Studies of microstructure in native celluloses using soli

Macromolecules 17, 1465-1472 DOI: 10.1021/ma00138a009

Citation Report

#	Article	IF	CITATIONS
1	Native Cellulose: A Composite of Two Distinct Crystalline Forms. Science, 1984, 223, 283-285.	6.0	1,038
2	A highly crystalline cellulose fromRhizoclonium hieroglyphicum. Biopolymers, 1985, 24, 421-423.	1.2	16
3	Nuclear Magnetic Resonance Study of Autohydrolyzed and Organosolv-Treated Lodgepole Pinewood Using Carbon-13 with Cross Polarization and Magic-Angle Spinning. Holzforschung, 1985, 39, 99-107.	0.9	21
4	Factors influencing the regeneration of cellulose I from phosphoric acid. International Journal of Biological Macromolecules, 1985, 7, 182-186.	3.6	22
5	Title is missing!. Die Makromolekulare Chemie, 1986, 187, 899-911.	1.1	9
6	13C nuclear magnetic resonance studies of cellulose acetate in the solution and solid states. Polymer, 1986, 27, 19-24.	1.8	43
7	NMR spectroscopy of cellulose and its derivatives with magic spinning of the sample (review). Journal of Applied Spectroscopy, 1986, 45, 1003-1020.	0.3	0
8	Miscibility studies in polymer-diluent blends and segmented block copolymers via high-resolution carbon-13 solid-state nuclear magnetic resonance spectroscopy. Polymer, 1986, 27, 80-90.	1.8	21
9	Nondegradative Preparation of Amorphous Cellulose. Journal of Wood Chemistry and Technology, 1986, 6, 1-14.	0.9	63
10	Raman Spectroscopy and the Raman Microprobe: Valuable new tools for Characterizing Wood and Wood Pulp Fibers. Journal of Wood Chemistry and Technology, 1987, 7, 115-131.	0.9	24
11	Raman Spectra of Celluloses. ACS Symposium Series, 1987, , 151-168.	0.5	38
12	Cross Polarization/Magic Angle Spinning ¹³ C-NMR Characterization of Steam Exploded Poplar Hood. Journal of Wood Chemistry and Technology, 1987, 7, 215-228.	0.9	17
13	Investigations of lignocellulosic materials by the carbon-13 N.M.R. C.PM.A.S. method. Carbohydrate Research, 1987, 164, 85-95.	1.1	31
14	Solid-state 13C-N.M.R. and electron microscopy study on the reversible cellulose I→cellulose IIII transformation in Valonia. Carbohydrate Research, 1987, 160, 1-11.	1.1	86
15	Crystallinity of cellulose, as determined by CP/MAS NMR and XRD methods. Polymer Bulletin, 1987, 17, 231.	1.7	97
16	Structural study of amylose polymorphs by cross-polarization-magic-angle spinning, 13C-N.M.R. spectroscopy. Carbohydrate Research, 1987, 160, 29-40.	1.1	90
17	Band assignments in the raman spectra of celluloses. Carbohydrate Research, 1987, 160, 113-129.	1.1	419
18	Triple-stranded, left-hand-twisted cellulose microfibril. Carbohydrate Research, 1987, 160, 434-443.	1.1	18

TATION REDO

ARTICLE IF CITATIONS # Natural-abundance 133Cî—13C spin exchange in rigid crystalline organic solids. Journal of Magnetic 19 0.5 34 Resonance, 1987, 72, 13-47. Application of solid-state nuclear magnetic resonance (NMR) to the study of skin hydration. 1.7 Pharmaceutical Research, 1988, 05, 611-614. Influence of Hydration on Epidermal Tissue. Journal of Pharmaceutical Sciences, 1988, 77, 1037-1041. 21 1.6 12 Crystal and molecular structure of potassium Î²-d-glucopyranose 6-sulphate. Carbohydrate Research, 1988, 180, 183-193. Direct observation of the structure of mycelial cell walls from the potato blight fungus 23 1.0 6 Phytophthora infestans by solid-state13C NMR. Letters in Applied Microbiology, 1988, 7, 157-159. Structure and Function of Plant Cell Walls., 1988, , 297-371. 25 General Polysaccharide Methods. Studies in Organic Chemistry, 1988, 36, 50-82. 0.2 0 High-resolution Solid-state NMR. Journal of Fiber Science and Technology, 1988, 44, P219-P223. 26 Multivariate Data Analysis of <i>In Situ </i>Pulp Kinetics Using <sup > <i>13 </i> </sup > C CP/MAS NMR. 27 0.9 15 Journal of Wood Chemistry and Technology, 1989, 9, 235-249. Carbon-13 NMR of glycogen: hydration response studied by using solids methods. Biochemistry, 1989, 1.2 28, 5024-5028. High-Resolution Solid-State NMR Studies of Synthetic and Biological Macromolecules. Annual Reports 29 155 0.7 on NMR Spectroscopy, 1989, 21, 209-290. The Structures of Cellulose. Materials Research Society Symposia Proceedings, 1990, 197, 89. 0.1 Recent developments in 13C solid state high-resolution NMR of polymers. Progress in Polymer Science, $\mathbf{31}$ 11.8 35 1990, 15, 825-908. The 13C-n.m.r. spectrum of (1→4)-β-d-mannans in intact endosperm tissue of the date (Phoenix dactylifera). 1.1 Carbohydrate Research, 1990, 197, 276-280. CP/MAS n.m.r. spectra of samples from the Ulster lignite deposits. Fuel, 1990, 69, 415-420. 33 3.4 8 Effect of culture conditions of acetic acid bacteria on cellulose biosynthesis. British Polymer Journal, 1990, 22, 167-171. 13C CP/MAS NMR study on alkali cellulose. Journal of Applied Polymer Science, 1990, 41, 783-791. 35 1.320 Second-derivative F.t.-i.r. spectra of native celluloses. Carbohydrate Research, 1990, 197, 53-60. 1.1

#	Article	IF	CITATIONS
37	Solid state 13C-n.m.r. spectra of Vigna primary cell walls and their polysaccharide components. Carbohydrate Research, 1990, 201, 327-333.	1.1	33
38	Direct Observation of Cell Wall Structure in Living Plant Tissues by Solid-State ¹³ C NMR Spectroscopy. Plant Physiology, 1990, 92, 61-65.	2.3	59
39	Changes in organic components for fallen logs in old-growth Douglas-fir forests monitored by ¹³ C nuclear magnetic resonance spectroscopy. Canadian Journal of Forest Research, 1990, 20, 1382-1391.	0.8	80
40	Amorphous celluloses stable in aqueous media: Regeneration from SO2–amine solvent systems. Journal of Polymer Science Part A, 1991, 29, 113-119.	2.5	65
41	NMR spectroscopy of polysaccharide derivatives and their molecular structure. Review. Polymer Science USSR, 1991, 33, 611-635.	0.2	7
42	Structural Polysaccharides In Molecular Architecture of Plant Cell Wallsfrom Algae to Hardwoods. Materials Research Society Symposia Proceedings, 1991, 255, 387.	0.1	7
43	The heterogeneous character of the dilute acid hydrolysis of crystalline cellulose. II. Hydrolysis in sulfuric acid. Journal of Applied Polymer Science, 1991, 42, 417-426.	1.3	9
44	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1991, 12, 359-365.	1.1	3
45	Structural Changes in Cellulose During Papermaking and Recycling. Materials Research Society Symposia Proceedings, 1992, 266, 229.	0.1	4
46	Self-assembly of plant cell walls. Plant, Cell and Environment, 1992, 15, 1-5.	2.8	45
47	Chitosans from Euphausia superba. 2: Characterization of solid state structure. Carbohydrate Polymers, 1992, 18, 43-49.	5.1	80
48	Second-derivative FTIR spectra of native celluloses from Valonia and tunicin. Carbohydrate Research, 1993, 241, 47-54.	1.1	43
49	Native celluloses on the basis of two crystalline phase (lα/lβ) system. Journal of Applied Polymer Science, 1993, 49, 1491-1496.	1.3	154
50	Miniature crystal models of cellulose polymorphs and other carbohydrates. International Journal of Biological Macromolecules, 1993, 15, 30-36.	3.6	83
51	On the polarity of cellulose in the cell wall of Valonia. Planta, 1994, 193, 260.	1.6	44
52	Influence of hydrodynamic environment on composition and macromolecular organization of structural polysaccharides in Egregia menziesii cell walls. Planta, 1994, 192, 461.	1.6	6
53	In Situ crystallization of bacterial cellulose I. Influences of polymeric additives, stirring and temperature on the formation celluloses I ? and I ? as revealed by cross polarization/magic angle spinning (CP/MAS)13C NMR spectroscopy. Cellulose, 1994, 1, 57-66.	2.4	117
54	Studies of crystalline native celluloses using potential energy calculations. Cellulose, 1994, 1, 161-168.	2.4	24

#	Article	IF	CITATIONS
55	Preliminary potential energy calculations of cellulose i $\hat{l}\pm$ crystal structure. Macromolecular Theory and Simulations, 1994, 3, 185-191.	0.6	32
56	Determination of cellulose lα and lβ in lignocellulosic materials. Carbohydrate Research, 1994, 261, 119-131.	1.1	86
57	Determination of crystallinity in native cellulose from higher plants with diffuse reflectance Fourier transform infrared spectroscopy. Carbohydrate Research, 1994, 261, 163-172.	1.1	82
58	C.p./m.a.s. 13C n.m.r. study on microbial cellulose-fluorescent brightener complexes. Polymer, 1994, 35, 75-79.	1.8	17
59	Particle analysis of microcrystalline cellulose: Differentiation between individual particles and their agglomerates. International Journal of Pharmaceutics, 1994, 111, 43-50.	2.6	45
60	Modification of crystallinity and crystalline structure of Acetobacter xylinum cellulose in the presence of water-soluble I²-1,4-linked polysaccharides: 13C-NMR evidence. International Journal of Biological Macromolecules, 1994, 16, 215-218.	3.6	86
61	Formation, derivatization and applications of bacterial cellulose. International Journal of Biological Macromolecules, 1994, 16, 343-347.	3.6	93
62	Gelidium sesquipedale (Gelidiales, Rhodophyta). II. An Ultrastructural and Morphological Study. Botanica Marina, 1994, 37, .	0.6	10
63	Crystalline Forms of Cellulose in Softwoods and Hardwoods. Journal of Wood Chemistry and Technology, 1994, 14, 451-466.	0.9	48
64	CP/MAS 13C NMR and WAXS Studies on the Effects of Starting Cellulose Materials on Transition between Cellulose Polymorphs Kobunshi Ronbunshu, 1994, 51, 107-113.	0.2	3
65	NMR Studies on the structure of cellulose. 2â€dimensional solid state NMR approach. Macromolecular Symposia, 1995, 99, 25-29.	0.4	2
66	Packing energy calculations on the crystalline structure of cellulose I. , 1995, , 51-55.		0
67	Molecular modelling of parallel and antiparallel structure of native cellulose. , 1995, , 57-61.		0
68	Effect of isolation procedures on the molecular composition and physical properties of Eucheuma cottonii carrageenan. Food Hydrocolloids, 1995, 9, 281-289.	5.6	35
69	Theoretical investigations on the structure and physical properties of cellulose. Macromolecular Theory and Simulations, 1995, 4, 725-743.	0.6	51
70	Determination of the cellulose lÎ \pm allomorph content in a tunicate cellulose by CP/MAS 13C-NMR spectroscopy. Carbohydrate Research, 1995, 278, 339-343.	1.1	98
71	Characterization of tension and normally lignified wood cellulose inPopulus maximowiczii. Cellulose, 1995, 2, 223-233.	2.4	51
72	A multivariate characterization of crystal transformations of cellulose. Cellulose, 1995, 2, 273-288.	2.4	16

ARTICLE IF CITATIONS # Carbon-13 NMR distinction between categories of molecular order and disorder in cellulose. 73 2.4 128 Cellulose, 1995, 2, 95-110. Influence of hemicelluloses on the aggregation patterns of bacterial cellulose. Cellulose, 1995, 2, 74 2.4 129-144. In vitro assembly of cellulose/xyloglucan networks: ultrastructural and molecular aspects. Plant 75 2.8 213 Journal, 1995, 8, 491-504. 13C CP–MAS NMR spectra of tropical hardwoods. Polymer International, 1995, 36, 247-259. Elastic modulus of the crystalline regions of cellulose polymorphs. Journal of Polymer Science, Part 77 2.4 505 B: Polymer Physics, 1995, 33, 1647-1651. Carbon-13 CP/MAS solid-state NMR and FT-IR spectroscopy of wood cell wall biodegradation. Enzyme and Microbial Technology, 1995, 17, 268-275. 1.6 79 NMR study of paper. Carbohydrate Polymers, 1995, 26, 289-297. 5.1 36 Pore swelling in beads made of cellulose fibres and fibre fragments. International Journal of 2.6 Pharmaceutics, 1995, 122, 49-56. Estimation of Cellulose I and II in Cellulosic Samples by Principal Component Analysis of 81 0.9 27 ¹³C-CP/MAS-NMR-Spectra. Holzforschung, 1995, 49, 119-126. Structural changes of cellulose and their effects on the OH/CH 2 valency vibration range in FTIR spectra., 1995, 75-84. Structural characterisation of lignocellulosic samples using 13 C-CP/MAS-NMR-spectroscopy and 83 1 chemometrics., 1995,, 93-100. Changes in Cellulose Crystallinity During Kraft Pulping. Comparison of Infrared, X-ray Diffraction 99 and Solid State NMR Results. Holzforschung, 1995, 49, 498-504. Computer simulations of crystal structures and elastic properties of cellulose. Zeitschrift Fur 85 0.9 34 Elektrotechnik Und Elektrochemie, 1996, 100, 1350-1354. Molecular dynamics simulations and diffraction-based analysis of the native cellulose fibre: 1.8 structural modelling of the I_{τ}^{1} and I_{τ}^{2} phases and their interconversion. Polymer, 1996, 37, 1833-1839. A solid-state NMR study of cellulose degradation. Cellulose, 1996, 3, 77-90. 87 2.4 16 13C NMR Study of Solid-State Reaction of Cellulose with Lignin Monomers. Holzforschung, 1996, 50, 335-341. Crystal Morphology, Biosynthesis, and Physical Assembly of Cellulose, Chitin, and Chitosan. Polymer 89 5.333 Reviews, 1997, 37, 199-276. Microstructural analysis of microfibrils of bacterial cellulose. Macromolecular Symposia, 1997, 120, 197-205.

#	Article	IF	CITATIONS
91	Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9091-9095.	3.3	273
92	Solid-state ¹³ C NMR characterization of cell walls of ripening strawberries. Canadian Journal of Botany, 1997, 75, 1957-1964.	1.2	47
93	Research Progress in Production of Bacterial Cellulose by Aeration and Agitation Culture and Its Application as a New Industrial Material. Bioscience, Biotechnology and Biochemistry, 1997, 61, 219-224.	0.6	196
94	Characterization of native crystalline cellulose in the cell walls of Oomycota. Journal of Biotechnology, 1997, 57, 29-37.	1.9	74
95	Molecular Architecture of Polysaccharide Helices in Oriented Fibers. Advances in Carbohydrate Chemistry and Biochemistry, 1997, 52, 311-439.	0.4	49
96	High-Resolution Atomic Force Microscopy of NativeValoniaCellulose I Microcrystals. Journal of Structural Biology, 1997, 119, 129-138.	1.3	121
97	Systematic survey on crystalline features of algal celluloses. Cellulose, 1997, 4, 147-160.	2.4	66
98	Cellulose: the structure slowly unravels. Cellulose, 1997, 4, 173-207.	2.4	1,193
99	Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose, 1997, 4, 221-232.	2.4	178
100	The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose, 1997, 4, 281-292.	2.4	239
101	Crystalline forms of cellulose in the silver tree fern Cyathea dealbata. Cellulose, 1997, 4, 269-279.	2.4	30
102	Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer, 1997, 38, 463-468.	1.8	177
103	A structural study of fluorinated cellulose: crystallization of fluorinated cellulose by conversion treatments used for cellulose. Carbohydrate Polymers, 1997, 34, 229-234.	5.1	5
104	A CP/MAS13C NMR investigation of molecular ordering in celluloses. Carbohydrate Research, 1997, 302, 19-25.	1.1	331
105	Selective degradation of the cellulose lÎ \pm component in Cladophora cellulose with Trichoderma viride cellulase. Carbohydrate Research, 1997, 305, 109-116.	1.1	76
106	The enzymatic susceptibility of cellulose microfibrils of the algal-bacterial type and the cotton-ramie type. Carbohydrate Research, 1997, 305, 261-269.	1.1	60
107	Cellulose Synthesized by Acetobacter Xylinum in the Presence of Acetyl Glucomannan. Cellulose, 1998, 5, 249-261.	2.4	266
108	A native cellulose microfibril model. Cellulose, 1998, 5, 89-111.	2.4	15

		CITATION REP	ORT	
#	Article		IF	Citations
109	Affinity of Hemicellulose for Cellulose Produced by Acetobacter Xylinum. Cellulose, 199	8, 5, 215-228.	2.4	94
110	Structural Features and Properties of Bacterial Cellulose Produced in Agitated Culture. (1998, 5, 187-200.	Cellulose,	2.4	335
111	High-resolution electron microscopy on ultrathin sections of cellulose microfibrils gener glomerulocytes in Polyzoa vesiculiphora. Protoplasma, 1998, 203, 84-90.	ated by	1.0	19
112	Fine structure in cellulose microfibrils: NMR evidence from onion and quince. Plant Journ 183-190.	nal, 1998, 16,	2.8	124
113	Quantitative Analysis of Cellulose in Tobacco by13C CPMAS NMR. Journal of Agricultura Chemistry, 1998, 46, 1423-1427.	Il and Food	2.4	16
114	Crystal Structure ofValoniaCellulose lβ. Macromolecules, 1998, 31, 7776-7783.		2.2	100
115	Nanodomains of lαand lβCellulose in Algal Microfibrils. Macromolecules, 1998, 31, 627	'5-6279.	2.2	136
116	Molecular Imaging ofHalocynthia papillosaCellulose. Journal of Structural Biology, 1998	, 124, 42-50.	1.3	102
117	Biodegradable polymers. Studies in Physical and Theoretical Chemistry, 1998, , 771-817	, .	0.0	5
119	Crystalline Cellulose in Hydrated Primary Cell Walls of Three Monocotyledons and One Plant and Cell Physiology, 1998, 39, 711-720.	Dicotyledon.	1.5	48
120	Surface and Interface-New Functions of Biorelated Polymers I. Dependence of Purification the Property of Bacterial Cellulose Obtained by Direct Filamentatiog from Culture Media Ronbunshu, 1998, 55, 207-211.	on Process on a Kobunshi	0.2	0
121	Estimation of the Relative Proportions of Cellulose I alpha and I beta in Wood by Carbor Spectroscopy. Holzforschung, 1999, 53, 335-340.	n-13 NMR	0.9	52
122	Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR. Carb Polymers, 1999, 40, 115-124.	ohydrate	5.1	150
123	The role of solid state NMR spectroscopy in studies of the nature of native celluloses. So Nuclear Magnetic Resonance, 1999, 15, 1-19.	blid State	1.5	331
124	CP/MAS -NMR spectroscopy applied to structure and interaction studies on cellulose I. S Nuclear Magnetic Resonance, 1999, 15, 31-40.	Solid State	1.5	174
125	Analysis of carboxyl content in oxidized celluloses by solid-state 13C CP/MAS NMR spec International Journal of Pharmaceutics, 1999, 184, 219-226.	troscopy.	2.6	37
126	In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Pla 1999, 20, 25-35.	nt Journal,	2.8	146
127	Solid-state NMR characterization of hydration effects on polymer mobility in onion cell- material. Carbohydrate Research, 1999, 322, 102-112.	wall	1.1	57

ARTICLE IF CITATIONS # Title is missing!. Cellulose, 1999, 6, 251-263. 128 2.4 93 129 Title is missing!. Cellulose, 1999, 6, 233-249. 2.4 130 Celluloses., 1999, , 529-598. 33 A Revised Structure and Hydrogen-Bonding System in Cellulose II from a Neutron Fiber Diffraction Analysis. Journal of the American Chemical Society, 1999, 121, 9940-9946. Solid-State Nmr Studies Of Wood And Other Lignocellulosic Materials. Annual Reports on NMR 132 0.7 73 Spectroscopy, 1999, , 75-117. 13C MAS NMR Studies of the Effects of Hydration on the Cell Walls of Potatoes and Chinese Water Chestnuts. Journal of Agricultural and Food Chemistry, 1999, 47, 510-517. 2.4 THE SUPRAMOLECULAR STRUCTURE OF CELLULOSE II. STUDIES WITH 13 C-CP/MAS-NMR AND 134 1 CHEMOMETRICS., 2000, , 33-38. A priori crystal structure prediction of native celluloses. Biopolymers, 2000, 54, 342-354. 1.2 64 A new all-atom force field for crystalline cellulose I. Journal of Applied Polymer Science, 2000, 78, 136 1.3 40 1939-1946. Interconversion of the \hat{l}_{\pm} and \hat{l}_{2}^{2} crystalline forms of cellulose by bending. Carbohydrate Research, 2000, 1.1 325, 150-154. Application of dynamic 2D FTIR to cellulose. Vibrational Spectroscopy, 2000, 22, 111-118. 138 1.2 136 Relative susceptibility of the \hat{l}_{\pm} and \hat{l}_{2} phases of cellulose towards acetylation. Cellulose, 2000, 7, 119-132. 2.4 Interaction of cellulose with amine oxide solvents. Cellulose, 2000, 7, 21-33. 140 2.4 19 EFFECTS OF PULPING ON CRYSTALLINITY OF CELLULOSE STUDIED BY SOLID STATE NMR., 2000, , 39-44. 141 Solid State NMR Studies on Cellulose Crystallinity in Fines and Bulk Fibres Separated from Refined 142 0.9 47 Kraft Pulp. Holzforschung, 2000, 54, 618-624. Molecular Dynamics of Cellulose-Water Systems Investigated by NMR Relaxation Method. 143 Holzforschung, 2000, 54, 501-504. New Insight into Cellulose Structure by Atomic Force Microscopy Shows the ll ± Crystal Phase at 144 0.2 172 Near-Atomic Resolution. Biophysical Journal, 2000, 79, 1139-1145. 145 X-ray Structure of Mercerized Cellulose II at 1 Ã... Resolution. Biomacromolecules, 2001, 2, 410-416.

#	Article	IF	CITATIONS
146	Improved Structural Data of Cellulose IIIIPrepared in Supercritical Ammonia. Macromolecules, 2001, 34, 1237-1243.	2.2	80
147	Structure of Acetobacter cellulose composites in the hydrated state. International Journal of Biological Macromolecules, 2001, 29, 193-202.	3.6	92
148	In Situ Observation of the Crystalline Transformation from Cellulose IIII to Iβ. Macromolecules, 2001, 34, 3271-3275.	2.2	51
149	Synthesis and Characterization of Novel Azobezene-Modified Polymers: Azocelluloseâ€. Macromolecules, 2001, 34, 9193-9196.	2.2	29
150	THE COMPLETE ASSIGNMENT OF THE 13 C CP/MAS NMR SPECTRA OF NATIVE CELLULOSE BY USING 13 C LABELED GLUCOSE. , 2001, , 261-268.		2
151	Unconventional methods in cellulose functionalization. Progress in Polymer Science, 2001, 26, 1689-1762.	11.8	762
152	Allomorphs of native crystalline cellulose I evaluated by two equatoriald-spacings. Journal of Wood Science, 2001, 47, 124-128.	0.9	151
153	NMR processing techniques based on multivariate data analysis and orthogonal signal correction.13C CP/MAS NMR spectroscopic characterization of softwood kraft pulp. Magnetic Resonance in Chemistry, 2001, 39, 267-275.	1.1	17
154	Solution properties of celluloses from different biological origins in LiCl • DMAc. Cellulose, 2001, 8, 275-282.	2.4	97
155	Title is missing!. Cellulose, 2001, 8, 289-296.	2.4	32
156	Title is missing!. Cellulose, 2001, 8, 49-57.	2.4	176
157	The Young's modulus of a microcrystalline cellulose. Cellulose, 2001, 8, 197-207.	2.4	224
158	On the accessibility and structure of xylan in birch kraft pulp. Cellulose, 2001, 8, 209-215.	2.4	73
159	Localization of l \hat{l}_{\pm} and l \hat{l}^2 phases in algal cellulose revealed by acid treatments. Cellulose, 2001, 8, 183-188.	2.4	146
160	Cellulose synthesis: mutational analysis and genomic perspectives using Arabidopsis thaliana. Cellular and Molecular Life Sciences, 2001, 58, 1475-1490.	2.4	30
161	Effects of Dehydration on the Crystalline Structure and Strength of Developing Cotton Fibers. Textile Reseach Journal, 2001, 71, 231-239.	1.1	24
162	NMR Study of Water-Filled Pores in One of the Most Widely Used Polymeric Material:  The Paper. Macromolecules, 2002, 35, 5536-5543.	2.2	39
163	CP/MAS 13C NMR Study of Cellulose and Cellulose Derivatives. 1. Complete Assignment of the CP/MAS 13C NMR Spectrum of the Native Cellulose. Journal of the American Chemical Society, 2002, 124, 7506-7511.	6.6	274

#	Article	IF	CITATIONS
164	X-ray Microbeam and Electron Diffraction Experiments on Developing Xylem Cell Walls. Biomacromolecules, 2002, 3, 182-186.	2.6	33
165	A New NMR Method for the Study of Local Mobility in Solids and Application to Hydration of Biopolymers in Plant Cell Walls. Macromolecules, 2002, 35, 5078-5084.	2.2	27
166	ORF2 gene involves in the construction of high-order structure of bacterial cellulose. Biochemical and Biophysical Research Communications, 2002, 295, 458-462.	1.0	32
167	Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Organic Geochemistry, 2002, 33, 1093-1109.	0.9	723
168	Preparation and properties of chemical cellulose from ascidian tunic and their regenerated cellulose fibers. Journal of Applied Polymer Science, 2002, 85, 1634-1643.	1.3	12
169	Conformational features of crystal-surface cellulose from higher plants. Plant Journal, 2002, 30, 721-731.	2.8	156
170	Lateral thermal expansion of cellulose I? and IIII polymorphs. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1095-1102.	2.4	88
171	NMR studies of wood and wood products. Progress in Nuclear Magnetic Resonance Spectroscopy, 2002, 40, 151-174.	3.9	156
172	Cell wall changes in ripening kiwifruit: 13C solid state NMR characterisation of relatively rigid cell wall polymers. Carbohydrate Polymers, 2002, 49, 121-129.	5.1	42
173	Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction. Journal of the American Chemical Society, 2002, 124, 9074-9082.	6.6	2,231
174	Title is missing!. Cellulose, 2002, 9, 351-360.	2.4	66
175	Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose, 2003, 10, 103-110.	2.4	182
176	Crystal Structure Refinements of Cellulose Polymorphs using Solid State 13C Chemical Shifts. Cellulose, 2003, 10, 189-199.	2.4	39
177	Title is missing!. Cellulose, 2003, 10, 307-316.	2.4	89
178	Cross-polarization/magic-angle spinning 13C nuclear magnetic resonance study of cellulose I–ethylenediamine complex. Journal of Bioscience and Bioengineering, 2003, 96, 461-466.	1.1	21
179	Powder pattern recoupling at 10kHz spinning speed applied to cellulose. Journal of Magnetic Resonance, 2003, 161, 35-42.	1.2	23
180	Solid-state 13C and 1H spin diffusion NMR analyses of the microfibril structure for bacterial cellulose. Solid State Nuclear Magnetic Resonance, 2003, 23, 198-212.	1.5	39
181	Evaluation of Surface and Bulk Characteristics of Cellulose I Powders in Relation to Compaction Behavior and Tablet Properties. Drug Development and Industrial Pharmacy, 2003, 29, 1095-1107.	0.9	26

#	Article	IF	CITATIONS
182	Effect of Solvent Exchange on the Solid Structure and Dissolution Behavior of Cellulose. Biomacromolecules, 2003, 4, 1238-1243.	2.6	81
183	Complete Assignment of the CP/MAS 13C NMR Spectrum of Cellulose IIII. Macromolecules, 2003, 36, 3589-3592.	2.2	49
184	Synthesis and Characterization of Fluorescent Cellulose. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 1275-1282.	1.2	9
185	Determination of the Through-Bond Carbonâ^'Carbon and Carbonâ^'Proton Connectivities of the Native Celluloses in the Solid State. Macromolecules, 2003, 36, 5131-5138.	2.2	89
186	Thermally Induced Crystal Transformation from Cellulose ll \pm to ll 2 . Polymer Journal, 2003, 35, 155-159.	1.3	112
187	Natural fibre sources. , 2004, , 49-80.		25
188	Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites. Plant Journal, 2004, 38, 27-37.	2.8	112
189	Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose, 2004, 11, 45-52.	2.4	124
190	Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose, 2004, 11, 403-411.	2.4	445
191	Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees - Structure and Function, 2004, 18, 346-353.	0.9	87
192	Monitoring degradation in paper: non-invasive analysis by unilateral NMR. Part II. Journal of Magnetic Resonance, 2004, 170, 113-120.	1.2	55
193	Histochemical and supramolecular studies in determining quality of hemp fibres for textile applications. Euphytica, 2004, 140, 55-64.	0.6	40
194	Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR 2001. Applied Microbiology and Biotechnology, 2004, 65, 315-22.	1.7	42
195	Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability, 2004, 84, 331-339.	2.7	536
196	Characterisation of thermally modified hard- and softwoods by C CPMAS NMR. Carbohydrate Polymers, 2004, 58, 461-466.	5.1	340
197	Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydrate Research, 2004, 339, 569-578.	1.1	319
198	Solid state 13C CP MAS NMR study of molecular motions and interactions of urea adsorbed on cotton cellulose. Physical Chemistry Chemical Physics, 2004, 6, 3175.	1.3	21
199	High-Energy Radiation-Induced Changes in the Crystal Morphology of Cellulose. Macromolecules, 2004, 37, 2668-2670.	2.2	7

#	Article	IF	CITATIONS
200	AFM Observation of Band-Like Cellulose Assemblies Produced byAcetobacter xylinum. Biomacromolecules, 2004, 5, 2079-2081.	2.6	9
201	Polymorphism of Cellulose I Family:Â Reinvestigation of Cellulose IVI. Biomacromolecules, 2004, 5, 1385-1391.	2.6	261
202	13C and1H Resonance Assignment of Mercerized Cellulose II by Two-Dimensional MAS NMR Spectroscopies. Macromolecules, 2004, 37, 5310-5316.	2.2	52
203	Rheological Properties and Molecular Structure of Tunicate Cellulose in LiCl/1,3-Dimethyl-2-imidazolidinone. Biomacromolecules, 2004, 5, 422-432.	2.6	77
204	Crystalline forms and cross-sectional dimensions of cellulose microfibrils in the Florideophyceae (Rhodophyta). Botanica Marina, 2004, 47, .	0.6	4
205	Chemical Shift Correlations in Disordered Solids. Journal of the American Chemical Society, 2005, 127, 4466-4476.	6.6	71
206	Xylo-Oligosaccharide (XOS) Formation through Hydrothermolysis of Xylan Derived from Viscose Process. Macromolecular Symposia, 2005, 232, 107-120.	0.4	25
207	Line shapes in CP/MAS 13C NMR spectra of cellulose I. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 62, 539-546.	2.0	36
208	Physico-chemical and thermal characterization of cellulose from barley straw. Polymer Degradation and Stability, 2005, 88, 521-531.	2.7	105
209	Behavior of cellulose production of in C-enriched cultivation media including movements on nematic ordered cellulose templates. Carbohydrate Polymers, 2005, 60, 457-465.	5.1	31
210	Enzymatically produced nano-ordered short elements containing cellulose lβ crystalline domains. Carbohydrate Polymers, 2005, 61, 191-197.	5.1	109
211	Structure and morphology of cellulose in wheat straw. Cellulose, 2005, 12, 25-34.	2.4	148
212	Determination of the 13C chemical shift anisotropies of cellulose I and cellulose II. Cellulose, 2005, 12, 5-14.	2.4	9
213	Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field. Biomacromolecules, 2005, 6, 612-626.	2.6	2,066
214	Comparative study of cellulose isolated by totally chlorine-free method from wood and cereal straw. Journal of Applied Polymer Science, 2005, 97, 322-335.	1.3	47
215	True Density of Microcrystalline Cellulose. Journal of Pharmaceutical Sciences, 2005, 94, 2132-2134.	1.6	182
216	The cellulose/lignin assembly assessed by molecular modeling. Part 1: adsorption of a threo guaiacyl β-O-4 dimer onto a Iβ cellulose whisker. Plant Physiology and Biochemistry, 2005, 43, 299-308.	2.8	81
217	Determination of the 13C chemical shift anisotropies of cellulose I and cellulose II. Cellulose, 2005, 12, 5-14.	2.4	13

#	Article	IF	CITATIONS
218	Structure and morphology of cellulose in wheat straw. Cellulose, 2005, 12, 25-34.	2.4	195
219	Structural Changes of Cellulose Crystallites Induced by Mercerisation in Different Solvent Systems; Determined by Powder X-ray Diffraction Method. Cellulose, 2005, 12, 233-242.	2.4	104
220	The Thermal Expansion of Wood Cellulose Crystals. Cellulose, 2005, 12, 479-484.	2.4	127
221	Effects of vapor-phase-formaldehyde treatments on thermal conductivity and diffusivity of ramie fibers in the range of low temperature. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2754-2766.	2.4	10
222	Using 13C nuclear magnetic resonance spectroscopy for the study of northern hardwood tissues. Canadian Journal of Forest Research, 2005, 35, 1821-1831.	0.8	26
223	Modeling Crystal and Molecular Deformation in Regenerated Cellulose Fibers. Biomacromolecules, 2005, 6, 507-513.	2.6	111
224	Effects of Crystallinity on Dilute Acid Hydrolysis of Cellulose by Cellulose Ball-Milling Study. Energy & Fuels, 2006, 20, 807-811.	2.5	258
225	Polysaccharides. , 2006, , 289-311.		0
227	13C Chemical Shift Constrained Crystal Structure Refinement of Cellulose Iαand Its Verification by NMR Anisotropy Experiments. Macromolecules, 2006, 39, 6125-6132.	2.2	74
228	Chemistry of Carbon Decomposition Processes in Forests as Revealed by Solid-State Carbon-13 Nuclear Magnetic Resonance. , 0, , 89-117.		35
229	Surface density of cellobiohydrolase on crystalline celluloses FEBS Journal, 2006, 273, 2869-2878.	2.2	69
230	A solid state 13C high resolution NMR study of raw and chemically treated sisal fibers. Carbohydrate Polymers, 2006, 64, 127-133.	5.1	59
231	Swelling behavior of the cellulose lβ crystal models by molecular dynamics. Carbohydrate Research, 2006, 341, 2521-2530.	1.1	96
232	Physicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne). Carbohydrate Research, 2006, 341, 2677-2687.	1.1	154
233	CP MAS 13C spectral editing and relative quantitation of a soil sample. Solid State Nuclear Magnetic Resonance, 2006, 30, 81-88.	1.5	31
234	Structural investigation of cellulose \hat{l}_{\pm} and \hat{l}_{2} by 2D RFDR NMR spectroscopy: determination of sequence of magnetically inequivalent d-glucose units along cellulose chain. Cellulose, 2006, 13, 317-326.	2.4	40
235	Structural studies of bacterial cellulose through the solid-phase nitration and acetylation by CP/MAS 13C NMR spectroscopy. Cellulose, 2006, 13, 327-342.	2.4	64
236	The thermal expansion of celluloseÂll and IIIII crystals. Cellulose, 2006, 13, 281-290.	2.4	58

#	Article	IF	CITATIONS
237	Modelling the crystalline deformation of native and regenerated cellulose. Cellulose, 2006, 13, 291-307.	2.4	142
238	CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. Carbohydrate Research, 2006, 341, 591-597.	1.1	94
239	Radiation effect on the thermal conductivity and diffusivity of ramie fibers in a range of low temperatures by Î ³ rays. Journal of Applied Polymer Science, 2006, 100, 5007-5018.	1.3	9
240	Characterization of 25 tropical hardwoods with Fourier transform infrared, ultraviolet resonance Raman, and13C-NMR cross-polarization/magic-angle spinning spectroscopy. Journal of Applied Polymer Science, 2006, 102, 810-819.	1.3	51
241	Oligosaccharide Analogues of Polysaccharides. Part 26. Helvetica Chimica Acta, 2006, 89, 675-730.	1.0	20
243	Wood joints by through-dowel rotation welding: microstructure, 13C-NMR and water resistance. Journal of Adhesion Science and Technology, 2006, 20, 427-436.	1.4	70
244	Chemical structure and properties of cotton. , 2007, , 3-34.		69
245	Cross polarisation/magic angle spinning 13C-NMR spectroscopic studies of cellulose structural changes in hardwood dissolving pulp process. Holzforschung, 2007, 61, 675-679.	0.9	14
246	The Future Prospects of Microbial Cellulose in Biomedical Applications. Biomacromolecules, 2007, 8, 1-12.	2.6	1,047
247	Thermal Response in Crystalline Iβ Cellulose:  A Molecular Dynamics Study. Journal of Physical Chemistry B, 2007, 111, 9138-9145.	1.2	171
248	Molecular Dynamics Simulations of Solvated Crystal Models of Cellulose lαand IIII. Biomacromolecules, 2007, 8, 817-824.	2.6	62
249	Spectroscopic study of interactions between model direct dyes and cotton. Journal of Applied Polymer Science, 2007, 104, 758-766.	1.3	10
250	The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol–water systems: An X-ray powder diffraction study. Carbohydrate Polymers, 2007, 68, 35-43.	5.1	74
251	Carbohydrate components and crystalline structure of organosolv hemp (Cannabis sativa L.) bast fibers pulp. Bioresource Technology, 2007, 98, 491-497.	4.8	63
252	Activation of crystalline cellulose to cellulose IIII results in efficient hydrolysis by cellobiohydrolase. FEBS Journal, 2007, 274, 1785-1792.	2.2	135
253	Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses. Cellulose, 2007, 14, 283-293.	2.4	72
254	Upgrading of paper grade pulps to dissolving pulps by nitren extraction: yields, molecular and supramolecular structures of nitren extracted pulps. Cellulose, 2008, 15, 739-750.	2.4	41
255	Spectral assignments and anisotropy data of cellulose <i>I</i> _α : ¹³ Câ€NMR chemical shift data of cellulose <i>I</i> _α determined by INADEQUATE and RAI techniques applied to uniformly ¹³ C″abeled bacterial celluloses of different <i>Gluconacetobacter xvlinus</i> strains. Magnetic Resonance in Chemistry. 2008. 46. 1030-1036.	1.1	16

#	Article	IF	CITATIONS
256	2â€Azidoâ€2â€deoxycellulose: Synthesis and 1,3â€Dipolar Cycloaddition. Helvetica Chimica Acta, 2008, 91, 608-617.	1.0	18
257	Morphological and structural study of seed pericarp of Opuntia ficus-indica prickly pear fruits. Carbohydrate Polymers, 2008, 72, 102-112.	5.1	54
258	Changes in fiber ultrastructure during various kraft pulping conditions evaluated by 13C CPMAS NMR spectroscopy. Carbohydrate Polymers, 2008, 73, 156-163.	5.1	22
259	Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Materials Science and Engineering C, 2008, 28, 549-554.	3.8	117
260	Applications of High-Resolution Solid-State NMR Spectroscopy in Food Science. Journal of Agricultural and Food Chemistry, 2008, 56, 9317-9327.	2.4	54
261	Dynamics of Celluloseâ^'Water Interfaces:  NMR Spinâ ''Lattice Relaxation Times Calculated from Atomistic Computer Simulations. Journal of Physical Chemistry B, 2008, 112, 2590-2595.	1.2	74
262	Crystalline Cellulose and Derivatives. Springer Series in Wood Science, 2008, , .	0.8	130
263	Degradation of Cellulose under Alkaline Conditions: New Insights from a 12 Years Degradation Study. Environmental Science & Technology, 2008, 42, 2906-2911.	4.6	82
264	Structure and Thermal Behavior of a Cellulose Iâ^'Ethylenediamine Complex. Biomacromolecules, 2008, 9, 2898-2904.	2.6	48
265	13C CPMAS NMR Studies of Wood, Cellulose Fibers, and Derivatives. , 0, , 227-248.		4
266	Studies of Deformation Processes in Cellulosics Using Raman Microscopy. , 0, , 119-137.		0
267	A survey of cellulose biosynthesis in higher plants. Plant Biotechnology, 2008, 25, 315-322.	0.5	15
269	Solution Properties of Cellulose (Algal), Xylan, and Lignin. Zairyo/Journal of the Society of Materials Science, Japan, 2009, 58, 297-303.	0.1	1
270	KORRIGAN1 and its Aspen Homolog PttCel9A1 Decrease Cellulose Crystallinity in Arabidopsis Stems. Plant and Cell Physiology, 2009, 50, 1099-1115.	1.5	99
271	Structure and properties of the cellulose microfibril. Journal of Wood Science, 2009, 55, 241-249.	0.9	428
272	Structural stability of the solvated cellulose IIII crystal models: a molecular dynamics study. Cellulose, 2009, 16, 151-165.	2.4	23
273	Influence of different carbon sources on bacterial cellulose production by <i>Gluconacetobacter xylinus</i> strain ATCC 53524. Journal of Applied Microbiology, 2009, 107, 576-583.	1.4	233
274	Progress in nano-biocomposites based on polysaccharides and nanoclays. Materials Science and Engineering Reports, 2009, 67, 1-17.	14.8	267

#	Article	IF	Citations
275	Thermal degradation of carboxymethylcellulose in different salty forms. Thermochimica Acta, 2009, 494, 115-122.	1.2	86
276	Theoretical investigations of 13C chemical shifts in glucose, cellobiose, and native cellulose by quantum chemistry calculations. Journal of Molecular Structure, 2009, 921, 219-226.	1.8	23
277	Characterization of permineralized kerogen from an Eocene fossil fern. Organic Geochemistry, 2009, 40, 353-364.	0.9	35
278	Localization of Crystalline Allomorphs in Cellulose Microfibril. Biomacromolecules, 2009, 10, 2235-2239.	2.6	49
280	Structure and Properties of Cellulose. , 2010, , .		0
281	Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews, 2010, 110, 3479-3500.	23.0	4,701
282	Solvent Effects on the NMR Chemical Shifts of Imidazoliumâ€Based Ionic Liquids and Cellulose Therein. Macromolecular Symposia, 2010, 294, 75-89.	0.4	46
283	Accessibility, reactivity and supramolecular structure of E. globulus pulps with reduced xylan content. Wood Science and Technology, 2010, 44, 533-546.	1.4	30
284	Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form. Polymer Degradation and Stability, 2010, 95, 543-548.	2.7	174
285	Microstructure and mechanical properties of apocynum venetum fibers extracted by alkali-assisted ultrasound with different frequencies. Fibers and Polymers, 2010, 11, 48-53.	1.1	21
286	Preparation and characterization of aminobenzyl cellulose by two step synthesis from native cellulose. Fibers and Polymers, 2010, 11, 1101-1105.	1.1	9
287	Structure elucidation of uniformly 13C-labeled bacterial celluloses from different Gluconacetobacter xylinus strains. Cellulose, 2010, 17, 139-151.	2.4	7
288	Carbon-13 solid state NMR investigation and modeling of the morphological reorganization in regenerated cellulose fibres induced by controlled acid hydrolysis. Cellulose, 2010, 17, 231-243.	2.4	9
289	X-ray diffraction study on the thermal expansion behavior of cellulose lβ and its high-temperature phase. Polymer Degradation and Stability, 2010, 95, 1330-1334.	2.7	65
290	Coupling onto surface carboxylated cellulose nanocrystals. Polymer, 2010, 51, 5332-5344.	1.8	58
291	Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass. Biomass and Bioenergy, 2010, 34, 1885-1895.	2.9	132
292	An enzymatic signal amplification system for calorimetric studies of cellobiohydrolases. Analytical Biochemistry, 2010, 404, 140-148.	1.1	27
293	Spontaneous mutation results in lower cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Carbohydrate Polymers, 2010, 80, 337-343.	5.1	23

#	Article	IF	CITATIONS
294	A CP/MAS 13C-NMR study of cellulose fibril aggregation in eucalyptus dissolving pulps during drying and the correlation between aggregate dimensions and chemical reactivity. Holzforschung, 2010, 64, .	0.9	37
295	Synchrotron X-ray fiber diffraction study on the thermal expansion behavior of cellulose crystals in tension wood of Japanese poplar in the low-temperature region. Holzforschung, 2010, 64, .	0.9	17
296	Evaluation of Some Synthetic Oligolignols as Adhesives: A Molecular Docking Study. Journal of Adhesion Science and Technology, 2010, 24, 1739-1751.	1.4	7
297	Genetic modification of wood quality for second-generation biofuel production. GM Crops, 2010, 1, 230-236.	1.8	24
298	Preparation By Grafting Onto, Characterization, and Properties of Thermally Responsive Polymer-Decorated Cellulose Nanocrystals. Biomacromolecules, 2010, 11, 3652-3659.	2.6	213
299	Structure and Engineering of Celluloses. Advances in Carbohydrate Chemistry and Biochemistry, 2010, 64, 25-116.	0.4	144
300	Novel anisotropic materials from functionalised colloidal cellulose and cellulose derivatives. Journal of Materials Chemistry, 2010, 20, 10058.	6.7	66
301	Celluloses. , 2010, , 493-539.		9
302	Ultrafine Cellulose Fibers Produced by <i>Asaia bogorensis</i> , an Acetic Acid Bacterium. Biomacromolecules, 2011, 12, 2815-2821.	2.6	28
303	MECHANICAL PULPING: Characterization of dissolving pulp by multivariate data analysis of FT-IR and NMR spectra. Nordic Pulp and Paper Research Journal, 2011, 26, 398-409.	0.3	5
304	Bacterial Cellulose for Skin Repair Materials. , 0, , .		21
305	Dielectrophoresis of cellulose nanocrystals and alignment in ultrathin films by electric field-assisted shear assembly. Journal of Colloid and Interface Science, 2011, 363, 206-212.	5.0	75
306	Effects of hot water extraction and fungal decay on wood crystalline cellulose structure. Cellulose, 2011, 18, 1179-1190.	2.4	26
307	Crystal transition from Na–cellulose IV to cellulose II monitored using synchrotron X-ray diffraction. Carbohydrate Polymers, 2011, 83, 483-488.	5.1	42
308	Chemometric analyses of the 1H–13C cross-polarization build-up of celluloses NMR spectra: A novel approach for characterizing the cellulose crystallites. Carbohydrate Polymers, 2011, 84, 539-549.	5.1	11
309	Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydrate Polymers, 2011, 86, 1221-1229.	5.1	216
310	Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnology for Biofuels, 2011, 4, 41.	6.2	229
311	Cellulose from cladophorales green algae: From environmental problem to highâ€ŧech composite materials. Journal of Applied Polymer Science, 2011, 119, 2449-2460.	1.3	225

#	Article	IF	Citations
312	Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydrate Polymers, 2011, 84, 96-102.	5.1	343
313	Crystal transition from cellulose II hydrate to cellulose II. Carbohydrate Polymers, 2011, 86, 975-981.	5.1	31
314	Bacterial synthesized cellulose nanofibers; Effects of growth times and culture mediums on the structural characteristics. Carbohydrate Polymers, 2011, 86, 1187-1191.	5.1	93
315	Supermolecular structure of cellulose/amylose blends prepared from aqueous NaOH solutions and effects of amylose on structural formation of cellulose from its solution. Carbohydrate Research, 2011, 346, 807-814.	1.1	18
316	Bacterial cellulose–laponite clay nanocomposites. Polymer, 2011, 52, 157-163.	1.8	67
317	Effects of moderate temperatures: Artificial ageing of softwood and its effects on mechanical properties and chemistry. Wood Material Science and Engineering, 2011, 6, 58-68.	1.1	3
318	Cellulose Isolation Methodology for NMR Analysis of Cellulose Ultrastructure. Materials, 2011, 4, 1985-2002.	1.3	65
319	Cellulose nanofillers for food packaging. , 2011, , 86-107.		9
320	Mercerization of Agave americanaL. fibers. Journal of the Textile Institute, 2012, 103, 565-574.	1.0	15
321	Fundamental Structure and Its Distribution in Nature. Nippon Gomu Kyokaishi, 2012, 85, 382-387.	0.0	2
322	Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance. Industrial Biotechnology, 2012, 8, 191-208.	0.5	90
323	Modification of cellulosic fibers to enhance their dyeability using UV-irradiation. Carbohydrate Polymers, 2012, 89, 783-787.	5.1	20
325	Celluloses and Polyoses/Hemicelluloses. , 2012, , 83-152.		40
326	Ultrastructure of cellulose crystallites in flax textile fibres. Cellulose, 2012, 19, 1837-1854.	2.4	57
327	Photobleaching and Dimensional Stability of Rubber Wood Esterified by Fatty Acid Chlorides. Journal of Wood Chemistry and Technology, 2012, 32, 121-136.	0.9	23
328	Applying the Techniques on Materials I. Lecture Notes in Quantum Chemistry II, 2012, , 163-246.	0.3	0
329	Differences in crystalline cellulose modification due to degradation by brown and white rot fungi. Fungal Biology, 2012, 116, 1052-1063.	1.1	30
330	Piezoelectric Effect of Cellulose Nanocrystals Thin Films. ACS Macro Letters, 2012, 1, 867-870.	2.3	185

#	Article	IF	CITATIONS
331	New insights into nano-crystalline cellulose structure and morphology based on solid-state NMR. Cellulose, 2012, 19, 1619-1629.	2.4	54
332	Synthesis and Photophysical Behavior of Pyreneâ€Bearing Cellulose Nanocrystals for Fe ³⁺ Sensing. Macromolecular Chemistry and Physics, 2012, 213, 1612-1617.	1.1	83
333	Microstructure of cellulose: NMR relaxation study. Polymer Science - Series A, 2012, 54, 201-208.	0.4	24
334	Comparison of Cellulose Il ² Simulations with Three Carbohydrate Force Fields. Journal of Chemical Theory and Computation, 2012, 8, 735-748.	2.3	113
335	Origin of Initial Burst in Activity for Trichoderma reesei endo-Glucanases Hydrolyzing Insoluble Cellulose. Journal of Biological Chemistry, 2012, 287, 1252-1260.	1.6	53
336	Structure and crystallization of sub-elementary fibrils of bacterial cellulose isolated by using a fluorescent brightening agent. Cellulose, 2012, 19, 713-727.	2.4	16
337	Susceptibility of never-dried and freeze-dried bacterial cellulose towards esterification with organic acid. Cellulose, 2012, 19, 891-900.	2.4	54
338	Bulk cellulose plastic materials from processing cellulose powder using back pressure-equal channel angular pressing. Carbohydrate Polymers, 2012, 87, 2470-2476.	5.1	42
339	Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydrate Polymers, 2012, 88, 547-557.	5.1	93
340	Hydration properties of regioselectively etherified celluloses monitored by 2H and 13C solid-state MAS NMR spectroscopy. Carbohydrate Polymers, 2012, 89, 640-647.	5.1	10
341	DFT study of 17O, 1H and 13C NMR chemical shifts in two forms of native cellulose, I and I. Carbohydrate Research, 2012, 347, 99-106.	1.1	12
342	Hydration of cellobiose: Structure and dynamics of cellobiose –(H2O)n, n=5–25. Chemical Physics Letters, 2012, 531, 52-58.	1.2	15
343	Nuclear Magnetic Resonance to characterize and monitor Cultural Heritage. Progress in Nuclear Magnetic Resonance Spectroscopy, 2012, 64, 29-69.	3.9	115
344	A critical review of all-cellulose composites. Journal of Materials Science, 2012, 47, 1171-1186.	1.7	344
345	Carbon fibres from cellulosic precursors: a review. Journal of Materials Science, 2012, 47, 4236-4250.	1.7	249
346	Syndiotactic polypropylene/microfibrous cellulose composites: Effect of filler size on tensile properties. Journal of Applied Polymer Science, 2013, 128, 915-922.	1.3	12
347	Circular Dichroism Spectroscopy: Units. , 2013, , 316-317.		0
348	Green Nondegrading Approach to Alkyne-Functionalized Cellulose Fibers and Biohybrids Thereof: Synthesis and Mapping of the Derivatization. Biomacromolecules, 2013, 14, 254-263.	2.6	36

	CIJ	CITATION REPORT	
#	Article	IF	Citations
349	lαÂ→Âlβ transition of cellulose under ultrasonic radiation. Cellulose, 2013, 20, 597-603.	2.4	30
350	Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents. Soft Matter, 2013, 9, 11309.	1.2	78
351	Sum of the Parts: Composition and Architecture of the Bacterial Extracellular Matrix. Journal of Molecular Biology, 2013, 425, 4286-4294.	2.0	120
354	Preparation of nanoscale cellulose materials with different morphologies by mechanical treatments and their characterization. Cellulose, 2013, 20, 1841-1852.	2.4	25
355	When a proton attacks cellobiose in the gas phase: ab initio molecular dynamics simulations. Physical Chemistry Chemical Physics, 2013, 15, 15382.	1.3	4
356	Mercerized cellulose biocomposites: a study of influence of mercerization on cellulose supramolecular structure, water retention value and tensile properties. Cellulose, 2013, 20, 57-65.	2.4	48
357	Characterizing Crystal Disorder of Trospium Chloride: A Comprehensive,13C CP/MAS NMR, DSC, FTIR, and XRPD Study. Journal of Pharmaceutical Sciences, 2013, 102, 1235-1248.	1.6	15
358	Cellulose-wheat gluten bulk plastic materials produced from processing raw powders by severe shear deformation. Carbohydrate Polymers, 2013, 92, 2206-2211.	5.1	11
359	Codes of Practice. , 2013, , 327-327.		0
360	Lignocellulosic Materials Into Biohydrogen and Biomethane: Impact of Structural Features and Pretreatment. Critical Reviews in Environmental Science and Technology, 2013, 43, 260-322.	6.6	318
361	Characteristics of microfibrillated cellulosic fibers and paper sheets from Korean white pine. Wood Science and Technology, 2013, 47, 925-937.	1.4	30
362	Cytochrome c Oxidase (Complex IV). , 2013, , 423-426.		0
363	Cyclooxygenase – Computational Studies. , 2013, , 414-415.		0
364	Recent advances in liquid biofuel production from algal feedstocks. Applied Energy, 2013, 102, 1371-	1381. 5.1	324
365	Transient Kinetics and Rate-Limiting Steps for the Processive Cellobiohydrolase Cel7A: Effects of Substrate Structure and Carbohydrate Binding Domain. Biochemistry, 2013, 52, 8938-8948.	1.2	73
366	Quantum mechanical modeling of the structures, energetics and spectral properties of $\hat{l_\pm}$ and $\hat{l_2}$ cellulose. Cellulose, 2013, 20, 9-23.	2.4	39
367	A new, robust method for measuring average fibre wall pore sizes in cellulose I rich plant fibre walls. Cellulose, 2013, 20, 623-631.	2.4	30
368	Partial crystalline transformation of solvated cellulose IIII crystals, reproduced by theoretical calculations. Cellulose, 2013, 20, 605-612.	2.4	14

#	Article	IF	CITATIONS
369	Non-invasive NMR stratigraphy of a multi-layered artefact: an ancient detached mural painting. Analytical and Bioanalytical Chemistry, 2013, 405, 8669-8675.	1.9	14
370	The Influence of Processing and the Polymorphism of Lignocellulosic Fillers on the Structure and Properties of Composite Materials—A Review. Materials, 2013, 6, 2747-2767.	1.3	47
371	Biosynthesis and Characterization of Bacterial Cellulose Produced by a Wild Strain of Acetobacter spp Materials Research Society Symposia Proceedings, 2013, 1498, 109-114.	0.1	0
372	Self-Assembly and Intermolecular Forces When Cellulose and Water Interact Using Molecular Modeling. Journal of Nanomaterials, 2013, 2013, 1-12.	1.5	44
373	Formation of Highly Twisted Ribbons in a Carboxymethylcellulase Gene-Disrupted Strain of a Cellulose-Producing Bacterium. Journal of Bacteriology, 2013, 195, 958-964.	1.0	70
374	Cellulose, the Predominant Constituent of Biomass. , 2013, , 123-187.		0
375	Direct Dissolution of Cellulose: Background, Means and Applications. , 0, , .		44
376	Solvation Behavior of Cellulose and Xylan in the MIM/EMIMAc Ionic Liquid Solvent System: Parameters for Small-Scale Solvation. BioResources, 2013, 9, .	0.5	8
377	Constraints on \$\${m l}eta\$\$ I β cellulose twist from DFT calculations of \$\$^{13}hbox {C}\$\$ 13 C NMR chemical shifts. Cellulose, 2014, 21, 3979-3991.	2.4	14
378	Production of Bacterial Cellulose: Use of a New Strain of Microorganism. Materials and Energy, 2014, , 105-122.	2.5	1
380	Bacterial Cellulose Production and its Industrial Applications. Journal of Bioprocessing & Biotechniques, 2014, 04, .	0.2	210
381	Kombuchaâ€synthesized bacterial cellulose: Preparation, characterization, and biocompatibility evaluation. Journal of Biomedical Materials Research - Part A, 2014, 102, 1548-1557.	2.1	63
382	More Than Meets the Eye in Bacterial Cellulose: Biosynthesis, Bioprocessing, and Applications in Advanced Fiber Composites. Macromolecular Bioscience, 2014, 14, 10-32.	2.1	316
383	Solid-state 13C NMR study of the mobility of polysaccharides in the cell walls of two apple cultivars of different firmness. Carbohydrate Research, 2014, 386, 1-6.	1.1	31
384	Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydrate Polymers, 2014, 106, 132-141.	5.1	108
385	Prediction of cellulose nanotube models through density functional theory calculations. Cellulose, 2014, 21, 87-95.	2.4	7
386	Characterization of biomass and its derived char using ¹³ C-solid state nuclear magnetic resonance. Green Chemistry, 2014, 16, 4839-4869.	4.6	82
387	Reversibility of Substrate Adsorption for the Cellulases Cel7A, Cel6A, and Cel7B from <i>Hypocrea jecorina</i> . Langmuir, 2014, 30, 12602-12609.	1.6	21

#	Article	IF	CITATIONS
388	Natural polymer biocomposites produced from processing raw wood flour by severe shear deformation. Carbohydrate Polymers, 2014, 113, 46-52.	5.1	23
389	Polarization transfer solid-state NMR: a new method for studying cellulose dissolution. RSC Advances, 2014, 4, 31836-31839.	1.7	19
390	Theoretical Study of the Structural Stability of Molecular Chain Sheet Models of Cellulose Crystal Allomorphs. Journal of Physical Chemistry B, 2014, 118, 9313-9321.	1.2	32
391	Comparison of changes in cellulose ultrastructure during different pretreatments of poplar. Cellulose, 2014, 21, 2419-2431.	2.4	47
392	Advances in solid-state NMR of cellulose. Current Opinion in Biotechnology, 2014, 27, 176-184.	3.3	138
393	Isolation of cellulose from steam-exploded rice straw with aniline catalyzing dimethyl formamide aqueous solution. Renewable Energy, 2014, 63, 324-329.	4.3	15
394	Cellulose Digestion and Metabolism Induced Biocatalytic Transitions in Anaerobic Microbial Ecosystems. Metabolites, 2014, 4, 36-52.	1.3	21
395	Enzyme-Assisted Extraction of Oil from Wet Microalgae Scenedesmus sp. G4. Energies, 2015, 8, 8165-8174.	1.6	36
396	Untreated Chlorella homosphaera biomass allows for high rates of cell wall glucan enzymatic hydrolysis when using exoglucanase-free cellulases. Biotechnology for Biofuels, 2015, 8, 25.	6.2	9
397	Combining small-angle and intermediate-angle neutron scattering to study the hierarchical structure in microbial cellulose. European Polymer Journal, 2015, 66, 437-443.	2.6	1
398	Supramolecular reorganizations in cellulose during hydration. Biophysics (Russian Federation), 2015, 60, 43-52.	0.2	9
399	Environmental NMR – the early years. Magnetic Resonance in Chemistry, 2015, 53, 635-647.	1.1	7
400	The Potential of NanoCellulose in the Packaging Field: A Review. Packaging Technology and Science, 2015, 28, 475-508.	1.3	191
401	Fungal Cellulases. Chemical Reviews, 2015, 115, 1308-1448.	23.0	673
402	Features of the structural organization and sorption properties of cellulose. Polymer Science - Series A, 2015, 57, 43-51.	0.4	16
403	Brachypodium Cell Wall Mutant with Enhanced Saccharification Potential Despite Increased Lignin Content. Bioenergy Research, 2015, 8, 53-67.	2.2	15
404	Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: A review. Carbohydrate Polymers, 2015, 125, 120-134.	5.1	80
405	Analysis of mercerization process based on the intensity change of deconvoluted resonances of 13C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions. Materials Science and Engineering C, 2015, 53, 189-195.	3.8	9

#	ARTICLE	IF	CITATIONS
406	Interactions of Arabinoxylan and (1,3)(1,4)-β-Glucan with Cellulose Networks. Biomacromolecules, 2015, 16, 1232-1239.	2.6	63
407	Binding of arabinan or galactan during cellulose synthesis is extensive and reversible. Carbohydrate Polymers, 2015, 126, 108-121.	5.1	49
409	Enhanced Materials from Nature: Nanocellulose from Citrus Waste. Molecules, 2015, 20, 5908-5923.	1.7	116
410	Multicolor Fluorescent Labeling of Cellulose Nanofibrils by Click Chemistry. Biomacromolecules, 2015, 16, 1293-1300.	2.6	70
411	Unique Aspects of the Structure and Dynamics of Elementary I <i>β</i> Cellulose Microfibrils Revealed by Computational Simulations Â. Plant Physiology, 2015, 168, 3-17.	2.3	77
412	Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers. Cellulose, 2015, 22, 3701-3714.	2.4	53
413	Preparation and characterization of a transparent amorphous cellulose film. RSC Advances, 2015, 5, 2900-2907.	1.7	54
414	A Forensic Application of Solid-State 13C NMR Spectroscopy: the Date of a Photographic Development. Applied Magnetic Resonance, 2016, 47, 1015-1019.	0.6	0
415	Grinding process for the production of nanofibrillated cellulose based on unbleached and bleached bamboo organosolv pulp. Cellulose, 2016, 23, 2971-2987.	2.4	58
416	A critical review of the current knowledge regarding the biological impact of nanocellulose. Journal of Nanobiotechnology, 2016, 14, 78.	4.2	184
417	Synthesis and oxidative stability of phenolic antioxidants immobilized by cellulose nanocrystals. Polymer Degradation and Stability, 2016, 128, 253-259.	2.7	7
418	Multi-scale model for the hierarchical architecture of native cellulose hydrogels. Carbohydrate Polymers, 2016, 147, 542-555.	5.1	52
419	An integrated spectroscopic and wet chemical approach to investigate grass litter decomposition chemistry. Biogeochemistry, 2016, 128, 107-123.	1.7	40
420	Synthesis, characterization and stabilization effect of antioxidant-functionalized celluloses. Polymer Degradation and Stability, 2016, 134, 41-48.	2.7	2
421	Modeling of negative Poisson's ratio (auxetic) crystalline cellulose lβ. Cellulose, 2016, 23, 3429-3448.	2.4	14
422	Management of citrus waste by switching in the production of nanocellulose. IET Nanobiotechnology, 2016, 10, 395-399.	1.9	35
423	Imidazole-Doped Cellulose as Membrane for Fuel Cells: Structural and Dynamic Insights from Solid-State NMR. Journal of Physical Chemistry C, 2016, 120, 19574-19585.	1.5	33
425	13C NMR assignments of regenerated cellulose from solid-state 2D NMR spectroscopy. Carbohydrate Polymers, 2016, 151, 480-487.	5.1	83

	Сітатіо	n Report	
#	Article	IF	CITATIONS
426	Correlating Cellulose Nanocrystal Particle Size and Surface Area. Langmuir, 2016, 32, 6105-6114.	1.6	131
427	Cellulose–solvent interactions from self-diffusion NMR. Cellulose, 2016, 23, 2753-2758.	2.4	24
428	Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents. Cellulose, 2016, 23, 247-258.	2.4	64
429	Process Analysis of Alkaline Flocculation Harvesting for Chaetoceros muelleri and Scenedesmus quadricauda. Bioenergy Research, 2016, 9, 682-690.	2.2	8
430	Luminescent Nanocellulose Platform: From Controlled Graft Block Copolymerization to Biomarker Sensing. Biomacromolecules, 2016, 17, 1101-1109.	2.6	39
431	Production of renewable cellulose nanopaper from culinary banana (Musa ABB) peel and its characterization. Industrial Crops and Products, 2016, 86, 102-112.	2.5	33
432	Interactions of pectins with cellulose during its synthesis in the absence of calcium. Food Hydrocolloids, 2016, 52, 57-68.	5.6	65
433	A uniaxially oriented nanofibrous cellulose scaffold from pellicles produced by Gluconacetobacter xylinus in dissolved oxygen culture. Carbohydrate Polymers, 2016, 135, 215-224.	5.1	20
434	Impact of plant matrix polysaccharides on cellulose produced by surface-tethered cellulose synthases. Carbohydrate Polymers, 2017, 162, 93-99.	5.1	11
437	Hydrazine treatment improves conductivity of bacterial cellulose/graphene nanocomposites obtained by a novel processing method. Carbohydrate Polymers, 2017, 171, 68-76.	5.1	38
438	Improving the mechanical properties of CNF films by NMMO partial dissolution with hot calender activation. Cellulose, 2017, 24, 1691-1704.	2.4	15
439	Assessment of cellulose structural variety from different origins using near infrared spectroscopy. Cellulose, 2017, 24, 5313-5325.	2.4	16
440	Different Conformations of Surface Cellulose Molecules in Native Cellulose Microfibrils Revealed by Layer-by-Layer Peeling. Biomacromolecules, 2017, 18, 3687-3694.	2.6	38
441	Structure of cellulose microfibrils in mature cotton fibres. Carbohydrate Polymers, 2017, 175, 450-463.	5.1	74
442	Cellulose nanocomposites. , 2017, , 483-516.		14
443	Algae Biotechnology. , 2017, , 301-334.		9
444	BIOMASS PYROLYSIS KINETICS: A REVIEW OF MOLECULAR-SCALE MODELING CONTRIBUTIONS. Brazilian Journal of Chemical Engineering, 2017, 34, 1-18.	0.7	24
445	Chemical compositions of natural fibres. , 2017, , 23-58.		41

#	Article	IF	CITATIONS
446	Natural bacterial biodegradable medical polymers. , 2017, , 295-319.		6
447	An evaluation of the structures of cellulose generated by the CHARMM force field: comparisons to in planta cellulose. Cellulose, 2018, 25, 3755-3777.	2.4	20
448	Reduction mechanism of hexavalent chromium by functional groups of undissolved humic acid and humin fractions of typical black soil from Northeast China. Environmental Science and Pollution Research, 2018, 25, 16913-16921.	2.7	26
449	Mechanochemical Decomposition of Crystalline Cellulose in the Presence of Protonated Layered Niobium Molybdate Solid Acid Catalyst. ChemSusChem, 2018, 11, 888-896.	3.6	22
450	Production and Characteristics of Cellulose from Different Sources. Springer Series on Polymer and Composite Materials, 2018, , 1-38.	0.5	24
451	Structure and Properties of Cellulose and Its Derivatives. Springer Series on Polymer and Composite Materials, 2018, , 39-172.	0.5	4
452	Surface modification of nanosatrch using nano silver: a potential antibacterial for food package coating. Journal of Food Science and Technology, 2018, 55, 899-904.	1.4	19
453	Mechanical response of multi-layer bacterial cellulose nanopaper reinforced polylactide laminated composites. Composites Part A: Applied Science and Manufacturing, 2018, 107, 155-163.	3.8	26
454	Cellulose Crystal Dissolution in Imidazolium-Based Ionic Liquids: A Theoretical Study. Journal of Physical Chemistry B, 2018, 122, 258-266.	1.2	55
455	Molecular dynamics simulations of theoretical cellulose nanotube models. Carbohydrate Polymers, 2018, 190, 331-338.	5.1	6
456	XRD and solid state 13C-NMR evaluation of the crystallinity enhancement of 13C-labeled bacterial cellulose biosynthesized by Komagataeibacter xylinus under different stimuli: A comparative strategy of analyses. Carbohydrate Research, 2018, 461, 51-59.	1.1	38
457	Effects of heat treatment on the chemical compositions and thermal decomposition kinetics of Japanese cedar and beech wood. Polymer Degradation and Stability, 2018, 158, 220-227.	2.7	45
459	High yield production of cellulose by a <i>Komagataeibacter rhaeticus</i> PG2 strain isolated from pomegranate as a new host. RSC Advances, 2018, 8, 29797-29805.	1.7	50
460	Surfactant controlled zwitterionic cellulose nanofibril dispersions. Soft Matter, 2018, 14, 7793-7800.	1.2	16
461	Review: Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Progress in Polymer Science, 2018, 86, 122-148.	11.8	221
462	DFT Optimization of Isolated Molecular Chain Sheet Models Constituting Native Cellulose Crystal Structures. ACS Omega, 2018, 3, 8050-8058.	1.6	21
463	A multistep mild process for preparation of nanocellulose from orange bagasse. Cellulose, 2018, 25, 5739-5750.	2.4	43
464	Investigation of the internal structure and dynamics of cellulose by 13C-NMR relaxometry and 2DPASS-MAS-NMR measurements. Journal of Biomolecular NMR, 2019, 73, 601-616.	1.6	23

#	Article	IF	CITATIONS
465	Bacterial Cellulose production by K. saccharivorans BC1 strain using crude distillery effluent as cheap and cost effective nutrient medium. International Journal of Biological Macromolecules, 2019, 138, 950-957.	3.6	49
466	Graphene two-dimensional crystal prepared from cellulose two-dimensional crystal hydrolysed from sustainable biomass sugarcane bagasse. Journal of Cleaner Production, 2019, 241, 118209.	4.6	24
467	The formation of Gluconacetobacter xylinum cellulose under the influence of the dye brilliant yellow. Cellulose, 2019, 26, 9373-9386.	2.4	2
468	Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (ochrophyta; phaeophyceae). Renewable and Sustainable Energy Reviews, 2019, 112, 626-642.	8.2	50
469	Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. Journal of Biological Engineering, 2019, 13, 55.	2.0	127
470	Cellulose Nanocrystals as a Sustainable Raw Material: Cytotoxicity and Applications on Healthcare Technology. Macromolecular Materials and Engineering, 2019, 304, 1900092.	1.7	32
471	Enhancing enzymatic hydrolysis yield of sweet sorghum straw polysaccharides by heavy ion beams irradiation pretreatment. Carbohydrate Polymers, 2019, 222, 114976.	5.1	23
472	Interactions of arabinogalactans with bacterial cellulose during its synthesis: Structure and physical properties. Food Hydrocolloids, 2019, 96, 644-652.	5.6	6
473	Hierarchical structure of bacterial-derived cellulose and its impact on biomedical applications. Current Opinion in Chemical Engineering, 2019, 24, 122-130.	3.8	46
474	Study of the effect of enzymatic deconstruction on natural cellulose by NMR measurements. Chemical Physics Letters, 2019, 727, 105-115.	1.2	21
475	Metrologically traceable quantification of trifluoroacetic acid content in peptide reference materials by19F solid-state NMR. Metrologia, 2019, 56, 024002.	0.6	5
476	A review of nanocellulose in the drug-delivery system. , 2019, , 131-164.		18
477	Progress and Opportunities in the Characterization of Cellulose – An Important Regulator of Cell Wall Growth and Mechanics. Frontiers in Plant Science, 2018, 9, 1894.	1.7	155
478	Observation of in vitro cellulose synthesis by bacterial cellulose synthase with time-resolved small angle X-ray scattering. International Journal of Biological Macromolecules, 2019, 130, 765-777.	3.6	9
479	Recent advances and an industrial perspective of cellulose nanocrystal functionalization through polymer grafting. Current Opinion in Solid State and Materials Science, 2019, 23, 74-91.	5.6	75
480	Molecular structure-reactivity correlations of humic acid and humin fractions from a typical black soil for hexavalent chromium reduction. Science of the Total Environment, 2019, 651, 2975-2984.	3.9	57
481	Immobilization of α-Fe2O3 nanoparticles on the cellulose surface: role of cellulose in tuning the microstructure and crystallographic phase. Cellulose, 2019, 26, 1757-1767.	2.4	10
482	Controlled mercerization of bacterial cellulose provides tunability of modulus and ductility over two orders of magnitude. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 530-537.	1.5	6

#	Article	IF	CITATIONS
483	Exploring structural variations of hydrogen-bonding patterns in cellulose during mechanical pulp refining of tobacco stems. Carbohydrate Polymers, 2019, 204, 247-254.	5.1	44
484	Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste and Biomass Valorization, 2019, 10, 235-251.	1.8	361
485	Molecular Dynamics Simulation of Cellulose I–Ethylenediamine Complex Crystal Models. Journal of Physical Chemistry B, 2020, 124, 134-143.	1.2	6
486	Study of xylan and cellulose interactions monitored with solid-state NMR and QCM-D. Holzforschung, 2020, 74, 643-653.	0.9	9
487	Terahertz time-domain spectroscopy as a novel tool for crystallographic analysis in cellulose. Cellulose, 2020, 27, 9767-9777.	2.4	14
488	Thermally Insulating Nanocelluloseâ€Based Materials. Advanced Materials, 2021, 33, e2001839.	11.1	153
489	Convergent evolution of processivity in bacterial and fungal cellulases. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19896-19903.	3.3	31
490	Methane potentials and organic matter characterization of wood fibres from pulp and paper mills: The influence of raw material, pulping process and bleaching technique. Biomass and Bioenergy, 2020, 143, 105824.	2.9	7
491	Investigation on parameters optimization to produce hydrochar without carbohydrate carbon. Science of the Total Environment, 2020, 748, 141354.	3.9	4
492	Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks. Nature Communications, 2020, 11, 4692.	5.8	117
493	Industrial-Scale Production and Applications of Bacterial Cellulose. Frontiers in Bioengineering and Biotechnology, 2020, 8, 605374.	2.0	142
494	Rapid Depolymerization of Decrystallized Cellulose to Soluble Products via Ethanolysis under Mild Conditions. ChemSusChem, 2020, 13, 2634-2641.	3.6	7
495	Sunflower oil-based MCC surface modification to achieve improved thermomechanical properties of a polypropylene composite. Cellulose, 2020, 27, 4355-4371.	2.4	15
496	Wide Angle X-Ray Scattering to Study the Atomic Structure of Polymeric Fibers. Crystals, 2020, 10, 274.	1.0	8
497	Glycosidic Bond Oxidation: The Structure, Function, and Mechanism of Polysaccharide Monooxygenases. , 2020, , 298-331.		9
498	Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnology Advances, 2020, 41, 107549.	6.0	144
499	Different Facets of Lignocellulosic Biomass Including Pectin and Its Perspectives. Waste and Biomass Valorization, 2021, 12, 4805-4823.	1.8	34
500	Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: a review. Journal of Materials Chemistry A, 2021, 9, 1910-1937.	5.2	168

#	Article	IF	CITATIONS
501	Harnessing the Sustainable Bioresource, Cellulose at the Nanoscale for Multifarious Environmental Applications. , 2021, , 65-91.		0
502	From natural cellulose to functional nanocomposites for environmental applications. , 2021, , 111-151.		2
503	Order in cellulosics: Historical review of crystal structure research on cellulose. Carbohydrate Polymers, 2021, 254, 117417.	5.1	70
504	Static dielectric constant and dielectric loss of cellulose insulation: Molecular dynamics simulations. High Voltage, 2021, 6, 1051-1060.	2.7	18
505	Grafting from cellulose nanofibres with naturally-derived oil to reduce water absorption. Polymer, 2021, 222, 123659.	1.8	2
507	The role of inorganic electrolyte (salt) in cellulosic fibre dyeing: Part 1 fundamental aspects. Coloration Technology, 2021, 137, 421-444.	0.7	10
508	Valorization of fruit processing waste to produce high value-added bacterial nanocellulose by a novel strain Komagataeibacter xylinus IITR DKH20. Carbohydrate Polymers, 2021, 260, 117807.	5.1	32
509	On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century. Pure and Applied Chemistry, 2021, .	0.9	0
512	Cellulose. Springer Series in Wood Science, 2008, , 101-174.	0.8	20
513	Direct Characterization of Chemical Properties of Fibers. Springer Series in Wood Science, 1999, , 149-192.	0.8	4
515	Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydrate Research, 2004, 339, 569-578.	1.1	138
516	On the cross-sectional shape of the cellulose crystallites in the tunicate Halocynthia papillosa. Proceedings Annual Meeting Electron Microscopy Society of America, 1990, 48, 566-567.	0.0	2
517	Molecular Dynamics Simulation of Cellulose Synthase Subunit D Octamer with Cellulose Chains from Acetic Acid Bacteria: Insight into Dynamic Behaviors and Thermodynamics on Substrate Recognition. Journal of Chemical Theory and Computation, 2021, 17, 488-496.	2.3	8
518	CHAPTER 10. Bulk and Surface Analysis of Carbonaceous Materials. RSC Green Chemistry, 2015, , 311-354.	0.0	3
519	CHAPTER 15. Inorganic Nanomaterials for the Deacidification of Paper. RSC Nanoscience and Nanotechnology, 2013, , 396-429.	0.2	2
521	Chemistry and slid-state structure of cellulose Journal of Fiber Science and Technology, 1989, 45, P469-P480.	0.0	2
522	I : Structures and Critical Mechanical Properties of Celluloses. Zairyo/Journal of the Society of Materials Science, Japan, 2008, 57, 97-103.	0.1	4
523	Evaluation of OH···O Type Hydrogen Bond Energy in Native Cellulose by Quantum Chemical Calculations. Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69, 459-464.	0.1	1

#	Article	IF	Citations
524	Effects of Sodium Hydroxide and Liquid Ammonia Treatments on Shape Changes of Cross-Sectional of Cotton Fibers Due to Swelling Seni Kikai Gakkai Shi/Journal of the Textile Machinery Society of Japan, 1996, 49, T290-T297.	0.0	2
525	Size Exclusion Chromatography of Cellulose and Cellulose Derivatives. , 2003, , .		3
526	Recent Developments in Spectroscopic and Chemical Characterization of Cellulose. , 2004, , .		4
527	Solid Structure of Native Celluloses from Different Origins and Their Solubility in LiCl/Amide Systems. Zairyo/Journal of the Society of Materials Science, Japan, 2010, 59, 273-278.	0.1	4
528	Biopolymers. Contemporary Food Engineering, 2012, , 17-68.	0.2	0
530	Bacterial cellulose as a functional material for papermaking Kami Pa Gikyoshi/Japan Tappi Journal, 1996, 50, 772-776.	0.1	0
531	ã,»ãƒ«ãƒãƒ¼ã,¹ç"Ÿå•̂æ^ã®æœ€è;'ã®ã,ã⊷ã¾ã⊷ã"進æ©. Journal of Fiber Science and Technology, 1997, 53, P2	20-1926.	0
532	Research trend on fine structure and reforming treatment of cotton fibers Seni Kikai Gakkai Shi/Journal of the Textile Machinery Society of Japan, 1998, 51, P646-P652.	0.0	0
533	Effects of Sodium Hydroxide and Liquid Ammonia Treatments On Shape Changes of Cross-Sectional of Cotton Fibers Due to Swelling. Journal of the Textile Machinery Society of Japan English Edition, 1998, 44, 43-49.	0.1	0
534	Bagasse Sustainable Polymers for Cellulose Hydrogel Sheets Showing Tissue Regeneration. , 2016, , 745-764.		1
535	New Use for an "Old―Polysaccharide: Pectin-Based Composite Materials. , 2016, , 99-136.		0
536	Biomecánica de los árboles: crecimiento, anatomÃa y morfologÃa. Madera Bosques, 2019, 25, .	0.1	1
538	Analyzing the effects of thermal stress on insulator papers by solid-state 13C NMR spectroscopy. Cellulose, 2022, 29, 1081-1095.	2.4	15
540	Solid-State Nuclear Magnetic Resonance as a Tool to Probe the Impact of Mechanical Preprocessing on the Structure and Arrangement of Plant Cell Wall Polymers. Frontiers in Plant Science, 2021, 12, 766506.	1.7	3
541	Cellulose fiber biodegradation in natural waters: river water, brackish water, and seawater. Cellulose, 2022, 29, 2917-2926.	2.4	8
542	Enzymatic synthesis of cellulose in space: gravity is a crucial factor for building cellulose II gel structure. Cellulose, 2022, 29, 2999-3015.	2.4	5
543	Direct quantification of the degree of polymerization of hydrolyzed cellulose by solid-state NMR spectroscopy. Cellulose, 2022, 29, 2131-2144.	2.4	12
544	Applications of NMR spectroscopy in cultural heritage science. , 2022, , .		0

#	Article	IF	CITATIONS
545	Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chemical Reviews, 2022, 122, 10036-10086.	23.0	60
546	Cellulose and Tissue Engineering. , 2022, , 1161-1186.		0
547	The flocculation process of Chlorella sp. using chitosan as a bio-flocculant: Optimization of operating conditions by response surface methodology. Current Research in Green and Sustainable Chemistry, 2022, 5, 100291.	2.9	15
548	Cellulose Nanocrystals from Postconsumer Cotton and Blended Fabrics: A Study on Their Properties, Chemical Composition, and Process Efficiency. ACS Sustainable Chemistry and Engineering, 2022, 10, 3787-3798.	3.2	17
549	Solid State Polymer Architecture of Empty Fruit Bunches of the African Oil Palm. Reviews and Advances in Chemistry, 2021, 11, 166-177.	0.2	0
550	Advance on the pyrolytic transformation of cellulose. Journal of Fuel Chemistry and Technology, 2021, 49, 1733-1752.	0.9	13
551	Triboelectric nanogenerator based on lignocellulosic waste fruit shell tribopositive material: Comparative analysis. Materials Today Sustainability, 2022, 18, 100146.	1.9	20
552	X-ray Diffraction Data on the Bacterial Nanocellulose Synthesized by Komagataeibacter xylinus Ð'-12429 and Ð'-12431 Microbial Producers in Miscanthus- and Oat Hull-Derived Enzymatic Hydrolyzates. Crystallography Reports, 2022, 67, 391-397.	0.1	5
553	Valorization of hydrolysis lignin from a spruce-based biorefinery by applying Î ³ -valerolactone treatment. Bioresource Technology, 2022, 359, 127466.	4.8	9
554	Highlighting and solving analytical problems for hunting down hidden information from ancient papyri by surface techniques. Journal of Cultural Heritage, 2022, 57, 60-78.	1.5	0
555	Structural diversity of natural cellulose and related applications using delignified wood. Journal of Wood Science, 2022, 68, .	0.9	1
556	Engineering Dental Tissues Using Biomaterials with Piezoelectric Effect: Current Progress and Future Perspectives. Journal of Functional Biomaterials, 2023, 14, 8.	1.8	6
558	Nanocellulose-Based (Bio)composites for Optoelectronic Applications. , 2023, , 1-26.		0
559	Understanding Nanocellulose–Water Interactions: Turning a Detriment into an Asset. Chemical Reviews, 2023, 123, 1925-2015.	23.0	61
560	High microbiostatic and microbicidal efficiencies of bacterial cellulose-ZnO nanocomposites for in vivo microbial inhibition and filtering. Colloid and Polymer Science, 2023, 301, 389-399.	1.0	0
561	Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi. Journal of 1 Faculty of Engineering and Architecture of Gazi University, 2023, 38, 2055-2068.	:he 0.3	1
562	Resolving the discrepancies in reported 13C solid state NMR chemical shifts for native celluloses. Cellulose, 2023, 30, 4827-4839.	2.4	5
563	Nanocellulose-Based (Bio)composites for Optoelectronic Applications. , 2023, , 1059-1084.		0

#	Article	IF	CITATIONS
	Comparison and assessment of methods for cellulose crystallinity determination. Chemical Society Reviews, 2023, 52, 6417-6446.	18.7	16