The Electrocatalysis of Oxygen Evolution on Perovskite

Journal of the Electrochemical Society 131, 290-302 DOI: 10.1149/1.2115565

Citation Report

#	ARTICLE	IF	CITATIONS
5	The anodic polarization characteristics of nickel-metal oxide film electrodes in alkaline solution Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1985, 1985, 2219-2225.	0.1	0
6	Water vapour partial pressures and water activities in potassium and sodium hydroxide solutions over wide concentration and temperature ranges. International Journal of Hydrogen Energy, 1985, 10, 233-243.	3.8	85
7	Laser-pulse photocurrent transient measurements at oxygen evolving n-PtS2. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 189, 65-84.	0.3	16
8	ALKALINE FUEL CELLS (AFCs). , 1986, , 95-135.		3
9	The electrochemical response of binary mixtures of hydrous transition metal hydroxides co-precipitated on conducting substrates with reference to the oxygen evolution reaction. Electrochimica Acta, 1986, 31, 1321-1332.	2.6	60
10	3. Alkaline fuel cells (AFCs). Energy, 1986, 11, 95-135.	4.5	22
11	Electrocatalysis by amorphous metals of hydrogen and oxygen evolution in alkaline solution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 201, 61-83.	0.3	126
12	Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Materials Chemistry and Physics, 1986, 14, 397-426.	2.0	588
13	State of surface oxide films at Pt anodes and "volcano―behaviour in electrocatalysis for anodic Cl2 evolution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 224, 163-188.	0.3	28
14	Perovskite-type oxides: Oxygen electrocatalysis and bulk structure. Journal of Power Sources, 1988, 22, 387-398.	4.0	50
15	In situ mossbauer effect spectroscopy of a model iron perovskite electrocatalyst. Electrochimica Acta, 1988, 33, 941-945.	2.6	18
17	Chapter 3 Reactions at Metal Oxide Electrodes. Comprehensive Chemical Kinetics, 1988, 27, 247-360.	2.3	20
18	Crystallographic, thermal and electrochemical properties of the system La1â^'xSrxMnO3 for high temperature solid electrolyte fuel cells. Materials Research Bulletin, 1989, 24, 367-380.	2.7	254
19	Morphological and electrocatalytic properties of gold deposits on NaY zeolite. Electrochimica Acta, 1989, 34, 1647-1651.	2.6	18
20	Nonstoichiometry of the perovskite-type oxides La1â^'xSrxCoO3â^'δ. Journal of Solid State Chemistry, 1989, 80, 102-111.	1.4	435
22	Structure and Reactivity of Perovskite-Type Oxides. Advances in Catalysis, 1989, , 237-328.	0.1	358
23	Properties of perovskite-type oxides II: Studies in catalysis. Journal of the Less Common Metals, 1989, 146, 261-270.	0.9	27
24	Structure and composition of perovskite surface in relation to adsorption and catalytic properties. Catalysis Today, 1990, 8, 153-174.	2.2	148

#	Article	IF	CITATIONS
25	The influence of electrochemical potential on chemistry at electrode surfaces modeled by MO theory. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 280, 37-48.	0.3	107
26	Measurement of the chemical diffusion coefficient of oxygen in mixed conductors by a solid state electrochemical method. Solid State Ionics, 1990, 40-41, 535-538.	1.3	19
27	Surface electrochemistry of the anodic Cl2 evolution reaction at Pt. Influence of co-deposition of surface oxide species on adsorption of the Cl? intermediate. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 923.	1.7	24
28	Oxygen evolution electrocatalysis at thin Cu1.4Mn1.6O4 spinel films on CdO and nickel substrates. Thin Solid Films, 1991, 199, 139-151.	0.8	20
29	A new superconductor obtained by electrochemical oxidation of La2CuO4. Physica C: Superconductivity and Its Applications, 1991, 173, 139-144.	0.6	150
30	Physical electrochemistry of ceramic oxides. Electrochimica Acta, 1991, 36, 225-241.	2.6	661
31	Dispersion deposition of metal ? Particle composites and the evaluation of dispersion deposited nickel ? Lanthanum nickelate electrocatalyst for hydrogen evolution. Journal of Applied Electrochemistry, 1991, 21, 683-689.	1.5	30
32	Oxygen evolution on BaSn1 –xSbxO3(0 < x≤0.15) perovskite electrodes. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 2517-2521.	1.7	3
33	Behavior and Characterization of Kinetically Involved Chemisorbed Intermediates in Electrocatalysis of Gas Evolution Reactions. Advances in Catalysis, 1992, , 1-147.	0.1	38
34	Electrochemical oxygen intercalation into oxide networks. Journal of Solid State Chemistry, 1992, 96, 20-30.	1.4	105
35	Oxygen reduction on Ru-oxide pyrochlores bonded to a proton-exchange membrane. Journal of Applied Electrochemistry, 1992, 22, 140-150.	1.5	60
36	Review of p-type doped perovskite materials for SOFC and other applications. Solid State Ionics, 1992, 52, 33-41.	1.3	245
37	Real surface area measurements in electrochemistry. Journal of Electroanalytical Chemistry, 1992, 327, 353-376.	1.9	930
38	Electrocatalysis: a futuristic view. International Journal of Hydrogen Energy, 1992, 17, 423-444.	3.8	8
39	Electrocatalytic activity of Ni-Fe anodes for alkaline water electrolysis. Materials Chemistry and Physics, 1992, 31, 311-318.	2.0	44
40	Voltametric behaviour of Ti n O2nâ~'1 ceramic electrodes close to the hydrogen evolution reaction. Journal of Applied Electrochemistry, 1993, 23, 1063-1068.	1.5	19
41	Electroformation of electrocatalytically active hydrous oxide layers on a Co-Ni amorphous alloy under pulsating electrolysis. Journal of Applied Electrochemistry, 1993, 23, 655-661.	1.5	14
42	Evaluation of some cobalt and nickel based perovskites prepared by freeze-drying as combustion catalysts. Catalysis Letters, 1993, 21, 77-87.	1.4	56

#	Article	IF	CITATIONS
43	Infrared characterization of electrochromic nickel hydroxide prepared by homogeneous chemical precipitation. Thin Solid Films, 1993, 229, 180-186.	0.8	32
44	Phenomenological Electrode Kinetics. , 1993, , 211-405.		5
45	The Electrochemistry of Cleaner Environments. , 1993, , 927-976.		1
46	Preparation and characterization of thin films of LaNiO3 for anode application in alkaline water electrolysis. Journal of Applied Electrochemistry, 1994, 24, 149.	1.5	33
47	Electrocatalysis: past, present and future. Electrochimica Acta, 1994, 39, 1471-1479.	2.6	69
48	Electrochemical behaviour of NiCo2 â^' xRhxO4 spinel system. Electrochimica Acta, 1994, 39, 1571-1578.	2.6	5
49	La0.6Ca0.4CoO3: a stable and powerful catalyst for bifunctional air electrodes. Electrochimica Acta, 1994, 39, 1661-1668.	2.6	114
50	Preparation and characterization of high surface perovskite electrocatalysts. International Journal of Hydrogen Energy, 1994, 19, 501-506.	3.8	19
51	Physicochemical properties of thermally prepared Ti-supported IrO2+ ZrO2 electrocatalysts. Journal of Electroanalytical Chemistry, 1994, 376, 195-202.	1.9	39
52	Thermoanalytical investigation of the formation of RuO2-based mixed-oxide electrodes. Materials Chemistry and Physics, 1994, 37, 23-28.	2.0	22
53	Characterization of RuO2-based film electrodes by secondary ion mass spectrometry. Journal of Materials Chemistry, 1994, 4, 1255-1258.	6.7	13
54	Oxygen reduction on CrO2 bonded to a proton-exchange membrane. Electrochimica Acta, 1995, 40, 303-307.	2.6	6
55	Active thin NiCo2O4 film prepared on nickel by spray pyrolysis for oxygen evolution. International Journal of Hydrogen Energy, 1995, 20, 9-15.	3.8	70
56	Studies on catalytic and conductive properties of LaNiO3 for oxidation of C2H5OH3CHO, and CH4. Catalysis Today, 1995, 26, 79-86.	2.2	23
57	Low-temperature synthesis of perovskite-type oxides of lanthanum and cobalt and their electrocatalytic properties for oxygen evolution in alkaline solutions. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1871.	1.7	47
58	Synthesis of (La, Sr)CoO3perovskite films via a sol–gel route and their physicochemical and electrochemical surface characterization for anode application in alkaline water electrolysis. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2593-2597.	1.7	43
59	5.1.8.1 Crystal structure. Lattice parameters. Preparation. , 0, , 274-287.		0
60	Growth, microstructure, and electrochemical oxidation of MBE-grownc-axisLa2CuO4thin films. Physical Review B, 1996, 54, 7512-7520.	1.1	56

#	Article	IF	CITATIONS
61	Mechanism of humidity sensing of Ti-doped MgCr2O4 ceramics. Materials Chemistry and Physics, 1996, 46, 72-76.	2.0	28
62	Interfacial properties of oxides with technological impact in electrochemistry. Advances in Colloid and Interface Science, 1996, 64, 173-251.	7.0	194
63	Wiederaufladbare Zink/Luftsauerstoff-Batterien. Chemie-Ingenieur-Technik, 1996, 68, 524-542.	0.4	14
64	Catalytic behavior and electrical conductivity of LaNiO3 in ethanol oxidation. Applied Catalysis A: General, 1996, 136, 191-203.	2.2	15
66	Electrocatalysis of oxygen evolution/reductionon LaNiO3 prepared by a novel malic acid-aided method. Journal of Applied Electrochemistry, 1997, 28, 114-119.	1.5	32
67	Surface characterisation of IrO2/TiO2/CeO2 oxide electrodes and Faradaic impedance investigation of the oxygen evolution reaction from alkaline solution. Electrochimica Acta, 1998, 44, 1525-1534.	2.6	110
68	Films minces de NiCOO avec 0 ≤ ≤ préparés par nébulisation réactive pour l'électrocatalyse. 1-Préparation et analyse physique. Annales De Chimie: Science Des Materiaux, 1998, 23, 575-588.	0.2	2
69	Electrocatalytic properties of lanthanum manganites obtained by a novel malic acid-aided route. International Journal of Hydrogen Energy, 1998, 23, 775-780.	3.8	11
70	Synthesis of La2(MoO4)3: electrocatalytic activity for the oxygen evolution in alkaline media. International Journal of Hydrogen Energy, 1998, 23, 999-1003.	3.8	3
71	Strontium ruthenate perovskite as the active material for supercapacitors. Journal of Electroanalytical Chemistry, 1999, 461, 154-160.	1.9	58
72	Surface characterization of LaNiO3/Ni–PVC composite. Electrochimica Acta, 1999, 45, 741-750.	2.6	7
73	Preparation of Nickel Aluminum–Manganese Spinel Oxides NixAl1â^'xMn2O4 for Oxygen Electrocatalysis in Alkaline Medium: Comparison of Properties Stemming from Different Preparation Methods. Journal of Solid State Chemistry, 1999, 145, 23-32.	1.4	20
74	Relevant examples of intercalation-deintercalation processes in solid state chemistry: application to oxides. Journal of Materials Chemistry, 1999, 9, 25-33.	6.7	15
75	Mechanistic studies of oxygen reduction at La0.6Ca0.4CoO3-activated carbon electrodes in a channel flow cell. Electrochimica Acta, 2000, 46, 365-372.	2.6	57
76	Solvent effect on synthesis of perovskite-type La1â^'xCaxCoO3 and their electrochemical properties for oxygen reactions. Materials Research Bulletin, 2000, 35, 1955-1966.	2.7	34
77	Chemical Structures and Performance of Perovskite Oxides. Chemical Reviews, 2001, 101, 1981-2018.	23.0	2,309
78	Rare earth cuprates as electrocatalysts for methanol oxidation. Solid State Ionics, 2001, 140, 263-274.	1.3	60
79	Electrochemical oxidation of Y1Ba2Cu3 alloyed layers using an alkaline bath. Thin Solid Films, 2001, 397, 249-254.	0.8	7

#	Article	IF	CITATIONS
80	Influence of the partial replacement of Fe by Mn on the electrocatalytic activity for oxygen evolution in the Li(1â^'0.5x)Fe(1.5x+1)Mn(1â^'x)O4 spinel system. Electrochimica Acta, 2001, 47, 559-566.	2.6	18
81	Electrical conductivity of yttrium-doped SrTiO3: influence of transition metal additives. Materials Research Bulletin, 2002, 37, 1215-1231.	2.7	83
82	High surface area lanthanum cobaltate and its A and B sites substituted derivatives for electrocatalysis of O2 evolution in alkaline solution. International Journal of Hydrogen Energy, 2002, 27, 45-55.	3.8	72
83	Electrocatalytic properties of perovskite-type La1â^'xSrxMnO3 obtained by a novel sol–gel route for O2 evolution in KOH solutions. International Journal of Hydrogen Energy, 2002, 27, 885-893.	3.8	14
84	Electrocatalytic properties of new active ternary ferrite film anodes for O2 evolution in alkaline medium. Electrochimica Acta, 2002, 47, 3873-3879.	2.6	80
85	Pulsed laser deposition of electrochemically active perovskite films. Applied Surface Science, 2002, 197-198, 505-511.	3.1	19
86	Can La2â^'xSrxCuO4 be used as anodes for direct methanol fuel cells?â~†. Fuel, 2002, 81, 2191-2197.	3.4	28
87	La0.6Ca0.4CoO3, La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes. Electrochimica Acta, 2002, 47, 1651-1660.	2.6	110
88	Oxygen reduction in alkaline medium at thin MnxCo3â~'xO4 (0≤â‰⊉) spinel films prepared by spray pyrolysis. Effect of oxide cation composition on the reaction kinetics. Journal of Electroanalytical Chemistry, 2002, 522, 141-151.	1.9	115
89	Effect of oxygenation on electrocatalysis of La0.6Ca0.4CoO3â^'x in bifunctional air electrode. Electrochimica Acta, 2003, 48, 1567-1571.	2.6	72
90	Studies on the structural and ionic transport properties at elevated temperatures of La1â^'xMnO3±δ synthesized by a wet chemical method. Journal of Alloys and Compounds, 2003, 350, 102-112.	2.8	18
91	Electrochemical Surface Characterization of IrO[sub 2]-Ta[sub 2]O[sub 5] Coated Titanium Electrodes in Na[sub 2]SO[sub 4] Solution. Journal of the Electrochemical Society, 2003, 150, B288.	1.3	43
92	An Impedance Study of the O[sub 2]â^£HO[sub 2][sup â^'] System in Equilibrium on a Gas Diffusion Electrode. Journal of the Electrochemical Society, 2003, 150, E52.	1.3	8
93	Thermal properties of La0.5Sr0.5Co1â^'xNixO3â^'δ ceramics using photopyroelectric technique. Journal of Applied Physics, 2003, 94, 3206-3211.	1.1	16
94	Electrocatalytic activity and stability of La1–xCaxCoO3 perovskite-type oxides in alkaline medium. Catalysis Today, 2004, 89, 287-291.	2.2	21
95	Chapter 16 Thin epitaxial oxide films as model systems for electrocatalysts. Handai Nanophotonics, 2004, 1, 251-273.	0.0	5
96	Electrocatalytic properties of perovskite-type obtained by a novel stearic acid sol?gel method for electrocatalysis of evolution in KOH solutions. International Journal of Hydrogen Energy, 2005, 30, 723-729.	3.8	46
97	A study of PtRuO2 catalysts thermally formed on titanium mesh for methanol oxidation. Electrochimica Acta, 2005, 50, 1217-1223.	2.6	23

#	Article	IF	CITATIONS
98	Electrophoretic deposition of ZnCo2O4 spinel and its electrocatalytic properties for oxygen evolution reaction. Electrochimica Acta, 2005, 50, 2059-2064.	2.6	87
99	Polymer Gel Templating Synthesis of Nanocrystalline Oxide Anodes. Chemistry of Materials, 2005, 17, 5124-5129.	3.2	24
100	Oxygen Evolution on Perovskite-Type Cobaltite Anodes: An Assessment of Materials Science-Related Aspects. Materials Science Forum, 2006, 514-516, 377-381.	0.3	1
101	New NiFe2â ^{°,} xCrxO4 spinel films for O2 evolution in alkaline solutions. Electrochimica Acta, 2006, 51, 5515-5523.	2.6	98
102	Comparison of three preparation methods of NiCo2O4NiCo2O4 electrodes. International Journal of Hydrogen Energy, 2006, 31, 1210-1214.	3.8	68
103	Bifunctional oxygen/air electrodes. Journal of Power Sources, 2006, 155, 23-32.	4.0	379
104	Effect of partial substitution of Cr on electrocatalytic properties of CoFe2O4CoFe2O4 towards O2O2-evolution in alkaline mediumâ~†. International Journal of Hydrogen Energy, 2006, 31, 701-707.	3.8	34
105	Studies on the KTa1â^'xFexO3â^'î´ system. Materials Chemistry and Physics, 2006, 96, 211-216.	2.0	6
106	Electrocatalytic Behavior of Perovskite-Related Cobaltites and Nickelates in Alkaline Media. Materials Science Forum, 2006, 514-516, 1391-1395.	0.3	0
107	Cu[sub x]Co[sub 3â^x]O[sub 4] Used as Bifunctional Electrocatalyst. Journal of the Electrochemical Society, 2006, 153, A2103.	1.3	138
108	Preparation of Ni-Co Spinel Oxide by Alloy Oxidation Method. Key Engineering Materials, 2005, 280-283, 561-564.	0.4	1
109	Perovskite thin films deposited by pulsed laser ablation as model systems for electrochemical applications. Progress in Solid State Chemistry, 2007, 35, 221-231.	3.9	26
110	Perovskite-Based Catalysts for Direct Methanol Fuel Cells. Journal of Physical Chemistry C, 2007, 111, 9573-9582.	1.5	36
111	Novel electrocatalysts for generating oxygen from alkaline water electrolysis. Electrochemistry Communications, 2007, 9, 1369-1373.	2.3	114
112	The electrocatalytic behaviour of electroless Ni–P alloys. Journal of Electroanalytical Chemistry, 2007, 600, 63-79.	1.9	66
113	Behavior of (La,Sr)CoO3- and La2NiO4-based ceramic anodes in alkaline media: compositional and microstructural factors. Journal of Solid State Electrochemistry, 2007, 12, 15-30.	1.2	4
114	Electrocatalytic behavior of thin Co–Te–O films in oxygen evolution and reduction reactions. Electrochimica Acta, 2007, 52, 3794-3803.	2.6	18
115	Polypyrrole and La1â~'xSrxMnO3 (0≤â‰0.4) composite electrodes for electroreduction of oxygen in alkaline medium. Electrochimica Acta, 2007, 52, 4264-4271.	2.6	32

#	Article	IF	CITATIONS
116	Application of Ti/RuO2–Ta2O5 electrodes in the electrooxidation of ethanol and derivants: Reactivity versus electrocatalytic efficiency. Electrochimica Acta, 2008, 53, 7845-7851.	2.6	27
117	Carbon nanocapsules as an electrocatalyst support for the oxygen reduction reaction in alkaline electrolyte. Journal of Applied Electrochemistry, 2008, 38, 507-514.	1.5	10
118	Electrochemical impedance spectroscopy investigation of spinel type cobalt oxide thin film electrodes in alkaline medium. Journal of Applied Electrochemistry, 2008, 38, 1485-1494.	1.5	15
119	Nickel surface anodic oxidation and electrocatalysis of oxygen evolution. Journal of Solid State Electrochemistry, 2008, 12, 1469-1479.	1.2	148
120	Perovskite-type La2â^'xSrxNiO4 (0â‰案â‰摯) as active anode materials for methanol oxidation in alkaline solutions. Electrochimica Acta, 2008, 53, 2322-2330.	2.6	62
121	Synthesis and electrical properties of Co-doped Y0.08Sr0.92TiO3â [~] î´ as a potential SOFC anode. Solid State Ionics, 2008, 179, 1588-1592.	1.3	71
122	Electrocatalytic properties of new spinel-type MMoO4 (M=Fe, Co and Ni) electrodes for oxygen evolution in alkaline solutions. International Journal of Hydrogen Energy, 2008, 33, 4260-4264.	3.8	92
123	Templating of Perovskite-Related Films Using Layer-by-Layer Assemblies and Nanoparticle Building Blocks. Chemistry of Materials, 2008, 20, 5139-5145.	3.2	6
124	In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co ²⁺ . Science, 2008, 321, 1072-1075.	6.0	3,855
125	Mechanical Alloying Preparation of La[sub 0.6]Ca[sub 0.4]CoIr[sub 0.25]O[sub 3.5â^î] as a Bifunctional Electrocatalyst in Alkaline Electrolyte. Electrochemical and Solid-State Letters, 2008, 11, B47.	2.2	13
126	Preparation and characterization of Ca1 â~' x Ce x MnO3 perovskite electrodes. Journal of Solid State Electrochemistry, 2009, 13, 943-950.	1.2	17
127	Preparation and electrochemical characterization of a new NiMoO4 catalyst for electrochemical O2 evolution. Journal of Solid State Electrochemistry, 2009, 13, 1613-1619.	1.2	50
128	Iron molybdates as electrocatalysts for O2 evolution reaction in alkaline solutions. International Journal of Hydrogen Energy, 2009, 34, 4693-4700.	3.8	49
129	Synthesis of La0.6Ca0.4Co0.8Ir0.2O3 perovskite for bi-functional catalysis in an alkaline electrolyte. Journal of Power Sources, 2009, 189, 1003-1007.	4.0	33
130	The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis. ChemCatChem, 2010, 2, 724-761.	1.8	1,493
131	Solar Water Splitting Cells. Chemical Reviews, 2010, 110, 6446-6473.	23.0	8,307
132	Determination of the real surface area of powdered materials in cavity microelectrodes by electrochemical impedance spectroscopy. Electrochimica Acta, 2010, 55, 6283-6291.	2.6	46
133	Influence of the nickel content on the electrocatalytic activity of thin nanostructured Co–Te–Ni–O films. Journal of Solid State Electrochemistry, 2010, 14, 1073-1078.	1.2	1

#	Article	IF	CITATIONS
134	A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base. Journal of Electroanalytical Chemistry, 2010, 641, 119-130.	1.9	301
135	Effect of V substitution at B-site on the physicochemical and electrocatalytic properties of spinel-type NiFe2O4 towards O2 evolution in alkaline solutions. International Journal of Hydrogen Energy, 2010, 35, 3243-3248.	3.8	39
136	Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chemical Reviews, 2010, 110, 6474-6502.	23.0	2,676
137	Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode. Journal of the Electrochemical Society, 2010, 157, B1263.	1.3	339
139	Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Physical Chemistry Chemical Physics, 2011, 13, 15639.	1.3	454
140	Nitrido complexes step up. Nature Chemistry, 2011, 3, 502-504.	6.6	14
142	Bi-Functional Oxygen Electrodes Using LaMnO3/LaNiO3 for Rechargeable Metal-Air Batteries. Journal of the Electrochemical Society, 2011, 158, A605.	1.3	56
143	Picking perovskites. Nature Chemistry, 2011, 3, 501-502.	6.6	35
144	A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science, 2011, 334, 1383-1385.	6.0	4,230
145	Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nature Chemistry, 2011, 3, 546-550.	6.6	2,331
146	A Critical Review of Li/Air Batteries. Journal of the Electrochemical Society, 2011, 159, R1-R30.	1.3	950
147	Evidence for near-Surface NiOOH Species in Solution-Processed NiO _{<i>x</i>} Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics. Chemistry of Materials, 2011, 23, 4988-5000.	3.2	343
148	Prospects for alkaline zero gap water electrolysers for hydrogen production. International Journal of Hydrogen Energy, 2011, 36, 15089-15104.	3.8	274
149	Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. ChemCatChem, 2011, 3, 1159-1165.	1.8	3,208
150	Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0–14: The Thermodynamic Basis for Catalyst Structure, Stability, and Activity. Journal of the American Chemical Society, 2011, 133, 14431-14442.	6.6	686
151	Comparison of Cobaltâ€based Nanoparticles as Electrocatalysts for Water Oxidation. ChemSusChem, 2011, 4, 1566-1569.	3.6	209
152	A novel silver oxides oxygen evolving catalyst for water splitting. International Journal of Hydrogen Energy, 2011, 36, 7374-7380.	3.8	63
153	New ternary Fe, Co, and Mo mixed oxide electrocatalysts forÂoxygen evolution. International Journal of Hydrogen Energy, 2011, 36, 8831-8838.	3.8	39

#	Article	IF	CITATIONS
154	Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15617-15621.	3.3	81
155	LaCoO3 acting as an efficient and robust catalyst for photocatalytic water oxidation with persulfate. Physical Chemistry Chemical Physics, 2012, 14, 5753.	1.3	109
156	First-principles computational electrochemistry: Achievements and challenges. Electrochimica Acta, 2012, 84, 3-11.	2.6	180
157	Cobalt analogs of Ru-based water oxidation catalysts: overcoming thermodynamic instability and kinetic lability to achieve electrocatalytic O2 evolution. Chemical Science, 2012, 3, 3058.	3.7	140
158	Synthesis of Ca2Mn3O8 films and their electrochemical studies for the oxygen evolution reaction (OER) of water. Nano Energy, 2012, 1, 282-289.	8.2	62
159	Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction. Catalysis Today, 2012, 189, 83-92.	2.2	177
160	Fourier transform electrochemical impedance spectroscopic studies on anodic reaction of lead. Electrochimica Acta, 2012, 78, 615-622.	2.6	13
161	Role of Water in the Chlorine Evolution Reaction at RuO ₂ â€Based Electrodes—Understanding Electrocatalysis as a Resonance Phenomenon. ChemSusChem, 2012, 5, 1897-1904.	3.6	53
162	Evaluation of the Catalytic Performance of Gasâ€Evolving Electrodes using Local Electrochemical Noise Measurements. ChemSusChem, 2012, 5, 1905-1911.	3.6	51
163	Novel FexCr2â^'x(MoO4)3 electrocatalysts for oxygen evolution reaction. International Journal of Hydrogen Energy, 2012, 37, 15117-15124.	3.8	25
164	Preparation of nano-LaNiO3 support electrode for rechargeable metal-air batteries. Electrochemistry Communications, 2012, 24, 50-52.	2.3	22
165	Influence of Oxygen Evolution during Water Oxidation on the Surface of Perovskite Oxide Catalysts. Journal of Physical Chemistry Letters, 2012, 3, 3264-3270.	2.1	562
166	The road from animal electricity to green energy: combining experiment and theory in electrocatalysis. Energy and Environmental Science, 2012, 5, 9246.	15.6	224
167	Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution. Journal of the American Chemical Society, 2012, 134, 17253-17261.	6.6	1,403
168	Spectroscopic Characterization of Mixed Fe–Ni Oxide Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Electrolytes. ACS Catalysis, 2012, 2, 1793-1801.	5.5	423
169	Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nature Materials, 2012, 11, 550-557.	13.3	2,423
170	In Situ Electrochemical Electron Microscopy Study of Oxygen Evolution Activity of Doped Manganite Perovskites. Advanced Functional Materials, 2012, 22, 3378-3388.	7.8	79
172	Development of an O ₂ ensitive Fluorescenceâ€Quenching Assay for the Combinatorial Discovery of Electrocatalysts for Water Oxidation. Angewandte Chemie - International Edition, 2012, 51, 6676-6680.	7.2	60

#	Article	IF	CITATIONS
173	High surface area LaNiO3 electrodes for oxygen electrocatalysis in alkaline media. Journal of Applied Electrochemistry, 2012, 42, 325-332.	1.5	30
174	Copper-doped cobalt oxide electrodes for oxygen evolution reaction prepared by magnetron sputtering. International Journal of Hydrogen Energy, 2012, 37, 822-830.	3.8	56
175	Electrocatalytic activity of crystalline Ni–Co–M (MÂ=ÂCr, Mn, Cu) alloys on the oxygen evolution reaction in an alkaline environment. International Journal of Hydrogen Energy, 2013, 38, 10170-10177.	3.8	37
176	Sm0.5Sr0.5CoO3â^' – A new bi-functional catalyst for rechargeable metal-air battery applications. Journal of Power Sources, 2013, 227, 48-52.	4.0	35
177	Layered Perovskite Oxide: A Reversible Air Electrode for Oxygen Evolution/Reduction in Rechargeable Metal-Air Batteries. Journal of the American Chemical Society, 2013, 135, 11125-11130.	6.6	194
178	Active copper delafossite anode for oxygen evolution reaction. Electrochemistry Communications, 2013, 35, 142-145.	2.3	26
179	Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nature Communications, 2013, 4, 2439.	5.8	1,231
180	Carbon electrode with perovskite-oxide catalyst for aqueous electrolyte lithium-air secondary batteries. Journal of Power Sources, 2013, 223, 319-324.	4.0	48
181	Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides. Chemical Science, 2013, 4, 1245.	3.7	273
182	Oxide loading effect on the electrochemical performance of LaNiO3 coatings in alkaline media. Electrochimica Acta, 2013, 89, 106-113.	2.6	21
183	The Influence of the Cation on the Oxygen Reduction and Evolution Activities of Oxide Surfaces in Alkaline Electrolyte. Electrocatalysis, 2013, 4, 49-55.	1.5	113
184	Strongly Coupled Inorganic/Nanocarbon Hybrid Materials for Advanced Electrocatalysis. Journal of the American Chemical Society, 2013, 135, 2013-2036.	6.6	856
185	Structural Changes of Cobalt-Based Perovskites upon Water Oxidation Investigated by EXAFS. Journal of Physical Chemistry C, 2013, 117, 8628-8635.	1.5	292
186	Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. Physical Chemistry Chemical Physics, 2013, 15, 13737.	1.3	482
187	Co–Ni layered double hydroxides for water oxidation in neutral electrolyte. Physical Chemistry Chemical Physics, 2013, 15, 7363.	1.3	143
188	Porous Substoichiometric TiO ₂ Anodes as Reactive Electrochemical Membranes for Water Treatment. Environmental Science & Technology, 2013, 47, 6554-6563.	4.6	266
189	An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society, 2013, 135, 8452-8455.	6.6	2,498
190	Enhancing Bi-functional Electrocatalytic Activity of Perovskite by Temperature Shock: A Case Study of LaNiO _{3â^îl´} . Journal of Physical Chemistry Letters, 2013, 4, 2982-2988.	2.1	172

#	Article	IF	CITATIONS
191	An Anionic N-Donor Ligand Promotes Manganese-Catalyzed Water Oxidation. Inorganic Chemistry, 2013, 52, 7615-7622.	1.9	83
192	Oxygen Evolution Activity and Stability of Ba ₆ Mn ₅ O ₁₆ , Sr ₄ Mn ₂ CoO ₉ , and Sr ₆ Co ₅ O ₁₅ : The Influence of Transition Metal Coordination. Journal of Physical Chemistry C. 2013. 117. 25926-25932.	1.5	108
193	Alternative Energies. Advanced Structured Materials, 2013, , .	0.3	2
194	Heterometallic Triiron-Oxo/Hydroxo Clusters: Effect of Redox-Inactive Metals. Journal of the American Chemical Society, 2013, 135, 19075-19078.	6.6	82
195	EQCM Investigation of Electrochemical Deposition and Stability of Co–Pi Oxygen Evolution Catalyst of Solar Energy Storage. Journal of Physical Chemistry C, 2013, 117, 8001-8008.	1.5	15
196	PtRu/C-LaNiO3Composite Electrodes for Electrocatalysis. Journal of the Electrochemical Society, 2013, 160, F1138-F1142.	1.3	6
198	Photochemical Route for the Preparation of Complex Amorphous Water Oxidation Catalyst. ECS Transactions, 2014, 58, 67-76.	0.3	1
199	Efficient Electrochemical Flow System with Improved Anode for the Conversion of CO ₂ to CO. Journal of the Electrochemical Society, 2014, 161, F1124-F1131.	1.3	74
201	Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion. Angewandte Chemie - International Edition, 2014, 53, 102-121.	7.2	1,186
202	Organic Pollutants for Wastewater Treatment, Reductive Dechlorination. , 2014, , 1398-1402.		0
204	Oxygen Reduction Reaction in Alkaline Solution. , 2014, , 1491-1496.		3
205	Stability of LaNiO3 gas diffusion oxygen electrodes. Journal of Solid State Electrochemistry, 2014, 18, 821-831.	1.2	9
206	Insight the effect of surface Co cations on the electrocatalytic oxygen evolution properties of cobaltite spinels. Electrochimica Acta, 2014, 121, 183-187.	2.6	53
207	A Bifunctional Perovskite Catalyst for Oxygen Reduction and Evolution. Angewandte Chemie - International Edition, 2014, 53, 4582-4586.	7.2	294
208	The Lithium Air Battery. , 2014, , .		111
208 209		6.6	111 1,202
	The Lithium Air Battery. , 2014, , . Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst. Journal of	6.6 4.0	

ARTICLE IF CITATIONS Facile synthesis of Pd–Mn₃0₄/C as high-efficient electrocatalyst for oxygen 212 5.2 48 evolution reaction. Journal of Materials Chemistry A, 2014, 2, 18236-18240. Rational design of the electrode morphology for oxygen evolution – enhancing the performance for catalytic water oxidation. RSC Advances, 2014, 4, 9579. 1.7 Catalytic Roles of Perovskite Oxides in Electrochemical Oxygen Reactions in Alkaline Media. Journal 214 1.3 54 of the Electrochemical Society, 2014, 161, F694-F697. An acetate bound cobalt oxide catalyst for water oxidation: role of monovalent anions and cations in lowering overpotential. Physical Chemistry Chemical Physics, 2014, 16, 12221. Pt-Mn 3 O 4 /C as efficient electrocatalyst for oxygen evolution reaction in water electrolysis. 217 2.6 35 Electrochimica Acta, 2014, 146, 119-124. An ab Initio Investigation of Proton Stability at BaZrO₃ Interfaces. Chemistry of Materials, 2014, 26, 4915-4924. 3.2 Discovery of New Oxygen Evolution Reaction Electrocatalysts by Combinatorial Investigation of the 219 1.7 29 Ni–La–Co–Ce Oxide Composition Space. ChemElectroChem, 2014, 1, 1613-1617. Ca₂Mn₂O₅ as Oxygen-Deficient Perovskite Electrocatalyst for 220 6.6 445 Oxygen Evolution Reaction. Journal of the American Chemical Society, 2014, 136, 14646-14649. Evaluation of Perovskites as Electrocatalysts for the Oxygen Evolution Reaction. ChemPhysChem, 221 1.0 70 2014, 15, 2810-2816. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catalysis 2.1 1,006 Science and Technology, 2014, 4, 3800-3821. Functional links between stability and reactivity of strontium ruthenate single crystals during 224 5.8 252 oxygen evolution. Nature Communications, 2014, 5, 4191. Electrocatalytic Oxygen Evolution over Supported Small Amorphous Ni–Fe Nanoparticles in Alkaline 1.6 234 Electrolyte. Langmuir, 2014, 30, 7893-7901 La_{0.8}Sr_{0.2}MnO_{3â[^]Î} Decorated with Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3â[~]î´}: A Bifunctional 226 6.6 196 Surface for Oxygen Electrocatalysis with Enhanced Stability and Activity. Journal of the American Chemical Society, 2014, 136, 5229-5232. A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for 227 7.2 694 the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2014, 53, 7584-7588. An Oxalate Method for Measuring the Surface Area of Nickel Electrodes. Journal of the 228 1.3 48 Electrochemical Society, 2014, 161, H787-H795. Nonstoichiometric Perovskite CaMnO<sub>3â~î^ Inorganic Chemistry, 2014, 53, 9106-9114. Model based quantification of air-composition impact on secondary zinc air batteries. Electrochimica 230 2.6 55 Acta, 2014, 117, 541-553. Synthesis and Environmental Applications of BaPb1-xSbxO3Solid Solutions. Journal of the 1.3 Electrochemical Society, 2014, 161, H474-H480.

#	Article	IF	CITATIONS
232	An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy and Environmental Science, 2014, 7, 2535-2558.	15.6	391
233	The mechanism and kinetics of electrochemical water oxidation at oxidized metal and metal oxide electrodes. Part 2. The surfaquo group mechanism: A mini review. Electrochemistry Communications, 2014, 45, 56-59.	2.3	37
234	Characterization and electrochemical behaviour of nanostructured calcium samarium manganite electrodes fabricated by RF-Magnetron Sputtering. Electrochimica Acta, 2014, 137, 99-107.	2.6	7
235	The mechanism and kinetics of electrochemical water oxidation at oxidized metal and metal oxide electrodes. Part 1. General considerations: A mini review. Electrochemistry Communications, 2014, 45, 60-62.	2.3	40
236	Electrocatalytic oxygen evolution reaction at a FeNi composite on a carbon nanofiber matrix in alkaline media. Chinese Journal of Catalysis, 2014, 35, 891-895.	6.9	29
239	Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Scientific Reports, 2015, 5, 12167.	1.6	309
240	Tunable Internal and Surface Structures of the Bifunctional Oxygen Perovskite Catalysts. Advanced Energy Materials, 2015, 5, 1501560.	10.2	78
241	Oxidized Mild Steel S235: An Efficient Anode for Electrocatalytically Initiated Water Splitting. ChemSusChem, 2015, 8, 3099-3110.	3.6	50
242	Molecular Mixedâ€Metal Manganese Oxido Cubanes as Precursors to Heterogeneous Oxygen Evolution Catalysts. Chemistry - A European Journal, 2015, 21, 13420-13430.	1.7	20
243	Multi-Phased Electrode Materials for the Electroevolution of Oxygen. Solid State Phenomena, 2015, 228, 23-31.	0.3	1
244	Mixed-valent, heteroleptic homometallic diketonates as templates for the design of volatile heterometallic precursors. Chemical Science, 2015, 6, 2835-2842.	3.7	22
245	Fabrication of Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3–} <i>_δ< Catalysts with Enhanced Electrochemical Performance by Removing an Inherent Heterogeneous Surface Film Laver. Advanced Materials. 2015. 27. 266-271.</i>	/i _{}11.1}	114
246	Stainless steel made to rust: a robust water-splitting catalyst with benchmark characteristics. Energy and Environmental Science, 2015, 8, 2685-2697.	15.6	180
247	NiCoO2 nanowires grown on carbon fiber paper for highly efficient water oxidation. Electrochimica Acta, 2015, 174, 246-253.	2.6	90
248	Electrocatalysis of Perovskites: The Influence of Carbon on the Oxygen Evolution Activity. Journal of the Electrochemical Society, 2015, 162, F579-F586.	1.3	88
249	Ambient Temperature Sodium–Sulfur Batteries. Small, 2015, 11, 2108-2114.	5.2	288
250	Calcium-doped lanthanum nickelate layered perovskite and nickel oxide nano-hybrid for highly efficient water oxidation. Nano Energy, 2015, 12, 115-122.	8.2	144
251	Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives. Catalysis Letters, 2015, 145, 95-108.	1.4	210

ARTICLE IF CITATIONS Synergistic Oxygen Evolving Activity of a TiO₂-Rich Reconstructed 252 58 6.6 SrTiO₃(001) Surface. Journal of the American Chemical Society, 2015, 137, 2939-2947. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015, 44, 2060-2086. 18.7 4,323 Environmental TEM Study of Electron Beam Induced Electrochemistry of 254 Pr_{0.64}Ca_{0.36}MnO₃ Catalysts for Oxygen Evolution. Journal of 41 1.5 Physical Chemistry C, 2015, 119, 5301-5310. A novel aqueous lithium–oxygen cell based on the oxygen-peroxide redox couple. Chemical Communications, 2015, 51, 3189-3192. Calculated Descriptors of Catalytic Activity for Water Electrolysis Anode: Application to Delafossite 256 1.553 Oxides. Journal of Physical Chemistry C, 2015, 119, 6495-6501. Kinetics of the oxygen evolution reaction on NiSn electrodes in alkaline solutions. Journal of Electroanalytical Chemistry, 2015, 754, 100-108. Screened Hybrid Exact Exchange Correction Scheme for Adsorption Energies on Perovskite Oxides. 258 1.5 7 Journal of Physical Chemistry C, 2015, 119, 17662-17666. High activity and durability of novel perovskite electrocatalysts for water oxidation. Materials 259 6.4 128 Horizons, 2015, 2, 495-501. Nickel oxide nanosheets array grown on carbon cloth as a high-performance three-dimensional 260 3.8 64 oxygen evolution electrode. International Journal of Hydrogen Energy, 2015, 40, 9866-9871. Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. PartÂl: 3.8 Hydrogen evolution. International Journal of Hydrogen Energy, 2015, 40, 10480-10490. Ab initio GGA+U study of oxygen evolution and oxygen reduction electrocatalysis on the (001) surfaces of lanthanum transition metal perovskites LaBO₃(B = Cr, Mn, Fe, Co and Ni). 262 1.3 98 Physical Chemistry Chemical Physics, 2015, 17, 21643-21663. Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catalysis, 5.5 1,022 2015, 5, 4643-4667. Tuning the Electrocatalytic Water Oxidation Properties of AB₂O₄ Spinel Nanocrystals: A (Li, Mg, Zn) and B (Mn, Co) Site Variants of LiMn₂O₄. ACS Catalysis, 2015, 5, 3403-3410. 264 5.5 74 Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. 15.6 1,628 Energy and Environmental Science, 2015, 8, 1404-1427. Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER 266 10.2 85 Electrocatalyst Design. Advanced Energy Materials, 2015, 5, 1402307. Surface Oxidation of Stainless Steel: Oxygen Evolution Electrocatalysts with High Catalytic Activity. 153 ACS Catalysis, 2015, 5, 2671-2680. Design Insights for Tuning the Electrocatalytic Activity of Perovskite Oxides for the Oxygen 268 1.544 Evolution Reaction. Journal of Physical Chemistry C, 2015, 119, 8004-8013. 269 Recent Advances of Lanthanum-Based Perovskite Oxides for Catalysis. ACS Catalysis, 2015, 5, 6370-6385. 384

#	Article	IF	CITATIONS
270	Oxygen Evolution Reaction on La _{1–<i>x</i>} Sr _{<i>x</i>} CoO ₃ Perovskites: A Combined Experimental and Theoretical Study of Their Structural, Electronic, and Electrochemical Properties. Chemistry of Materials, 2015, 27, 7662-7672.	3.2	259
271	<i>In Situ</i> X-ray Absorption Near-Edge Structure Study of Advanced NiFe(OH) _{<i>x</i>} Electrocatalyst on Carbon Paper for Water Oxidation. Journal of Physical Chemistry C, 2015, 119, 19573-19583.	1.5	146
272	Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles. Chemistry of Materials, 2015, 27, 7549-7558.	3.2	944
273	Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH. Physical Chemistry Chemical Physics, 2015, 17, 22576-22580.	1.3	108
274	Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews, 2015, 115, 9869-9921.	23.0	770
275	Covalency-reinforced oxygen evolution reaction catalyst. Nature Communications, 2015, 6, 8249.	5.8	393
276	Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media. Journal of Physical Chemistry Letters, 2015, 6, 3737-3742.	2.1	417
277	Method for Enhancing the Bifunctional Activity and Durability of Oxygen Electrodes with Mixed Oxide Electrocatalysts: Potential Driven Intercalation of Potassium. Journal of the Electrochemical Society, 2015, 162, F1356-F1366.	1.3	32
278	Self-assembled IrO ₂ nanoparticles on a DNA scaffold with enhanced catalytic and oxygen evolution reaction (OER) activities. Journal of Materials Chemistry A, 2015, 3, 24463-24478.	5.2	133
279	Fe (Oxy)hydroxide Oxygen Evolution Reaction Electrocatalysis: Intrinsic Activity and the Roles of Electrical Conductivity, Substrate, and Dissolution. Chemistry of Materials, 2015, 27, 8011-8020.	3.2	395
280	Why Is Bulk Thermochemistry a Good Descriptor for the Electrocatalytic Activity of Transition Metal Oxides?. ACS Catalysis, 2015, 5, 869-873.	5.5	189
281	Co intake mediated formation of ultrathin nanosheets of transition metal LDH—an advanced electrocatalyst for oxygen evolution reaction. Chemical Communications, 2015, 51, 1120-1123.	2.2	195
282	Cycle life limit of carbon-based electrodes for rechargeable metal–air battery application. Journal of Electroanalytical Chemistry, 2015, 736, 76-82.	1.9	22
283	Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale, 2015, 7, 1250-1269.	2.8	290
284	Synthesis and Electrocatalytic Properties of La1-xSrxCoO3 (0 ≤ ≤0.8) Film Electrodes for Oxygen Evolution in Alkaline Solutions. International Journal of Electrochemical Science, 2016, , 8633-8645.	0.5	4
285	Oxygen Evolution at Manganite Perovskite Ruddlesden-Popper Type Particles: Trends of Activity on Structure, Valence and Covalence. Materials, 2016, 9, 921.	1.3	34
286	A comparative study on layered cobalt hydroxides in water oxidation. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 415-423.	0.8	10
287	Conversion of inert cryptomelane-type manganese oxide into a highly efficient oxygen evolution catalyst via limited Ir doping. Journal of Materials Chemistry A, 2016, 4, 12561-12570.	5.2	64

#	Article	IF	Citations
288	Amorphous Co(OH)2 nanosheet electrocatalyst and the physical mechanism for its high activity and long-term cycle stability. Journal of Applied Physics, 2016, 119, .	1.1	59
289	Elucidating dz2 orbital selective catalytic activity in brownmillerite Ca2Mn2O5. AIP Advances, 2016, 6, 095210.	0.6	6
291	Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media. Chemistry - an Asian Journal, 2016, 11, 10-21.	1.7	190
292	Bacteria inactivation at a sub-stoichiometric titanium dioxide reactive electrochemical membrane. Journal of Hazardous Materials, 2016, 319, 137-146.	6.5	58
293	Photoelectrochemical Solar Fuel Production. , 2016, , .		87
294	The Oxygen Evolution Reaction: Mechanistic Concepts and Catalyst Design. , 2016, , 41-104.		81
295	Composition-Dependent Reactivity of Ba _{0.5} Sr _{0.5} Co _{<i>x</i>} Fe _{1–<i>x</i>} O _{3â[^]Î} toward the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2016, 120, 22291-22297.	1.5	12
296	Synthesis of high surface area CaxLa(1â^'x)Al(1â^'x)MnxO(3â^'Î) perovskite oxides for oxygen reduction electrocatalysis in alkaline media. Catalysis Science and Technology, 2016, 6, 7744-7751.	2.1	12
297	Reduced overpotentials for electrocatalytic water splitting over Fe- and Ni-modified BaTiO ₃ . Physical Chemistry Chemical Physics, 2016, 18, 29561-29570.	1.3	29
298	Coâ€doping Strategy for Developing Perovskite Oxides as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Advanced Science, 2016, 3, 1500187.	5.6	245
299	Transitionâ€Metal (Co, Ni, and Fe)â€Based Electrocatalysts for the Water Oxidation Reaction. Advanced Materials, 2016, 28, 9266-9291.	11.1	1,392
300	Nitrogen Doping in Oxygen-Deficient Ca ₂ Fe ₂ O ₅ : A Strategy for Efficient Oxygen Reduction Oxide Catalysts. ACS Applied Materials & Interfaces, 2016, 8, 34387-34395.	4.0	46
301	Influence of transition metal electronegativity on the oxygen storage capacity of perovskite oxides. Chemical Communications, 2016, 52, 10369-10372.	2.2	28
302	Aerogel Architectures Boost Oxygenâ€Evolution Performance of NiFe ₂ O <i>x</i> > Spinels to Activity Levels Commensurate with Nickelâ€Rich Oxides. ChemElectroChem, 2016, 3, 1369-1375.	1.7	20
303	Synthesis and application of hexagonal perovskite BaNiO3 with quadrivalent nickel under atmospheric and low-temperature conditions. Chemical Communications, 2016, 52, 10731-10734.	2.2	13
304	Electroâ€Oxidation of Ni42 Steel: A Highly Active Bifunctional Electrocatalyst. Advanced Functional Materials, 2016, 26, 6402-6417.	7.8	90
305	A Facile Synthesis of Size-Controllable IrO2 and RuO2 Nanoparticles for the Oxygen Evolution Reaction. Electrocatalysis, 2016, 7, 420-427.	1.5	57
306	Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems. Physical Chemistry Chemical Physics, 2016, 18, 22364-22372.	1.3	20

#	Article	IF	CITATIONS
307	Rotating Ring–Disk Electrode Study of Oxygen Evolution at a Perovskite Surface: Correlating Activity to Manganese Concentration. Journal of Physical Chemistry C, 2016, 120, 27746-27756.	1.5	85
308	Electrochemical analysis of nanostructured iron oxides using cyclic voltammetry and scanning electrochemical microscopy. Electrochimica Acta, 2016, 222, 1326-1334.	2.6	19
309	Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chemical Reviews, 2016, 116, 14120-14136.	23.0	1,259
310	Water electrolysis on La1â^'xSrxCoO3â^´Î´ perovskite electrocatalysts. Nature Communications, 2016, 7, 11053.	5.8	800
311	Oxidatively Electrodeposited Thin-Film Transition Metal (Oxy)hydroxides as Oxygen Evolution Catalysts. Journal of the American Chemical Society, 2016, 138, 8946-8957.	6.6	376
312	Oxygen Reduction at Carbonâ€Supported Lanthanides: Theâ€Role of the Bâ€Site. ChemElectroChem, 2016, 3, 283-291.	1.7	63
314	Cloud-like graphene nanoplatelets on Nd _{0.5} Sr _{0.5} CoO _{3â~îî} nanorods as an efficient bifunctional electrocatalyst for hybrid Li–air batteries. Journal of Materials Chemistry A, 2016, 4, 2122-2127.	5.2	54
315	Anionic redox processes for electrochemical devices. Nature Materials, 2016, 15, 121-126.	13.3	556
316	A Fundamental Relationship between Reaction Mechanism and Stability in Metal Oxide Catalysts for Oxygen Evolution. ACS Catalysis, 2016, 6, 1153-1158.	5.5	377
317	Water oxidation catalysis: an amorphous quaternary Ba-Sr-Co-Fe oxide as a promising electrocatalyst for the oxygen-evolution reaction. Chemical Communications, 2016, 52, 1513-1516.	2.2	63
318	Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. Journal of Materials Chemistry A, 2016, 4, 3068-3076.	5.2	477
319	Fast fabrication of self-supported porous nickel phosphide foam for efficient, durable oxygen evolution and overall water splitting. Journal of Materials Chemistry A, 2016, 4, 5639-5646.	5.2	224
320	A Simple Approach towards Highâ€Performance Perovskiteâ€Based Bifunctional Oxygen Electrocatalysts. ChemElectroChem, 2016, 3, 138-143.	1.7	37
321	Efficient Bi-Functional Electrocatalysts of Strontium Iron Oxy-Halides for Oxygen Evolution and Reduction Reactions in Alkaline Media. Journal of the Electrochemical Society, 2016, 163, H450-H458.	1.3	22
322	Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO ₃ Perovskites. Journal of the American Chemical Society, 2016, 138, 2488-2491.	6.6	310
323	Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO2-reduction reactions for (co-)electrolyzer development. Nano Energy, 2016, 29, 4-28.	8.2	104
324	Oxygen evolution reaction electrocatalysis on SrIrO ₃ grown using molecular beam epitaxy. Journal of Materials Chemistry A, 2016, 4, 6831-6836.	5.2	62
325	Water Splitting Using Electrochemical Approach. Lecture Notes in Energy, 2016, , 175-189.	0.2	1

#	Article	IF	CITATIONS
326	Porous LaCo _{1–<i>x</i>} Ni _{<i>x</i>} O _{3â^'Î} Nanostructures as an Efficient Electrocatalyst for Water Oxidation and for a Zinc–Air Battery. ACS Applied Materials & Interfaces, 2016, 8, 6019-6031.	4.0	115
327	A New Family of Perovskite Catalysts for Oxygen-Evolution Reaction in Alkaline Media: BaNiO ₃ and BaNi _{0.83} O _{2.5} . Journal of the American Chemical Society, 2016, 138, 3541-3547.	6.6	204
328	Effect of doping β-NiOOH with Co on the catalytic oxidation of water: DFT+U calculations. Physical Chemistry Chemical Physics, 2016, 18, 7490-7501.	1.3	32
329	Pr _x Ba _{1-x} CoO ₃ Oxide Electrodes for Oxygen Evolution Reaction in Alkaline Solutions by Chemical Solution Deposition. Journal of the Electrochemical Society, 2016, 163, F166-F170.	1.3	20
330	Descriptors of Oxygen-Evolution Activity for Oxides: A Statistical Evaluation. Journal of Physical Chemistry C, 2016, 120, 78-86.	1.5	207
331	Identifying the descriptor governing NO oxidation on mullite Sm(Y, Tb, Gd,) Tj ETQq1 1 0.784314 rgBT /Overlock 2016, 6, 3971-3975.	10 Tf 50 5 2.1	47 Td (Lu) 44
332	Hollandite Structure K _{<i>x</i>â‰^0.25} IrO ₂ Catalyst with Highly Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 820-826.	4.0	94
333	Structural and Catalytic Effects of Iron- and Scandium-Doping on a Strontium Cobalt Oxide Electrocatalyst for Water Oxidation. ACS Catalysis, 2016, 6, 1122-1133.	5.5	39
334	Structural basis for differing electrocatalytic water oxidation by the cubic, layered and spinel forms of lithium cobalt oxides. Energy and Environmental Science, 2016, 9, 184-192.	15.6	81
335	Characterisation of bifunctional electrocatalysts for oxygen reduction and evolution by means of SECM. Journal of Solid State Electrochemistry, 2016, 20, 1019-1027.	1.2	30
336	Dimensionally stable Ni Fe@Co/Ti nanoporous electrodes by reactive deposition for water electrolysis. International Journal of Hydrogen Energy, 2017, 42, 7143-7150.	3.8	5
337	High-performance non-enzymatic perovskite sensor for hydrogen peroxide and glucose electrochemical detection. Sensors and Actuators B: Chemical, 2017, 244, 482-491.	4.0	82
338	Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nature Chemistry, 2017, 9, 457-465.	6.6	1,409
339	Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis. Small, 2017, 13, 1603793.	5.2	277
340	Microwaveâ€Assisted Synthesis of Stable and Highly Active Ir Oxohydroxides for Electrochemical Oxidation of Water. ChemSusChem, 2017, 10, 1958-1968.	3.6	40
341	Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017, 46, 337-365.	18.7	4,505
342	Bâ€Site Cation Ordered Double Perovskites as Efficient and Stable Electrocatalysts for Oxygen Evolution Reaction. Chemistry - A European Journal, 2017, 23, 5722-5728.	1.7	61
343	Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transitionâ€Metal Spinels. Advanced Materials, 2017, 29, 1606800.	11.1	525

#	Article	IF	CITATIONS
344	Formation of Two-Dimensional Homologous Faults and Oxygen Electrocatalytic Activities in a Perovskite Nickelate. Nano Letters, 2017, 17, 3126-3132.	4.5	73
345	H 2 O 2 Treated La 0.8 Sr 0.2 CoO 3-δas an Efficient Catalyst for Oxygen Evolution Reaction. Electrochimica Acta, 2017, 244, 139-145.	2.6	33
346	Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Materials Today, 2017, 20, 425-451.	8.3	339
347	Transformation of La0.65Sr0.35MnO3 in electrochemical water oxidation. International Journal of Hydrogen Energy, 2017, 42, 8560-8568.	3.8	16
348	Electrocatalysis for the Hydrogen Economy. , 2017, , 23-50.		11
349	Balanced work function as a driver for facile hydrogen evolution reaction – comprehension and experimental assessment of interfacial catalytic descriptor. Physical Chemistry Chemical Physics, 2017, 19, 17019-17027.	1.3	69
350	Highly active and durable nitrogen doped-reduced graphene oxide/double perovskite bifunctional hybrid catalysts. Journal of Materials Chemistry A, 2017, 5, 13019-13031.	5.2	45
351	Enhanced photopromoted electron transfer over a bilayer WO ₃ n–n heterojunction prepared by RF diode sputtering. Journal of Materials Chemistry A, 2017, 5, 12977-12989.	5.2	21
352	Effect of ball milling on the electrocatalytic activity of Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O ₃ towards the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 13130-13137.	5.2	30
353	In situ grown nickel nanoparticles in a calixarene nanoreactor on a graphene–MoS ₂ support for efficient water electrolysis. Sustainable Energy and Fuels, 2017, 1, 1329-1338.	2.5	13
354	In Operando Selfâ€Healing of Perovskite Electrocatalysts: A Case Study of SrCoO ₃ for the Oxygen Evolution Reaction. Particle and Particle Systems Characterization, 2017, 34, 1600280.	1.2	10
355	Enhanced electrocatalytic activity via phase transitions in strongly correlated SrRuO ₃ thin films. Energy and Environmental Science, 2017, 10, 924-930.	15.6	82
356	Correlating Oxygen Evolution Catalysts Activity and Electronic Structure by a High-Throughput Investigation of Ni1-y-zFeyCrzOx. Scientific Reports, 2017, 7, 44192.	1.6	32
357	Doped Perovskites To Evaluate the Relationship between Fuel–Oxidizer Thermite Ignition and Bond Energy, Electronegativity, and Oxygen Vacancy. Journal of Physical Chemistry C, 2017, 121, 147-152.	1.5	21
358	Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nature Energy, 2017, 2, .	19.8	435
359	A Perovskite Nanorod as Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1602122.	10.2	369
360	Synthesis of W2N nanorods-graphene hybrid structure with enhanced oxygen reduction reaction performance. International Journal of Hydrogen Energy, 2017, 42, 25924-25932.	3.8	14
361	Insights into the Performance of Co _{<i>x</i>} Ni _{1–<i>x</i>} TiO ₃ Solid Solutions as Photocatalysts for Sun-Driven Water Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 40290-40297.	4.0	23

#	Article	IF	CITATIONS
362	Porous Perovskite-Type Lanthanum Cobaltite as Electrocatalysts toward Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2017, 5, 10910-10917.	3.2	75
363	Templated Synthesis of Nickelâ^'Iron Layered Double Hydroxide for Enhanced Electrocatalytic Water Oxidation: Towards the Development of Nonâ€Preciousâ€Metal Catalysts. ChemElectroChem, 2017, 4, 3134-3139.	1.7	17
364	Dual-Ligand Synergistic Modulation: A Satisfactory Strategy for Simultaneously Improving the Activity and Stability of Oxygen Evolution Electrocatalysts. ACS Catalysis, 2017, 7, 8184-8191.	5.5	109
365	Perovskites decorated with oxygen vacancies and Fe–Ni alloy nanoparticles as high-efficiency electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 19836-19845.	5.2	141
366	How many surface atoms in Co ₃ O ₄ take part in oxygen evolution? Isotope labeling together with differential electrochemical mass spectrometry. Physical Chemistry Chemical Physics, 2017, 19, 25527-25536.	1.3	55
367	Reactive Electrophilic O ^{lâ^'} Species Evidenced in Highâ€Performance Iridium Oxohydroxide Water Oxidation Electrocatalysts. ChemSusChem, 2017, 10, 4786-4798.	3.6	49
368	Ordering and Phase Control in Epitaxial Double-Perovskite Catalysts for the Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 7029-7037.	5.5	35
369	Phosphonate-Based Metal–Organic Framework Derived Co–P–C Hybrid as an Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 6000-6007.	5.5	149
370	Atomic‣cale CoO <i>_x</i> Species in Metal–Organic Frameworks for Oxygen Evolution Reaction. Advanced Functional Materials, 2017, 27, 1702546.	7.8	327
371	Water Oxidation Catalysis: Tuning the Electrocatalytic Properties of Amorphous Lanthanum Cobaltite through Calcium Doping. ACS Catalysis, 2017, 7, 6385-6391.	5.5	18
372	W-Doped CaMnO _{2.5} and CaMnO ₃ Electrocatalysts for Enhanced Performance in Oxygen Evolution and Reduction Reactions. Journal of the Electrochemical Society, 2017, 164, F1074-F1080.	1.3	20
373	Noble metal-free catalysts for oxygen reduction reaction. Science China Chemistry, 2017, 60, 1494-1507.	4.2	60
374	Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides. Nature Communications, 2017, 8, 2022.	5.8	147
375	LaFexCo(1–x)O3Thin-Film Oxygen Reduction Catalysts Prepared Using Spray Pyrolysis without Conductive Additives. ACS Omega, 2017, 2, 7695-7701.	1.6	8
376	Decreasing the Hydroxylation Affinity of La _{1–<i>x</i>} Sr _{<i>x</i>} MnO ₃ Perovskites To Promote Oxygen Reduction Electrocatalysis. Chemistry of Materials, 2017, 29, 9990-9997.	3.2	37
377	Perovskites in catalysis and electrocatalysis. Science, 2017, 358, 751-756.	6.0	1,138
378	Nonprecious Electrocatalysts for Li-Air and Zn-Air batteries: Fundamentals and recent advances. IEEE Nanotechnology Magazine, 2017, 11, 29-55.	0.9	16
379	La _{0.8} Sr _{0.2} MnO ₃ -Based Perovskite Nanoparticles with the A-Site Deficiency as High Performance Bifunctional Oxygen Catalyst in Alkaline Solution. ACS Applied Materials & Interfaces, 2017, 9, 23820-23827.	4.0	87

#	Article	IF	CITATIONS
380	A Density Functional + <i>U</i> Assessment of Oxygen Evolution Reaction Mechanisms on β-NiOOH. ACS Catalysis, 2017, 7, 5329-5339.	5.5	110
381	Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts. Chemistry of Materials, 2017, 29, 120-140.	3.2	473
382	Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Progress in Energy and Combustion Science, 2017, 58, 1-35.	15.8	506
383	Enhanced electrocatalytic properties of electrodeposited amorphous cobalt-nickel hydroxide nanosheets on nickel foam by the formation of nickel nanocones for the oxygen evolution reaction. Journal of Alloys and Compounds, 2017, 693, 964-969.	2.8	49
384	Recent Progress on the Development of Metalâ€Air Batteries. Advanced Sustainable Systems, 2017, 1, 1700036.	2.7	83
385	Perovskite Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Media. Catalysts, 2017, 7, 154.	1.6	80
386	Photocatalytic Water Oxidation on ZnO: A Review. Catalysts, 2017, 7, 93.	1.6	122
387	Factors Controlling the Redox Activity of Oxygen in Perovskites: From Theory to Application for Catalytic Reactions. Catalysts, 2017, 7, 149.	1.6	79
388	Yttrium Copper Titanate as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction in Fuel Cells, Synthesized via Ultrafast Automatic Flame Technique. Scientific Reports, 2017, 7, 9407.	1.6	6
389	Electrocatalytic Properties of La1-xCuxCoO3 (0 ≤ ≤0.8) Film Electrodes Prepared by Malic Acid Sol -Gel Method at pH = 3.75. International Journal of Electrochemical Science, 2017, , 7128-7141.	0.5	8
390	Influence of Strain on the Surface–Oxygen Interaction and the Oxygen Evolution Reaction of SrIrO ₃ . Journal of Physical Chemistry C, 2018, 122, 4359-4364.	1.5	39
391	Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy and Environmental Science, 2018, 11, 744-771.	15.6	1,055
392	Electronic Origin and Kinetic Feasibility of the Lattice Oxygen Participation During the Oxygen Evolution Reaction on Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 1473-1479.	2.1	62
393	Synthesis of mesoporous Co 3 O 4 nanosheet-assembled hollow spheres towards efficient electrocatalytic oxygen evolution. Journal of Alloys and Compounds, 2018, 754, 72-77.	2.8	26
394	Role of Lattice Oxygen Participation in Understanding Trends in the Oxygen Evolution Reaction on Perovskites. ACS Catalysis, 2018, 8, 4628-4636.	5.5	339
395	Tuning the Electronic Spin State of Catalysts by Strain Control for Highly Efficient Water Electrolysis. Small Methods, 2018, 2, 1800001.	4.6	70
396	Hematite Photoanode with Complex Nanoarchitecture Providing Tunable Gradient Doping and Low Onset Potential for Photoelectrochemical Water Splitting. ChemSusChem, 2018, 11, 1873-1879.	3.6	33
397	Iron and cobalt hydroxides: Describing the oxygen evolution reaction activity trend with the amount of electrocatalyst. Electrochimica Acta, 2018, 274, 224-232.	2.6	6

#	Article	IF	CITATIONS
398	Oxygen Sponges for Electrocatalysis: Oxygen Reduction/Evolution on Nonstoichiometric, Mixed Metal Oxides. Chemistry of Materials, 2018, 30, 2860-2872.	3.2	56
399	Recent progress and perspectives of bifunctional oxygen reduction/evolution catalyst development for regenerative anion exchange membrane fuel cells. Nano Energy, 2018, 47, 172-198.	8.2	134
400	Orbital Physics of Perovskites for the Oxygen Evolution Reaction. Topics in Catalysis, 2018, 61, 267-275.	1.3	16
401	Hydrothermal shape controllable synthesis of La _{0.5} Sr _{0.5} MnO ₃ crystals and facet effect on electron transfer of oxygen reduction. Inorganic Chemistry Frontiers, 2018, 5, 732-738.	3.0	12
402	Impact of Srâ€Incorporation on Cr Oxidation and Water Dissociation in La _{(1–} <i>_x(/i>₎Sr<i>_x</i>CrO₃. Advanced Materials Interfaces, 2018, 5, 1701363.</i>	1.9	13
403	Hollow mesoporous architecture: A high performance Bi-functional photoelectrocatalyst for overall water splitting. Electrochimica Acta, 2018, 268, 163-172.	2.6	22
404	Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications. National Science Review, 2018, 5, 327-341.	4.6	129
405	Water Splitting by Using Electrochemical Properties of Material. Energy, Environment, and Sustainability, 2018, , 135-153.	0.6	5
406	Enhanced Catalysis of the Electrochemical Oxygen Evolution Reaction by Iron(III) Ions Adsorbed on Amorphous Cobalt Oxide. ACS Catalysis, 2018, 8, 807-814.	5.5	163
407	Combustion synthesis of bifunctional LaMO3 (M = Cr, Mn, Fe, Co, Ni) perovskites for oxygen reduction and oxygen evolution reaction in alkaline media. Journal of Electroanalytical Chemistry, 2018, 809, 22-30.	1.9	120
408	Fabrication and characterization of porous, conductive, monolithic Ti4O7 electrodes. Electrochimica Acta, 2018, 263, 299-310.	2.6	109
409	Material Discovery and Design Principles for Stable, High Activity Perovskite Cathodes for Solid Oxide Fuel Cells. Advanced Energy Materials, 2018, 8, 1702708.	10.2	125
410	Unlocking the potential of graphene for water oxidation using an orbital hybridization strategy. Energy and Environmental Science, 2018, 11, 407-416.	15.6	52
411	Degradation Kinetics during Oxygen Electrocatalysis on Perovskite-Based Surfaces in Alkaline Media. Langmuir, 2018, 34, 1347-1352.	1.6	18
412	Cobalt Boron Imidazolate Framework Derived Cobalt Nanoparticles Encapsulated in B/N Codoped Nanocarbon as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Functional Materials, 2018, 28, 1801136.	7.8	155
413	A Stable and Electrocatalytic Iron Electrode for Oxygen Evolution in Alkaline Water Electrolysis. Topics in Catalysis, 2018, 61, 591-600.	1.3	10
414	Principles determining the activity of magnetic oxides for electron transfer reactions. Journal of Catalysis, 2018, 361, 331-338.	3.1	105
415	Comparative Study of Special Features of the Oxygen Reaction (Molecular Oxygen Ionization and) Tj ETQq1 1 0. Electrochemistry, 2018, 54, 1-19.	784314 rg 0.3	;BT /Overlock 7

#	Article	IF	CITATIONS
416	Role of the Carbon Support on the Oxygen Reduction and Evolution Activities in LaNiO ₃ Composite Electrodes in Alkaline Solution. ACS Applied Energy Materials, 2018, 1, 1549-1558.	2.5	40
417	Insights into the Active Electrocatalytic Areas of Layered Double Hydroxide and Amorphous Nickel–Iron Oxide Oxygen Evolution Electrocatalysts. ACS Applied Energy Materials, 2018, 1, 1415-1423.	2.5	23
418	Activation of a Ni electrocatalyst through spontaneous transformation of nickel sulfide to nickel hydroxide in an oxygen evolution reaction. Applied Catalysis B: Environmental, 2018, 233, 130-135.	10.8	103
419	Ripple-like NiFeCo sulfides on nickel foam derived from in-situ sulfurization of precursor oxides as efficient anodes for water oxidation. Applied Surface Science, 2018, 428, 370-376.	3.1	24
420	The electrocatalysis of oxygen evolution reaction on La1â^'Ca FeO3â^' perovskites in alkaline solution. International Journal of Hydrogen Energy, 2018, 43, 4682-4690.	3.8	30
421	Unraveling Geometrical Site Confinement in Highly Efficient Ironâ€Doped Electrocatalysts toward Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1701686.	10.2	125
422	Oxygen reduction and oxygen evolution on SrTi1â^'xFexO3â^'y (STFO) perovskite electrocatalysts. Journal of Electroanalytical Chemistry, 2018, 819, 275-282.	1.9	21
423	ELECTROCATALYTIC PROCESSES IN ENERGY TECHNOLOGIES. , 2018, , 291-341.		0
424	Amorphous Cobalt Vanadium Oxide as a Highly Active Electrocatalyst for Oxygen Evolution. ACS Catalysis, 2018, 8, 644-650.	5.5	220
425	Correlation Between Calcination Temperature and Bifunctional Catalytic Activity for Oxygen Electrode Reaction of Bismuth Ruthenate Pyrochlore in KOH Solution. Electrocatalysis, 2018, 9, 146-152.	1.5	1
426	IrOOH nanosheets as acid stable electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 21558-21566.	5.2	72
427	Identification of Stabilizing High-Valent Active Sites by Operando High-Energy Resolution Fluorescence-Detected X-ray Absorption Spectroscopy for High-Efficiency Water Oxidation. Journal of the American Chemical Society, 2018, 140, 17263-17270.	6.6	92
428	Measurements of Oxygen Electroadsorption Energies and Oxygen Evolution Reaction on RuO ₂ (110): A Discussion of the Sabatier Principle and Its Role in Electrocatalysis. Journal of the American Chemical Society, 2018, 140, 17597-17605.	6.6	177
429	Oxygen Evolution Reaction Catalyzed by Cost-Effective Metal Oxides. , 2018, , 785-795.		1
430	Systematic Study of Descriptors for Oxygen Evolution Reaction Catalysis in Perovskite Oxides. Journal of Physical Chemistry C, 2018, 122, 27885-27892.	1.5	103
431	Photoactive Brownmillerite Multiferroic KBiFe ₂ O ₅ and Its Potential Application in Sunlight-Driven Photocatalysis. ACS Omega, 2018, 3, 16643-16650.	1.6	29
432	Effects of testing conditions on the performance of carbon-supported bifunctional electrodes. Electrochimica Acta, 2018, 292, 446-457.	2.6	3
433	Energy Trends in Adsorption at Surfaces. , 2018, , 1-20.		Ο

#	Article	IF	CITATIONS
434	Two-Dimensional Sandwich-Structured Mesoporous Mo ₂ C/Carbon/Graphene Nanohybrids for Efficient Hydrogen Production Electrocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 40800-40807.	4.0	44
436	Impact of Strontium-Substitution on Oxygen Evolution Reaction of Lanthanum Nickelates in Alkaline Solution. Journal of the Electrochemical Society, 2018, 165, J3236-J3245.	1.3	34
437	Speciation and Electronic Structure of La1â^'xSrxCoO3â^'δ During Oxygen Electrolysis. Topics in Catalysis, 2018, 61, 2161-2174.	1.3	25
438	Symmetryâ€Broken Atom Configurations at Grain Boundaries and Oxygen Evolution Electrocatalysis in Perovskite Oxides. Advanced Energy Materials, 2018, 8, 1802481.	10.2	43
439	Oxygen Evolution Reaction on Perovskites: A Multieffect Descriptor Study Combining Experimental and Theoretical Methods. ACS Catalysis, 2018, 8, 9567-9578.	5.5	98
440	Oxygen Evolution Reaction—The Enigma in Water Electrolysis. ACS Catalysis, 2018, 8, 9765-9774.	5.5	345
441	Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance. Journal of the American Chemical Society, 2018, 140, 7748-7759.	6.6	1,157
442	Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energyâ€Related Applications. Small Methods, 2018, 2, 1800071.	4.6	285
443	Recent Advances on Black Phosphorus for Energy Storage, Catalysis, and Sensor Applications. Advanced Materials, 2018, 30, e1800295.	11.1	215
444	Coreâ€Shell Structured NiCo ₂ O ₄ @FeOOH Nanowire Arrays as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. ChemCatChem, 2018, 10, 4119-4125.	1.8	34
445	3D Ni-Co sulfoxide nanosheet arrays electrodeposited on Ni foam: A bifunctional electrocatalyst towards efficient and stable water splitting. Electrochimica Acta, 2018, 292, 347-356.	2.6	40
446	Enhanced oxygen evolution activity of Co3â´'xNixO4 compared to Co3O4 by low Ni doping. Journal of Electroanalytical Chemistry, 2018, 823, 482-491.	1.9	19
447	Solvent-induced surface hydroxylation of a layered perovskite Sr ₃ FeCoO _{7â^î^} for enhanced oxygen evolution catalysis. Journal of Materials Chemistry A, 2018, 6, 14240-14245.	5.2	15
448	Synergistically Enhanced Oxygen Evolution Reaction Catalysis for Multielement Transition-Metal Oxides. ACS Applied Energy Materials, 2018, 1, 3711-3721.	2.5	53
449	A comparative study of electrocatalytic performance of metal molybdates for the water oxidation. International Journal of Hydrogen Energy, 2018, 43, 16543-16555.	3.8	31
450	Tailored transition metal-doped nickel phosphide nanoparticles for the electrochemical oxygen evolution reaction (OER). Chemical Communications, 2018, 54, 8630-8633.	2.2	73
451	Machine learning meets volcano plots: computational discovery of cross-coupling catalysts. Chemical Science, 2018, 9, 7069-7077.	3.7	154
452	Resolution of Electronic and Structural Factors Underlying Oxygen-Evolving Performance in Amorphous Cobalt Oxide Catalysts. Journal of the American Chemical Society, 2018, 140, 10710-10720.	6.6	54

#	Article	IF	CITATIONS
453	Oxygen Evolution Activity and Chemical Stability of Ni and Fe Based Perovskites in Alkaline Media. Journal of the Electrochemical Society, 2018, 165, F827-F835.	1.3	15
454	Shrinking the Hydrogen Overpotential of Cu by 1 V and Imparting Ultralow Charge Transfer Resistance for Enhanced H ₂ Evolution. ACS Catalysis, 2018, 8, 5686-5697.	5.5	42
455	High permittivitty (La0.5Sr0.5)CoO3-δ-La(Co0.5Ti0.5)O3-δ ceramic composites for next generation MIM capacitors. Journal of the European Ceramic Society, 2018, 38, 3853-3860.	2.8	3
456	Mesoporous Mo ₂ C/Carbon Hybrid Nanotubes Synthesized by a Dual-Template Self-Assembly Approach for an Efficient Hydrogen Production Electrocatalyst. Langmuir, 2018, 34, 10924-10931.	1.6	27
457	Novel Cobalt Germanium Hydroxide for Electrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 30357-30366.	4.0	22
458	Mixed protonic-electronic conducting perovskite oxide as a robust oxygen evolution reaction catalyst. Electrochimica Acta, 2018, 282, 324-330.	2.6	23
459	The stability number as a metric for electrocatalyst stability benchmarking. Nature Catalysis, 2018, 1, 508-515.	16.1	533
460	Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy and Environmental Science, 2019, 12, 442-462.	15.6	433
461	Superâ€Exchange Interaction Induced Overall Optimization in Ferromagnetic Perovskite Oxides Enables Ultrafast Water Oxidation. Small, 2019, 15, e1903120.	5.2	67
462	Mechanism and Key Parameters for Catalyst Evaluation. SpringerBriefs in Materials, 2019, , 11-29.	0.1	1
463	Oxygen Vacancy and Chemical Ordering Control Oxygen Evolution Activity of Sr _{2–<i>x</i>} Ca _{<i>x</i>} Fe ₂ O _{6â `î} Perovskites. ACS Applied Energy Materials, 2019, 2, 6140-6145.	2.5	18
464	Correlation between Ru–O hybridization and the oxygen evolution reaction in ruthenate epitaxial thin films. Sustainable Energy and Fuels, 2019, 3, 2867-2872.	2.5	7
465	Hybrid Ni(OH) ₂ /FeOOH@NiFe Nanosheet Catalysts toward Highly Efficient Oxygen Evolution Reaction with Ultralong Stability over 1000 Hours. ACS Sustainable Chemistry and Engineering, 2019, 7, 14601-14610.	3.2	39
466	Micropore-Boosted Layered Double Hydroxide Catalysts: EIS Analysis in Structure and Activity for Effective Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2019, 11, 30887-30893.	4.0	26
467	Screening highly active perovskites for hydrogen-evolving reaction via unifying ionic electronegativity descriptor. Nature Communications, 2019, 10, 3755.	5.8	139
468	Electrospun Cuâ€Deposited Flexible Fibers as an Efficient Oxygen Evolution Reaction Electrocatalyst. ChemPhysChem, 2019, 20, 2973-2980.	1.0	7
469	Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation. Nature Communications, 2019, 10, 3809.	5.8	150
470	Transition-Metal Distribution in Brownmillerite Ca ₂ FeCoO ₅ . Inorganic Chemistry, 2019, 58, 10209-10216.	1.9	3

#	Article	IF	CITATIONS
471	Activation of Catalytically Active Edge-Sharing Domains in Ca ₂ FeCoO ₅ for Oxygen Evolution Reaction in Highly Alkaline Media. ACS Applied Materials & Interfaces, 2019, 11, 28823-28829.	4.0	25
472	Direct Deposition of Amorphous Cobalt–Vanadium Mixed Oxide Films for Electrocatalytic Water Oxidation. ACS Omega, 2019, 4, 12671-12679.	1.6	25
473	Difference between Metal-S and Metal-O Bond Orders: A Descriptor of Oxygen Evolution Activity for Isolated Metal Atom-Doped MoS2 Nanosheets. IScience, 2019, 20, 481-488.	1.9	21
474	Boosting Alkaline Hydrogen Evolution Electrocatalysis over Metallic Nickel Sites through Synergistic Coupling with Vanadium Sesquioxide. ChemSusChem, 2019, 12, 5063-5069.	3.6	16
475	Co/Fe Oxyhydroxides Supported on Perovskite Oxides as Oxygen Evolution Reaction Catalyst Systems. ACS Applied Materials & Interfaces, 2019, 11, 34787-34795.	4.0	43
476	Selecting between two transition states by which water oxidation intermediates decay on an oxide surface. Nature Catalysis, 2019, 2, 820-827.	16.1	39
477	Oxygen reduction/evolution activity of air electrodes using nitrogen-doped and perovskite-type oxide-loaded reduced graphene oxides. Journal of Applied Electrochemistry, 2019, 49, 1055-1067.	1.5	11
478	Structural and morphological alterations induced by cobalt substitution in LaMnO3 perovskites. Journal of Colloid and Interface Science, 2019, 556, 658-666.	5.0	33
479	Role of Lattice Oxygen in the Oxygen Evolution Reaction on Co ₃ O ₄ : Isotope Exchange Determined Using a Small-Volume Differential Electrochemical Mass Spectrometry Cell Design. Analytical Chemistry, 2019, 91, 12653-12660.	3.2	26
480	In Situ Preparation of Pr1-xCaxMnO3 and La1-xSrxMnO3 Catalysts Surface for High-Resolution Environmental Transmission Electron Microscopy. Catalysts, 2019, 9, 751.	1.6	9
481	Iron phosphate modified calcium iron oxide as an efficient and robust catalyst in electrocatalyzing oxygen evolution from seawater. Faraday Discussions, 2019, 215, 205-215.	1.6	32
482	Bifunctional OER/ORR catalytic activity in the tetrahedral YBaCo ₄ O _{7.3} oxide. Journal of Materials Chemistry A, 2019, 7, 330-341.	5.2	42
483	Facile synthesis of hollow Co3O4-embedded carbon/reduced graphene oxides nanocomposites for use as efficient electrocatalysts in oxygen evolution reaction. Electrochimica Acta, 2019, 300, 123-130.	2.6	60
484	Ferromagnetic ligand holes in cobalt perovskite electrocatalysts as an essential factor for high activity towards oxygen evolution. Physical Chemistry Chemical Physics, 2019, 21, 2977-2983.	1.3	32
485	Decoupling the roles of carbon and metal oxides on the electrocatalytic reduction of oxygen on La _{1â^'x} Sr _x CoO _{3â^î^} perovskite composite electrodes. Physical Chemistry Chemical Physics, 2019, 21, 3327-3338.	1.3	26
486	Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 5069-5089.	5.2	422
487	Revealing High Oxygen Evolution Catalytic Activity of Fluorine-Doped Carbon in Alkaline Media. Materials, 2019, 12, 211.	1.3	7
488	Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation. Advanced Materials, 2019, 31, e1807898.	11.1	215

#	Article	IF	CITATIONS
489	Tuning oxygen electrocatalysis via strain on LaNiO3(001). Physical Chemistry Chemical Physics, 2019, 21, 4738-4745.	1.3	14
490	Enhanced overall water electrolysis on a bifunctional perovskite oxide through interfacial engineering. Electrochimica Acta, 2019, 318, 120-129.	2.6	39
491	The application of CeO ₂ -based materials in electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 17675-17702.	5.2	128
492	Atomic-scale perturbation of oxygen octahedra via surface ion exchange in perovskite nickelates boosts water oxidation. Nature Communications, 2019, 10, 2713.	5.8	96
493	Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy and Environmental Science, 2019, 12, 2620-2645.	15.6	1,052
494	A hydrated strontium cobalt oxyhydroxide Ruddlesden–Popper phase as an oxygen electrocatalyst for aqueous lithium–oxygen rechargeable batteries. Chemical Communications, 2019, 55, 7454-7457.	2.2	11
495	Spinel Cobalt Titanium Binary Oxide as an All-Non-Precious Water Oxidation Electrocatalyst in Acid. Inorganic Chemistry, 2019, 58, 8570-8576.	1.9	55
496	Enhanced Electrocatalytic Oxygen Evolution Activity by Tuning Both the Oxygen Vacancy and Orbital Occupancy of B‣ite Metal Cation in NdNiO ₃ . Advanced Functional Materials, 2019, 29, 1902449.	7.8	72
497	Advanced Electrochemical Properties of PrBa _{0.5} Sr _{0.5} Co _{1.9} Ni _{0.1} O _{5+<i>δ</i>} as a Bifunctional Catalyst for Rechargeable Zincâ€Air Batteries. ChemElectroChem, 2019, 6, 3154-3159.	1.7	21
498	Photocatalytic degradation of acid red-85 dye by nickel substituted bismuth ferrite nanoparticles. Materials Research Express, 2019, 6, 084006.	0.8	12
499	Optimized Nickel-Cobalt and Nickel-Iron Oxide Catalysts for the Hydrogen Evolution Reaction in Alkaline Water Electrolysis. Journal of the Electrochemical Society, 2019, 166, F519-F533.	1.3	43
500	Electrocatalytic materials design for oxygen evolution reaction. Advances in Inorganic Chemistry, 2019, , 241-303.	0.4	14
501	Tuning perovskite oxides by strain: Electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Materials Today, 2019, 31, 100-118.	8.3	169
502	High-pressure synthesis of highly oxidized Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â^îî} cubic perovskite. Materials Chemistry Frontiers, 2019, 3, 1209-1217.	3.2	19
503	Epitaxial catalysts for oxygen evolution reaction: model systems and beyond. JPhys Energy, 2019, 1, 031001.	2.3	12
504	Electrocatalytic and Enhanced Photocatalytic Applications of Sodium Niobate Nanoparticles Developed by Citrate Precursor Route. Scientific Reports, 2019, 9, 4488.	1.6	75
505	Strain Effect on Oxygen Evolution Reaction Activity of Epitaxial NdNiO ₃ Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 12941-12947.	4.0	67
506	Increased nucleation sites in nickel foam for the synthesis of MoP@Ni3P/NF nanosheets for bifunctional water splitting. Applied Surface Science, 2019, 481, 1403-1411.	3.1	46

#	Article	IF	CITATIONS
507	Itinerant Spins and Bond Lengths in Oxide Electrocatalysts for Oxygen Evolution and Reduction Reactions. Journal of Physical Chemistry C, 2019, 123, 9967-9972.	1.5	49
508	Functional Role of Fe-Doping in Co-Based Perovskite Oxide Catalysts for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2019, 141, 5231-5240.	6.6	250
509	Electrolysis of Water at Atomically Tailored Epitaxial Cobaltite Surfaces. Chemistry of Materials, 2019, 31, 2337-2346.	3.2	22
510	A Roadmap to Lowâ€Cost Hydrogen with Hydroxide Exchange Membrane Electrolyzers. Advanced Materials, 2019, 31, e1805876.	11.1	184
511	A highly sensitive perovskite oxide sensor for detection of p-phenylenediamine in hair dyes. Journal of Hazardous Materials, 2019, 369, 699-706.	6.5	34
512	Morphologyâ€Controlled Metal Sulfides and Phosphides for Electrochemical Water Splitting. Advanced Materials, 2019, 31, e1806682.	11.1	500
513	The g-C3N4 nanosheets decorated by plasmonic Au nanoparticles: A heterogeneous electrocatalyst for oxygen evolution reaction enhanced by sunlight illumination. Electrochimica Acta, 2019, 303, 110-117.	2.6	27
514	Oxygen evolution electrocatalytic properties of perovskite-type La1-xSrxCoO3 (0 ≤ ≤0.8) oxides obtained by polyvinylpyrroli- done sol-gel route. International Journal of Electrochemical Science, 2019, , 11379-11390.	0.5	4
515	Electrospun Cuâ€Deposited Flexible Fibers as an Efficient Oxygen Evolution Reaction Electrocatalyst. ChemPhysChem, 2019, 20, 2899-2899.	1.0	2
516	Dissolution-Induced Surface Roughening and Oxygen Evolution Electrocatalysis of Alkaline-Earth Iridates in Acid. CheM, 2019, 5, 3243-3259.	5.8	98
517	Niâ^'Fe (Oxy)hydroxide Modified Graphene Additive Manufactured (3Dâ€Printed) Electrochemical Platforms as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 5633-5641.	1.7	32
518	Improved bi-functional ORR and OER catalytic activity of reduced graphene oxide supported ZnCo2O4 microsphere. International Journal of Hydrogen Energy, 2019, 44, 1565-1578.	3.8	83
519	Assessing Correlations of Perovskite Catalytic Performance with Electronic Structure Descriptors. Chemistry of Materials, 2019, 31, 785-797.	3.2	106
520	Polymer-assisted approach to LaCo1-xNixO3 network nanostructures as bifunctional oxygen electrocatalysts. Electrochimica Acta, 2019, 296, 945-953.	2.6	77
521	Unfolding BOB Bonds for an Enhanced ORR Performance in ABO ₃ â€Type Perovskites. Small, 2019, 15, e1803513.	5.2	67
522	Graphene–carbon nanotube hybrid catalyst layer architecture for reversible oxygen electrodes in rechargeable metal–air batteries. Journal of Applied Electrochemistry, 2019, 49, 281-290.	1.5	7
523	Correlation between composition, electrical and electrochemical properties of LnCo1-xCrxO3 (Ln =) Tj ETQq0 0 C) rgBT /Ove 1.2	erlgck 10 Tf 5

524	Electrochemical potential zone of viability on CoCrMo surfaces is affected by cell type: Macrophages under cathodic bias are more resistant to killing. Journal of Biomedical Materials Research - Part A, 2019, 107, 526-534.	2.1	9	
-----	--	-----	---	--

#	Article	IF	CITATIONS
525	Challenges in the understanding oxygen reduction electrocatalysis on transition metal oxides. Current Opinion in Electrochemistry, 2019, 14, 23-31.	2.5	44
526	Modulierung der elektronischen Strukturen anorganischer Nanomaterialien für eine effiziente elektrokatalytische Wasserspaltung. Angewandte Chemie, 2019, 131, 4532-4551.	1.6	34
527	Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 4484-4502.	7.2	340
528	Cobalt Carbonate as an Electrocatalyst for Water Oxidation. Chemistry - A European Journal, 2020, 26, 711-720.	1.7	12
529	Ni-Fe-Cr-Oxides: An Efficient Catalyst Activated by Visible Light for the Oxygen Evolution Reaction. Zeitschrift Fur Physikalische Chemie, 2020, 234, 633-643.	1.4	5
530	Ab-initio prediction of structure stability, electromagnetic, optical and thermoelectric behavior of orthorhombic LaXO3 (X= Cr, Mn, Fe): For device application. Journal of Molecular Graphics and Modelling, 2020, 94, 107482.	1.3	13
531	Transition metal oxides for water oxidation: All about oxyhydroxides?. Science China Materials, 2020, 63, 3-7.	3.5	81
532	Revolution of Perovskite. Materials Horizons, 2020, , .	0.3	10
533	Effect of Graphene Encapsulation of NiMo Alloys on Oxygen Evolution Reaction. ACS Catalysis, 2020, 10, 792-799.	5.5	60
534	A flexible CNT@nickel silicate composite film for high-performance sodium storage. Journal of Energy Chemistry, 2020, 47, 29-37.	7.1	31
535	Progress and Challenges Toward the Rational Design of Oxygen Electrocatalysts Based on a Descriptor Approach. Advanced Science, 2020, 7, 1901614.	5.6	133
536	Best Practices in Using Foam-Type Electrodes for Electrocatalytic Performance Benchmark. ACS Energy Letters, 2020, 5, 3260-3264.	8.8	112
537	Interface Engineering of Binderâ€Free Earthâ€Abundant Electrocatalysts for Efficient Advanced Energy Conversion. ChemSusChem, 2020, 13, 4795-4811.	3.6	28
538	Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts. Nature Communications, 2020, 11, 3513.	5.8	184
539	Bifunctional CoFeVO <i>_x</i> Catalyst for Solar Water Splitting by using Multijunction and Heterojunction Silicon Solar Cells. Advanced Materials Technologies, 2020, 5, 2000592.	3.0	13
540	Benchmarking Perovskite Electrocatalysts' OER Activity as Candidate Materials for Industrial Alkaline Water Electrolysis. Catalysts, 2020, 10, 1387.	1.6	15
541	Oxygen evolution electrocatalytic properties of perovskite-type oxides obtained by PVP sol-gel route: Part II. The effect of partial substitution of Sm for Sr in La0.4Sr0.6CoO3. International Journal of Electrochemical Science, 2020, , 7001-7012.	0.5	3
542	Spinâ€Related Electron Transfer and Orbital Interactions in Oxygen Electrocatalysis. Advanced Materials, 2020, 32, e2003297.	11.1	240

#	Article	IF	CITATIONS
543	Boron-doped graphene as electrocatalytic support for iridium oxide for oxygen evolution reaction. Catalysis Science and Technology, 2020, 10, 6599-6610.	2.1	24
544	First-principles based machine learning study of oxygen evolution reactions of perovskite oxides using a surface center-environment feature model. Applied Surface Science, 2020, 531, 147323.	3.1	28
545	Synthesis and electrocatalytic properties of LaFe1-xZnxO3 perovskites. Journal of Sol-Gel Science and Technology, 2020, 96, 219-225.	1.1	3
546	Enhanced Oxygen Evolution Electrocatalysis in Strained A-Site Cation Deficient LaNiO ₃ Perovskite Thin Films. Nano Letters, 2020, 20, 8040-8045.	4.5	61
547	Insights into the electronic origin of enhancing the catalytic activity of Co3O4 for oxygen evolution by single atom ruthenium. Nano Today, 2020, 34, 100955.	6.2	29
548	The hexagonal perovskite Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â^î^} as an efficient electrocatalyst for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 4488-4497.	3.0	16
549	Molten Salt Synthesized Submicron Perovskite La1–xSrxCoO3 Particles as Efficient Electrocatalyst for Water Electrolysis. Frontiers in Materials, 2020, 7, .	1.2	11
550	Dual-Site Catalysis of Fe-Incorporated Oxychlorides as Oxygen Evolution Electrocatalysts. Chemistry of Materials, 2020, 32, 8195-8202.	3.2	15
551	Surface decoration accelerates the hydrogen evolution kinetics of a perovskite oxide in alkaline solution. Energy and Environmental Science, 2020, 13, 4249-4257.	15.6	33
552	Carbon Material and Cobalt-Substitution Effects in the Electrochemical Behavior of LaMnO3 for ORR and OER. Nanomaterials, 2020, 10, 2394.	1.9	18
553	Atomic-Level Manipulations in Oxides and Alloys for Electrocatalysis of Oxygen Evolution and Reduction. ACS Nano, 2020, 14, 14323-14354.	7.3	37
554	High Throughput Synthesis and Screening of Oxygen Reduction Catalysts in the <i>M</i> TiO ₃ (<i>M</i> = Ca, Sr, Ba) Perovskite Phase Diagram. ACS Combinatorial Science, 2020, 22, 750-756.	3.8	7
555	Ni stabilized rock-salt structured CoO; Co _{1â^'x} Ni _x O: tuning of e _g electrons to develop a novel OER catalyst. RSC Advances, 2020, 10, 17845-17853.	1.7	9
556	Probing Active Sites and Reaction Intermediates of Electrocatalysis Through Confocal Near-Infrared Photoluminescence Spectroscopy: A Perspective. Frontiers in Chemistry, 2020, 8, 327.	1.8	8
557	Role of B site ions in bifunctional oxygen electrocatalysis: a structure–property correlation study on doped Ca ₂ Fe ₂ O ₅ brownmillerites. Physical Chemistry Chemical Physics, 2020, 22, 15520-15527.	1.3	3
558	Highly active hydrogen evolution catalysis on oxygen-deficient double-perovskite oxide PrBaCo ₂ O _{6â^îl´} . Materials Chemistry Frontiers, 2020, 4, 1519-1529.	3.2	18
559	Coulometric Titration of Active Sites at Mesostructured Cobalt Oxide Spinel by Surface Interrogation Mode of Scanning Electrochemical Microscopy. Journal of Physical Chemistry C, 2020, 124, 7737-7748.	1.5	9
560	Bifunctional Heterostructured Transition Metal Phosphides for Efficient Electrochemical Water Splitting. Advanced Functional Materials, 2020, 30, 2003261.	7.8	352

#	Article	IF	CITATIONS
561	Role of perovskites as a biâ€functional catalyst for electrochemical water splitting: A review. International Journal of Energy Research, 2020, 44, 9714-9747.	2.2	38
562	Recent Advances of First d-Block Metal-Based Perovskite Oxide Electrocatalysts for Alkaline Water Splitting. Catalysts, 2020, 10, 770.	1.6	28
563	Efficient Oxygen Evolution and Gas Bubble Release Achieved by a Low Gas Bubble Adhesive Iron–Nickel Vanadate Electrocatalyst. Small, 2020, 16, e2002412.	5.2	77
564	Trends of epitaxial perovskite oxide films catalyzing the oxygen evolution reaction in alkaline media. JPhys Energy, 2020, 2, 032003.	2.3	37
565	Phosphoreneâ€Based Electrocatalysts. Chemistry - A European Journal, 2020, 26, 6437-6446.	1.7	39
566	Advances in Porous Perovskites: Synthesis and Electrocatalytic Performance in Fuel Cells and Metal–Air Batteries. Energy and Environmental Materials, 2020, 3, 121-145.	7.3	119
567	High Entropy Intermetallic–Oxide Core–Shell Nanostructure as Superb Oxygen Evolution Reaction Catalyst. Advanced Sustainable Systems, 2020, 4, 1900105.	2.7	129
568	Bismuth Substituted Strontium Cobalt Perovskites for Catalyzing Oxygen Evolution. Journal of Physical Chemistry C, 2020, 124, 6562-6570.	1.5	41
569	Role of strontium as doping agent in LaMn0.5Ni0.5O3 for oxygen electro-catalysis. Journal of Industrial and Engineering Chemistry, 2020, 85, 94-101.	2.9	13
570	Amorphous cobalt-cerium binary metal oxides as high performance electrocatalyst for oxygen evolution reaction. Journal of Catalysis, 2020, 384, 14-21.	3.1	35
571	Investigation of New <i>B</i> -Site-Disordered Perovskite Oxide CaLaScRuO _{6+δ} : An Efficient Oxygen Bifunctional Electrocatalyst in a Highly Alkaline Medium. ACS Applied Materials & Interfaces, 2020, 12, 9190-9200.	4.0	35
572	Oxygen evolution reaction: a perspective on a decade of atomic scale simulations. Chemical Science, 2020, 11, 2943-2950.	3.7	60
573	Surface and interface engineering in transition metal–based catalysts for electrochemical water oxidation. Materials Today Chemistry, 2020, 16, 100239.	1.7	23
574	Nonâ€Nobleâ€Metalâ€Based Electrocatalysts toward the Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1910274.	7.8	760
575	Interpreting Tafel behavior of consecutive electrochemical reactions through combined thermodynamic and steady state microkinetic approaches. Energy and Environmental Science, 2020, 13, 622-634.	15.6	67
576	Electronic modulation of nickel phosphide by iron doping and its assembly on a graphene framework for efficient electrocatalytic water oxidation. Journal of Alloys and Compounds, 2020, 824, 153913.	2.8	15
577	The effects of morphology, microstructure and mixed-valent states of MnO2 on the oxygen evolution reaction activity in alkaline anion exchange membrane water electrolysis. Journal of Power Sources, 2020, 461, 228131.	4.0	35
578	Design of a New Nonâ€enzymatic Sensor Based on a Substituted A ₂ BO _{4+δ} Perovskite for the Voltammetric Detection of Glucose. Electroanalysis, 2020, 32, 1642-1650.	1.5	7

#	Article	IF	CITATIONS
579	Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nature Communications, 2020, 11, 2002.	5.8	366
580	Defect-induced optical and electrochemical properties of Pr ₂ Sn ₂ O ₇ nanoparticles enhanced by Bi ³⁺ doping. Journal of Materials Research, 2020, 35, 1214-1224.	1.2	20
581	Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions. Journal of Energy Chemistry, 2021, 53, 290-302.	7.1	154
582	Recent Advances in Perovskiteâ€Type Oxides for Energy Conversion and Storage Applications. Advanced Energy Materials, 2021, 11, 2000459.	10.2	285
583	Effect of Ru Substitution in La _{0.85} Sr _{0.15} CoO ₃ towards Oxygen Evolution Reaction: Activity of Ionic Ru. Electroanalysis, 2021, 33, 618-626.	1.5	6
584	Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coordination Chemistry Reviews, 2021, 427, 213552.	9.5	66
585	Oxygen evolution reaction activity and underlying mechanism of perovskite electrocatalysts at different pH. Materials Advances, 2021, 2, 345-355.	2.6	42
586	Structurally ordered intermetallic Ir3V electrocatalysts for alkaline hydrogen evolution reaction. Nano Energy, 2021, 81, 105636.	8.2	45
587	Oxide-based precious metal-free electrocatalysts for anion exchange membrane fuel cells: from material design to cell applications. Journal of Materials Chemistry A, 2021, 9, 3151-3179.	5.2	12
588	Recent Advances in Electrochemical Water Splitting and Reduction of CO ₂ into Green Fuels on 2D Phosphoreneâ€Based Catalyst. Energy Technology, 2021, 9, .	1.8	14
589	Perspective on experimental evaluation of adsorption energies at solid/liquid interfaces. Journal of Solid State Electrochemistry, 2021, 25, 33-42.	1.2	4
590	Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chemical Society Reviews, 2021, 50, 2444-2485.	18.7	102
591	Tuning the intrinsic catalytic activities of oxygen-evolution catalysts by doping: a comprehensive review. Journal of Materials Chemistry A, 2021, 9, 20131-20163.	5.2	110
592	Multimetallic nanostructures for electrocatalytic oxygen evolution reaction in acidic media. Materials Chemistry Frontiers, 2021, 5, 4445-4473.	3.2	14
593	Highly Efficient Electrocatalyst for Oxygen Evolution Reaction: DFT Investigation on Transition Metalâ€Tetracyanoquinodimethane Monolayer. ChemistrySelect, 2021, 6, 609-616.	0.7	7
594	Alkaline Anion Exchange Membrane (AEM) Water Electrolysers—Current/Future Perspectives in Electrolysers for Hydrogen. , 2022, , 473-504.		2
595	Engendering Unprecedented Activation of Oxygen Evolution via Rational Pinning of Ni Oxidation State in Prototypical Perovskite: Close Juxtaposition of Synthetic Approach and Theoretical Conception. ACS Catalysis, 2021, 11, 985-997.	5.5	9
596	Electronic and geometric determinants of adsorption: fundamentals and applications. JPhys Energy, 2021, 3, 022001.	2.3	18

#	Article	IF	CITATIONS
597	Understanding the mechanisms and design principles for oxygen evolution and oxygen reduction activity on perovskite catalysts for alkaline zinc–air batteries. Catalysis Science and Technology, 2021, 11, 5200-5211.	2.1	3
598	Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting. Journal of Materials Chemistry A, 2021, 9, 3180-3208.	5.2	224
599	The electronic structure of transition metal oxides for oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 19465-19488.	5.2	90
600	Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy and Environmental Science, 2021, 14, 4647-4671.	15.6	190
601	Local structural changes in polyamorphous (Ni,Fe)O _x electrocatalysts suggest a dual-site oxygen evolution reaction mechanism. Journal of Materials Chemistry A, 2021, 9, 13252-13262.	5.2	17
602	Earthâ€Abundant Amorphous Electrocatalysts for Electrochemical Hydrogen Production: A Review. Advanced Energy and Sustainability Research, 2021, 2, 2000071.	2.8	30
603	Dynamically Stable Active Sites from Surface Evolution of Perovskite Materials during the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2021, 143, 2741-2750.	6.6	156
604	Designing Highâ€Valence Metal Sites for Electrochemical Water Splitting. Advanced Functional Materials, 2021, 31, 2009779.	7.8	195
605	Na3[Ru2(µ-CO3)4] as a Homogeneous Catalyst for Water Oxidation; HCO3â^' as a Co-Catalyst. Catalysts, 2021, 11, 281.	1.6	9
606	Hf Deposition Stabilizes the Surface Chemistry of Perovskite Manganite Oxide. Journal of Physical Chemistry C, 2021, 125, 3346-3354.	1.5	14
607	Elucidating intrinsic contribution of d-orbital states to oxygen evolution electrocatalysis in oxides. Nature Communications, 2021, 12, 824.	5.8	63
608	Intermediate Sr ₂ Co _{1.5} Fe _{0.5} O _{6â^î^} Tetragonal Structure between Perovskite and Brownmillerite as a Model Catalyst with Layered Oxygen Deficiency for Enhanced Electrochemical Water Oxidation. ACS Catalysis, 2021, 11, 4327-4337.	5.5	31
609	Earthâ€Abundant Transition Metalâ€Based Mulliteâ€Type Oxide Catalysts for Heterogeneous Oxidation Reactions. Advanced Energy and Sustainability Research, 2021, 2, 2000075.	2.8	8
610	Tuning the Spin Density of Cobalt Single-Atom Catalysts for Efficient Oxygen Evolution. ACS Nano, 2021, 15, 7105-7113.	7.3	90
611	Dopants in the Design of Noble Metal Nanoparticle Electrocatalysts and their Effect on Surface Energy and Coordination Chemistry at the Nanocrystal Surface. Advanced Energy Materials, 2021, 11, 2100265.	10.2	25
612	Activation Strategies of Perovskiteâ€Type Structure for Applications in Oxygenâ€Related Electrocatalysts. Small Methods, 2021, 5, e2100012.	4.6	29
613	Relationship between Mn Oxidation State Changes and Oxygen Reduction Activity in (La,Ca)MnO ₃ as Probed by <i>In Situ</i> XAS and XES. ACS Catalysis, 2021, 11, 6431-6439.	5.5	27
614	Engineering Highâ€Spin State Cobalt Cations in Spinel Zinc Cobalt Oxide for Spin Channel Propagation and Active Site Enhancement in Water Oxidation, Angewandte Chemie, 2021, 133, 14657-14665.	1.6	24

#	Article	IF	CITATIONS
615	Engineering High‧pin State Cobalt Cations in Spinel Zinc Cobalt Oxide for Spin Channel Propagation and Active Site Enhancement in Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 14536-14544.	7.2	149
616	Highâ€Performance Perovskite Composite Electrocatalysts Enabled by Controllable Interface Engineering. Small, 2021, 17, e2101573.	5.2	128
617	Discovery of Quantitative Electronic Structureâ€OER Activity Relationship in Metalâ€Organic Framework Electrocatalysts Using an Integrated Theoreticalâ€Experimental Approach. Advanced Functional Materials, 2021, 31, 2102066.	7.8	114
618	Structureâ€Tailored Nonâ€Noble Metalâ€based Ternary Chalcogenide Nanocrystals for Ptâ€like Electrocatalytic Hydrogen Production. ChemSusChem, 2021, 14, 3074-3083.	3.6	5
619	Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Advanced Materials, 2021, 33, e2007100.	11.1	781
620	Fundamental Studies of Planar Single-Crystalline Oxide Model Electrodes (RuO ₂ ,) Tj ETQq1 1 0.7843	14 rgBT /	Overlock 10
621	Layered Oxides SrLaFe _{1â€x} Co _x O _{4â€Î́} (x=0–1) as Bifunctional Electrocatalysts for Waterâ€Splitting. ChemCatChem, 2021, 13, 3510-3516.	1.8	18
622	Development of Perovskite Oxideâ€Based Electrocatalysts for Oxygen Evolution Reaction. Small, 2021, 17, e2101605.	5.2	71
623	Progress and challenges pertaining to the earthly-abundant electrocatalytic materials for oxygen evolution reaction. Sustainable Materials and Technologies, 2021, 28, e00252.	1.7	12
624	Fundamental Understanding and Application of Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â^î^} Perovskite in Energy Storage and Conversion: Past, Present, and Future. Energy & Fuels, 2021, 35, 13585-13609.	2.5	113
625	Activating Inert Sites in Cobalt Silicate Hydroxides for Oxygen Evolution through Atomically Doping. Energy and Environmental Materials, 2022, 5, 655-661.	7.3	21
626	Electro catalytic oxidation reactions for harvesting alternative energy over non noble metal oxides: Are we a step closer to sustainable energy solution?. Advanced Powder Technology, 2021, 32, 2663-2689.	2.0	21
627	The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy, 2021, 87, 106162.	8.2	149
628	Perovskite oxides as electrocatalyst for glycerol oxidation. Journal of Electroanalytical Chemistry, 2021, 896, 115198.	1.9	9
629	Waterâ€Assisted Chemical Route Towards the Oxygen Evolution Reaction at the Hydrated (110) Ruthenium Oxide Surface: Heterogeneous Catalysis via DFTâ€MD and Metadynamics Simulations. Chemistry - A European Journal, 2021, 27, 17024-17037.	1.7	4
630	Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews, 2021, 121, 13174-13212.	23.0	262
631	Increasing Iridium Oxide Activity for the Oxygen Evolution Reaction with Hafnium Modification. Journal of the American Chemical Society, 2021, 143, 15616-15623.	6.6	82
632	Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Research, 2022, 15, 4799-4806.	5.8	80

#	Article	IF	CITATIONS
633	K2NiF4 type oxides, Ln2-Sr NiO4+ (LnÂ=ÂLa and Pr; xÂ=Â0–1.4) as an oxygen electrocatalyst for aqueous lithium–oxygen rechargeable batteries. Solid State Ionics, 2021, 369, 115708.	1.3	7
634	Co1-xS/N-doped graphene foam composite as efficient bifunctional electrocatalysts for the evolution reaction of oxygen and hydrogen. Electrochimica Acta, 2021, 393, 139081.	2.6	8
635	Modulating electronic structure of metal-organic framework derived catalysts for electrochemical water oxidation. Coordination Chemistry Reviews, 2021, 447, 214144.	9.5	45
636	Activity and Stability of Oxides During Oxygen Evolution Reactionâ€â€â€From Mechanistic Controversies Toward Relevant Electrocatalytic Descriptors. Frontiers in Energy Research, 2021, 8, .	1.2	45
637	Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy and Environmental Science, 2021, 14, 1016-1028.	15.6	130
638	Two-dimensional layered double hydroxides as a platform for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 9389-9430.	5.2	83
639	Environmental TEM Investigation of Electrochemical Stability of Perovskite and Ruddlesden–Popper Type Manganite Oxygen Evolution Catalysts. Advanced Sustainable Systems, 2017, 1, 1700109.	2.7	25
640	Recent Advances in Nonâ€Precious Metalâ€Based Electrodes for Alkaline Water Electrolysis. ChemNanoMat, 2020, 6, 336-355.	1.5	92
641	Oxygen Evolution Reaction. , 2014, , 1475-1480.		3
642	A Solar Hydrogen Energy System. , 1989, , 171-305.		4
644	Photoelectrolysis and Photoelectrochemical Catalysis. Modern Aspects of Electrochemistry, 1986, , 303-355.	0.2	18
645	Hydrogen Generation. Advanced Structured Materials, 2013, , 141-161.	0.3	10
646	Perovskite Materials in Electrocatalysis. Materials Horizons, 2020, , 209-250.	0.3	4
647	The Effect of Iron Impurities on Transition Metal Catalysts for the Oxygen Evolution Reaction in Alkaline Environment: Activity Mediators or Active Sites?. Catalysis Letters, 2021, 151, 1843-1856.	1.4	46
648	Single-phase Ru1â^'â^'Mn Co O2 nanoparticles as highly effective oxygen reduction electrocatalysts in alkaline media with enhanced stability and fuel-tolerance. Applied Catalysis B: Environmental, 2020, 277, 119149.	10.8	13
649	Physicochemical and electrocatalytic properties of Li-Co3O4 anodes prepared by chemical spray pyrolysis for application in alkaline water electrolysis. Electrochimica Acta, 2004, 49, 1555-1563.	2.6	25
650	Surface Segregation Acts as Surface Engineering for the Oxygen Evolution Reaction on Perovskite Oxides in Alkaline Media. Chemistry of Materials, 2020, 32, 5256-5263.	3.2	16
651	Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides. Energy and Environmental Science, 2017, 10, 2190-2200.	15.6	401

#	Article	IF	CITATIONS
652	Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 4174-4192.	5.2	189
653	Review—Recent Advance in Self-Supported Electrocatalysts for Rechargeable Zinc-Air Batteries. Journal of the Electrochemical Society, 2020, 167, 110564.	1.3	21
654	Investigation of LiO2 Adsorption on LaB1â^'xB′xO3(001) for Li-Air Battery Applications: A Density Functional Theory Study. Journal of the Korean Ceramic Society, 2016, 53, 306-311.	1.1	2
655	The Enhanced Physico-Chemical and Electrochemical Properties for Surface Modified NiO Cathode for Molten Carbonate Fuel Cells (MCFCs). Bulletin of the Korean Chemical Society, 2014, 35, 1305-1311.	1.0	1
656	Design principles of noble metal-free electrocatalysts for hydrogen production in alkaline media: combining theory and experiment. Nanoscale Advances, 2021, 3, 6797-6826.	2.2	23
657	Research Progress of Oxygen Evolution Reaction Catalysts for Electrochemical Water Splitting. ChemSusChem, 2021, 14, 5359-5383.	3.6	70
658	Constructing spin pathways in LaCoO3 by Mn substitution to promote oxygen evolution reaction. Applied Physics Letters, 2021, 119, .	1.5	12
659	A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction. Applied Surface Science Advances, 2021, 6, 100184.	2.9	66
660	Air Electrodes for Aqueous Lithium Air Batteries. , 2014, , 201-214.		0
662	A Review of Electrical Assisted Photocatalytic Technologies for the Treatment of Multi-Phase Pollutants. Catalysts, 2021, 11, 1332.	1.6	9
663	Energy Trends in Adsorption at Surfaces. , 2020, , 1321-1341.		1
664	Dynamic Surface Reconstruction Unifies the Electrocatalytic Oxygen Evolution Performance of Nonstoichiometric Mixed Metal Oxides. Jacs Au, 2021, 1, 2224-2241.	3.6	23
666	SUPERWETTABILITY-BASED CHEMICAL PROCESSES. Surface Review and Letters, 2021, 28, 2030005.	0.5	0
667	The Effect of Cation Mixing in LiNiO 2 toward the Oxygen Evolution Reaction. ChemElectroChem, 2021, 8, 70-76.	1.7	4
668	The role of proton dynamics on the catalyst-electrolyte interface in the oxygen evolution reaction. Chinese Journal of Catalysis, 2022, 43, 139-147.	6.9	5
669	Electrooxidation of perfluorooctanesulfonic acid on porous Magnéli phase titanium suboxide Anodes: Impact of porous structure and composition. Chemical Engineering Journal, 2022, 431, 133929.	6.6	5
670	Structural Changes of Spinel MCo ₂ O ₄ (M = Mn, Fe, Co, Ni, and Zn) Electrocatalysts during the Oxygen Evolution Reaction Investigated by In Situ X-ray Absorption Spectroscopy. ACS Applied Energy Materials, 2022, 5, 278-294.	2.5	41
671	NATURAL HOME REMEDIES MAY ACT AS POTENTIAL IMMUNOMODULATORS TO PROTECT AGAINST SARS-COV-2 INFECTION. Journal of Experimental Biology and Agricultural Sciences, 2020, 8, S176-S189.	0.1	2

#	ARTICLE	IF	CITATIONS
672	Rational design of metal oxide catalysts for electrocatalytic water splitting. Nanoscale, 2021, 13, 20324-20353.	2.8	38
673	Electronic Structure-Based Descriptors for Oxide Properties and Functions. Accounts of Chemical Research, 2022, 55, 298-308.	7.6	42
674	Nickel-Based Selenides with a Fractal Structure as an Excellent Bifunctional Electrocatalyst for Water Splitting. Nanomaterials, 2022, 12, 281.	1.9	27
675	Mesoporous High-Entropy Oxide Thin Films: Electrocatalytic Water Oxidation on High-Surface-Area Spinel (Cr _{0.2} Mn _{0.2} Fe _{0.2} Co _{0.2} Ni _{0.2}) ₃ O	_{4<td>sub?</td>}	sub?
677	Electrodes. ACS Applied Energy Materials, 2022, 5, 717-730. Electrocatalytic Conversion of Glycerol to Oxalate on Ni Oxide Nanoparticles-Modified Oxidized Multiwalled Carbon Nanotubes. ACS Catalysis, 2022, 12, 982-992.	5.5	49
678	Structureâ€Performance Relationship of LaFe _{1â€x} Co _x O ₃ Electrocatalysts for Oxygen Evolution, Isopropanol Oxidation, and Glycerol Oxidation. ChemElectroChem, 2022, 9, .	1.7	10
679	Comparison of Fe-enhanced oxygen evolution electrocatalysis in amorphous and crystalline nickel oxides to evaluate the structural contribution. Energy and Environmental Science, 2022, 15, 610-620.	15.6	37
680	The Pivotal Role of sâ€; pâ€; and fâ€Block Metals in Water Electrolysis: Status Quo and Perspectives. Advanced Materials, 2022, 34, e2108432.	11.1	55
681	Fast-Decoding Algorithm for Electrode Processes at Electrified Interfaces by Mean-Field Kinetic Model and Bayesian Data Assimilation: An Active-Data-Mining Approach for the Efficient Search and Discovery of Electrocatalysts. ACS Applied Materials & Interfaces, 2022, 14, 22889-22902.	4.0	5
682	Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews, 2022, 122, 6117-6321.	23.0	195
683	Spin regulation on (Co,Ni)Se2/C@FeOOH hollow nanocage accelerates water oxidation. Chinese Journal of Catalysis, 2022, 43, 839-850.	6.9	26
684	Template free-synthesis of cobalt–iron chalcogenides [Co _{0.8} Fe _{0.2} L ₂ , L = S, Se] and their robust bifunctional electrocatalysis for the water splitting reaction and Cr(<scp>vi</scp>) reduction. RSC Advances, 2022. 12. 7762-7772.	1.7	9
685	Introduction of S-S Bond to Flexible Supercapacitors for High Mass Specific C Apacity and Stability. SSRN Electronic Journal, 0, , .	0.4	0
686	<i>Operando</i> Identification of the Reversible Skin Layer on Co ₃ O ₄ as a Three-Dimensional Reaction Zone for Oxygen Evolution. ACS Catalysis, 2022, 12, 3256-3268.	5.5	28
687	Parametric optimization for liquid cooling microchannels of AUV's battery thermal management system. Journal of Thermal Analysis and Calorimetry, 2022, 147, 9523-9537.	2.0	2
688	Enhancing catalytic activity of NdFeO3 perovskite by tuning A-site cation deficiency for oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 14542-14551.	3.8	18
689	VO2 as a Highly Efficient Electrocatalyst for the Oxygen Evolution Reaction. Nanomaterials, 2022, 12, 939.	1.9	10
690	Co _{<i>x</i>} (VO) _{<i>y</i>} O _{<i>z</i>} Nanocrystal-Integrated Covalent Organic Polymers as a Highly Active and Durable Catalyst for Electrochemical Water Oxidation: An Untold Role of the VO ²⁺ /VO ₂ ⁺ Redox Couple. ACS Applied Energy Materials, 2022, 5, 2805-2816.	2.5	10

#	Article	IF	CITATIONS
691	Investigation of the Role of Sr and Development of Superior Sr-Doped Hexagonal BaCoO _{3â~'Î} Perovskite Bifunctional OER/ORR Catalysts in Alkaline Media. Energy & Fuels, 2022, 36, 3219-3228.	2.5	14
692	Accelerated oxygen evolution enabled by encapsulating hybrid CoOx/RuO2 nanoparticle with nanoporous carbon. Applied Surface Science, 2022, 589, 152958.	3.1	9
693	3DOM Cerium Doped LaCoO ₃ Bifunctional Electrocatalysts for the Oxygen Evolution and Reduction Reactions. ChemCatChem, 2022, 14, .	1.8	5
694	Nickelâ€based anodes in anion exchange membrane water electrolysis: a review. Journal of Chemical Technology and Biotechnology, 2022, 97, 1611-1624.	1.6	9
695	State of the Active Site in La _{1–<i>x</i>} Sr _{<i>x</i>} CoO _{3â^î} Under Oxygen Evolution Reaction Investigated by Total-Reflection Fluorescence X-Ray Absorption Spectroscopy. ACS Applied Energy Materials, 2022, 5, 4108-4116.	2.5	4
696	Bimetallic Ni-Hf tellurides as an advanced electrocatalyst for overall water splitting with layered g-C3N4 modification. Materials Today Energy, 2022, 26, 101002.	2.5	12
697	Copper foam-derived electrodes as efficient electrocatalysts for conventional and hybrid water electrolysis. Materials Reports Energy, 2022, 2, 100092.	1.7	9
698	Anionic formulation of electrolyte additive towards stable electrocatalytic oxygen evolution in seawater splitting. Journal of Energy Chemistry, 2022, 72, 361-369.	7.1	42
699	Introduction of S-S bond to flexible supercapacitors for high mass specific capacity and stability. Journal of Alloys and Compounds, 2022, 911, 165080.	2.8	1
700	Oxygen Evolution Reaction in Energy Conversion and Storage: Design Strategies Under and Beyond the Energy Scaling Relationship. Nano-Micro Letters, 2022, 14, 112.	14.4	104
701	Multiple Factors on Catalytic Activity for Oxygen Evolution Reaction in Magnetoplumbite Fe–Co Oxide BaFe _{12–<i>x</i>} Co _{<i>x</i>} O ₁₉ . ACS Applied Energy Materials, 0, , .	2.5	6
702	Features of design and fabrication of metal oxide-based electrocatalysts. , 2022, , 61-96.		0
703	Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 2022, 51, 4583-4762.	18.7	453
704	Tailoring the oxide surface composition of stainless steel for improved OER performance in alkaline water electrolysis. Electrochimica Acta, 2022, 424, 140561.	2.6	16
705	An ultra-fast charging strategy for lithium-ion battery at low temperature without lithium plating. Journal of Energy Chemistry, 2022, 72, 442-452.	7.1	31
706	Activity of Carbon-Encapsulated Ni12-XfexpÂCatalysts for the Oxygen Evolution Reaction: Combination of High Activity and Stability. SSRN Electronic Journal, 0, , .	0.4	0
707	Bimetallic Heterojunction Effectively Constructs Porous Surface Engineering for High Performance Flexible Asymmetric Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
708	Challenges in determining the electrochemically active surface area of Ni-oxides in the oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 918, 116479.	1.9	14

#	ARTICLE	IF	CITATIONS
709	Transition metal oxides with perovskite and spinel structures for electrochemical energy production applications. Environmental Research, 2022, 214, 113731.	3.7	21
710	Spin engineering of single-site metal catalysts. Innovation(China), 2022, 3, 100268.	5.2	6
711	Anion Exchange Membrane Water Electrolysis from Catalyst Design to the Membrane Electrode Assembly. Energy Technology, 2022, 10, .	1.8	11
712	Development of Ti/TiOx foams for removal of organic pollutants from water: Influence of porous structure of Ti substrate. Applied Catalysis B: Environmental, 2022, 317, 121736.	10.8	11
713	General Synthesis of Tube-like Nanostructured Perovskite Oxides with Tunable Transition Metal–Oxygen Covalency for Efficient Water Electrooxidation in Neutral Media. Journal of the American Chemical Society, 2022, 144, 13163-13173.	6.6	39
714	Construction of pyroelectrically-driven BiFeO3@CuBi2O4 nanofiber composite catalyst for enhanced pyrocatalytic activities under room-temperature cold and hot cycles. Surfaces and Interfaces, 2022, 33, 102191.	1.5	1
715	Activity of Carbon-Encapsulated Ni12â^'Fe P Catalysts for the Oxygen Evolution Reaction: Combination of High Activity and Stability. Applied Catalysis A: General, 2022, , 118786.	2.2	1
716	Human- and machine-centred designs of molecules and materials for sustainability and decarbonization. Nature Reviews Materials, 2022, 7, 991-1009.	23.3	30
717	Key criteria for next-generation dimensionally stable electrodes towards large-scale green hydrogen production by water electrolysis. Current Opinion in Electrochemistry, 2022, 36, 101136.	2.5	10
718	Study of the bifunctional catalytic activity on Sr and Mn co-doped PrFeO3-δZinc-Air batteries cathode. Electrochimica Acta, 2022, 430, 141123.	2.6	11
719	Preparation of a MnO2@C@MnO Core-shell Heterojunction as a Highly Efficient Electrocatalyst for the Oxygen Evolution Reaction. International Journal of Electrochemical Science, 2022, 17, 221050.	0.5	1
720	Role of rhodium doping into lanthanum cobalt oxide (LaCoO3) perovskite and the induced bifunctional activity of oxygen evolution and reduction reactions in alkaline medium. Arabian Journal of Chemistry, 2022, 15, 104256.	2.3	6
721	Perovskite oxide LaCr0.25Fe0.25Co0.5O3-δas an efficient non-noble cathode for direct ammonia fuel cells. Applied Catalysis B: Environmental, 2022, 319, 121919.	10.8	18
722	Adsorption Energy in Oxygen Electrocatalysis. Chemical Reviews, 2022, 122, 17028-17072.	23.0	45
723	Atomistic Insights into Activation and Degradation of La _{0.6} Sr _{0.4} CoO _{3â^î´í} Electrocatalysts under Oxygen Evolution Conditions. Journal of the American Chemical Society, 2022, 144, 17966-17979.	6.6	23
724	Perovskite-based electrocatalysts for oxygen evolution reaction in alkaline media: A mini review. Frontiers in Chemistry, 0, 10, .	1.8	9
725	Perovskite La _{1â^'<i>x</i>} K _{<i>x</i>} CoO _{3â^'<i>î^</i>} (0 ≤i>x ≤0. a novel bifunctional OER/ORR electrocatalyst and supercapacitive charge storage electrode in a neutral Na ₂ SO ₄ electrolyte. Physical Chemistry Chemical Physics, 2022, 24, 28584-28598.	5): 1.3	7
726	Irreversible oxidation of hydroxide ion in the light of negative capacitance by fast scan voltammetry. Journal of Electroanalytical Chemistry, 2022, 926, 116919.	1.9	0

#	Article	IF	CITATIONS
727	Y2Mo3O12–Ba0.5Sr0.5Co0.8Fe0.2O3-Î′ cathode catalyst for proton-conducting solid oxide fuel cells. Journal of Power Sources, 2022, 551, 232073.	4.0	11
728	Understanding the oxygen-evolution-reaction catalytic activity of metal oxides based on the intrinsic descriptors. Physical Chemistry Chemical Physics, 2022, 24, 28632-28640.	1.3	1
729	Ruddlesden–Popper Oxides LaSrM11â^'xM2xO4±δ (M1, M2—Fe, Co, Ni) Synthesized by the Spray-Pyrolysis Method as Promising Electrocatalysts for Oxygen Evolution Reaction. Energies, 2022, 15, 8315.	1.6	3
730	Modulation to favorable surface adsorption energy for oxygen evolution reaction intermediates over carbon-tunable alloys towards sustainable hydrogen production. Materials for Renewable and Sustainable Energy, 2022, 11, 169-213.	1.5	3
731	Challenges and Opportunities of Transition Metal Oxides as Electrocatalysts. Chemistry - A European Journal, 2023, 29, .	1.7	30
732	High-performing catalysts for energy-efficient commercial alkaline water electrolysis. Sustainable Energy and Fuels, 2022, 7, 31-60.	2.5	18
733	Porous Magnéli phase obtained from 3D printing for efficient anodic oxidation process. Chemical Engineering Journal, 2023, 456, 141047.	6.6	3
734	Vacancy defect tuning of electronic structures of transition metal (hydr)oxide-based electrocatalysts for enhanced oxygen evolution. Energy Advances, 2023, 2, 73-85.	1.4	5
735	Advances in Spin Catalysts for Oxygen Evolution and Reduction Reactions. Small, 2023, 19, .	5.2	18
736	Altering oxygen binding by redoxâ€inactive metal substitution to control catalytic activity: oxygen reduction on manganese oxide nanoparticles as a model system. Angewandte Chemie, 0, , .	1.6	0
737	Altering Oxygen Binding by Redoxâ€Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
738	Tuning Electronic Structure of CuCo ₂ O ₄ Spinel via Mnâ€Đoping for Enhancing Oxygen Evolution Reaction. ChemElectroChem, 2023, 10, .	1.7	11
739	Construction of Bimetallic Heterojunction Based on Porous Engineering for High Performance Flexible Asymmetric Supercapacitors. Small, 2023, 19, .	5.2	14
740	FeCoS2/Co4S3/N-doped graphene composite as efficient electrocatalysts for overall water splitting. Electrochimica Acta, 2023, 441, 141790.	2.6	11
741	Double Perovskite Oxides Bringing a Revelation in Oxygen Evolution Reaction Electrocatalyst Design. ChemElectroChem, 2023, 10, .	1.7	8
742	Recent Progress of Non-Pt Catalysts for Oxygen Reduction Reaction in Fuel Cells. Processes, 2023, 11, 361.	1.3	8
743	A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Advances, 2023, 13, 3843-3876.	1.7	81
744	Solâ€Gelâ€Derived Ordered Mesoporous High Entropy Spinel Ferrites and Assessment of Their Photoelectrochemical and Electrocatalytic Water Splitting Performance. Small, 2023, 19, .	5.2	15

CITATION REPORT ARTICLE IF CITATIONS Transition Metalâ€based Perovskite Oxides: Emerging Electrocatalysts for Oxygen Evolution Reaction. 1.8 16 ChemCatChem, 2023, 15, . Deeper mechanistic insights into epitaxial nickelate electrocatalysts for the oxygen evolution 2.2 reaction. Chemical Communications, 2023, 59, 4562-4577. Coordination chemistry in modulating electronic structures of perovskite-type oxide nanocrystals 9.5 10 for oxygen evolution catalysis. Coordination Chemistry Reviews, 2023, 485, 215109. Facile synthesis of a NiMnFeCrCu high entropy alloy for electrocatalytic oxygen evolution reactions. 1.9 Materials Today Sustainability, 2023, 22, 100360. LaNi1-xCoxO3 perovskites for application in electrochemical reactions involving molecular oxygen. 4.5 8 Energy, 2023, 273, 127256. Synergistically boosting the oxygen evolution reaction activity of NiOOH nanosheets by Fe doping. Results in Chemistry, 2023, 5, 100808. N/C doped nano-size IrO2 catalyst of high activity and stability in proton exchange membrane water 3.8 2 electrolysis. International Journal of Hydrogen Energy, 2023, 48, 16949-16957. Frontier nanoarchitectonics of graphitic carbon nitride based plasmonic photocatalysts and photoelectrocatalysts for energy, environment and organic reactions. Materials Chemistry Frontiers, 3.2 2023, 7, 1197-1247 Bioinspired inhibition of aggregation in metal-organic frameworks (MOFs). IScience, 2023, 26, 106239. 1.9 1 Rhenium-Based Electrocatalysts for Water Splitting. ACS Materials Au, 2023, 3, 177-200. 2.6 Recent advances and future prospects on Ni3S2-Based electrocatalysts for efficient alkaline water 4.71 electrolysis. Green Energy and Environment, 2024, 9, 659-683. Distilling universal activity descriptors for perovskite catalysts from multiple data sources <i>via</i> 6.4 multi-task symbolic regression. Materials Horizons, 2023, 10, 1651-1660. A High-Entropy Oxide as High-Activity Electrocatalyst for Water Oxidation. ACS Nano, 2023, 17, 7.3 24 5329-5339. Mechanistic Regulation by Oxygen Vacancies in Structural Evolution Promoting Electrocatalytic Water Oxidation. ACS Catalysis, 2023, 13, 4398-4408. 5.5 Manganese–cobalt oxide as an effective bifunctional cathode for rechargeable Zn–air batteries with 1.3 4 a compact quad-cell battery design. Physical Chemistry Chemical Physics, 2023, 25, 11566-11576. Isostructural Oxides Sr3Ti2â[~] xMxO7â[~] î[~] (M = Mn, Fe, Co; x = 0, 1) as Electrocatalysts for Water Splitting. 1.2 Inorganics, 2023, 11, 172.

761	Epitaxial Design of Complex Nickelates as Electrocatalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2023, 13, .	10.2	14

763 Catalytic applications of perovskites. , 2023, , 19-55.

#

745

746

747

748

749

751

753

754

755

757

#	Article	IF	CITATIONS
768	Regulation engineering of the surface and structure of perovskite-based electrocatalysts for the oxygen evolution reaction. Materials Chemistry Frontiers, 2023, 7, 4236-4258.	3.2	3
772	Heterojunction Engineering for Electrocatalytic Applications. ACS Applied Energy Materials, 2023, 6, 7737-7784.	2.5	5
773	Electrocatalysts for the oxygen evolution reaction: mechanism, innovative strategies, and beyond. Materials Chemistry Frontiers, 2023, 7, 4833-4864.	3.2	9
778	Synthesis of porous LaNiO ₃ thin films by chemical solution deposition for enhanced oxygen evolution reaction. Dalton Transactions, 2023, 52, 9903-9907.	1.6	1
798	Engineering the spin configuration of electrocatalysts for electrochemical renewable conversions. Materials Chemistry Frontiers, 2024, 8, 528-552.	3.2	3
812	Computational chemistry for water-splitting electrocatalysis. Chemical Society Reviews, 2024, 53, 2771-2807.	18.7	1