74
14	Hypercarbic arterial acidemia following resuscitation from severe hemorrhagic shock. Resuscitation, 1989, 17, 55-61.	1.3	91
15	The effect of applied chest compression force on systemic arterial pressure and endtidal carbon dioxide concentration during CPR in human beings. Annals of Emergency Medicine, 1989, 18, 732-737.	0.3	114
16	Capnometry in emergency medicine. Annals of Emergency Medicine, 1989, 18, 1287-1290.	0.3	71
17	Dose-dependent vasopressor response to epinephrine during CPR in human beings. Annals of Emergency Medicine, 1989, 18, 920-926.	0.3	144
18	Capnographic waveforms in esophageal intubation: Effect of carbonated beverages. Annals of Emergency Medicine, 1989, 18, 387-390.	0.3	40

TATION REDO

#	Article	IF	CITATIONS
19	A comparison of interposed abdominal compression CPR and standard CPR by monitoring end-tidal PCO2. Annals of Emergency Medicine, 1989, 18, 831-837.	0.3	77
20	Changes in expired end-tidal carbon dioxide during cardiopulmonary resuscitation in dogs: A prognostic guide for resuscitation efforts. Journal of the American College of Cardiology, 1989, 13, 1184-1189.	1.2	101
21	Hemodynamic effects of the intra-aortic balloon pump during experimental cardiac arrest. American Journal of Emergency Medicine, 1989, 7, 378-383.	0.7	18
22	Exacerbation of hypercapnia and acidosis of central venous blood and tissue following administration of sodium bicarbonate during cardiopulmonary resuscitation Japanese Circulation Journal, 1989, 53, 298-306.	1.0	7
23	Relationship between cardiac output and the end-trial carbon dioxide tension. Annals of Emergency Medicine, 1990, 19, 1104-1106.	0.3	147
24	End-tidal CO2 measurement in the detection of esophageal intubation during cardiac arrest. Annals of Emergency Medicine, 1990, 19, 857-860.	0.3	47
25	Dye circulation times during cardiac arrest. Resuscitation, 1990, 19, 53-60.	1.3	2
26	Measurement of end-tidal carbon dioxide concentration during cardiopulmonary resuscitation Emergency Medicine Journal, 1990, 7, 129-134.	0.4	43
27	End-Tidal Pco2 During Cardiopulmonary Resuscitation. JAMA - Journal of the American Medical Association, 1990, 263, 814.	3.8	5
28	Echocardiographic Assessment of Mitral Valve Function During Mechanical Cardiopulmonary Resuscitation in Pigs. Anesthesia and Analgesia, 1990, 70, 350???356.	1.1	29
29	Capnography in the Intensive Care Unit. Journal of Intensive Care Medicine, 1990, 5, 209-223.	1.3	5
30	End-tidal CO2 pressure in the monitoring of cardiac output during canine hemorrhagic shock. Journal of Critical Care, 1990, 5, 42-46.	1.0	11
31	The clinical rationale of cardiac resuscitation. Disease-a-Month, 1990, 36, 426-468.	0.4	7
32	The Art and Science of Mechanical Ventilator Adjustments. Critical Care Nursing Clinics of North America, 1991, 3, 575-583.	0.4	0
33	End-tidal carbon dioxide tension as a monitor of native blood flow during resuscitation by extracorporeal circulation. Journal of Thoracic and Cardiovascular Surgery, 1991, 101, 984-988.	0.4	23
34	Can Changes in End-Tidal Pco2 Measure Changes in Cardiac Output?. Anesthesia and Analgesia, 1991, 73, 808???814.	1.1	135
35	Sensitivity of a disposable end-tidal carbon dioxide detector. Journal of Clinical Monitoring and Computing, 1991, 7, 268-270.	0.6	10
36	Clinical utility of a colorimetric end-tidal CO2 detector in cardiopulmonary resuscitation and emergency intubation. Journal of Clinical Monitoring and Computing, 1991, 7, 289-293.	0.6	61

#	Article	IF	CITATIONS
37	Pulmonary ventilation/perfusion defects induced by epinephrine during cardiopulmonary resuscitation Circulation, 1991, 84, 2101-2107.	1.6	134
38	Buffer Solutions May Compromise Cardiac Resuscitation by Reducing Coronary Perfusion Pressure. JAMA - Journal of the American Medical Association, 1991, 266, 2121.	3.8	116
39	A Study of Chest Compression Rates During Cardiopulmonary Resuscitation in Humans. Archives of Internal Medicine, 1992, 152, 145.	4.3	144
40	Active Compression-Decompression. JAMA - Journal of the American Medical Association, 1992, 267, 2916.	3.8	174
41	Extracorporeal Circulation as an Alternative to Open-Chest Cardiac Compression for Cardiac Resuscitation. Chest, 1992, 102, 1846-1852.	0.4	15
42	Multicenter study of a portable, hand-size, colorimetric end-tidal carbon dioxide detection device. Annals of Emergency Medicine, 1992, 21, 518-523.	0.3	155
43	Arterial blood gases during cardiac arrest: markers of blood flow in a canine model. Resuscitation, 1992, 23, 101-111.	1.3	18
44	Capnometry and anaesthesia. Canadian Journal of Anaesthesia, 1992, 39, 617-632.	0.7	209
45	Correlation of end-tidal CO2 to cerebral perfusion during CPR. Annals of Emergency Medicine, 1992, 21, 1131-1134.	0.3	62
46	Continuous cardiac output monitoring by the Fick method. Catheterization and Cardiovascular Diagnosis, 1993, 28, 89-92.	0.7	4
47	End-tidal CO2 and plasma lactate level: a comparison of their use as parameters for evaluating successful CPR. Resuscitation, 1993, 26, 133-139.	1.3	8
48	Hemodynamic monitoring during CPR. Annals of Emergency Medicine, 1993, 22, 289-295.	0.3	48
49	A comparison of chest compressions between mechanical and manual CPR by monitoring end-tidal Pco2 during human cardiac arrest. Annals of Emergency Medicine, 1993, 22, 669-674.	0.3	105
50	Practical CO2 monitoring in anaesthesia. Canadian Journal of Anaesthesia, 1993, 40, R40-R49.	0.7	11
51	Physiology of blood flow during cardiopulmonary resuscitation. A transesophageal echocardiographic study Circulation, 1993, 88, 534-542.	1.6	83
52	Arteriovenous Differences in P _{CO₂} and pH are Good Indicators of Critical Hypoperfusion. The American Review of Respiratory Disease, 1993, 148, 867-871.	2.9	156
53	Arterial and Cerebral Venous Blood Gases Differ in Acute Tension Pneumothorax. Journal of Maternal-Fetal and Neonatal Medicine, 1993, 2, 63-69.	0.7	0
54	Factors Affecting Outcome following Cardiopulmonary Resuscitation. Anaesthesia and Intensive Care, 1994, 22, 647-658.	0.2	33

#	Article	IF	CITATIONS
55	Cardiopulmonary resuscitation by precordial compression but without mechanical ventilation American Journal of Respiratory and Critical Care Medicine, 1994, 150, 1709-1713.	2.5	95
56	Effect of ventilation on resuscitation in an animal model of cardiac arrest Circulation, 1994, 90, 3063-3069.	1.6	92
57	Lack of uniform definitions and reporting in laboratory models of cardiac arrest: A review of the literature and a proposal for guidelines. Annals of Emergency Medicine, 1994, 23, 9-16.	0.3	21
58	End-tidal carbon dioxide during extremely low cardiac output. Annals of Emergency Medicine, 1994, 23, 568-572.	0.3	94
59	ETCO2 monitoring during low flow states: clinical aims and limits. Resuscitation, 1994, 27, 1-8.	1.3	37
60	Arteriovenous differences in PCO2 and cardiac output during CPR in the dog. Resuscitation, 1994, 27, 255-259.	1.3	13
61	Alveolar dead space ventilation during bilateral lung transplantation determined by the arterial to end-tidal CO2 tension difference. Acta Chirurgica Austriaca, 1994, 26, 47-50.	0.2	2
62	Inâ€vitro Comparison of Bagâ€Valveâ€Mask and the Manually Triggered Oxygenâ€powered Breathing Device. Academic Emergency Medicine, 1994, 1, 29-33.	0.8	23
63	Practical uses of end-tidal carbon dioxide monitoring in the emergency department. Journal of Emergency Medicine, 1994, 12, 633-644.	0.3	33
64	Effect of epinephrine on end-tidal carbon dioxide pressure during prehospital cardiopulmonary resuscitation. American Journal of Emergency Medicine, 1994, 12, 267-270.	0.7	66
65	Response of end-tidal CO/sub 2/ to atrial and ventricular paced tachycardias in a canine model: basis for an automatic physiologically responsive external defibrillator. , 0, , .		0
66	Predictors of Outcome From Critical Illness: Shock and Cardiopulmonary Resuscitation. Critical Care Clinics, 1994, 10, 179-195.	1.0	37
67	Detection of Tissue Hypoxia by Arteriovenous Gradient for PCO2 and pH in Anesthetized Dogs During Progressive Hemorrhage. Anesthesia and Analgesia, 1995, 80, 269-275.	1.1	49
68	Compression Rates in Cardiopulmonary Resuscitation: How Fast Is Fast Enough?. Academic Emergency Medicine, 1995, 2, 673-674.	0.8	4
69	Chest Compression and Ventilation Rates during Cardiopulmonary Resuscitation: The Effects of Audible Tone Guidance. Academic Emergency Medicine, 1995, 2, 708-713.	0.8	166
70	Do changes in carhiac output affect the inspiratory to endâ€ŧidal oxygen dfference?. Acta Anaesthesiologica Scandinavica, 1995, 39, 1075-1079.	0.7	2
71	Non-invasive continuous haemodynamic andPetCO2 monitoring during peroperative cardiac arrest. Canadian Journal of Anaesthesia, 1995, 42, 910-913.	0.7	27
72	Use of End-Tidal Carbon Dioxide to Predict Outcome in Prehospital Cardiac Arrest. Annals of Emergency Medicine, 1995, 25, 762-767.	0.3	123

#	Article	IF	CITATIONS
73	Capnography for Adults. Critical Care Clinics, 1995, 11, 219-232.	1.0	28
74	Detection of Tissue Hypoxia by Arteriovenous Gradient for PCO2 and pH in Anesthetized Dogs During Progressive Hemorrhage. Anesthesia and Analgesia, 1995, 80, 269-275.	1.1	80
75	Active decompression improves the haemodynamic state during cardiopulmonary resuscitation Heart, 1995, 73, 372-376.	1.2	38
76	Comparison of pediatric end-tidal CO2 measured with nasal/oral cannula circuit and capillary Pco2. American Journal of Emergency Medicine, 1995, 13, 30-33.	0.7	21
77	End-tidal CO2 levels are a reliable indicator of band tightness in pulmonary artery banding. Annals of Thoracic Surgery, 1995, 60, S523-S524.	0.7	5
78	CARDIAC ARREST. Emergency Medicine Clinics of North America, 1996, 14, 57-81.	0.5	2
79	End-tidal carbon dioxide during preclinical CPR: Correlation with primary outcome. American Journal of Emergency Medicine, 1996, 14, 109-111.	0.7	6
80	ST segment elevations without myocardial infarction in a patient on clozapine. American Journal of Emergency Medicine, 1996, 14, 111-112.	0.7	18
81	End-Tidal carbon dioxide changes during cardiopulmonary resuscitation after experimental asphyxial cardiac arrest. American Journal of Emergency Medicine, 1996, 14, 349-350.	0.7	86
82	Efficacy of tracheal gas insufflation in acute respiratory distress syndrome with permissive hypercapnia American Journal of Respiratory and Critical Care Medicine, 1996, 154, 612-616.	2.5	37
83	Relationship between Arterial and End-Tidal Carbon Dioxide Pressure during Controlled Ventilation in Porcine Neonates Experimental Animals, 1996, 45, 195-198.	0.7	4
84	Effects of various degrees of compression and active decompression on haemodynamics, end-tidal CO2, and ventilation during cardiopulmonary resuscitation of pigs. Resuscitation, 1996, 31, 45-57.	1.3	53
85	A comparison of prolonged manual and mechanical external chest compression after cardiac arrest in dogs. Resuscitation, 1996, 32, 241-250.	1.3	14
87	Firm myocardium in cardiopulmonary resuscitation. Resuscitation, 1996, 33, 101-106.	1.3	51
88	Doppler measurement of cardiac output during cardiopulmonary resuscitation Emergency Medicine Journal, 1996, 13, 379-382.	0.4	8
89	End-Tidal Carbon Dioxide and Outcome of Out-of-Hospital Cardiac Arrest. New England Journal of Medicine, 1997, 337, 301-306.	13.9	398
90	Capnography in Critical Care Medicine. Journal of Intensive Care Medicine, 1997, 12, 18-32.	1.3	0
91	The inspiratory to end-tidal oxygen difference during exercise. Journal of Clinical Monitoring and Computing, 1997, 14, 217-223.	0.3	1

#	Article	IF	CITATIONS
92	Prehospital point of care testing of blood gases and electrolytes - an evaluation of IRMA. Critical Care, 1997, 1, 79.	2.5	21
93	Physiologic response of end-tidal carbon dioxide concentration to paced and induced tachycardias in human beings: Basis for design of an automatic external physiologic defibrillator. American Heart Journal, 1997, 133, 375-377.	1.2	0
94	Truncus arteriosus with a single left ventricle: Case report of a previously unrecognized entity. American Heart Journal, 1997, 133, 377-380.	1.2	12
95	Cardiopulmonary resuscitation: A promise as yet largely unfilfilled. Disease-a-Month, 1997, 43, 431-501.	0.4	28
96	Recommended Guidelines for Reviewing, Reporting, and Conducting Research on Inâ€hospital Resuscitation: The Inâ€hospital "Utstein Styleâ€*. Academic Emergency Medicine, 1997, 4, 603-627.	0.8	13
97	Recommended Guidelines for Reviewing, Reporting, and Conducting Research on In-Hospital Resuscitation: The In-Hospital "Utstein Style― Annals of Emergency Medicine, 1997, 29, 650-679.	0.3	86
98	The relationship between airway carbon dioxide excretion and cardiac output during cardiopulmonary resuscitation. Resuscitation, 1997, 34, 263-270.	1.3	10
99	The relationship of carbon dioxide excretion during cardiopulmonary resuscitation to regional blood flow and survival. Resuscitation, 1997, 35, 135-143.	1.3	8
100	A comparison of the end-tidal-CO2 documented by capnometry and the arterial pCO2 in emergency patients. Resuscitation, 1997, 35, 145-148.	1.3	63
101	Recommended guidelines for reviewing, reporting, and conducting research on in-hospital resuscitation: the in-hospital â€ ⁻ Utstein style'. Resuscitation, 1997, 34, 151-183.	1.3	206
102	Endâ€ŧidal Carbon Dioxide Monitoring in Emergency Medicine, Part 1: Basic Principles*. Academic Emergency Medicine, 1998, 5, 628-636.	0.8	71
103	Endâ€ŧidal Carbon Dioxide Monitoring in Emergency Medicine, Part 2: Clinical Applications. Academic Emergency Medicine, 1998, 5, 637-646.	0.8	77
104	Endexspiratorisches Kohlendioxid und Überleben nach prĂĦinischem Herz-Kreislaufstillstand. Intensivmedizin Und Notfallmedizin, 1998, 35, 144-146.	0.2	0
105	Der innerklinische Utstein-Style (Teil II). Notfall Und Rettungsmedizin, 1998, 1, 157-175.	0.2	2
106	Effect of different compression–decompression cycles on haemodynamics during ACD–CPR in pigs. Resuscitation, 1998, 36, 123-131.	1.3	27
107	Cardiopulmonary resuscitation: a review for clinicians. Resuscitation, 1998, 36, 133-145.	1.3	28
108	Improved haemodynamics with increased compression–decompression rates during ACD-CPR in pigs. Resuscitation, 1998, 39, 197-205.	1.3	23
109	Blood transfusion and acute intravascular volume loss. Air Medical Journal, 1998, 17, 108-110.	0.3	2

#	Article	IF	CITATIONS
110	Sublingual Capnometry for Diagnosis and Quantitation of Circulatory Shock. American Journal of Respiratory and Critical Care Medicine, 1998, 157, 1838-1843.	2.5	582
111	The Arterial to End-Tidal Carbon Dioxide Gradient Increases with Uncorrected but Not with Temperature-Corrected PaCO2 Determination During Mild to Moderate Hypothermia. Anesthesia and Analgesia, 1998, 86, 1131-1136.	1.1	17
112	The Arterial to End-Tidal Carbon Dioxide Gradient Increases with Uncorrected but Not with Temperature-Corrected PaCO2 Determination During Mild to Moderate Hypothermia. Anesthesia and Analgesia, 1998, 86, 1131-1136.	1.1	32
113	Hemodynamic Effects of Simultaneous Sterno-Thoracic Cardiopulmonary Resuscitation (SST-CPR) in Canine Model of Cardiac Arrest. Sunhwan'gi, 1999, 29, 1105.	0.3	1
114	Cardiopulmonary cerebral resuscitation - present and future perspectives. Acta Anaesthesiologica Scandinavica, 1999, 43, 526-535.	0.7	2
115	Utility of colorimetric end-tidal carbon dioxide detector for monitoring during prehospital cardiopulmonary resuscitation. American Journal of Emergency Medicine, 1999, 17, 203-206.	0.7	31
116	Cardiopulmonary resuscitation: Historical perspective to recent investigations. American Heart Journal, 1999, 137, 39-48.	1.2	53
117	Regional Capnometry with Air-Automated Tonometry Detects Circulatory Failure Earlier Than Conventional Hemodynamics After Cardiac Surgery. Anesthesia and Analgesia, 1999, 89, 1084???1090.	1.1	9
118	Regional Capnometry with Air-Automated Tonometry Detects Circulatory Failure Earlier Than Conventional Hemodynamics After Cardiac Surgery. Anesthesia and Analgesia, 1999, 89, 1084-1090.	1.1	75
119	Accuracy and Reliability of the Self-inflating Bulb to Verify Tracheal Intubation in Out-of-hospital Cardiac Arrest Patients. Anesthesiology, 2000, 93, 1432-1436.	1.3	63
120	Effectiveness of end-tidal carbon dioxide tension for monitoring of thrombolytic therapy in acute pulmonary embolism. Critical Care Medicine, 2000, 28, 3588-3592.	0.4	28
121	Part 6: Advanced Cardiovascular Life Support. Resuscitation, 2000, 46, 127-134.	1.3	13
122	The effects of epinephrine/norepinephrine on end-tidal carbon dioxide concentration, coronary perfusion pressure and pulmonary arterial blood flow during cardiopulmonary resuscitation. Resuscitation, 2000, 43, 129-140.	1.3	60
123	AtemnotanfÇe im Rettungsdienst. Notfall Und Rettungsmedizin, 2000, 3, 492-503.	0.2	0
124	End-tidal CO2 pressure determinants during hemorrhagic shock. Intensive Care Medicine, 2000, 26, 1619-1623.	3.9	75
125	AtemnotanfÇe im Rettungsdienst. Intensivmedizin Und Notfallmedizin, 2000, 37, 361-373.	0.2	0
126	Part 10: Pediatric Advanced Life Support. Circulation, 2000, 102, I-291-I-342.	1.6	6
127	Part 6: Advanced Cardiovascular Life Support : Section 4: Devices to Assist Circulation. Circulation, 2000, 102, I-105-I-111.	1.6	1

#	Article	IF	CITATIONS
128	Endothelin-1 Vasoconstriction During Swine Cardiopulmonary Resuscitation Improves Coronary Perfusion Pressures but Worsens Postresuscitation Outcome. Circulation, 2000, 101, 2097-2102.	1.6	42
129	Part 10: Pediatric Advanced Life Support. Resuscitation, 2000, 46, 343-399.	1.3	33
130	CARDIOPULMONARY AND CEREBRAL RESUSCITATION. Critical Care Clinics, 2000, 16, 659-679.	1.0	7
131	Survival with full neurologic recovery and no cerebral pathology after prolonged cardiopulmonary resuscitation with vasopressin in pigs. Journal of the American College of Cardiology, 2000, 35, 527-533.	1.2	142
132	Noninvasive monitoring of oxygen and carbon dioxide. American Journal of Emergency Medicine, 2001, 19, 141-146.	0.7	51
133	E ND - TIDAL C ARBON D IOXIDE M ONITORING IN THE P REHOSPITAL S ETTING. Prehospital Emergency Care, 2001, 5, 208-213.	1.0	49
134	The Effect of Cardiac Output Changes on End-Tidal Volatile Anaesthetic Concentrations. Anaesthesia and Intensive Care, 2001, 29, 535-538.	0.2	7
135	Does the end-tidal carbon dioxide (EtCO2) concentration have prognostic value during out-of-hospital cardiac arrest?. European Journal of Emergency Medicine, 2001, 8, 263-269.	0.5	125
136	Carbon dioxide, critical closing pressure and cerebral haemodynamics prior to vasovagal syncope in humans. Clinical Science, 2001, 101, 351-358.	1.8	55
137	Carbon dioxide, critical closing pressure and cerebral haemodynamics prior to vasovagal syncope in humans. Clinical Science, 2001, 101, 351.	1.8	23
138	â€~Probability of successful defibrillation' as a monitor during CPR in out-of-hospital cardiac arrested patients. Resuscitation, 2001, 48, 245-254.	1.3	37
139	Monitoring of end-tidal carbon dioxide partial pressure changes during infrarenal aortic cross-clamping: a non-invasive method to predict unclamping hypotension. Acta Anaesthesiologica Scandinavica, 2001, 45, 188-193.	0.7	9
140	Cardiac arrest and monitoring. Anesthesiology Clinics, 2001, 19, 717-726.	1.4	2
141	Securing the child's airway in the emergency department. Pediatric Emergency Care, 2002, 18, 108-121.	0.5	14
142	Transport of the mechanically ventilated pediatric patient. Respiratory Care Clinics of North America, 2002, 8, 83-104.	0.5	6
143	Comparison of end-tidal CO2 and Paco2 in children receiving mechanical ventilation. Pediatric Critical Care Medicine, 2002, 3, 244-249.	0.2	50
144	Anesthesia-related cardiac arrest in children: An update. Anesthesiology Clinics, 2002, 20, 1-28.	1.4	34
145	Capnography: Beyond the numbers. Air Medical Journal, 2002, 21, 43-48.	0.3	12

	Сітатіої	n Report	
#	Article	IF	CITATIONS
146	A selective α2-adrenergic agonist for cardiac resuscitation. Translational Research, 2002, 140, 27-34.	2.4	34
147	A comparison of \hat{I}_{\pm} -methylnorepinephrine, vasopressin and epinephrine for cardiac resuscitation. Resuscitation, 2003, 57, 93-100.	1.3	35
148	Difference in end-tidal CO2 between asphyxia cardiac arrest and ventricular fibrillation/pulseless ventricular tachycardia cardiac arrest in the prehospital setting. Critical Care, 2003, 7, R139.	2.5	92
149	Anesthesia Outside the Operating Room: General Overview and Monitoring Standards. International Anesthesiology Clinics, 2003, 41, 1-15.	0.3	23
150	Stroke volumes and end-tidal carbon dioxide generated by precordial compression during ventricular fibrillation. Critical Care Medicine, 2003, 31, 1819-1823.	0.4	47
151	Measurement of End-tidal Carbon Dioxide in Patients with Cardiogenic Shock Treated Using a Percutaneous Cardiopulmonary Assist System. Journal of Nippon Medical School, 2004, 71, 160-166.	0.3	4
153	Time-dependent interventions. Critical Care, 2004, 8, 11.	2.5	1
154	Critères de jugement de l'efficacité du remplissage vasculaire [champ 5]. Reanimation: Journal De La Societe De Reanimation De Langue Francaise, 2004, 13, 311-315.	0.1	1
155	Monitorage d'urgence. EMC - Medecine, 2004, 1, 569-579.	0.0	0
156	The value of end-tidal carbon dioxide monitoring during systemic-to-pulmonary artery shunt insertion in cyanotic children. Journal of Cardiothoracic and Vascular Anesthesia, 2004, 18, 152-155.	0.6	15
157	Spontaneous gasping generates cardiac output during cardiac arrest. Critical Care Medicine, 2004, 32, 238-240.	0.4	49
158	Early Aerobic Training Increases End-Tidal CO2 Pressure During Exercise in Patients After Acute Myocardial Infarction. Circulation Journal, 2004, 68, 778-783.	0.7	18
159	Increased cortical cerebral blood flow with LUCAS; a new device for mechanical chest compressions compared to standard external compressions during experimental cardiopulmonary resuscitation. Resuscitation, 2005, 65, 357-363.	1.3	189
160	Noninvasive assessment of cardiac output. Pediatric Cardiac Surgery Annual, 2005, 8, 12-21.	0.5	94
161	Ventilatory Support of the Critically Ill Foal. Veterinary Clinics of North America Equine Practice, 2005, 21, 457-486.	0.3	36
162	Clinical review: Devices and drugs for cardiopulmonary resuscitation opportunities and restraints. Critical Care, 2005, 9, 287.	2.5	8
163	Clinical review: New technologies venturing out of the intensive care unit. Critical Care, 2005, 9, 296.	2.5	1
164	Monitoring during mechanical ventilation. Paediatric Respiratory Reviews, 2006, 7, S37-S38.	1.2	0

		CITATION REPORT	
#	Article	IF	CITATIONS
166	Haemodynamics of cardiac arrest and resuscitation. Current Opinion in Critical Care, 2006, 12, 2	198-203. 1.6	84
167	Microvascular blood flow during cardiopulmonary resuscitation is predictive of outcome. Resuscitation, 2006, 71, 248-253.	1.3	65
169	The Quality of Chest Compressions During Cardiopulmonary Resuscitation Overrides Importanc Timing of Defibrillation. Chest, 2007, 132, 70-75.	e of 0.4	109
170	Sidestream end-tidal carbon dioxide monitoring during helicopter transport. Air Medical Journal, 2007, 26, 55-59.	0.3	3
172	Oxygenation Monitoring of Tissue Vasculature by Resonance Raman Spectroscopy. Analytical Chemistry, 2007, 79, 1514-1518.	3.2	35
173	Hemodynamics of cardiac arrest. , 0, , 347-368.		4
174	Acid–base considerations and buffer therapy. , 0, , 674-697.		1
175	Out-of-hospital cardiopulmonary resuscitation with the AutoPulseâ,,¢ system: A prospective observational study with a new load-distributing band chest compression device. Resuscitation, 73, 86-95.	2007, 1.3	66
176	Spontaneous gasping produces carotid blood flow during untreated cardiac arrest. Resuscitation 2007, 75, 366-371.	n, 1.3	29
177	Miniaturized mechanical chest compressor: A new option for cardiopulmonary resuscitation. Resuscitation, 2008, 76, 191-197.	1.3	9
178	Cerebral cortical microvascular flow during and following cardiopulmonary resuscitation after short duration of cardiac arrest. Resuscitation, 2008, 77, 229-234.	1.3	58
179	The Effect of Compression Duration on Hemodynamics during Mechanical Highâ€impulse CPR. / Emergency Medicine, 1994, 1, 430-437.	Academic 0.8	39
181	Electrocardiogram waveforms for monitoring effectiveness of chest compression during cardiopulmonary resuscitation*. Critical Care Medicine, 2008, 36, 211-215.	0.4	81
182	Prediction of Successful Defibrillation in Human Victims of Out-of-Hospital cArdiac Arrest: A Retrospective Electrocardiographic Analysis. Anaesthesia and Intensive Care, 2008, 36, 46-50.	0.2	40
183	Cardiac Arrest and Cardiopulmonary Resuscitation. , 2008, , 3-15.		0
184	Miniaturization of a Chest Compressor for Cardiopulmonary Resuscitation. Journal of Medical Devices, Transactions of the ASME, 2009, 3, .	0.4	1
185	Percutaneous left ventricular assist device can prevent acute cerebral ischaemia during ventricul fibrillation. Resuscitation, 2009, 80, 1197-1203.	ar 1.3	15
186	No difference in autopsy detected injuries in cardiac arrest patients treated with manual chest compressions compared with mechanical compressions with the LUCASâ,,¢ device—A pilot stu Resuscitation, 2009, 80, 1104-1107.	ıdy. 1.3	135

#	Article	IF	CITATIONS
187	Percutaneous left ventricular assist in ischemic cardiac arrest. Critical Care Medicine, 2009, 37, 1365-1372.	0.4	21
188	Role of percutaneous left ventricular assist devices in preventing cerebral ischemia. Interventional Cardiology, 2009, 1, 197-208.	0.0	1
189	The resuscitation blanket: A useful tool for "hands-on―defibrillation. Resuscitation, 2010, 81, 230-235.	1.3	15
190	Quality of external closed-chest compressions in a tertiary pediatric setting: Missing the mark. Resuscitation, 2010, 81, 718-723.	1.3	14
191	The clinical practice of CPCR in small animals: an internetâ€based survey. Journal of Veterinary Emergency and Critical Care, 2010, 20, 558-570.	0.4	36
192	Neonatal Cardiopulmonary Resuscitation: Critical Hemodynamics. NeoReviews, 2010, 11, e123-e129.	0.4	17
194	Future Treatment of Acute Cardiac Collapse - A Role for Percutaneous Circulatory Assist Devices. , 0, ,		0
196	A pilot study of mechanical chest compressions with the LUCASâ,,¢ device in cardiopulmonary resuscitation. Resuscitation, 2011, 82, 702-706.	1.3	95
197	Decay in chest compression quality due to fatigue is rare during prolonged advanced life support in a manikin model. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 2011, 19, 46.	1.1	25
198	End-Tidal CO2 Detection of an Audible Heart Rate During Neonatal Cardiopulmonary Resuscitation After Asystole in Asphyxiated Piglets. Pediatric Research, 2011, 69, 401-405.	1.1	48
199	Asphyxial cardiac arrest, resuscitation and neurological outcome in a Landrace/Large-White swine model. Laboratory Animals, 2011, 45, 184-190.	0.5	19
200	Small animal cardiopulmonary resuscitation requires a continuum of care: proposal for a chain of survival for veterinary patients. Journal of the American Veterinary Medical Association, 2012, 240, 540-554.	0.2	23
201	"Putting It All Together―to Improve Resuscitation Quality. Emergency Medicine Clinics of North America, 2012, 30, 105-122.	0.5	29
202	Potential negative effects of epinephrine on carotid blood flow and ETCO2 during active compression–decompression CPR utilizing an impedance threshold device. Resuscitation, 2012, 83, 1021-1024.	1.3	41
203	RECOVER evidence and knowledge gap analysis on veterinary CPR. Part 5: Monitoring. Journal of Veterinary Emergency and Critical Care, 2012, 22, S65-84.	0.4	29
204	The use of end-tidal carbon dioxide monitoring in patients with hypotension in the emergency department. International Journal of Emergency Medicine, 2012, 5, 31.	0.6	34
205	A porcine model of complement-mediated infusion reactions to drug carrier nanosystems and other medicines. Advanced Drug Delivery Reviews, 2012, 64, 1706-1716.	6.6	114
206	States of low pulmonary blood flow can be detected non-invasively at the bedside measuring alveolar dead space. Journal of Clinical Monitoring and Computing, 2012, 26, 183-190.	0.7	21

#	Article	IF	CITATIONS
207	Non-invasive assessment of fluid responsiveness by changes in partial end-tidal CO2 pressure during a passive leg-raising maneuver. Annals of Intensive Care, 2012, 2, 9.	2.2	77
209	Pathophysiology and pathogenesis of post-resuscitation myocardial stunning. Heart Failure Reviews, 2012, 17, 117-128.	1.7	122
210	Carbon dioxide elimination and cardiac output changes. Intensive Care Medicine, 2013, 39, 972-972.	3.9	0
211	Clinical pilot study of different hand positions during manual chest compressions monitored with capnography. Resuscitation, 2013, 84, 1203-1207.	1.3	63
212	End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Medicine, 2013, 39, 93-100.	3.9	124
213	Non-invasive monitoring during cardiac arrest: NIRS has potential but data remain limited. Resuscitation, 2013, 84, 1643-1644.	1.3	3
214	Percutaneous Assist Device for Cardiopulmonary Resuscitation. Interventional Cardiology Clinics, 2013, 2, 429-443.	0.2	1
215	Pitfalls of Hemodynamic Monitoring in Patients with Trauma. Anesthesiology Clinics, 2013, 31, 179-194.	0.6	2
216	Hemodynamic directed CPR improves short-term survival from asphyxia-associated cardiac arrest. Resuscitation, 2013, 84, 696-701.	1.3	90
217	Hemodynamic Directed Cardiopulmonary Resuscitation Improves Short-Term Survival From Ventricular Fibrillation Cardiac Arrest*. Critical Care Medicine, 2013, 41, 2698-2704.	0.4	87
218	Cardiopulmonary Resuscitation Quality: Improving Cardiac Resuscitation Outcomes Both Inside and Outside the Hospital. Circulation, 2013, 128, 417-435.	1.6	774
219	Patient-Centric Blood Pressure–targeted Cardiopulmonary Resuscitation Improves Survival from Cardiac Arrest. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1255-1262.	2.5	74
220	The Noninvasive Carbon Dioxide Gradient (NICO2G) During Hemorrhagic Shock. Shock, 2014, 42, 38-43.	1.0	8
221	Capnography during cardiopulmonary resuscitation: Current evidence and future directions. Journal of Emergencies, Trauma and Shock, 2014, 7, 332.	0.3	53
222	Mechanical Chest Compressions and Simultaneous Defibrillation vs Conventional Cardiopulmonary Resuscitation in Out-of-Hospital Cardiac Arrest. JAMA - Journal of the American Medical Association, 2014, 311, 53.	3.8	343
223	End-tidal carbon dioxide as a goal of early sepsis therapy. American Journal of Emergency Medicine, 2014, 32, 1351-1356.	0.7	9
224	Efficacy of Chest Compressions Directed by Endâ€īidal CO ₂ Feedback in a Pediatric Resuscitation Model of Basic Life Support. Journal of the American Heart Association, 2014, 3, e000450.	1.6	83
225	Hemodynamic-directed cardiopulmonary resuscitation during in-hospital cardiac arrest. Resuscitation, 2014, 85, 983-986.	1.3	62

		CITATION REPORT		
#	Article		IF	Citations
227	Per-Protocol and Pre-Defined population analysis of the LINC study. Resuscitation, 201	.5, 96, 92-99.	1.3	5
228	In vivo support for the new concept of pulmonary blood flow-mediated CO _{2excretion in the lungs. American Journal of Physiology - Lung Cellular and Molecular Ph 2015, 308, L1224-L1236.}	ıb> gas ysiology,	1.3	3
229	The qualitative detection of decreases in cardiac output. Computers in Biology and Me 85-90.	dicine, 2015, 58,	3.9	4
231	Changes in end-tidal CO2 could predict fluid responsiveness in the passive leg raising the mini-fluid challenge test: A prospective and observational study. Journal of Critical 1061-1066.		1.0	30
232	Femoral venous oxygen saturation obtained during CPR predicts successful resuscitat model. American Journal of Emergency Medicine, 2015, 33, 941-945.	on in a pig	0.7	1
233	Rapid assessment of shock in a nonhuman primate model of uncontrolled hemorrhage Trauma and Acute Care Surgery, 2016, 80, 610-616.	. Journal of	1.1	2
234	The Physiology of Cardiopulmonary Resuscitation. Anesthesia and Analgesia, 2016, 12	2, 767-783.	1.1	105
235	A quantitative comparison of physiologic indicators of cardiopulmonary resuscitation Diastolic blood pressure versus end-tidal carbon dioxide. Resuscitation, 2016, 104, 6-1	quality: 1.	1.3	49
236	Monitoring Exhaled Carbon Dioxide. Respiratory Care, 2016, 61, 1397-1416.		0.8	70
238	Feasibility of Biosignal-guided Chest Compression During Cardiopulmonary Resuscitat Concept. Academic Emergency Medicine, 2016, 23, 93-97.	ion: A ProofÂof	0.8	4
239	Physiologic monitoring of CPR quality during adult cardiac arrest: A propensity-matche study. Resuscitation, 2016, 106, 76-82.	d cohort	1.3	77
240	Passive leg raising for predicting fluid responsiveness: a systematic review and meta-a Care Medicine, 2016, 42, 1935-1947.	nalysis. Intensive	3.9	311
241	Capnography During Critical Illness. Chest, 2016, 149, 576-585.		0.4	55
242	Association between Prehospital CPR Quality and End-Tidal Carbon Dioxide Levels in C Cardiac Arrest. Prehospital Emergency Care, 2016, 20, 369-377.	ut-of-Hospital	1.0	46
243	End-Tidal CO ₂ Predicts Reduction in Mitral Regurgitation in Pa Undergoing Percutaneous Mitral Valve Edge-to-Edge Repair. Cardiology, 2017, 137, 15	tients 51-158.	0.6	2
244	An Update on Cardiopulmonary Resuscitation in Children. Current Anesthesiology Rep 191-200.	orts, 2017, 7,	0.9	0
245	Development of new equipment for intraâ€arrest brain cooling that uses cooled oxyge volunteer study. Acute Medicine & Surgery, 2017, 4, 179-183.	n in the lungs:	0.5	0
246	Improving CPR Performance. Chest, 2017, 152, 1061-1069.		0.4	33

#	Article	IF	CITATIONS
247	End-Tidal Co 2–Guided Chest Compression Delivery Improves Survival in a Neonatal Asphyxial Cardiac Arrest Model*. Pediatric Critical Care Medicine, 2017, 18, e575-e584.	0.2	39
248	Correlation of end tidal carbon dioxide, amplitude spectrum area, and coronary perfusion pressure in a porcine model of cardiac arrest. Physiological Reports, 2017, 5, e13401.	0.7	13
249	Pediatric In-Hospital Cardiac Arrest and Cardiopulmonary Resuscitation. Current Pediatrics Reports, 2017, 5, 204-212.	1.7	0
250	Aging modifies the effect of cardiac output on middle cerebral artery blood flow velocity. Physiological Reports, 2017, 5, e13361.	0.7	22
251	Cardiovascular response estimated by ETCO 2 after leg-raising test. Revista Médica Del Hospital General De México, 2017, 80, 178-184.	0.0	1
252	SEVOFLURANE ANESTHESIA IN LIVINGSTONE'S FRUIT BATS (<i>PTEROPUS LIVINGSTONII</i>). Journal of Zoo and Wildlife Medicine, 2017, 48, 1081-1085.	0.3	1
253	Mechanical CPR in a child: can one size fit all?. BMJ Case Reports, 2017, 2017, bcr-2017-219728.	0.2	3
254	End-tidal CO 2 -guided automated robot CPR system in the pig. Preliminary communication. Resuscitation, 2018, 127, 119-124.	1.3	9
255	Physiology-directed cardiopulmonary resuscitation: advances in precision monitoring during cardiac arrest. Current Opinion in Critical Care, 2018, 24, 143-150.	1.6	26
256	Relationship Between Left Ventricle Position and Haemodynamic Parameters During Cardiopulmonary Resuscitation in a Pig Model. Heart Lung and Circulation, 2018, 27, 1489-1497.	0.2	7
257	Prehospital End-tidal Carbon Dioxide Predicts Mortality in Trauma Patients. Prehospital Emergency Care, 2018, 22, 170-174.	1.0	32
258	Evaluation of end-tidal carbon dioxide gradient as a predictor of volume responsiveness in spontaneously breathing healthy adults. Intensive Care Medicine Experimental, 2018, 6, 21.	0.9	5
259	Relationship between hemodynamic parameters and severity of ischemia-induced left ventricular wall thickening during cardiopulmonary resuscitation of consistent quality. PLoS ONE, 2018, 13, e0208140.	1.1	1
260	Pilot Study to Compare the Use of Endâ€īidal Carbon Dioxide–Guided and Diastolic Blood Pressure–Guided Chest Compression Delivery in a Swine Model of Neonatal Asphyxial Cardiac Arrest. Journal of the American Heart Association, 2018, 7, e009728.	1.6	3
261	Effect of one-lung ventilation on end-tidal carbon dioxide during cardiopulmonary resuscitation in a pig model of cardiac arrest. PLoS ONE, 2018, 13, e0195826.	1.1	2
262	Capnography during cardiac arrest. Resuscitation, 2018, 132, 73-77.	1.3	96
263	Esmolol does not affect circulation negatively during resuscitation. American Journal of Emergency Medicine, 2019, 37, 690-695.	0.7	1
264	Quantitative end-tidal CO2 can predict increase in heart rate during infant cardiopulmonary resuscitation. Heliyon, 2019, 5, e01871.	1.4	22

#	ARTICLE	IF	CITATIONS
265	Correlation between end-tidal carbon dioxide and the degree of compression of heart cavities measured by transthoracic echocardiography during cardiopulmonary resuscitation for out-of-hospital cardiac arrest. Critical Care, 2019, 23, 334.	2.5	14
266	Utility of CPR Machine Power and Change in Right Atrial Pressure for Estimating CPR Quality. Scientific Reports, 2019, 9, 9250.	1.6	1
267	Volumetric and End-Tidal Capnography for the Detection of Cardiac Output Changes in Mechanically Ventilated Patients Early after Open Heart Surgery. Critical Care Research and Practice, 2019, 2019, 1-9.	0.4	1
268	A New Age in Cardiopulmonary Resuscitation*. Pediatric Critical Care Medicine, 2019, 20, 691-692.	0.2	0
269	The Effect of Asphyxia Arrest Duration on a Pediatric End-Tidal co 2-Guided Chest Compression Delivery Model*. Pediatric Critical Care Medicine, 2019, 20, e352-e361.	0.2	8
270	Comparison of endâ€ŧidal carbon dioxide and pointâ€ofâ€care echocardiography for fluid response at the bedside. Hong Kong Journal of Emergency Medicine, 2022, 29, 72-77.	0.4	1
271	Relationship Between Pulmonary-to-Systemic-Blood-Flow Ratio (Qp:Qs) Based on Cardiac Catheterization and Indices Derived from Simultaneously Measured End Tidal CO2 (EtCO2) in Children with Complex Congenital Heart Disease. Pediatric Cardiology, 2019, 40, 182-187.	0.6	1
272	LUCAS Versus Manual Chest Compression During AmbulanceÂTransport: A Hemodynamic Study in a Porcine ModelÂofÂCardiac Arrest. Journal of the American Heart Association, 2019, 8, e011189.	1.6	35
273	Detection of exhaled carbon dioxide following intubation during resuscitation at delivery. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2019, 104, F187-F191.	1.4	8
275	Update on Cardiopulmonary Resuscitation in Small Animals. Veterinary Clinics of North America - Small Animal Practice, 2020, 50, 1183-1202.	0.5	5
276	A Pilot Study of End-Tidal Carbon Dioxide in Prediction of Inhospital Cardiac Arrests. , 2020, 2, e0204.		0
277	The impact of ventilation rate on end-tidal carbon dioxide level during manual cardiopulmonary resuscitation. Resuscitation, 2020, 156, 215-222.	1.3	8
278	Modeling the impact of ventilations on the capnogram in out-of-hospital cardiac arrest. PLoS ONE, 2020, 15, e0228395.	1.1	7
279	Pediatric In-Hospital Cardiac Arrest and Cardiopulmonary Resuscitation in the United States. JAMA Pediatrics, 2021, 175, 293.	3.3	38
280	Assessment of the evolution of end-tidal carbon dioxide within chest compression pauses to detect restoration of spontaneous circulation. PLoS ONE, 2021, 16, e0251511.	1.1	6
281	Worldviews on Evidence-Based Cardiopulmonary Resuscitation Using a Novel Method. International Journal of Environmental Research and Public Health, 2021, 18, 9536.	1.2	1
282	Alkalinizing Agents for the Treatment of Cardiac Arrest. , 1992, , 175-195.		1
283	O2 Transport in Low Flow States of Circulatory Shock and Cardiac Arrest. , 1989, , 445-461.		1

# 284	ARTICLE History of Critical Care Medicine: The Past, the Present and the Future. , 2009, , 3-17.	IF	CITATIONS
286	Blood flow and perfusion pressure during open-chest versus closed-chest cardiopulmonary resuscitation in pigs. Critical Care Medicine, 1995, 23, 715-725.	0.4	60
287	Monitoring cardiopulmonary resuscitation. Critical Care Medicine, 1995, 23, 799-800.	0.4	6
288	Epinephrine-mediated changes in carbon dioxide tension during reperfusion of ventricular fibrillation in a canine model. Critical Care Medicine, 1995, 23, 925-930.	0.4	8
289	Intraoperative end-tidal carbon dioxide values and derived calculations correlated with outcome. Critical Care Medicine, 1995, 23, 1497-1503.	0.4	54
290	End-tidal carbon dioxide during cardiopulmonary resuscitation in humans presenting mostly with asystole. Critical Care Medicine, 1996, 24, 791-796.	0.4	112
291	Capnography in critical care. Critical Care Medicine, 1999, 27, 862-863.	0.4	8
292	Tribonat[registered sign]-A comprehensive summary of its properties. Critical Care Medicine, 1999, 27, 1009-1013.	0.4	17
293	Sublingual capnometry. Critical Care Medicine, 1999, 27, 1225-1229.	0.4	308
294	Hemodynamic Applications of Capnography. Journal of Cardiovascular Nursing, 2001, 15, 56-70.	0.6	7
295	Efficacy of Audioâ€prompted Rate Guidance in Improving Resuscitator Performance of Cardiopulmonary Resuscitation on Children. Academic Emergency Medicine, 1994, 1, 35-40.	0.8	83
296	Transesophageal Echocardiographic Assessment of Mitral Valve Position and Pulmonary Venous Flow During Cardiopulmonary Resuscitation in Humans. Circulation, 1995, 92, 854-861.	1.6	53
297	Recommended Guidelines for Reviewing, Reporting, and Conducting Research on In-Hospital Resuscitation: The In-Hospital †Utstein Style'. Circulation, 1997, 95, 2213-2239.	1.6	372
298	Exhaled CO2 Parameters as a Tool to Assess Ventilation-Perfusion Mismatching during Neonatal Resuscitation in a Swine Model of Neonatal Asphyxia. PLoS ONE, 2016, 11, e0146524.	1.1	8
299	Relationship between mean arterial pressure and end-tidal partial pressure of carbon dioxide during hemorrhagic shock andvolume resuscitation. Signa Vitae, 2009, 4, 24.	0.8	3
301	Relation between end-tidal and arterial carbon dioxide partial pressure during general anaesthesia with spontaneous breathing and controlled ventilation in dogs: An experimental study. Acta Veterinaria, 2003, 53, 283-296.	0.2	1
303	Updates on Cardiac Arrest and Cardiopulmonary Resuscitation. , 2007, , 195-210.		0
304	The Perioperative Management of the Acute Care Surgical Patient. , 2007, , 67-83.		1

#	Article	IF	Citations
306	Monitoring in Critically III Children. , 2008, , 50-57.		1
307	Predicting the Success of Defibrillation and Cardiopulmonary Resuscitation. , 2009, , 163-173.		0
310	Cardiopulmonary Cerebral Resuscitation. , 2011, , 166-179.		1
311	Amplitude Spectrum Area as a Predictor of Successful Defibrillation. , 2011, , 141-160.		0
312	Bedside Monitoring of Pulmonary Function. , 2011, , 279-287.		2
313	Ricerca di base e medicina critica. , 2012, , 297-313.		0
314	End-tidal carbon dioxide concentration during cardiopulmonary resuscitation(CPR). Is this effective as an indicator of CPR success?. Nihon Kyukyu Igakukai Zasshi, 1990, 1, 19-24.	0.0	0
315	Successful Recording of End-tidal Concentration of Oxygen and Carbon dioxide at Return of Spontaneous Circulation: A Case Report of Cardiopulmonary Resuscitation The Journal of Japan Society for Clinical Anesthesia, 1994, 14, 77-81.	0.0	0
316	End-Tidal CO2 Levels Are a Reliable Indicator of Band Tightness in Pulmonary Artery Banding. Annals of Thoracic Surgery, 1995, 60, S523-S524.	0.7	0
317	END-TIDAL CARBON DIOXIDE PHYSIOLOGY AND MONITORING DURING RESUSCITATION. Anesthesiology Clinics, 1995, 13, 785-798.	1.4	2
318	Changes in End-Tidal Carbon Dioxide Concentration during Controlled Bleeding Japanese Journal of Veterinary Anesthesia & Surgery, 1997, 28, 23-26.	0.1	0
319	Capnography and Circulation. , 1997, , 169-178.		0
320	Tissue partial pressure of carbon dioxide tension measurements and microcirculation visualisation. New techniques for the study of low flow states. , 2007, , 203-214.		0
324	New Noninvasive Technologies in Emergency Medicine. Emergency Medicine Clinics of North America, 1988, 6, 241-252.	0.5	5
325	Clinical perspectives on capnography during sedation and general anesthesia in dentistry. Anesthesia Progress, 1995, 42, 126-30.	0.2	11
326	Basics of monitoring equipment. Canadian Veterinary Journal, 2017, 58, 1200-1208.	0.0	7
327	Use of an end-tidal carbon dioxide-guided algorithm during cardiopulmonary resuscitation improves short-term survival in paediatric swine. Resuscitation Plus, 2021, 8, 100174.	0.6	3
328	End-tidal Carbon Dioxide for Diagnosing Anaphylaxis in Patients with Severe Postinduction Hypotension. Anesthesiology, 2022, 136, 472-481.	1.3	6

#	Article	IF	CITATIONS
329	Rapid Ventricular Pacing Facilitates Transarterial Embolization in Vein of Galen Malformations. Interventional Neuroradiology, 2022, , 159101992210824.	0.7	1
332	Part 10: Pediatric Advanced Life Support. Circulation, 2000, 102, .	1.6	2
333	Riding the ETCO2 wave. Resuscitation, 2022, 179, 27-28.	1.3	0
334	Capnography for Monitoring of the Critically Ill Patient. Clinics in Chest Medicine, 2022, 43, 393-400.	0.8	1
335	A Systematic Review of Whether the Use of N95 Respirator Masks Decreases the Incidence of Cardiovascular Disease in the General Population. Cureus, 2022, , .	0.2	0
336	Left ventricle chest compression improves ETCO2, blood pressure, and cerebral blood velocity in a swine model of cardiac arrest and cardiopulmonary resuscitation. Resuscitation Plus, 2022, 12, 100326.	0.6	5
337	The Value of Integrated Pulmonary Index Monitoring After Electroconvulsive Therapy. Cukurova Anestezi Ve Cerrahi Bilimler Dergisi, 2022, 5, 295-305.	0.1	1
339	A novel augmented reality system to improve pediatric cardiopulmonary resuscitation performance – a device that could save children's lives. , 2023, , .		Ο