Hexose metabolism in pancreatic islets. Inhibition of he

Biochemical Journal 223, 447-453 DOI: 10.1042/bj2230447

Citation Report

#	Article	IF	CITATIONS
1	Nutrient metabolism in islet cells. Experientia, 1984, 40, 1026-1035.	1.2	64
2	Hexose metabolism in pancreatic islets: phosphoglycerate 2,3-mutase and enolase activities in rat islets. Biochimie, 1984, 66, 723-725.	1.3	7
3	Anomeric specificity of hexokinase and glucokinase activities in liver and insulin-producing cells. Biochemical Journal, 1985, 230, 345-351.	1.7	27
4	Hexose metabolism in pancreatic islets. ? Galactose transport, phosphorylation and oxidation. Molecular and Cellular Biochemistry, 1985, 66, 61-4.	1.4	40
5	Glucokinase is not the pancreatic B-cell glucoreceptor. Diabetologia, 1985, 28, 520-527.	2.9	64
6	Anomeric specificity of mannose phosphorylation by hexokinase. BBA - Proteins and Proteomics, 1985, 829, 354-357.	2.1	5
7	Biochemical Aspects of Insulin Secretion. Journal of Pediatric Endocrinology and Metabolism, 1985, 1, .	0.4	0
8	Pancreatic islets of variable size - insulin secretion and glucose utilization. Life Sciences, 1985, 37, 1059-1065.	2.0	10
9	Glucose metabolism in insulin-producing tumoral cells. Archives of Biochemistry and Biophysics, 1985, 241, 561-570.	1.4	48
10	Hexose metabolism in pancreatic islets: Compartmentation of hexokinase in islet cells. Archives of Biochemistry and Biophysics, 1986, 251, 61-67.	1.4	27
11	Phosphorylation of 3-O-methyl-D-glucose by yeast and beef hexokinase. FEBS Letters, 1986, 198, 292-294.	1.3	20
12	Artefactual and true uptake of labelled sucrose by rat pancreatic islet cells. Comparative Biochemistry and Physiology A, Comparative Physiology, 1986, 85, 289-296.	0.7	7
13	Anomeric specificity of D-glucose phosphorylation by corn (Zea mays L.) germ homogenates. Plant Science, 1986, 46, 11-14.	1.7	4
14	3-O-methyl-D-glucose transport in tumoral insulin-producing cells. American Journal of Physiology - Cell Physiology, 1986, 251, C841-C846.	2.1	76
15	D-glucose transport and concentration in tumoral insulin-producing cells. American Journal of Physiology - Cell Physiology, 1986, 251, C847-C851.	2.1	18
16	Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes/metabolism Reviews, 1986, 2, 163-214.	0.2	461
17	Reciprocal Influence of Glucose Anomers upon their Respective Phosphorylation by Hexokinase. Biological Chemistry Hoppe-Seyler, 1986, 367, 47-52.	1.4	6
18	Anomeric Specificity of Mammalian Hexokinase. Archives Internationales De Physiologie Et De Biochimie, 1986, 94, 161-172	0.2	10

D

#	Article	IF	CITATIONS
19	Temperature Dependency of the Anomeric Specificity of Yeast and Bovine Hexokinases. Biological Chemistry Hoppe-Seyler, 1986, 367, 411-416.	1.4	12
20	Anomeric specificity ofd-glucose metabolism in rat brain cells. Brain Research, 1987, 419, 147-155.	1.1	15
21	Hexose metabolism in pancreatic islets. Molecular and Cellular Endocrinology, 1987, 49, 219-225.	1.6	30
22	Glycerol phosphorylation and oxidation in pancreatic islets. Molecular and Cellular Endocrinology, 1987, 52, 251-256.	1.6	11
23	Effect of cytochalasin b on glucose uptake, utilization, oxidation and insulinotropic action in tumoral insulin-producing cells. Cell Biochemistry and Function, 1987, 5, 183-187.	1.4	5
24	Anomeric specificity of d-glucose phosphorylation and oxidation in human erythrocytes. International Journal of Biochemistry & Cell Biology, 1987, 19, 733-736.	0.8	11
25	Fructose metabolism via the pentose cycle in tumoral islet cells. FEBS Journal, 1987, 170, 447-452.	0.2	19
26	Hexose metabolism in pancreatic islets: Regulation of mitochondrial hexokinase binding. Biochemical Medicine and Metabolic Biology, 1988, 39, 80-89.	0.7	22
27	Signal recognition by pancreatic B-cells. Biochemical Pharmacology, 1988, 37, 371-378.	2.0	74
28	Defective Catabolism of D-Glucose and L-Glutamine in Mouse Pancreatic Islets Maintained in Culture after Streptozotocin Exposure*. Endocrinology, 1988, 123, 1001-1007.	1.4	43
29	Control of Glucose Metabolism in Pancreatic β-Cells by Glucokinase, Hexokinase and Phosphofructokinase: Model Study With Cell Lines Derived From β-Cells. Diabetes, 1988, 37, 1524-1530.	0.3	41
30	Insulin Production and Glucose Metabolism in Isolated Pancreatic Islets of Rats With NIDDM. Diabetes, 1988, 37, 1226-1233.	0.3	63
31	Metabolism of D-Glucose Anomers in Rat Lens. Ophthalmic Research, 1988, 20, 245-256.	1.0	5
32	Differential Sensitivity to β-Cell Secretagogues in Cultured Rat Pancreatic Islets Exposed to Human Interleukin-1β*. Endocrinology, 1989, 125, 752-759.	1.4	53
33	Presence of fructokinase in pancreatic islets. FEBS Letters, 1989, 255, 175-178.	1.3	23
34	Biosynthesis and secretion of insulin. British Medical Bulletin, 1989, 45, 19-36.	2.7	16
35	Anomeric specificity of d-glucose phosphorylation by rat liver glucose-6-phosphatase. Biochemical Journal, 1989, 261, 509-513.	1.7	2
36	Regulation of glucokinase by a fructose-1-phosphate-sensitive protein in pancreatic islets. FEBS Journal, 1990, 190, 539-545.	0.2	72

#	Article	IF	CITATIONS
37	Hexose metabolism in pancreatic islet cells: The coupling between hexose phosphorylation and mitochondrial respiration. Biochemical Medicine and Metabolic Biology, 1990, 44, 84-95.	0.7	2
38	Impairment of the mitochondrial oxidative response to D-glucose in pancreatic islets from adult rats injected with streptozotocin during the neonatal period. Diabetologia, 1990, 33, 654-660.	2.9	45
39	Kinetic behaviour of liver glucokinase in insulinopenic situations: effect of fructose 1-phosphate in fed and starved rats. Biochimie, 1990, 72, 715-718.	1.3	3
40	Alpha- and beta-anomeric preference of glucose-induced insulin secretion at physiological and higher glucose concentrations, respectively. Biochemical and Biophysical Research Communications, 1991, 180, 709-715.	1.0	15
41	Quantification of glucose cycling and the extent of equilibration of glucose 6-phosphate with fructose 6-phosphate in islets from <i>ob/ob</i> mice. Biochemical Journal, 1991, 278, 353-359.	1.7	8
42	Hexose metabolism in pancreatic islets: Enzyme-to-enzyme tunnelling of hexose 6-phosphates. International Journal of Biochemistry & Cell Biology, 1991, 23, 1471-1481.	0.8	32
43	Phosphorylation by liver glucokinase ofD-glucose anomers at anomeric equilibrium. Cell Biochemistry and Function, 1991, 9, 49-53.	1.4	2
44	Hexose metabolism in pancreatic islets: The glucose-6-phosphatase riddle. Molecular and Cellular Biochemistry, 1991, 101, 67-71.	1.4	15
45	Exhibition of Specific Alterations in Activities and mRNA Levels of Rat Islet Glycolytic and Mitochondrial Enzymes in Three Different in Vitro Model Systems for Attenuated Insulin Release. Diabetes, 1991, 40, 771-776.	0.3	22
46	Enzymic and metabolic anomalies in islets of diabetic rats: relationship to B cell mass Endocrinology, 1992, 130, 2634-2640.	1.4	27
47	Possible role of glycogen accumulation in B-cell glucotoxicity. Metabolism: Clinical and Experimental, 1992, 41, 814-819.	1.5	41
48	Interconversion of d-fructose 1,6-bisphosphate and triose phosphates in human erythrocytes. BBA - Proteins and Proteomics, 1992, 1121, 31-40.	2.1	9
49	Preferential alteration of oxidative relative to total glycolysis in pancreatic islets of two rat models of inherited or acquired Type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia, 1993, 36, 305-309.	2.9	38
50	Pancreatic beta cell line MIN6 exhibits characteristics of glucose metabolism and glucose-stimulated insulin secretion similar to those of normal islets. Diabetologia, 1993, 36, 1139-1145.	2.9	384
51	Deficient activity of FAD-linked glycerophosphate dehydrogenase in islets of GK rats. Diabetologia, 1993, 36, 722-726.	2.9	107
52	Alteration of anomeric preference of glucose-induced insulin secretion by glyceraldehyde. Life Sciences, 1993, 53, 1373-1382.	2.0	0
53	Hexose metabolism in pancreatic islets: Time-course of the oxidative response to d-Glucose. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1177, 54-60.	1.9	8
54	Glucose sensing in pancreatic islet beta cells: the key role of glucokinase and the glycolytic intermediates Proceedings of the National Academy of Sciences of the United States of America, 1993, 90. 1781-1785.	3.3	206

#	Article	IF	CITATIONS
55	Mammalian glucokinase and its gene. Biochemical Journal, 1993, 293, 1-13.	1.7	323
56	Cellular Engineering and Gene Therapy Strategies for Insulin Replacement in Diabetes. Diabetes, 1994, 43, 341-350.	0.3	64
57	Enzymatic, metabolic and secretory patterns in human islets of Type 2 (non-insulin-dependent) diabetic patients. Diabetologia, 1994, 37, 177-181.	2.9	99
58	Pancreatic islet response to dicarboxylic acid esters in rats with type 2 diabetes: enzymatic, metabolic and secretory aspects. Journal of Molecular Endocrinology, 1994, 13, 209-217.	1.1	15
59	Metabolic Coupling Factors in Pancreatic β-Cell Signal Transduction. Annual Review of Biochemistry, 1995, 64, 689-719.	5.0	524
60	Impaired activity of rat pancreatic islet mitochondrial glycerophosphate dehydrogenase in protein malnutrition Endocrinology, 1995, 136, 2631-2634.	1.4	46
61	Upregulated Hexokinase Activity in Isolated Islets from Diabetic 90% Pancreatectomized Rats. Diabetes, 1995, 44, 1328-1333.	0.3	39
62	Kinetics and specificity of human B-cell glucokinase: relevance to hexose-induced insulin release. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1312, 73-78.	1.9	16
63	Relevance of Lactate Dehydrogenase Activity to the Control of Oxidative Glycolysis in Pancreatic Islet B-Cells. Archives of Biochemistry and Biophysics, 1996, 327, 260-264.	1.4	16
64	Anomeric Specificity of the Native and Mutant Forms of Human β-Cell Glucokinase. Archives of Biochemistry and Biophysics, 1996, 328, 26-34.	1.4	7
65	The glucose sensor protein glucokinase is expressed in glucagon-producing alpha-cells Proceedings of the United States of America, 1996, 93, 7036-7041.	3.3	132
66	Rabbit lens and retina phosphorylate glucose through a glucokinase-like enzyme: Study in normal and spontaneously hyperglycemic animals. Journal of Diabetes and Its Complications, 1996, 10, 68-77.	1.2	6
67	Changes in Pancreatic Islet Glucokinase and Hexokinase Activities With Increasing Age, Obesity, and the Onset of Diabetes. Diabetes, 1997, 46, 1434-1439.	0.3	51
68	Glucose-responsitivity and expression of an ATP-stimulatable, Ca2+-independent phospholipase A2 enzyme in clonal insulinoma cell lines. Lipids and Lipid Metabolism, 1997, 1344, 153-164.	2.6	32
69	Protective effects of succinic aciddimethyl ester infusion in experimental endotoxemia. Nutrition, 1997, 13, 330-341.	1.1	32
70	Subcellular distribution of hexokinase isoenzymes in pancreatic islet cells exposed to digitonin after incubation at a low or high concentration of D-glucose. Molecular and Cellular Biochemistry, 1997, 175, 131-136.	1.4	4
71	Beta-cell hypersensitivity to glucose following 24-h exposure of rat islets to fatty acids. Diabetologia, 1997, 40, 392-397.	2.9	65
72	Interference of D-mannoheptulose with D-glucose phosphorylation, metabolism and functional effects: comparison between liver, parotid cells and pancreatic islets. Molecular and Cellular Biochemistry, 1998, 187, 113-120	1.4	17

#	Article	IF	CITATIONS
73	Esterification of Dâ€mannoheptulose confers to the heptose inhibitory action on Dâ€glucose metabolism in parotid cells. IUBMB Life, 1998, 44, 625-633.	1.5	7
74	Energy-Dependent Intracellular Translocation of Glucokinase in Rat Pancreatic Islets. Molecular Genetics and Metabolism, 1998, 63, 176-182.	0.5	5
75	Insulinotropic action of β-l-glucose pentaacetate. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E993-E1006.	1.8	4
76	Glucose Phosphorylation in Non-Insulin-Sensitive Tissues. , 1998, 14, 67-77.		0
77	Signal Recognition. Advances in Molecular and Cell Biology, 1999, 29, 199-226.	0.1	2
78	Cellular Origin of Hexokinase in Pancreatic Islets. Journal of Biological Chemistry, 1999, 274, 32803-32809.	1.6	52
79	Inhibition of glucose-induced insulin release by 3-O-methyl-D-glucose: enzymatic, metabolic and cationic determinants. Molecular and Cellular Biochemistry, 1999, 194, 133-145.	1.4	10
80	Metabolic and Secretory Response to d-Fructose in Pancreatic Islets from Adult Rats Injected with Streptozotocin during the Neonatal Period. Molecular Genetics and Metabolism, 1999, 68, 86-90.	0.5	5
81	β-Cell adaptation in 60% pancreatectomy rats that preserves normoinsulinemia and normoglycemia. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E68-E73.	1.8	42
82	Effects of D-mannoheptose and D-glycero-D-gulo-heptose upon D-glucose metabolism and insulinotropic action in rat pancreatic islets and D-glucose phosphorylation by hexokinase isoenzymes: comparison with D-mannoheptulose International Journal of Molecular Medicine, 2000, 6. 171-5.	1.8	2
83	Anomeric Specificity of Human Liver and B-cell Glucokinase: Modulation by the Glucokinase Regulatory Protein. Archives of Biochemistry and Biophysics, 2000, 373, 126-134.	1.4	8
84	D-mannoheptulose phosphorylation by hexokinase isoenzymes. International Journal of Molecular Medicine, 2001, 7, 359-63.	1.8	3
85	Uptake of D-mannoheptulose by normal and tumoral pancreatic islet cells. International Journal of Molecular Medicine, 2001, 7, 631-8.	1.8	9
86	Uptake of 1-deoxy-1-[125I]iodo-D-mannoheptulose by different cell types: in vitro and in vivo experiments. International Journal of Molecular Medicine, 2001, 7, 495-500.	1.8	3
87	Enzymic activities in two populations of purified rat islet β-cells. International Journal of Molecular Medicine, 2001, 8, 285.	1.8	6
88	Selective Modification of Pyruvate Dehydrogenase Kinase Isoform Expression in Rat Pancreatic Islets Elicited by Starvation and Activation of Peroxisome Proliferator-Activated Receptor-Â: Implications for Glucose-Stimulated Insulin Secretion. Diabetes, 2001, 50, 2729-2736.	0.3	56
89	Changes induced by sucrose administration on glucose metabolism in pancreatic islets in normal hamsters. Journal of Endocrinology, 2001, 171, 551-556.	1.2	10
90	Glucosamine-induced β-cell Dysfunction: A Possible Involvement of Glucokinase or Glucose-transporter Type 2. Pancreas, 2002, 24, 228-234.	0.5	14

#	Article	IF	CITATIONS
91	Comparison between d-[3-3H]- and d-[5-3H]glucose and fructose utilization in pancreatic islets from control and hereditarily diabetic rats. Archives of Biochemistry and Biophysics, 2002, 408, 111-123.	1.4	6
92	Enhanced expression of neuronal nitric oxide synthase in islets of exercise-trained rats. Biochemical and Biophysical Research Communications, 2003, 312, 794-800.	1.0	17
93	A rat model for the energetic regulation of gonadotropin secretion: role of the glucose-sensing mechanism in the brain. Domestic Animal Endocrinology, 2003, 25, 109-120.	0.8	26
94	Anomeric Specificity of the Stimulatory Effect ofd-Glucose on d-Fructose Phosphorylation by Human Liver Glucokinase. Journal of Biological Chemistry, 2003, 278, 4531-4535.	1.6	4
95	Dissimilar effects of D-mannoheptulose on the phosphorylation of α- versus β-D-glucose by either hexokinase or glucokinase. International Journal of Molecular Medicine, 2004, 14, 107.	1.8	1
96	Impaired enzyme-to-enzyme channelling between hexokinase isoenzyme(s) and phosphoglucoisomerase in rat pancreatic islets incubated at a low concentration ofD-glucose. Cell Biochemistry and Function, 2005, 23, 15-21.	1.4	3
97	Opposite effects of d-fructose on total versus cytosolic ATP/ADP ratio in pancreatic islet cells. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 773-780.	0.5	10
98	Fructokinase activity in rat liver, ileum, parotid gland, pancreas, pancreatic islet, B and non-B islet cell homogenates. International Journal of Molecular Medicine, 2006, 17, 517.	1.8	5
99	Neuroendocrine mechanism mediating energetic regulation of gonadotropin release in female rats. Animal Science Journal, 2006, 77, 259-265.	0.6	0
100	Enhanced expression of hexokinase I in pancreatic islets induced by sucrose administration. Journal of Endocrinology, 2006, 189, 311-317.	1.2	7
101	Longâ€chain fatty acylâ€coenzyme Aâ€induced inhibition of glucokinase in pancreatic islets from rats depleted in longâ€chain polyunsaturated ï‰3 fatty acids. Cell Biochemistry and Function, 2008, 26, 233-237.	1.4	6
102	Islet adaptive changes to fructose-induced insulin resistance: β-cell mass, glucokinase, glucose metabolism, and insulin secretion. Journal of Endocrinology, 2009, 200, 139-149.	1.2	48
103	D-glucose- and 3-O-methyl-D-glucose-induced upregulation of selected genes in rat hepatocytes and INS1E cells: Re-evaluation of the possible role of hexose phosphorylation. Molecular Medicine Reports, 2013, 8, 829-836.	1,1	4
104	Immunocytochemistry of GLUT2, uptake of fluorescent desnitroso-streptozotocin analogs and phosphorylation of D-glucose in INS-1E cells. Molecular Medicine Reports, 2013, 8, 473-479.	1.1	2
105	A Fresh View of Glycolysis and Glucokinase Regulation: History and Current Status. Journal of Biological Chemistry, 2014, 289, 12189-12194.	1.6	117
106	Islet NADPH oxidase activity modulates β-cell mass and endocrine function in rats with fructose-induced oxidative stress. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3475-3482.	1.1	9
107	Role of Islet Glucokinase, Glucose Metabolism, and Insulin Pathway in the Enhancing Effect of Islet Neogenesis-Associated Protein on Glucose-Induced Insulin Secretion. Pancreas, 2015, 44, 959-966.	0.5	12
108	Regulation of gonadotropin secretion by monitoring energy availability. Reproductive Medicine and Biology, 2015, 14, 39-47.	1.0	11

IF ARTICLE CITATIONS The effect of the mTOR inhibitor rapamycin on glucoCEST signal in a preclinical model of 109 1.9 13 glioblastoma. Magnetic Resonance in Medicine, 2019, 81, 3798-3807. Glucose-Induced B-Cell Recruitment and the Expression of Hexokinase Isoenzymes. Advances in Experimental Medicine and Biology, 1997, 426, 259-266. 0.8 Stimulus-Secretion Coupling in the Pancreatic B Cell. Current Topics in Neuroendocrinology, 1988, , 111 0.9 3 231-251. Overexpression of hexokinase I in isolated islets of Langerhans via recombinant adenovirus. Enhancement of glucose metabolism and insulin secretion at basal but not stimulatory glucose levels... Journal of Biological Chemistry, 1994, 269, 21234-21238. Is glucokinase responsible for the anomeric specificity of glycolysis in pancreatic islets?. Journal of 113 1.6 22 Biological Chemistry, 1985, 260, 12978-12981. Mechanism of impaired glucose-potentiated insulin secretion in diabetic 90% pancreatectomy rats. Study using glucagonlike peptide-1 (7-37).. Journal of Clinical Investigation, 1996, 97, 180-186. Fatty acid-induced beta cell hypersensitivity to glucose. Increased phosphofructokinase activity and 115 3.9 53 lowered glucose-6-phosphate content. Journal of Clinical Investigation, 1998, 101, 1870-1875. Î²-Cell Dysfunction and Chronic Hyperglycaemia. Growth Hormone, 2001, , 35-46. 0.2

117 Molecular Engineering of Glucose-Regulated Insulin Secretion. , 1994, , 119-154.

2