CITATION REPORT List of articles citing

Swelling of ionic gels: quantitative performance of the Donnan theory

DOI: 10.1021/ma00142a081 Macromolecules, 1984, 17, 2916-2921.

Source: https://exaly.com/paper-pdf/17107863/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
678	SWELLING KINETICS OF SMALL SPHERICAL IONIC GELS. 1987 , 8, 321-339		4
677	Phase transition in swollen gels. 1987 , 17, 465-472		28
676	Phase transition in swollen gels. 1989 , 22, 271-276		11
675	Insulin permeation through thermo-sensitive hydrogels. 1989 , 9, 271-279		130
674	Phase Transition and Equilibrium. <i>Journal of Chemical Engineering of Japan</i> , 1989 , 22, 215-228	0.8	4
673	Behavior of ions within hydrogel and its swelling properties <i>Journal of Chemical Engineering of Japan</i> , 1990 , 23, 574-579	0.8	12
672	Swelling and shrinking of a polyelectrolyte gel induced by a salt solution. 1990 , 2, 77-97		17
671	Comprehensive characterization of superabsorbent polymer hydrogels. 1990 , 24, 107-113		48
670	Characterization of Ionic Water Absorbent Polymers: Determination of Ionic Content and Effective Crosslink Density. <i>Studies in Polymer Science</i> , 1990 , 103-124		6
669	Prediction of equilibrium data of adsorptions from liquid mixtures. 1990 , 29, 560-564		1
668	Kinetics of electrically and chemically induced swelling in polyelectrolyte gels. <i>Journal of Chemical Physics</i> , 1990 , 93, 4462-4472	3.9	180
667	Measurement of swelling in weakly crosslinked hydrogels. 1990 , 32, 166-171		
666	Swelling of ionic gels in electrolyte solutions. 1990 , 29, 554-560		74
665	At study of ion permeation across a charged membrane in multicomponent ion systems as a function of membrane charge density. 1990 , 49, 145-169		52
664	Drug release from electric current sensitive polymers. 1991 , 17, 149-156		100
663	Molecular separation by thermosensitive hydrogel membranes. 1991 , 64, 283-294		201
662	Electrical control of the volume of pH-sensitive micro-gels. 1991 , 297, 399-407		21

661	Equilibrium swelling behavior of pH-sensitive hydrogels. 1991 , 46, 715-722		409
660	Polymer Gels. 1991,		164
659	Phase transition of a poly(acrylic acid) gel induced by polymer complexation. <i>Journal of Chemical Physics</i> , 1992 , 97, 7805-7808	3.9	36
658	Simultaneous Measurements of Absorbance and Volume Changes of a Photoresponsive Polyacrylamide Microgel in Water. 1992 , 21, 311-314		2
657	Migration of Ions and pH Gradients in Gels under Stationary Electric Fields. 1992 , 61, 4085-4097		25
656	Mechanochemical Reaction of Calcium Alginate Hydrogel due to a Counterion Exchange. 1992 , 65, 121-	128	7
655	Hydrophobic Polyelectrolytes. 1992 , 131-145		5
654	A novel drug delivery system utilizing a glucose responsive polymer complex between poly (vinyl alcohol) and poly (N-vinyl-2-pyrrolidone) with a phenylboronic acid moiety. 1992 , 19, 161-170		181
653	Volume-phase transitions of cationic polyelectrolyte gels. <i>Polymer</i> , 1992 , 33, 5040-5043	3.9	19
652	Water states in PE-poly(MA-co-DVB) interpolymer type carboxylic ion-exchange membranes. 1992 , 66, 89-96		10
651	Chemistry and physics of Egricultural hydrogels. Advances in Polymer Science, 1992, 97-133	1.3	144
650	Interpenetrating hydrogel networks: 3. Properties of the gelatin-sodium carboxymethylcellulose system. <i>Polymer</i> , 1992 , 33, 2388-2391	3.9	16
649	Concentration of large biomolecules with hydrogels. 1992 , 47, 31-40		40
648	Elongation/contraction properties for poly(acrylonitrile) gel fibers stimulated by pH. 1993 , 1, 115-126		14
647	Concentration redistribution of low-molecular-weight salts of metals in the presence of a strongly swelling polyelectrolyte hydrogel. <i>Polymer</i> , 1993 , 34, 5154-5156	3.9	19
646	Swelling equilibria of cationic polyelectrolyte gels in aqueous solutions of various electrolytes. <i>Polymer</i> , 1993 , 34, 2370-2373	3.9	24
645	Osmotic deswelling of microgels by linear polyelectrolytes. 1993 , 271, 253-261		10
644	Preparation, structure and diffusional behavior of hydrogels in controlled release. 1993 , 11, 1-35		471

643	Specific volume phase transition of 2-acryloyloxyethyl acid phosphate gels in various solvent mixtures at a particular transition point. <i>Polymer</i> , 1993 , 34, 2677-2679	3.9	1
642	Volume phase transition and related phenomena of polymer gels. <i>Advances in Polymer Science</i> , 1993 , 1-62	1.3	583
641	Hydrophobic weak polyelectrolyte gels: Studies of swelling equilibria and kinetics. <i>Advances in Polymer Science</i> , 1993 , 233-267	1.3	90
640	Coexistence of phases and the nature of first-order phase transition in poly-N-isopropylacrylamide gels. 1993 , 1-26		114
639	Effect of phase transition on swelling and mechanical behavior of synthetic hydrogels. <i>Advances in Polymer Science</i> , 1993 , 173-206	1.3	38
638	Effect of pH on the phase transition of N-isopropylacrylamide-sodium acrylate copolymer gel <i>Journal of Chemical Engineering of Japan</i> , 1993 , 26, 328-330	0.8	11
637	Synthetic macronet hydrophilic polymers as soil conditioners. I. kinetic characterization of macro-net sulfonated polystyrene resins. 1993 , 24, 1709-1720		4
636	Effect of pH on Theophylline Release from Partially Esterifted Alginic Acid Matrices. 1994 , 20, 2341-23	51	10
635	EXTRACTION OF COPPER, CADMIUM AND RELATED METALS WITH POLY(SODIUM ACRYLATE - ACRYLIC ACID)HYDROGELS 1994 , 12, 1103-1119		20
634	Swelling mechanism of poly(vinyl alcohol)-poly(acrylic acid) dense gels made by repetitive freezing and thawing process. 1994 , 2, 247-255		6
633	Discontinuous volume transitions induced by calcium-sodium ion exchange in anionic gels and their neurobiological implications. 1994 , 34, 209-15		33
632	Swelling properties of hyaluronic acid ester membranes. 1994 , 92, 157-167		19
631	Method of measuring the swelling pressure of superabsorbent gels. 1994 , 2, 49-58		15
630	The osmotic response of the isolated tectorial membrane of the chick to isosmotic solutions: effect of Na+, K+, and Ca2+ concentration. 1994 , 79, 197-215		20
629	Dissociation Equilibrium in Hydrolyzed Polyacrylamide Gel Accompanied by Swelling and Shrinking <i>Journal of Chemical Engineering of Japan</i> , 1994 , 27, 171-176	0.8	6
628	Modeling of fiber optic-based pH sensors. 1994 , 2068, 11		1
627	pH, salt, and buffer dependent swelling in ionizable copolymer gels: tests of the ideal Donnan equilibrium theory. 1994 , 5, 433-50		37
626	Spectroscopic and Kinetic Studies on Volume Expansion Processes of Photoresponsive Polyacrylamide Microgels in Water. 1995 , 68, 3397-3402		4

625	Highly swollen gels of semi-flexible polyelectrolyte chains near the rod limit. 1995, 3, 331-373		11
624	Effects of salt concentration and degree of ionization on the hydrophobic counterion binding to ionic gel and the contraction of the gel volume. 1995 , 3, 145-158		29
623	Molecular electromechanics of cartilaginous tissues and polyelectrolyte gels. 1995 , 34, 307-330		7
622	Peculiarities of the kinetics of polyelectrolyte hydrogel collapse in solutions of copper sulfate. Polymer, 1995, 36, 2055-2058	9	7
621	Swelling properties of acrylamide-based ampholytic hydrogels: comparison of experiment with theory. <i>Polymer</i> , 1995 , 36, 1061-1069	9	128
620	Swelling/deswelling of anionic copolymer gels. 1995 , 16, 559-67		335
619	Amine containing phenylboronic acid gel for glucose-responsive insulin release under physiological pH. 1995 , 37, 269-276		156
618	Flory exponent of the chain of the expanding polyion gel. <i>Journal of Chemical Physics</i> , 1995 , 102, 9694-969	9	13
617	Method for Analyzing pH-Sensitive Swelling of Amphoteric Hydrogels Application to a Polyelectrolyte Complex Gel Prepared from Xanthan and Chitosan I 1995, 59, 1422-1427		28
616	New phase diagram for N-arylacrylamide/acrylamide/sodium acrylate copolymer gel. <i>Journal of Chemical Physics</i> , 1995 , 102, 1846-1850	9	3
615	. 1995 , 13, 1415-1420		39
614	Multiple volume phase transition of nonionic thermosensitive gel. <i>Journal of Chemical Physics</i> , 1995 , 103, 6241-6247	9	22
613	pH-Sensitive Swelling of a Polyelectrolyte Complex Gel Prepared from Xanthan and Chitosan. 1995 , 59, 717-719		32
612	'Smart' polymers in biotechnology and medicine. 1995 , 64, 471-489		65
611	Mixed Polyelectrolyte/Ionomer Behavior of Poly(methacrylic acid) Gel upon Titration. Macromolecules, 1996 , 29, 4642-4645	5	60
610	Analogy between Swelling of Gels and Intrinsic Viscosity of Polymer Solutions for Ion-Complexed Poly(vinyl alcohol) in Aqueous Medium. <i>Macromolecules</i> , 1996 , 29, 885-891	5	33
609	Rapid changes in light-scattering in the prism of Torpedo electric organ slice associated with the production of postsynaptic potentials. 1996 , 218, 298-301		4
608	Analysis of the pH-Sensitive Swelling Rate of a Polyelectrolyte Complex Gel Prepared from Xanthan and Chitosan by the Collective Diffusion Model. 1996 , 60, 1623-1626		6

607	Collapse in responsive hydrogels. 1996 , 109, 169-183		6
606	Distributed sensing for intelligent civil engineering structures. 1996,		2
605	Synthesis and characterization of polyampholyte hydrogels. 1996 , 100, 1079-1082		12
604	Thermodynamics of phase equilibrium for systems containing gels. 1996 , 115, 113-133		64
603	Preparation of bifunctional macronet polymers having both strongly and weakly acidic groups in one step. GelBolution transition of a transformable hydrogel. <i>Polymer</i> , 1996 , 37, 855-861	3.9	1
602	Compressional and shear behaviour of weakly ionic polyacrylamide gels. 1996 , 4, 467-480		13
601	Chemomechanical Gels for Actuator System Controlled by Electrochemical Reaction. 1996 , 7, 254-259		13
600	Development of a Model for Analyzing the Swelling Rate of Ionic Gels on the Basis of the Diffusion of Mobile Ions: Application to the pH-Sensitive Swelling of a Polyelectrolyte Complex Gel Prepared from Xanthan and Chitosan. 1996 , 60, 1627-1632		11
599	Polyelectrolyte hydrogel instabilities in ionic solutions. <i>Journal of Chemical Physics</i> , 1996 , 105, 10606-10	613	39
598	Effect of Eluent Composition on the Distribution Coefficient of Saccharides on to a Cation-exchange Resin in Sodium-ion Form. 1997 , 61, 1296-1301		17
597	Swelling-Induced Birefringence of a Polyelectrolyte Gel Strongly Interacting with Metal Ions. <i>Macromolecules</i> , 1997 , 30, 6556-6558	5.5	18
596	Effect of pH on the Volume Phase Transition of Copolymer Gels of N-Isopropylacrylamide and Sodium Acrylate. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 5089-5093	3.4	90
595	Elastic and Osmotic Behavior and Network Imperfections of Nonionic and Weakly Ionized Acrylamide-Based Hydrogels. <i>Macromolecules</i> , 1997 , 30, 7478-7486	5.5	40
594	Effect of Introduced Electric Charge on the Volume Phase Transition of N-Isopropylacrylamide Gels. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 4184-4187	3.4	60
593	Poly[(methyl methacrylate)-co-(methacrylic acid)] Microgel Particles: Swelling Control Using pH, Cononsolvency, and Osmotic Deswelling. <i>Macromolecules</i> , 1997 , 30, 482-487	5.5	167
592	pH/Temperature-Responsive Polymer Composed of Poly((N,N-dimethylamino)ethyl methacrylate-co-ethylacrylamide). <i>Macromolecules</i> , 1997 , 30, 6856-6859	5.5	146
591	Adsorption et desorption de l'eau vapeur sur un polymere polyacrylique superabsorbant IV. Effect de la masse sur les cin E iques d'adsorption et de dEorption. 1997 , 290, 227-238		7
590	Equilibrium and kinetic aspects of the pH-dependent swelling of poly(2-vinylpyridine-co-styrene) microgels. 1997 , 275, 1108-1114		136

589	Thermoreversible hydrogels VI: Swelling behavior of the (N-isopropylacrylamide-co-diethyl methyl methacryloyloxyethyl ammonium iodide) copolymeric hydrogels in aqueous salt solutions. 1997 , 4, 233-241	8
588	Synthesis of new pH-sensitive polyurethane gels using polyethylene glycol modified urethane acrylate anionomer. 1997 , 38, 403-410	4
587	Distributed water ingress and water potential measurements using fibre optics. 1997 , 19, 35-44	7
586	Swelling behavior of a blend hydrogel made of poly(allylguanidino-co-allylamine) and poly(vinyl alcohol). 1997 , 5, 317-326	3
585	Effect of counter-ions on swelling and shrinkage of polyacrylamide-based ionic gels. <i>Polymer</i> , 1997 , 38, 2557-2560	27
584	Effect of polymer complex formation on the cloud-point of poly(N-isopropyl acrylamide) (PNIPAAm) in the poly(NIPAAm-co-acrylic acid): polyelectrolyte complex between poly(acrylic acid) 3.9 and poly(allylamine). <i>Polymer</i> , 1997 , 38, 2759-2765	84
583	A synthetic mimic of the secretory granule for drug delivery. 1998 , 394, 459-62	249
582	Remediation of a sandy soil artificially contaminated with copper using a polyacrylate polymer. 1998 , 14, 106-110	17
581	A novel co-crosslinked polysaccharide: studies for a controlled delivery matrix. 1998, 55, 57-66	50
580	Poly[2-(hydroxyethyl methacrylate)-co-(sulfobetaine)]s hydrogels: 1. Synthesis and swelling behaviors of the 2-(hydroxyethyl methacrylate)-co-2-(vinyl-1-pyridinium propane sulfonate) hydrogels. 1998 , 5, 105-114	14
579	Prediction of swelling behaviour of hydrogels containing diprotic acid moieties. <i>Polymer</i> , 1998 , 39, 1165-3.477	2 55
578	Inverse thermally-reversible gelation of aqueous N-isopropylacrylamide copolymer solutions. *Polymer*, 1998*, 39, 2809-2814** 3.9	100
577	Molecular thermodynamics for volume-change transitions in temperature-sensitive polymer gels. <i>Polymer</i> , 1998 , 39, 3279-3283	46
576	Thermoreversible hydrogels: 3. Synthesis and swelling behavior of the (N-isopropylacrylamide-co-trimethylacrylamidopropyl ammonium iodide) copolymeric hydrogels. 3.9 <i>Polymer</i> , 1998 , 39, 5393-5403	26
575	Effect of polymer complex formation on the cloud-point of poly(N-isopropylacrylamide) (PNIPAAm) in the poly(NIPAAm-co-acrylic acid): polyelectrolyte complex between poly(acrylic acid) and poly(L-lysine). <i>Polymer</i> , 1998 , 39, 3703-3708	41
574	Two mechanisms of gel/surfactant binding. 1998 , 6, 409-421	27
573	Sclerox-chitosan co-gels: Effects of charge density on swelling of gels in ionic aqueous solution and in poor solvents, and on the rehydration of dried gels. 1998 , 6, 471-492	24
57 ²	Volume phase transition of polymer gel in water and heavy water. 1998 , 238, 487-494	33

571	Closure characteristics of a thermally responsive single ion-track pore determined by size exclusion method. 1998 , 140, 275-281		22
570	Deswelling and flocculation of gel networks: application to sludge dewatering. 1998 , 32, 3662-3672		34
569	Generalized MaxwellBtefan Approach for Swelling Kinetics of Dextran Gels. 1998 , 37, 3312-3322		29
568	Swelling Kinetics of a Polyelectrolyte Gel in Water and Salt Solutions. Coexistence of Swollen and Collapsed Phases. <i>Macromolecules</i> , 1998 , 31, 8845-8850	5.5	32
567	Polyacrylamide Hydrogels with Trapped Polyelectrolyte Rods. <i>Macromolecules</i> , 1998 , 31, 1168-1179	5.5	50
566	Consequences of Structural Differences in Ionomer Networks Prepared in Different Solvents. <i>Macromolecules</i> , 1998 , 31, 3542-3550	5.5	18
565	Effect of Degree of Cross-Linking on Spatial Inhomogeneity in Charged Gels. 3. Ionization Effect. <i>Macromolecules</i> , 1998 , 31, 8526-8530	5.5	23
564	pH and Ion-Triggered Volume Response of Anionic Hydrogel Microspheres. <i>Macromolecules</i> , 1998 , 31, 5084-93	5.5	137
563	Adsorption Properties of Metal Ions onto Sodium Polyacrylate Gel <i>Journal of Chemical Engineering of Japan</i> , 1998 , 31, 551-557	0.8	3
562	Cellulose fibre-supported pH-sensitive hydrogels. <i>Polymer</i> , 1999 , 40, 379-387		
)0 _	Cettutose fibre-supported pri-serisitive flydrogets. <i>Polyfiler</i> , 1999, 40, 319-361	3.9	35
561	Poly(ethylene glycol)-induced DNA condensation in aqueous/methanol containing low-molecular-weight electrolyte solutions. Theoretical considerations. <i>Polymer</i> , 1999 , 40, 4013-4023	3.9	27
	Poly(ethylene glycol)-induced DNA condensation in aqueous/methanol containing		27
561	Poly(ethylene glycol)-induced DNA condensation in aqueous/methanol containing low-molecular-weight electrolyte solutionsl. Theoretical considerations. <i>Polymer</i> , 1999 , 40, 4013-4023 Scleroglucan gel volume changes in dimethylsulphoxide/water and alkaline solutions are partly	3.9	27
561 560	Poly(ethylene glycol)-induced DNA condensation in aqueous/methanol containing low-molecular-weight electrolyte solutionsl. Theoretical considerations. <i>Polymer</i> , 1999 , 40, 4013-4023 Scleroglucan gel volume changes in dimethylsulphoxide/water and alkaline solutions are partly caused by polymer chain conformational transitions. <i>Carbohydrate Polymers</i> , 1999 , 39, 249-255 Factors affecting the swelling of poly(N-isopropylacrylamide) microgel particles: fundamental and	3.9	² 7
561 560 559	Poly(ethylene glycol)-induced DNA condensation in aqueous/methanol containing low-molecular-weight electrolyte solutionsl. Theoretical considerations. <i>Polymer</i> , 1999 , 40, 4013-4023 Scleroglucan gel volume changes in dimethylsulphoxide/water and alkaline solutions are partly caused by polymer chain conformational transitions. <i>Carbohydrate Polymers</i> , 1999 , 39, 249-255 Factors affecting the swelling of poly(N-isopropylacrylamide) microgel particles: fundamental and commercial implications. 1999 , 149, 57-64 Effect of pH on the lower critical solution temperatures of random copolymers of	3.9	² 7 7 51
561 560 559 558	Poly(ethylene glycol)-induced DNA condensation in aqueous/methanol containing low-molecular-weight electrolyte solutionsl. Theoretical considerations. <i>Polymer</i> , 1999 , 40, 4013-4023 Scleroglucan gel volume changes in dimethylsulphoxide/water and alkaline solutions are partly caused by polymer chain conformational transitions. <i>Carbohydrate Polymers</i> , 1999 , 39, 249-255 Factors affecting the swelling of poly(N-isopropylacrylamide) microgel particles: fundamental and commercial implications. 1999 , 149, 57-64 Effect of pH on the lower critical solution temperatures of random copolymers of N-isopropylacrylamide and acrylic acid. 1999 , 35, 795-801 pH/thermoreversible hydrogels III: Synthesis and swelling behaviors of	3.9	27 7 51 100
561560559558557	Poly(ethylene glycol)-induced DNA condensation in aqueous/methanol containing low-molecular-weight electrolyte solutionsl. Theoretical considerations. <i>Polymer</i> , 1999 , 40, 4013-4023 Scleroglucan gel volume changes in dimethylsulphoxide/water and alkaline solutions are partly caused by polymer chain conformational transitions. <i>Carbohydrate Polymers</i> , 1999 , 39, 249-255 Factors affecting the swelling of poly(N-isopropylacrylamide) microgel particles: fundamental and commercial implications. 1999 , 149, 57-64 Effect of pH on the lower critical solution temperatures of random copolymers of N-isopropylacrylamide and acrylic acid. 1999 , 35, 795-801 pH/thermoreversible hydrogels III: Synthesis and swelling behaviors of (N-isopropylacrylamide-co-acrylic acid) copolymeric hydrogels. 1999 , 6, 41-49	3.9	27 7 51 100

(2000-1999)

553	acid-co-acrylamide) synthesized by inverse suspension polymerization. 1999 , 72, 1349-1366	64
552	pHEhermoreversible hydrogels. II. Synthesis and swelling behaviors of N-isopropylacrylamide-co-acrylic acid-co-sodium acrylate hydrogels. 1999 , 73, 1955-1967	48
551	Polyelectrolyte complex gel with high pH-sensitivity prepared from dextran sulfate and chitosan. 1999 , 73, 2227-2233	60
550	Thermoreversible hydrogels. VIII. Effect of a zwitterionic monomer on swelling behaviors of thermosensitive hydrogels copolymerized by N-isopropylacrylamide with N,N?-dimethyl (acrylamidopropyl) ammonium propane sulfonate. 1999 , 74, 2170-2180	21
549	Thermoreversible hydrogels. VII. Synthesis and swelling behavior of poly(N-isopropylacrylamide-co-3-methyl-1-vinylimidazolium iodide) hydrogels. 1999 , 74, 3242-3253	16
548	A pH- and ionic strength-responsive polypeptide hydrogel: synthesis, characterization, and preliminary protein release studies. 1999 , 47, 595-602	98
547	SWELLING OF POLY(VINYL AMINE) GELS: APPLICABILITY OF THE DONNAN THEORY. 1999 , 36, 507-516	5
546	A LOW-TEMPERATURE PRODUCTION METHOD FOR CATIONIC HYDROGELS. 1999 , 36, 31-50	7
545	Conformational Free Energy of Lattice Polyelectrolytes with Fixed End Points. 2. The Swelling Behavior of a Permanent Network of Lattice Polyelectrolytes. <i>Macromolecules</i> , 1999 , 32, 199-209	3
544	Use of Luminescence of Europium Ions for the Study of the Interaction of Polyelectrolyte Hydrogels with Multivalent Cations. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 7621-7626	39
543	Investigation of the Swelling Response and Loading of Ionic Microgels with Drugs and Proteins: The Dependence on Cross-Link Density. <i>Macromolecules</i> , 1999 , 32, 4867-4878	206
542	pH/Temperature-Sensitive Polymers for Controlled Drug Delivery. 2000 ,	
54 ¹	Evaluation of optimum condition for designing high-performance electro-driven polymer hydrogel systems. 2000 , 75, 111-118	27
540	Synthesis of novel amphiphilic pH-sensitive polyurethane networks through water-in-oil soap-free emulsion polymerization process. I. Microstructural differences and swelling behaviors. 2000 , 76, 2115-2127	5
539	Thermoreversible hydrogels. IX. Swelling behaviors of thermosensitive hydrogels copolymerized by N-isopropylacrylamide with 1-vinyl-3-(3-sulfopropyl) imidazolium betaine. 2000 , 77, 14-23	12
538	Thermoreversible hydrogels X: Synthesis and swelling behavior of the (N-isopropylacrylamide-co-sodium 2-acrylamido-2-methylpropyl sulfonate) copolymeric hydrogels. 2000 , 77, 1760-1768	58
537	Thermoreversible hydrogels XIV. Synthesis and swelling behavior of the (n-isopropylacrylamide-co-2-hydroxyethyl methacrylate) copolymeric hydrogels. 2000 , 77, 1769-1781	18
536	Equilibrium swelling behavior of pH- and temperature-sensitive poly(N-vinyl 2-pyrrolidone-g-citric acid) polyelectrolyte hydrogels. 2000 , 38, 2063-2071	35

535	Characterization of network structure of poly(N-vinyl 2-pyrrolidone/acrylic acid) polyelectrolyte hydrogels by swelling measurements. 2000 , 38, 3309-3317		10
534	Pores and diffusion characteristics of porous gels. <i>Polymer</i> , 2000 , 41, 7201-7207	3.9	17
533	Cationic homopolymer model networks and star polymers: synthesis by group transfer polymerization and characterization of the aqueous degree of swelling. <i>Polymer</i> , 2000 , 41, 8523-8529	3.9	38
532	Stimuli response of polysoap hydrogels in aqueous solution and DC electric fields. 2000 , 169, 85-94		37
531	The effects of salinity and temperature on the behaviour of polyacrylamide gels. 2000 , 21, 169-174		25
530	Behaviour of gels based on (hydroxypropyl) cellulose methacrylate. <i>Polymer</i> , 2000 , 41, 7691-7698	3.9	33
529	A combination of vapor sorption and dynamic laser light scattering methods for the determination of the Flory parameter and the crosslink density of a powdered polymeric gel. 2000 , 167, 63-81		10
528	Thermoreversible hydrogels XIII: Synthesis and swelling behaviors of [N-isopropylacrylamide-co-sodium 2-acrylamido-2-methylpropyl sulfonate] copolymeric		9
527	Chemical waves in self-oscillating gels. 2000 , 62, 793-8		65
526	Motion of microgel particles under an external electric field. 2000 , 12, 3605-3614		36
525	Osmotic and SANS Observations on Sodium Polyacrylate Hydrogels in Physiological Salt Solutions. <i>Macromolecules</i> , 2000 , 33, 8329-8333	5.5	42
524	Hydrogels in pharmaceutical formulations. 2000 , 50, 27-46		2850
523	13C Solid-State NMR Determination of Cross-Linking Degree in Superabsorbing Cellulose-Based Networks. <i>Macromolecules</i> , 2000 , 33, 430-437	5.5	41
522	Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. 2000 , 1, 84-90		324
521	Physicochemical foundations and structural design of hydrogels in medicine and biology. 2000 , 2, 9-29		794
520	Fast pH- and Ionic Strength-Responsive Hydrogels in Microchannels. 2001 , 17, 4758-4763		163
519	Effect of monovalent-divalent cation exchange on the swelling of polyacrylate hydrogels in physiological salt solutions. 2001 , 2, 195-9		146
518	Synthesis and Characterization of Novel Networks with Nano-Engineered Structures: Cross-Linked Star Homopolymers. 2001 , 13, 4738-4744		53

517	Comparison between Neutral Gels and Neutralized Polyelectrolyte Gels in the Presence of Divalent Cations. <i>Macromolecules</i> , 2001 , 34, 4285-4287	10
516	Thermocontrol of solute permeation across polymer membrane composed of poly(N,N-dimethylaminoethyl methacrylate) and its copolymers. 2001 , 6, 274-278	1
515	Buffer transport in hydroxyethyl methacrylate copolymer irradiated by Frays. <i>Polymer</i> , 2001 , 42, 4989-49 <u>9</u> .6	6
514	Osmotic properties of poly(ethylene oxide) gels with localized charged units. <i>Polymer</i> , 2001 , 42, 8075-8083	12
513	A crosslinked system from scleroglucan derivative: preparation and characterization. 2001 , 22, 1899-909	32
512	Prediction of the swelling behaviour of amphiphilic hydrogels and the determination of average molecular weight between cross-links. 2001 , 11, 475-482	9
511	Polytetrahydrofuran amphiphilic networks. IV. Swelling behavior of poly(acrylic acid)-l-polytetrahydrofuran and poly(methacrylic acid)-l-polytetrahydrofuran networks. 2001 , 39, 1784-1790	12
510	Thermoreversible hydrogels XI: Effect of salt on the swelling properties of the (n-isopropylacrylamide-co-sodium 2-acrylamido-2-methylpropyl sulfonate) copolymeric hydrogels. 2001 , 79, 1675-1684	7
509	pH-sensitive shrinking of a dextran sulfate/chitosan complex gel and its promotion effect on the release of polymeric substances. 2001 , 81, 667-674	28
508	pH-reversible hydrogels. IV. Swelling behavior of the 2-hydroxyethyl methacrylate-co-acrylic acid-co-sodium acrylate copolymeric hydrogels. 2001 , 81, 1360-1371	21
507	Synthesis and swelling properties of 2-hydroxyethyl methacrylate-co-1-vinyl-3-(3-sulfopropyl)imidazolium betaine hydrogels. 2001 , 81, 2888-2900	15
506	Hydrogel of biodegradable cellulose derivatives. II. Effect of some factors on radiation-induced crosslinking of CMC. 2001 , 81, 3030-3037	107
505	Interpenetrating polymer networks based on poly(acrylic acid) and gelatin. I: Swelling and thermal behavior. 2001 , 82, 217-227	83
504	Studies on preparation and swelling properties of the N-isopropylacrylamide/chitosan semi-IPN and IPN hydrogels. 2001 , 82, 2487-2496	132
503	Behavior of Tetrazole-containing Acrylic Hydrogels in Electrolyte Solutions. 2001 , 74, 1203-1206	
502	REMEDIATION OF SANDY SOIL ARTIFICIALLY CONTAMINATED WITH CADMIUM USING A POLYACRYLATE POLYMER. 2001 , 32, 1567-1574	6
501	Salt effects over the swelling of ionized mesoscopic gels. <i>Journal of Chemical Physics</i> , 2001 , 115, 7644-7649	81
500	Equilibrium Swelling of Copolymerized Acrylic AcidMethacrylated Dextran Networks: Effects of pH and Neutral Salt. <i>Macromolecules</i> , 2002 , 35, 5235-5242	75

499	Polyelectrolyte Networks Based on Poly(Para-phenylene)s: Synthesis, Preparation of Thin Films, and Swelling Behavior. 2002 , 1, 33-52	1
498	Mechanical characteristics of ionic polymer-metal composite in the process of self-bending. <i>Journal of Applied Physics</i> , 2002 , 92, 7614-7618	22
497	Nanometer-scale ionic reservoir based on ion-responsive hydrogels. 2002 , 4695, 42	2
496	UV-Induced Gelation on Nanometer Scale Using Liposome Reactor. <i>Macromolecules</i> , 2002 , 35, 1911-1926 _{.5}	85
495	Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. 2002 , 54, 135-47	640
494	Synthesis and characterization of chitosan/poly(acrylic acid) polyelectrolyte complex. 2002 , 83, 1025-1035	31
493	Polytetrahydrofuran amphiphilic networks. III. Synthesis and characterization of pH-sensitive poly(methacrylic acid)-l-polytetrahydrofuran networks. 2002 , 85, 351-357	11
492	PVA/PAA thermo-induced hydrogel fiber: Preparation and pH-sensitive behavior in electrolyte solution. 2002 , 85, 2423-2430	43
491	Electric stimuli responses to poly(vinyl alcohol)/chitosan interpenetrating polymer network hydrogel in NaCl solutions. 2002 , 86, 2285-2289	72
490	Characteristics of electrical responsive chitosan/polyallylamine interpenetrating polymer network hydrogel. 2002 , 86, 2290-2295	49
489	Bending behaviour of electroresponsive poly(vinyl alcohol)/poly(acrylic acid) semi-interpenetrating network hydrogel fibres under an electric stimulus. 2002 , 51, 502-509	45
488	Radiation synthesis of poly(N-vinyl-2-pyrrolidone-g-tartaric acid) hydrogels [and their swelling behaviors. 2002 , 13, 87-93	7
487	Swelling behaviors of polyelectrolyte hydrogels containing sulfonate groups. 2002 , 13, 567-576	42
486	Fiber optic Bragg grating sensor based on hydrogels for measuring salinity. 2002 , 87, 487-490	88
485	PVA/PAA thermo-crosslinking hydrogel fiber: preparation and pH-sensitive properties in electrolyte solution. 2002 , 38, 1653-1658	79
484	Photo-Cross-Linkable PNIPAAm Copolymers. 2. Effects of Constraint on Temperature and pH-Responsive Hydrogel Layers. <i>Macromolecules</i> , 2003 , 36, 162-172	106
483	Poly(vinyl alcohol)/poly(N-isopropylacrylamide) semi-interpenetrating polymer network hydrogels with rapid response to temperature changes. 2003 , 281, 580-583	53
482	Effect of the Volume Phase Transition on Diffusion and Concentration of Molecular Species in Temperature-Responsive Gels: Electroanalytical Studies. 2003 , 15, 409-413	13

481	Modeling ionic hydrogels swelling: characterization of the non-steady state. 2003 , 84, 20-8	28
480	pH-sensitive dimethylaminoethyl methacrylate (DMAEMA)/acrylamide (AAm) hydrogels: Synthesis and adsorption from uranyl acetate solutions. 2003 , 88, 2028-2031	21
479	Electrochemical behavior of an interpenetrating polymer network hydrogel composed of poly(propylene glycol) and poly(acrylic acid). 2003 , 89, 2301-2305	35
478	Electroactive characteristics of interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(N-isopropylacrylamide). 2003 , 89, 890-894	44
477	Electrical response characterization of chitosan/polyacrylonitrile hydrogel in NaCl solutions. 2003 , 90, 91-96	49
476	Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels. 2003 , 89, 3652-3660	159
475	Thermoreversible hydrogels. XIX. Synthesis and swelling behavior and drug release behavior for the N-isopropylacrylamide/poly(ethylene glycol) methylether acrylate copolymeric hydrogels. 2003 , 90, 1683-169	1 ¹⁷
474	Preparation and swelling properties of solution crosslinked poly(cis-1,4-butadiene) gels. 2003, 90, 2241-2245	31
473	Synthesis and characterization of temperature- and pH-sensitive poly(N,N-diethylacrylamide-co-methacrylic acid). 2003 , 90, 3563-3568	36
472	Multiple point adsorption in a heteropolymer gel and the Tanaka approach to imprinting: experiment and theory. 2003 , 28, 1489-1515	74
471	Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels: 2. Incorporation of polypyrrole. <i>Polymer</i> , 2003 , 44, 7651-7659	48
470	Effect of amino acid surfactants on phase transition of poly(N-isopropylacrylamide) gel. 2003 , 261, 191-6	10
469	Probing the degree of crosslinking of a cellulose based superabsorbing hydrogel through traditional and NMR techniques. <i>Polymer</i> , 2003 , 44, 1577-1588	58
468	Demonstration of etched cladding fiber Bragg grating-based sensors with hydrogel coating. 2003 , 96, 468-472	67
467	Novel pH, ion sensitive polyampholyte gels based on carboxymethyl chitosan and gelatin. 2003 , 52, 56-61	34
466	Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors). 2003 , 3, 806-811	50
465	Influence of Polymer Conformation on the Shear Modulus and Morphology of Polyallylamine and Poly(\mathbb{H} -lysine) Hydrogels. <i>Macromolecules</i> , 2003 , 36, 6189-6201	19
464	Structure of Binary and Ternary Complexes Formed by Sodium Poly(2-acrylamide-2-methyl-1-propanesulfonate) Gel in the Presence of Copper(II) Nitrate and Cetylpyridinium Chloride. 2003 , 19, 7845-7851	11

463	Shrinking Kinetics of Polyacrylate Gels in Surfactant Solution. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 9203-9213	28
462	Interaction of Sodium Poly(2-acrylamide-2-methyl-1-propanesulfonate) Linear Polymer and Gel with Metal Salts. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 12206-12211	10
461	Deswelling Kinetics of a Porous Poly(N-isopropylacrylamide/methacrylic acid) Gel Prepared by Freeze-Drying. 2003 , 76, 543-544	2
460	pH-Sensitive Hydrogels Composed of Chitosan and Polyacrylamide IPreparation and Properties. 2004 , 19, 101-116	28
459	Electromechanical properties of hydrogels based on chitosan and poly(hydroxyethyl methacrylate) in NaCl solution. 2004 , 13, 1036-1039	50
458	Effects of continuous water flow on the swelling properties of polyelectrolyte hydrogels. 2004 , 14, 107-13	9
457	STRUCTURAL AND DYNAMIC RESPONSE OF NEUTRAL AND INTELLIGENT NETWORKS IN BIOMEDICAL ENVIRONMENTS. 2004 , 75-130	20
456	Modeling of the pH-sensitive behavior of an ionic gel in the presence of diffusion. 2004 , 39, 1301-1318	23
455	Dual polyelectrolyte-ionomer behavior of poly(acrylic acid) in methanol: 2. Salt solutions. 2004 , 66, 669-672	5
454	Dynamic and equilibrium swelling of a sulfonic acid superabsorbent copolymer in salt solutions. 2004 , 42, 505-514	12
453	Formation of hydrogen bonding in ionized poly(N-isopropylacrylamide) gels by continuous water exchange. 2004 , 42, 1090-1098	15
452	Factors driving the protonation of poly(N-vinylimidazole) hydrogels. 2004 , 42, 2294-2307	32
451	Network structure and swellingEhrinking behaviors of pH-sensitive poly(acrylamide-co-itaconic acid) hydrogels. 2004 , 42, 2586-2594	31
450	Determination of average molecular weight between crosslinks and polymerBolvent interaction parameters of poly(acrylamide-g-ethylene diamine tetraacetic acid) polyelectrolyte hydrogels. 2004 , 91, 2168-2175	14
449	Swelling and drug-release behavior of the poly(AA-co-N-vinyl pyrrolidone)/chitosan interpenetrating polymer network hydrogels. 2004 , 91, 2135-2142	18
448	Electrostimulus responsive behavior of poly(acrylic acid)/polyacrylonitrile semi-interpenetrating polymer network hydrogels. 2004 , 92, 1473-1477	14
447	Electrical behavior of chitosan and poly(hydroxyethyl methacrylate) hydrogel in the contact system. 2004 , 92, 915-919	30
446	Swelling behavior of chitosan/poly(acrylic acid) complex. 2004 , 92, 2930-2940	20

445	Effect of the intercalation agent content of montmorillonite on the swelling behavior and drug release behavior of nanocomposite hydrogels. 2004 , 94, 74-82		50	
444	Effect of salt species on electrochemical properties of gel-type polymer electrolyte based on chemically crosslinking rubber. 2004 , 50, 295-300		10	
443	Complexation behaviour of radiation synthesized poly(vinylbenzyltrimethylammonium chloride) and its gel with potassium hexacyanoferrates (II, III) and potassium persulfate in aqueous medium. 2004 , 40, 1495-1502		2	
442	Weak alignment of membrane proteins in stressed polyacrylamide gels. 2004 , 171, 258-69		36	
441	FTIR-ATR measurements of the ionization extent of acrylic acid within copolymerized methacrylated dextran/acrylic acid networks and its relation with pH/salt concentration-induced equilibrium swelling. <i>Polymer</i> , 2004 , 45, 1627-1636	3.9	19	
440	Holographic sensors for the determination of ionic strength. 2004 , 527, 13-20		29	
439	Volume phase transition of bovine vitreous body in vitro and determination of its dynamics. 2004 , 5, 1296-302		2	
438	Resistivity probing of multi-layered tissue phantoms using microelectrodes. 2004 , 25, 645-58		22	
437	Monte Carlo Simulations of Defect-Free Cross-Linked Gels in the Presence of Salt. <i>Macromolecules</i> , 2004 , 37, 10089-10100	5.5	57	
436	Microstructure and rheology of stimuli-responsive nanocolloidal systems-effect of ionic strength. 2004 , 20, 11380-6		27	
435	Study of chemically induced pressure generation of hydrogels under isochoric conditions using a microfabricated device. <i>Journal of Chemical Physics</i> , 2004 , 121, 2746-51	3.9	29	
434	Stimuli-sensitive hydrogels: ideal carriers for chronobiology and chronotherapy. 2004 , 15, 125-44		89	
433	A Rheological Model for pH-Sensitive Ionic Polymer Solutions for Optimal Mobility Control Applications. 2005 ,		50	
432	Evaluation of the Effect of the Water Formation Salinity in the Performance of Gels for Water Shutoff. 2005 ,		3	
431	Radiation crosslinking of CMC-Na at low dose and its application as substitute for hydrogel. 2005 , 72, 635-638		65	
430	Meshless steady-state analysis of chemo-electro-mechanical coupling behavior of pH-sensitive hydrogel in buffered solution. 2005 , 580, 161-172		25	
429	Measurement of Donnan potentials in gels by in situ microelectrode voltammetry. 2005 , 584, 100-109		24	
428	Studies on preparation and properties of NIPAAm/hydrophobic monomer copolymeric hydrogels. 2005 , 41, 2488-2495		38	

427	One Dimensional Volume-Phase Transition of N-Isopropylacrylamide Gels on the Surface of Gold Electrodes. 2005 , 17, 1396-1400	14
426	Effect of gelatin on the swelling behavior of organic hybrid gels based on N-isopropylacrylamide and gelatin. 2005 , 98, 1092-1099	7
425	Synthesis and characteristics of semi-interpenetrating polymer network hydrogels based on chitosan and poly(hydroxy ethyl methacrylate). 2005 , 96, 86-92	28
424	Swelling behavior of poly(acrylamide-co-N-vinylimidazole) hydrogels under different environment conditions. 2005 , 96, 1783-1788	18
423	Adsorption of ammonium and nitrate ions by poly(N-isopropylacrylamide) gel and poly(N-isopropylacrylamide-co-chlorophyllin) gel in different states. 2005 , 96, 2367-2372	11
422	Preparation and swelling characteristics of hydrogel from microbial poly(Eglutamic acid) by Erradiation. 2005 , 13, 339-343	8
421	Structural investigations of a neutralized polyelectrolyte gel and an associating neutral hydrogel. <i>Polymer</i> , 2005 , 46, 4242-4247	31
420	Thermally responsive complex polymer networks containing Fe3O4 nanoparticles: Composition/morphology/property relationship. 2005 , 43, 5923-5934	13
419	Poly(2-Hydroxy Ethyl Methacrylate-co-Acrylic Acid) as Novel Biodegradable Macroporous Hydrogel. 2005 , 13, 807-814	3
418	NMR experiments on aligned samples of membrane proteins. 2005 , 394, 350-82	66
417	Mathematical modelling and controlled drug delivery: matrix systems. 2005 , 2, 97-116	258
416	Ion-exchange controls the kinetics of deswelling of polyelectrolyte microgels in solutions of oppositely charged surfactant. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 23843-56	40
415	SwellingBhrinking Behavior of Poly(Acrylamide-co-itaconic Acid) Hydrogels in Water and Aqueous NaCl Solutions. 2005 , 42, 105-111	12
414	Modeling of stimulated hydrogel volume changes in photonic crystal Pb2+ sensing materials. 2005 , 127, 10753-9	101
413	Modeling and simulation of the swelling behavior of pH-stimulus-responsive hydrogels. 2005 , 6, 109-20	95
412	Voltage-tunable volume transitions in nanoscale films of poly(hydroxyethyl methacrylate) surfaces grafted onto gold. 2005 , 21, 1979-85	29
411	Electrokinetics of diffuse soft interfaces. III. Interpretation of data on the polyacrylamide/water interface. 2005 , 21, 6220-7	48
410	Bulk conductivity of soft surface layers: experimental measurement and electrokinetic implications. 2005 , 21, 10054-60	18

(2006-2005)

409	Swelling Behavior of Semi-Interpenetrating Polymer Network Hydrogels Based on Chitosan and Poly(acryl amide). 2005 , 42, 1073-1083	24
408	Fluorescence correlation spectroscopy studies of diffusion of a weak polyelectrolyte in aqueous solutions. <i>Journal of Chemical Physics</i> , 2005 , 122, 14907	63
407	Nanostructured modified electrodes: role of ions and solvent flux in redox active polyelectrolyte multilayer films. 2006 , 8, 5086-95	24
406	Electrospun nanoscale polyacrylonitrile artificial muscle. 2006 , 15, N152-N156	22
405	Physical properties of hemoglobin-poly(acrylamide) hydrogel-based oxygen carriers: effect of reaction pH. 2006 , 22, 2212-21	40
404	Ion concentration of external solution as a characteristic of micro- and nanogel ionic reservoirs. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 15107-16	35
403	Meshless simulation of equilibrium swelling/deswelling of pH-sensitive hydrogels. 2006, 44, 326-337	5
402	Similarities between polyelectrolyte gels and biopolymer solutions. 2006 , 44, 3679-3686	19
401	Acrylic/cyclodextrin hydrogels with enhanced drug loading and sustained release capability. 2006 , 312, 66-74	90
400	Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid). <i>Polymer</i> , 2006 , 47, 7702-7710	156
399	Micro-cantilevers with end-grafted stimulus-responsive polymer brushes for actuation and sensing. 2006 , 114, 371-378	118
398	Polyelectrolyte networks as highly sensitive polymers. 2006 , 48, 1-20	43
397	Swelling behavior and drug release of NIPAAm/PEGMEA copolymeric hydrogels with different crosslinkers. 2006 , 41, 7333-7340	25
396	Swelling of N-isopropyl acrylamide hydrogels in aqueous solutions of sodium chloride. 2006 , 240, 186-196	16
395	Synthesis of N-hydroxymethyl acrylamide with Emethyl hydrogen itaconate and itaconic acid hydrogels: Effects of the pH, composition, and ionic strength on the swelling behavior. 2006 , 100, 1735-1741	12
394	Effect of hydrotalcite on the swelling and mechanical behaviors for the hybrid nanocomposite hydrogels based on gelatin and hydrotalcite. 2006 , 100, 500-507	38
393	Effect of fluorinated hydrophobic monomer on the drug release behavior for the thermosensitive hydrogels. 2006 , 100, 4661-4667	9
392	Experiments and simulation of pH-responsive N-isopropylacrylamidelicrylic acid copolymer hydrogels. 2006 , 101, 323-330	12

391	Effect of porosigen on the swelling behavior and drug release of porous N-isopropylacrylamide/poly(ethylene glycol) monomethylether acrylate copolymeric hydrogels. 2006 , 102, 5490-5499		10
390	Swelling of pH-sensitive chitosanpoly(vinyl alcohol) hydrogels. 2006 , 102, 4665-4671		42
389	Buffer solution can control the porosity of DNA-chitosan complexes. 2006 , 76, 121-9		20
388	Liposome-nanogel structures for future pharmaceutical applications. 2006 , 12, 4713-28		43
387	Effects of initial-fixed charge density on pH-sensitive hydrogels subjected to coupled pH and electric field stimuli: a meshless analysis. 2007 , 129, 148-55		11
386	Comparative Study of Scattering and Osmotic Properties of Synthetic and Biopolymer Gels. 2007 , 256, 80-87		10
385	On the Modeling of Polyelectrolyte Gels. 2007 , 254, 306-313		13
384	Macroscopically probing the entropic influence of ions: deswelling neutral microgels with salt. 2007 , 75, 011801		41
383	Determination of the parameters controlling swelling of chemically cross-linked pH-sensitive poly(N-vinylimidazole) hydrogels. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 12066-74	3.4	35
382	Synthesis and Characterization of a pH- and Ionic Strength-Responsive Hydrogel. 2007 , 5, 183-195		56
381	Functionalized microgel swelling: comparing theory and experiment. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 11895-906	3.4	56
380	Dynamic light scattering study of salt effect on phase behavior of pig vitreous body and its microscopic implication. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 8411-8	3.4	3
379	Deswelling kinetics of polyacrylate gels in solutions of cetyltrimethylammonium bromide. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 9770-8	3.4	18
378	Optical transduction of chemical forces. 2007 , 7, 733-7		44
377	Structure and Dynamics of N-Isopropylacrylamide/Acrylic Acid Copolymer Gels Prepared by Cross-Linker-Free UVInduced Polymerization. <i>Macromolecules</i> , 2007 , 40, 2509-2514	5.5	8
376	Block polyelectrolyte networks from poly(acrylic acid) and poly(ethylene oxide): sorption and release of cytochrome C. 2007 , 8, 490-7		34
375	Control of gel swelling and phase separation of weakly charged thermoreversible gels by salt addition. <i>Macromolecules</i> , 2007 , 40, 3840-3847	5.5	6
374	Dynamically Restructuring Hydrogel Networks Formed with Reversible Covalent Crosslinks. Advanced Materials, 2007, 19, 2503-2507	24	167

373	An Electro- and Thermochromic Hydrogel as a Full-Color Indicator. <i>Advanced Materials</i> , 2007 , 19, 2807-281/2	155
372	Meshless Modeling of pH-Sensitive Hydrogels Subjected to Coupled pH and Electric Field Stimuli: Young Modulus Effects and Case Studies. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 1137-1146	6
371	Improving the loading and release of NSAIDs from pHEMA hydrogels by copolymerization with functionalized monomers. 2007 , 96, 802-13	130
370	SPR response of stimuli-sensitive microgel on sensor chip. 2007 , 302, 403-410	9
369	pH-sensitive cationic guar gum/poly (acrylic acid) polyelectrolyte hydrogels: Swelling and in vitro drug release. <i>Carbohydrate Polymers</i> , 2007 , 69, 774-783	206
368	Hydrogels of polyvinylpyrrolidone (PVP) and poly(acrylic acid) (PAA) synthesized by photoinduced crosslinking of homopolymers. <i>Polymer</i> , 2007 , 48, 4974-4981	42
367	Smart Polymeric Gels: Redefining the Limits of Biomedical Devices. 2007 , 32, 1083-1122	483
366	Chronobiology, drug delivery, and chronotherapeutics. 2007 , 59, 828-51	164
365	Cation identity dependence of crown ether photonic crystal Pb2+ sensing. 2007, 387, 2121-30	14
364	Shrinking of Chemically Cross-Linked Polymer Networks in the Postgel Region. 2007 , 58, 435-445	5
363	Effect of gelatin on the drug release behaviors for the organic hybrid gels based on N-isopropylacrylamide and gelatin. 2007 , 18, 1089-96	14
362	Swelling behavior of ionically cross-linked polyampholytic hydrogels in varied salt solutions. 2007 , 285, 1395-1400	16
361	Super porous organic[horganic poly(N-isopropylacrylamide)-based hydrogel with a very fast temperature response. <i>Polymer</i> , 2007 , 48, 1471-1482	75
360	The effect of salt and pH on the phase transition behaviors of pH and temperature-responsive poly(N,N-diethylacrylamide-co-methylacrylic acid). 2008 , 16, 670-675	17
359	Synthesis of bifunctional corelhell particles with a porous zeolite core and a responsive polymeric shell. 2008 , 286, 831-836	18
358	Preparation, morphology and pH sensitivity of hybrid hydrolyzed polyacrylonitirile-blend-gelatin hydrogel fibers. 2008 , 57, 1017-1026	7
357	Ionic and pH effects on the osmotic properties and structure of polyelectrolyte gels. 2008 , 46, 2803-2810	18
356	Synthesis and characterization of dual-responsive micrometer-sized core-shell composite polymer particles. 2008 , 19, 181-185	6

355	Preparation and characterization of pH-sensitive hydrogel fibers based on hydrolyzed-polyacrylonitrile/soy protein. 2008 , 108, 1100-1108	21
354	Synthesis and properties of chitosan-modified poly(acrylic acid). 2008 , 109, 3382-3389	7
353	Phase behavior of temperature- and pH-sensitive poly(acrylic acid-g-N-isopropylacrylamide) in dilute aqueous solution. 2008 , 109, 4036-4042	14
352	Lower critical solution temperature determination of smart, thermosensitive N-isopropylacrylamide-alt-2-hydroxyethyl methacrylate copolymers: Kinetics and physical properties. 2008 , 110, 2815-2825	23
351	Effects of PVA, agar contents, and irradiation doses on properties of PVA/ws-chitosan/glycerol hydrogels made by Erradiation followed by freeze-thawing. 2008 , 77, 954-960	47
350	Physico-chemical properties and cytotoxicity assessment of PEG-modified liposomes containing human hemoglobin. 2008 , 65, 239-46	41
349	Synthesis and swelling properties of novel pH-sensitive poly(aspartic acid) gels. 2008, 4, 733-44	89
348	Review on the dynamics and micro-structure of pH-responsive nano-colloidal systems. 2008, 136, 25-44	111
347	Molecular imprinting within hydrogels II: progress and analysis of the field. 2008 , 364, 188-212	141
346	Adhesion force behavior between two gels attached with an electrolytic polymer liquid. 2008 , 107, 164-170	24
345	Loading dependent swelling and release properties of novel biodegradable, elastic and environmental stimuli-sensitive polyurethanes. 2008 , 131, 128-36	50
344	Determination of swelling of responsive gels with nanometer resolution. Fiber-optic based platform for hydrogels as signal transducers. 2008 , 80, 5086-93	54
344		54 24
	platform for hydrogels as signal transducers. 2008 , 80, 5086-93 Coupled chemo-electro-mechanical finite element simulation of hydrogels: I. Chemical stimulation.	
343	Coupled chemo-electro-mechanical finite element simulation of hydrogels: I. Chemical stimulation. 2008, 17, 045011 Physicochemical characterization of natural ionic Microreservoirs: Bacillus subtilis dormant spores.	24
343	Platform for hydrogels as signal transducers. 2008, 80, 5086-93 Coupled chemo-electro-mechanical finite element simulation of hydrogels: I. Chemical stimulation. 2008, 17, 045011 Physicochemical characterization of natural ionic Microreservoirs: Bacillus subtilis dormant spores. Journal of Physical Chemistry B, 2008, 112, 2233-44 In Vivo Simulations of the Intravenous Dynamics of Submicron Particles of pH-Responsive Cationic	24
343 342 341	Coupled chemo-electro-mechanical finite element simulation of hydrogels: I. Chemical stimulation. 2008, 17, 045011 Physicochemical characterization of natural ionic Microreservoirs: Bacillus subtilis dormant spores. Journal of Physical Chemistry B, 2008, 112, 2233-44 In Vivo Simulations of the Intravenous Dynamics of Submicron Particles of pH-Responsive Cationic Hydrogels in Diabetic Patients. 2008, 47, 10053-10063 Chemorheology of phenylboronate-salicylhydroxamate crosslinked hydrogel networks with a	24 22 15

(2009-2008)

337	Multiscale Modeling of Polymer Gels¶hemo-Electric Model versus Discrete Element Model. 2008 , 15, 228-234		14
336	pH Dependence of Macroscopic Swelling and Microscopic Structures for Thermo/pH-Sensitive Gels with Different Charge Distributions. <i>Macromolecules</i> , 2008 , 41, 9882-9889	;	14
335	Nanogels as Pharmaceutical Carriers. 2008 , 67-80		6
334	. 2008,		25
333	Hydrogels. 2009,		18
332	Nanogele als pharmazeutische Trÿersysteme: winzige Netzwerke mit großn Mÿlichkeiten. 2009 , 121, 5524-5536		38
331	Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. 2009 , 48, 5418-29		972
330	Effect of silane coupling agent on swelling behaviors and mechanical properties of thermosensitive hybrid gels. 2009 , 111, 2025-2034		9
329	pH-dependent swelling of hydrogels containing highly branched polyamine macromonomers. <i>Polymer</i> , 2009 , 50, 905-912)	15
328	Crosslinked DADMAC polymers as cationic super absorbents. 2009 , 69, 660-665		17
327	Molecular valve consisting of poly(acrylic acid) gel. 2009 , 142, 377-382		10
326	Responsiveness of Etarrageenan microgels to cationic surfactants and neutral salts. <i>Carbohydrate Polymers</i> , 2009 , 78, 384-388	.3	9
325	Hydrogel-based microsensors for wireless chemical monitoring. 2009 , 11, 529-38		48
324	Synthesis and characterization of a pH/temperature responsive glycine-mediated hydrogel for drug release. 2009 , 3, 374-379		5
323	Effects of TEOS contents on swelling behaviors and mechanical properties of thermosensitive hybrid gels. 2009 , 31, NA-NA		
322	PEG-coated reverse osmosis membranes: Desalination properties and fouling resistance. 2009 , 340, 92-108	3	230
321	Rapid pH/temperature-responsive cationic hydrogels with dual stimuli-sensitive grafted side chains. <i>Polymer</i> , 2009 , 50, 2516-2525)	87
320	Characterization of cross-linked polyampholytic gelatin hydrogels through the rubber elasticity and thermodynamic swelling theories. <i>Polymer</i> , 2009 , 50, 6065-6075)	35

319	Motion of microgels in electric fields. 2009 , 147-148, 178-85		17
318	Effects of microstructure, crosslinking density, temperature and exterior load on dynamic pH-response of hydrolyzed polyacrylonitrile-blend-gelatin hydrogel fibers. 2009 , 45, 1706-1715		9
317	Poly(MAA-co-AN) hydrogels with improved mechanical properties for theophylline controlled delivery. 2009 , 5, 316-27		53
316	Oscillatory dynamics induced in polyelectrolyte gels by a non-oscillatory reaction: a model. 2009 , 28, 337-46		16
315	The pH Inside a pH-Sensitive Gel Swollen in Aqueous Salt Solutions: Poly(N-vinylimidazole). <i>Macromolecules</i> , 2009 , 42, 1285-1292	5.5	22
314	Ion and pH effect on the lower critical solution temperature phase behavior in neutral and acidic poly(organophosphazene) counterparts. 2009 , 25, 2407-18		30
313	The hydrogel nature of mammalian cytoplasm contributes to osmosensing and extracellular pH sensing. 2009 , 96, 4276-85		54
312	Stimuli-responsive hydrogel thin films. <i>Soft Matter</i> , 2009 , 5, 511-524	3.6	462
311	An Analytical Method for Quantifying Transport and Reaction of Anti-Tumor Drugs in Human Tissues. <i>Journal of Chemical Engineering of Japan</i> , 2009 , 42, S226-S233	0.8	
310	Control of Ag+Permeation by Na+Concentration on the Basis of Volume Change in Poly(acrylic acid) Gel. 2010 , 39, 970-971		
309	Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. 2010, 6, 1140-8		227
309 308	Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. 2010 , 6, 1140-8 Probing the internal environment of PVP networks generated by irradiation with different sources. 2010 , 288, 969-980		227
	Probing the internal environment of PVP networks generated by irradiation with different sources.		·
308	Probing the internal environment of PVP networks generated by irradiation with different sources. 2010, 288, 969-980 Hard and soft micro- and nanofabrication: An integrated approach to hydrogel-based biosensing		21
308 307	Probing the internal environment of PVP networks generated by irradiation with different sources. 2010, 288, 969-980 Hard and soft micro- and nanofabrication: An integrated approach to hydrogel-based biosensing and drug delivery. 2010, 141, 303-13 Preparation and characterization of PMAA/MWCNTs nanohybrid hydrogels with improved		75
308 307 306	Probing the internal environment of PVP networks generated by irradiation with different sources. 2010, 288, 969-980 Hard and soft micro- and nanofabrication: An integrated approach to hydrogel-based biosensing and drug delivery. 2010, 141, 303-13 Preparation and characterization of PMAA/MWCNTs nanohybrid hydrogels with improved mechanical properties. 2010, 92, 243-54 Control of Optical Hysteresis in Block Copolymer Photonic Gels: A Step Towards Wet Photonic		75 15
308 307 306 305	Probing the internal environment of PVP networks generated by irradiation with different sources. 2010, 288, 969-980 Hard and soft micro- and nanofabrication: An integrated approach to hydrogel-based biosensing and drug delivery. 2010, 141, 303-13 Preparation and characterization of PMAA/MWCNTs nanohybrid hydrogels with improved mechanical properties. 2010, 92, 243-54 Control of Optical Hysteresis in Block Copolymer Photonic Gels: A Step Towards Wet Photonic Memory Films. 2010, 20, 1728-1732		75 15 69

(2011-2010)

301	Humectants effect on aqueous fluids absorption of Erradiated PVA hydrogel followed by freeze thawing. 2010 , 79, 650-653		19
300	Stimuli-responsive poly(4-vinyl pyridine) hydrogel nanoparticles: synthesis by nanoprecipitation and swelling behavior. 2010 , 348, 668-72		31
299	Swelling and morphological properties of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) hydrogels in solution with high salt concentration. <i>Polymer</i> , 2010 , 51, 953-958	3.9	54
298	Large deformation and electrochemistry of polyelectrolyte gels. 2010 , 58, 558-577		192
297	Physicochemical properties of a mucin/chitosan matrix used for the development of an oxalate biosensor. 2010 , 143, 660-665		8
296	Computational analysis of smart soft hydrogels subjected to pH-electrical coupled stimuli: Effects of initial geometry. 2010 , 47, 614-623		8
295	Preparation and properties of thermosensitive organic-inorganic hybrid gels containing modified nanosilica. 2010 , 31, 1712-1721		25
294	Synthesis of crosslinked poly(orthosilicate)s based on cyclohexanediol derivatives and their swelling properties. 2010 , 42, 706-710		22
293	Swelling Behavior and Metal-Ion Uptake Capacity of pH-Responsive Hydrogels of Poly(N-acryloyl-N?-ethylpiperazine). 2010 , 31, 1673-1678		9
292	Potential of superabsorbent polymer for self-sealing cracks in concrete. 2010 , 109, 296-302		117
291	Actuation and ion transportation of polyelectrolyte gels. 2010,		1
290	Dynamical Modeling and Experimental Analysis on the Swelling Behavior of the sIPN Hydrogels. 2010 , 49, 10111-10115		11
289	Responsive hydrogels for label-free signal transduction within biosensors. 2010 , 10, 4381-409		66
288	A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter, 2010, 6, 784	3.6	243
287	Modeling of effect of initial fixed charge density on smart hydrogel response to ionic strength of environmental solution. <i>Soft Matter</i> , 2010 , 6, 311-320	3.6	31
286	Swelling Behavior of pH-Sensitive Copolymers Containing 2-Acrylamido-2-Methyl Propane Sulfonic Acid and Acrylic Acid Crosslinked with Vinyl Trimethoxy Silane Crosslinker. 2010 , 31, 1456-1464		2
285	Structural Investigation on Thermoresponsive PVA/Poly(methacrylate-co-N-isopropylacrylamide) Microgels across the Volume Phase Transition. <i>Macromolecules</i> , 2011 , 44, 4470-4478	5.5	17
284	Gel swelling theories: the classical formalism and recent approaches. <i>Soft Matter</i> , 2011 , 7, 10536	3.6	243

283	E-beam irradiation and UV photocrosslinking of microemulsion-laden poly(N-vinyl-2-pyrrolidone) hydrogels for I h situl e ncapsulation of volatile hydrophobic compounds. 2011 , 2, 192-202		16
282	Tunable Encapsulation of Proteins within Charged Microgels. <i>Macromolecules</i> , 2011 , 44, 8154-8160	5.5	71
281	Dynamic Hydrogels. 2011 , 577-594		1
280	Characteristic Swelling Deswelling of Polymer/Clay Nanocomposite Gels. <i>Macromolecules</i> , 2011 , 44, 8516-8526	5.5	65
279	Formulation of a modified release metformin. HCl matrix tablet: influence of some hydrophilic polymers on release rate and in-vitro evaluation. 2011 , 47, 483-493		1
278	An electrochemical actuator based on reversible changes in volume of poly(acrylic acid) gel induced by quinone redox. 2011 , 160, 1586-1592		15
277	Biomedical applications of boronic acid polymers. <i>Polymer</i> , 2011 , 52, 4631-4643	3.9	302
276	Molecular thermodynamic model for swelling behavior and volume phase transition of multi-responsive hydrogels. 2011 , 312, 106-115		12
275	Effect of initiator on the structure of hydrogels of cross-linked polyacrylic acid. 2011 , 84, 2106-2113		5
274	Synthesis and characterization of novel PEG-tethered PMAA hydrogels based on a PEG macromolecular azo initiator. 2011 , 53, 37-43		
273	Phase field model simulations of hydrogel dynamics under chemical stimulation. 2011 , 289, 513-521		11
272	Modeling and simulation of pH-sensitive hydrogels. 2011 , 289, 535-544		39
271	Bmart[poly(2-(dimethylamino)ethyl methacrylate-ran-9-(4-vinylbenzyl)-9H-carbazole) copolymers synthesized by nitroxide mediated radical polymerization. 2011 , 49, 5270-5283		29
270	Synthesis and characterization of temperature sensitive P-NIPAM macro/micro hydrogels. 2011 , 384, 466-472		22
269	Transient modeling of the reversible response of the hydrogel to the change in the ionic strength of solutions. 2011 , 43, 287-298		20
268	Highly temperature responsive core-shell magnetic particles: synthesis, characterization and colloidal properties. 2011 , 360, 556-64		50
267	Fabrication and caffeine release from Fe3O4/P(MAA-co-NVP) magnetic microspheres with controllable core-shell architecture. 2011 , 22, 557-76		8
266	ANALYSIS OF THE KINETICS OF SHRINKING OF THE IONIC-STRENGTH-SENSITIVE HYDROGEL WITH A MULTI-PHYSICAL MODEL. 2011 , 03, 313-334		3

265	Preparation and Characterization of Thermo-Sensitive Hydroxypropylmethyl Cellulose/Poly (N-Isopropylacrylamide) Hydrogel. 2011 , 194-196, 773-776		2
264	Continuum Models of Stimuli-responsive Gels. 2012 , 165-196		1
263	Light-Induced Phase Transition of Gels for Smart Functional Elements. 2012, 237-253		
262	Use of a novel pH-triggered polymer-gel system for optimal mobility-control applications. 2012 , 12,		1
261	Preparation and characterization of novel polymer hydrogel from industrial waste and copolymerization of poly(vinyl alcohol) and polyacrylamide. 2012 , 124, 4362-4370		20
260	The effect of nanoparticles on gastrointestinal release from modified Ecarrageenan nanocomposite hydrogels. <i>Carbohydrate Polymers</i> , 2012 , 89, 138-45	10.3	78
259	Fast temperature-responsive nanocomposite PNIPAM hydrogels with controlled pore wall thickness: Force and rate of T-response. 2012 , 48, 1997-2007		37
258	Modification of block copolymer photonic gels for colorimetric biosensors. 2012 , 20, 1219-1222		8
257	Modeling deformation and contacts of pH sensitive hydrogels for microfluidic flow control. <i>Soft Matter</i> , 2012 , 8, 3083	3.6	25
256	Synthesis of Crosslinked Networks of Gum ghatti with Different Vinyl Monomer Mixtures and Effect of Ionic Strength of Various Cations on its Swelling Behavior. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2012 , 61, 99-115	3	37
255	Electromechanical Equilibrium Properties of Poly(acrylic acid/acrylamide) Hydrogels. <i>Macromolecules</i> , 2012 , 45, 1041-1045	5.5	10
254	Effects of strongly selective additives on volume phase transition in gels. <i>Journal of Chemical Physics</i> , 2012 , 137, 024902	3.9	5
253	Mechanical Instabilities of Gels. 2012 , 3, 311-332		59
252	Hydrogels. 2012 , 385-395		19
251	Polymer Gels. 2012 , 339-366		11
250	pH-Responsive Nanogels: Synthesis and Physical Properties. 2012 , 81-115		1
249	Effect of natural cross-linker on swelling and structural stability of kappa-carrageenan/hydroxyethyl cellulose pH-sensitive hydrogels. 2012 , 29, 1647-1655		16
248	Biologically-Inspired Responsive Materials: Integrating Biological Function into Synthetic Materials. 2012 , 243-268		1

247	pH-Sensitive Hydrogel for Micro-Fluidic Valve. 2012 , 3, 464-79	36
246	Synthesis and Property of Temperature-Responsive Hydrogel with Movable Cross-Linking Points. Macromolecules, 2012 , 45, 6136-6142 5.5	21
245	Polyoxypropylenefhontmorillonite nanocomposites for drug-delivery vehicles: Preparation and characterization. 2012 , 125, E157	14
244	Swelling behavior of sulfonated polyacrylamide nanocomposite hydrogels in electrolyte solutions: comparison of theoretical and experimental results. 2012 , 21, 175-183	13
243	Impact of magnetic nanofillers in the swelling and release properties of Etarrageenan hydrogel nanocomposites. <i>Carbohydrate Polymers</i> , 2012 , 87, 328-335	61
242	Effects of counter ions of clay platelets on the swelling behavior of nanocomposite gels. 2012 , 375, 134-41	15
241	Moth wing scales as optical pH sensors. 2012 , 166-167, 824-828	18
240	Synthesis and swelling behavior of thermosensitive IPN hydrogels based on sodium acrylate and N-isopropyl acrylamide by a two-step method. 2013 , 127, 3663-3672	10
239	Effect of monomer composition on the properties of biodegradable poly(NIPAAm-AA-PCLdA) copolymeric hydrogels. 2013 , 128, 230-238	4
238	Drug Release Behavior and Antitumor Efficiency of 5-ASA Loaded Chitosan-Layered Silicate Nanocomposites. 2013 , 23, 1078-1088	9
237	A Dynamic Model of Polyelectrolyte Gels. 2013 , 73, 104-133	22
236	Modification and swelling kinetic study of kappa-carrageenan-based hydrogel for controlled release study. 2013 , 44, 182-191	64
235	Stopped-flow kinetics of pH-responsive polyamine latexes: how fast is the latex-to-microgel transition?. 2013 , 29, 15209-16	14
234	Novel poly(orthosilicate)s based on linear aliphatic diols: Synthesis, characterization, and swelling properties. 2013 , 129, 2121-2127	14
233	The facile preparation for temperature sensitive silica/PNIPAAm composite microspheres. 2013 , 268, 489-495	5
232	Transformation of metal-organic framework to polymer gel by cross-linking the organic ligands preorganized in metal-organic framework. 2013 , 135, 5427-32	170
231	Polyamide formation on a cellulose triacetate support for osmotic membranes: Effect of linking molecules on membrane performance. 2013 , 312, 2-9	30
230	Advances in smart materials: Stimuli-responsive hydrogel thin films. 2013 , 51, 1084-1099	123

229	A simple method for synthesis of thermal responsive silica nanoparticle/PNIPAAm hybrids. 2013 , 233, 47-51		22
228	Swelling and shear viscosity of stimuli-responsive colloidal systems. <i>Soft Matter</i> , 2013 , 9, 5319 3.	6	28
227	Effect of Nanoclay Content and pH of the Medium on the Swelling Characteristics of Grafted and Cross-Linked Mixed Chitosan Derivatives. 2013 , 52, 352-357		9
226	Electronspun Thermal Responsive and Photocatalytic Zn(NO3)2/PNIPAAm Nanofibers. 2013 , 710, 50-54		1
225	Effect of Salinity and Temperature on Swelling Behavior of Nano/Micro Polymer Particle. 2013 , 448-453, 3993-3997		1
224	Quellungsexperimente mit Superabsorber-Polymeren. 2013 , 20, 127-130		
223	Electroactive hydrogel comprising poly(methyl 2-acetamido acrylate) for an artificial actuator. Journal of Applied Physics, 2013 , 114, 054701	5	4
222	Simulation of Stimuli-Responsive Polymer Networks. 2013 , 1, 43-67		7
221	. 2014,		5
220	Super-porous nanocomposite PNIPAm hydrogels reinforced with titania nanoparticles, displaying a very fast temperature response as well as pH-sensitivity. 2014 , 59, 341-352		35
219	The synthesis of hydrogels with controlled distribution of polymer brushes in hydrogel network. 2014 , 320, 818-828		5
218	Synthesis of cellulose derivative based superabsorbent hydrogels by radiation induced crosslinking. 2014 , 21, 4157-4165		45
217	Analysis and simulation of a model of polyelectrolyte gel in one spatial dimension. 2014 , 27, 1241-1285		5
216	Synthesis and characterization of well-defined PAABEG multi-responsive hydrogels by ATRP and click chemistry. 2014 , 4, 54631-54640		11
215	Surface modification of temperature-responsive polymer particles by an electrically conducting polyaniline shell layer. 2014 , 63, 667-673		8
214	Volume phase transition of polyelectrolyte gels: effects of ionic size. <i>Journal of Chemical Physics</i> , 2014 , 141, 104905	9	5
213	Synthesis and Characterization of Flexible Hydrogel Electrodes for Electrochemical Impedance Measurements of Protective Coatings on Metal Sculptures. 2014 , 26, 1059-1067		18
212	Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. 2014 , 343, 675-9		385

211	A model of ideal elastomeric gels for polyelectrolyte gels. <i>Soft Matter</i> , 2014 , 10, 2582-90	3.6	60
21 0	pH-responsive CMC/PAM/PVP semi-IPN hydrogels for theophylline drug release. 2014 , 21, 1		10
209	Mechanistic studies of an autonomously pulsing hydrogel/enzyme system for rhythmic hormone delivery. 2014 , 196, 261-71		15
208	Modelling of a hydrogel diffraction grating used for pH-sensing. 2014 , 342, 706-713		2
207	Novel determinants of the neuronal Cl(-) concentration. 2014 , 592, 4099-114		36
206	Microdynamics mechanism of thermal-induced hydrogel network destruction of poly(vinyl alcohol) in D2O studied by two-dimensional infrared correlation spectroscopy. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 9496-506	3.4	14
205	Local impermeant anions establish the neuronal chloride concentration. 2014 , 343, 670-5		138
204	Smart Gels. 2014 , 1-50		1
203	Synthesis and characterization of hydrogels from template polymerization of acrylic acid on to modified chitosan. 2014 , 71, 83-92		4
202	Structure, swelling, and drug release of thermoresponsive poly(amidoamine) dendrimerpoly(N-isopropylacrylamide) hydrogels. 2014 , 49, 6102-6110		21
201	Equilibrium swelling and electrochemistry of polyampholytic pH-sensitive hydrogel. 2014 , 51, 4149-4156		22
200	Stimuli sensitive polymers and self regulated drug delivery systems: a very partial review. 2014 , 190, 337-51		88
199	Thermodynamic model for polyelectrolyte hydrogels. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 10534-4	3 24	7
198	Hydrophilicflydrophobic copolymer nano-sized particle gels: Swelling behavior and dependence on crosslinker chain length. 2014 , 361, 200-207		10
197	Hydrogels: Properties, Preparation, Characterization and Biomedical, Applications in Tissue Engineering, Drug, Delivery and Wound Care. 2014 , 295-357		14
196	Hydrogel-swelling driven delivery device for corrosion resistance of metal in water. 2015 , 72, 2270-6		1
195	Influence of Novel Crosslinker on the Properties of the Degradable Thermosensitive Hydrogels. 2015 , 358, 41-51		2
194	Swelling Dynamics of a DNA-Polymer Hybrid Hydrogel Prepared Using Polyethylene Glycol as a Porogen. <i>Gels</i> , 2015 , 1, 219-234	4.2	8

(2015-2015)

193	Effects of the Junction Functionality and Chain Entanglements in Chemomechanical Behavior of Polyelectrolyte Gels. 2015 , 2015, 1-10	1
192	Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release. 2015 , 2015, 236745	17
191	Modeling the effects of pH and ionic strength on swelling of polyelectrolyte gels. <i>Journal of Chemical Physics</i> , 2015 , 142, 114904	48
190	Cell volume control in three dimensions: Water movement without solute movement. 2015 , 145, 373-80	38
189	Modeling the effects of pH and ionic strength on swelling of anionic polyelectrolyte gels. 2015 , 23, 055005	22
188	Reaction-induced swelling of ionic gels. <i>Soft Matter</i> , 2015 , 11, 449-55	5
187	Synthesis of "click" alginate hydrogel capsules and comparison of their stability, water swelling, and diffusion properties with that of Ca(+2) crosslinked alginate capsules. 2015 , 103, 1120-32	21
186	Hysteresis in the surfactant-induced volume transition of hydrogels. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 1717-25	9
185	Salt and osmosensing: role of cytoplasmic hydrogel. 2015 , 467, 475-87	6
184	A modeling analysis for effect of elastic modulus on kinetics of ionic-strength-sensitive hydrogel. 2015 , 226, 1957-1969	4
183	Effect of Salt on Swelling Behaviors of Thermosensitive Hydrogels: Applicability of the Nonrandom Contact Model. <i>Macromolecules</i> , 2015 , 48, 4063-4072	14
182	Investigation of pH-dependent swelling behavior and kinetic parameters of novel poly(acrylamide-co-acrylic acid) hydrogels with spirulina. 2015 , 15, 81-93	9
181	Transformation of rigid metal@rganic frameworks into flexible gel networks and vice versa. 2015 , 17, 7978-7985	10
180	Swelling of pH-sensitive hydrogels. 2015 , 91, 022305	31
179	Swelling of pH-responsive cationic gels: Constitutive modeling and structureproperty relations. 2015 , 64-65, 176-190	37
178	Modelling and Analysis of pH Responsive Hydrogels for the Development of Biomimetic Photo-Actuating Structures. 2015 , 1718, 65-70	2
177	Hierarchically functionalized magnetic core/multishell particles and their postsynthetic conversion to polymer capsules. 2015 , 9, 4219-26	33
176	Advances in Mechanics of Soft Materials: A Review of Large Deformation Behavior of Hydrogels. 2015 , 07, 1530001	161

175	Oxygen reduction reaction induced pH-responsive chemo-mechanical hydrogel actuators. <i>Soft Matter</i> , 2015 , 11, 7953-9	3.6	23
174	Effect of tensile load on the actuation performance of pH-sensitive hydrogels. 2015 , 53, 218-225		6
173	Swellable Hydrogel-based Systems for Controlled Drug Delivery. 2016 ,		13
172	Reversible Electrochemically Triggered Delamination Blistering of Hydrogel Films on Micropatterned Electrodes. 2016 , 26, 3218-3225		22
171	Active Gap SERS for the Sensitive Detection of Biomacromolecules with Plasmonic Nanostructures on Hydrogels. 2016 , 4, 259-263		37
170	Effect of surfactants on the swelling behaviors of thermosensitive hydrogels: applicability of the generalized Langmuir isotherm. 2016 , 6, 103811-103821		10
169	Preparation and properties of the novel photoluminescent and thermosensitive hydrogels. 2016 , 23, 1		1
168	Polymer Gels as EAPs: Models. 2016 , 53-81		
167	Radiation Engineering of Multifunctional Nanogels. 2016 , 374, 69		24
166	Noncollapsing polyelectrolyte conetwork gels in physiologically relevant salt solutions. 2016 , 84, 668-6	74	11
165	Electrospun Nanofibrous Materials as Stimuli-Responsive Polymerized Hydrogels. 2016 , 365, 118-127		4
164	Static and dynamic behaviour of responsive graphene oxide-poly(N-isopropyl acrylamide) composite gels. <i>Soft Matter</i> , 2016 , 12, 7166-73	3.6	12
163	Role of Mechanical Factors in Applications of Stimuli-Responsive Polymer Gels - Status and		
	Prospects. <i>Polymer</i> , 2016 , 101, 415-449	3.9	24
162		3.9	17
	Prospects. <i>Polymer</i> , 2016 , 101, 415-449 Multi-stimuli-responsive poly(NIPA-co-HEMA-co-NVP) with spironaphthoxazine hydrogel for optical	3.9	
162	Prospects. <i>Polymer</i> , 2016 , 101, 415-449 Multi-stimuli-responsive poly(NIPA-co-HEMA-co-NVP) with spironaphthoxazine hydrogel for optical data storage application. 2016 , 294, 1623-1632	3.9	
162 161	Prospects. <i>Polymer</i> , 2016 , 101, 415-449 Multi-stimuli-responsive poly(NIPA-co-HEMA-co-NVP) with spironaphthoxazine hydrogel for optical data storage application. 2016 , 294, 1623-1632 Polymer Gels as EAPs: Models. 2016 , 1-29		17

157	New insights into an innovative Auricularia auricular polysaccharide pH-sensitive hydrogel for controlled protein drug delivery. 2016 , 6, 59794-59799	7
156	Modeling the effect of ionic strength on swelling of pH-sensitive macro- and nanogels. <i>Materials</i> Today Communications, 2016 , 6, 92-101 2.5	5
155	Saccharide-induced modulation of photoluminescence lifetime in microgels. 2016 , 18, 16812-21	6
154	Influence of MEOBiPA content on the properties of novel photoluminescent thermosensitive hydrogels. 2016 , 65, 231-244	1
153	Thermo- and salt-responsive poly(NIPAm-co-AAc-Brij-58) microgels: adjustable size, stability under salt stimulus, and rapid protein adsorption/desorption. 2016 , 294, 617-628	11
152	Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. 2016 , 240, 109-126	299
151	Ion-stimuli responsive dimethylaminoethyl methacrylate/hydroxyethyl methacrylate copolymeric hydrogels: mutual influence of reaction parameters on the swelling and mechanical strength. 2016 , 23, 1	9
150	Inhomogeneous swelling of pH-responsive gels. 2016 , 87, 11-25	16
149	Electroconductive nanocomposite hydrogel for pulsatile drug release. 2016 , 100, 12-17	50
148	Evaluation of the transport parameters and physiochemical properties of forward osmosis membranes after treatment of produced water. 2016 , 499, 491-502	33
147	Adhesion between highly stretchable materials. <i>Soft Matter</i> , 2016 , 12, 1093-9	73
146	Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent. 2016 , 118, 114-119	39
145	Synthesis of conductive doubly filled poly(N-isopropylacrylamide)-polyaniline-SiO2 hydrogels. 2017 , 244, 616-634	26
144	Preparation and properties of novel photoluminescent thermosensitive hydrogels containing a pyrene group. 2017 , 24, 1	1
143	The effects of pH and ionic strength on equilibrium swelling of polyampholyte gels. 2017 , 110-111, 192-208	11
142	Salt-Induced Swelling and Volume Phase Transition of Polyelectrolyte Gels. 2017, 84,	16
141	Poly(N-isopropylacrylamide)-SiO2 nanocomposites interpenetrated by starch: Stimuli-responsive hydrogels with attractive tensile properties. 2017 , 88, 349-372	25
140	Applications of Radiation Chemistry in the Fields of Industry, Biotechnology and Environment. 2017	1

139	Nanocellulose and Nanogels as Modern Drug Delivery Systems. 2017 , 209-269	6
138	Rhythmomimetic Drug Delivery: Modeling, Analysis, and Numerical Simulation. 2017 , 77, 565-592	1
137	Study on pH-sensitive hydrogel micro-valves: A fluidEtructure interaction approach. 2017 , 28, 1589-1602	20
136	Generation of membrane potential beyond the conceptual range of Donnan theory and Goldman-Hodgkin-Katz equation. 2017 , 43, 319-340	6
135	Swelling of micro-hydrogels with a crosslinker gradient. 2017 , 19, 23740-23746	40
134	Graphene derivatives in responsive hydrogels: Effect of concentration and surface chemistry. 2017 , 93, 717-725	6
133	Theoretical and experimental investigation of the shape memory properties of an ionic polymer thetal composite. 2017 , 26, 045020	3
132	Controlled Synthesis of Uniform, Micrometer-Sized Ruthenium-Functionalized Poly(N-Isopropylacrylamide) Gel Particles and their Application to the Catalysis of the Belousov-Zhabotinsky Reaction. 2017 , 38, 1600577	7
131	Diffusion of Polyelectrolytes in Polyelectrolyte Gels. <i>Macromolecules</i> , 2017 , 50, 8158-8168 5.5	13
130	A programmable soft chemo-mechanical actuator exploiting a catalyzed photochemical water-oxidation reaction. <i>Soft Matter</i> , 2017 , 13, 7312-7317	12
129	Scaling Theory of Polyelectrolyte Nanogels. 2017 , 68, 250	1
128	Modeling drug release through stimuli responsive polymer hydrogels. 2017 , 532, 502-510	13
127	Charge density dependence of elasticity of anionically modified N,N -dimethylacrylamide-based gels with (meth)acrylic acid segments: An insight by quantitative analysis of electrostatic contributions. 2017 , 94, 484-500	2
126	Isocyanate-Free, UV-Crosslinked Poly(Hydroxyurethane) Networks: A Sustainable Approach toward Highly Functional Antibacterial Gels. 2017 , 17, 1700190	6
125	Conducting Polymer Hydrogels and Their Applications. 2017 , 193-221	2
124	Swelling of glucose-responsive gels functionalized with boronic acid. 2017 , 65, 533-541	5
123	1.31 Dynamic Hydrogels. 2017 , 705-724	
122	The Properties of N,N?-bis(propionyl) cystamine-acrylamide/Nanowhiskers of Cellulose (CNWs) Composite Hydrogel. 2017 , 269, 012059	

Effect of alkalinity and calcium concentration of pore solution on the swelling and ionic exchange of superabsorbent polymers in cement paste. 2018 , 88, 150-164		62
Hydrogels: experimental characterization and mathematical modelling of their mechanical and diffusive behaviour. 2018 , 47, 2357-2373		121
Porosity in Biomaterials: A Key Factor in the Development of Applied Materials in Biomedicine. 2018 , 1-20		1
Correlation between structure and responsivity in PNIPAM based nanocomposites: A combined nano- and macroscale view. 2018 , 99, 180-188		4
Synthesis and Characterization of a New OrganicIhorganic Hybrid Hydrogel by Using SiO2 Nanoparticles as an Initiator. 2018 , 65, 225-230		2
A mechanistic model for swelling kinetics of waxy maize starch suspension. <i>Journal of Food Engineering</i> , 2018 , 222, 237-249	6	17
Dynamics of overall swelling profile of multiresponsive ionic dimethylacrylamide-based hydrogels and cryogels: Diffusion characteristics evaluation of salt-dependent swelling. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2018 , 67, 597-611	3	1
Mapping Nanoparticles in Hydrogels: A Comparison of Preparation Methods for Electron Microscopy. 2018 , 8, 2446		10
Microgels from hydrophobic solid monomers via miniemulsion polymerization for aqueous lead and copper ion removal. 2018 , 133, 136-142		3
History, Classification, Properties and Application of Hydrogels: An Overview. <i>Gels Horizons: From Science To Smart Materials</i> , 2018 , 29-50		10
Chemically crosslinked hydrogel and its driving force towards superabsorbent behaviour. 2018 , 118, 1422-1430		32
Ultimate swelling described by limiting chain extensibility of swollen elastomers. <i>International Journal of Mechanical Sciences</i> , 2018 , 144, 531-539	5.5	12
Phase Transitions and Pattern Formation in Chemo-Responsive Gels and Composites. 2018 , 58, 693-705	5	1
Concrete with superabsorbent polymer. 2018 , 467-499		5
Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy. 2018 , 10,		66
Stimuli-Responsive Cationic Hydrogels in Drug Delivery Applications. <i>Gels</i> , 2018 , 4,	4.2	47
Mesoporous magnetic silica particles modified with stimuli-responsive P(NIPAM-DMA) valve for controlled loading and release of biologically active molecules. <i>Soft Matter</i> , 2018 , 14, 5469-5479	3.6	20
Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A review. 2019 , 646, 265-279		102
	of superabsorbent polymers in cement paste. 2018, 88, 150-164 Hydrogels: experimental characterization and mathematical modelling of their mechanical and diffusive behaviour. 2018, 47, 2357-2373 Porosity in Biomaterials: A Key Factor in the Development of Applied Materials in Biomedicine. 2018, 1-20 Correlation between structure and responsivity in PNIPAM based nanocomposites: A combined nano- and macroscale view. 2018, 99, 180-188 Synthesis and Characterization of a New Organidhorganic Hybrid Hydrogel by Using SiO2 Nanoparticles as an Initiator. 2018, 65, 225-230 A mechanistic model for swelling kinetics of waxy maize starch suspension. Journal of Food Engineering, 2018, 222, 237-249 Dynamics of overall swelling profile of multiresponsive ionic dimethylacrylamide-based hydrogels and cryogels: Diffusion characteristics evaluation of salt-dependent swelling. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 597-611 Mapping Nanoparticles in Hydrogels: A Comparison of Preparation Methods for Electron Microscopy. 2018, 8, 2446 Microgels from hydrophobic solid monomers via miniemulsion polymerization for aqueous lead and copper ion removal. 2018, 133, 136-142 History, Classification, Properties and Application of Hydrogels: An Overview. Gels Horizons: From Science To Smart Materials, 2018, 29-50 Chemically crosslinked hydrogel and its driving force towards superabsorbent behaviour, 2018, 118, 1422-1430 Ultimate swelling described by limiting chain extensibility of swollen elastomers. International Journal of Mechanical Sciences, 2018, 144, 531-539 Phase Transitions and Pattern Formation in Chemo-Responsive Gels and Composites. 2018, 58, 693-703 Concrete with superabsorbent polymer. 2018, 467-499 Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy. 2018, 10, Stimuli-Responsive Cationic Hydrogels in Drug Delivery Applications. Gels, 2018, 4, Mesoporous magnetic silica particles modif	of superabsorbent polymers in cement paste. 2018, 88, 150-164 Hydrogels: experimental characterization and mathematical modelling of their mechanical and diffusive behaviour. 2018, 47, 2357-2373 Porosity in Blomaterials: A Key Factor in the Development of Applied Materials in Biomedicine. 2018, 1-20 Correlation between structure and responsivity in PNIPAM based nanocomposites: A combined nano- and macroscale view. 2018, 99, 180-188 Synthesis and Characterization of a New Organicthorganic Hybrid Hydrogel by Using SiO2 Nanopariticles as an Initiator. 2018, 69, 225-230 A mechanistic model for swelling kinetics of waxy maize starch suspension. Journal of Food Engineering, 2018, 222, 237-249 Dynamics of overall swelling profile of multiresponsive ionic dimethylacrylamide-based hydrogels and cryogels: Diffusion characteristics evaluation of salt-dependent swelling. International Journal of Polymeric Biomaterials, 2018, 67, 597-611 Mapping Nanoparticles in Hydrogels: A Comparison of Preparation Methods for Electron Microscopy. 2018, 8, 2446 Microgels from hydrophobic solid monomers via miniemulsion polymerization for aqueous lead and copper ion removal. 2018, 133, 136-142 History, Classification, Properties and Application of Hydrogels: An Overview. Gels Horizons: From Science To Smart Materials, 2018, 29-50 Chemically crosslinked hydrogel and its driving force towards superabsorbent behaviour. 2018, 118, 1422-1430 Ultimate swelling described by limiting chain extensibility of swollen elastomers. International Journal of Mechanical Sciences, 2018, 144, 531-539 Phase Transitions and Pattern Formation in Chemo-Responsive Gels and Composites. 2018, 58, 693-705 Concrete with superabsorbent polymer. 2018, 467-499 Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy. 2018, 10, Stimuli-Responsive Cationic Hydrogels in Drug Delivery Applications. Gels, 2018, 14, 5469-5479 After the properties of biologically active molecules.

103	Model modification for equilibrium swelling of highly branched polyamine macromonomers. 2019 , 76, 1115-1133		1
102	Counterion Exchange in Peptide-Complexed Core-Shell Microgels. 2019 , 35, 9521-9528		7
101	Porous hybrid poly(N-isopropylacrylamide) hydrogels with very fast volume response to temperature and pH. 2019 , 120, 109213		8
100	Research on 5-fluorouracil as a drug carrier materials with its in vitro release properties on organic modified magadiite. 2019 , 130, 44-53		14
99	Monolithic intercalated PNIPAm/starch hydrogels with very fast and extensive one-way volume and swelling responses to temperature and pH: prospective actuators and drug release systems. <i>Soft Matter</i> , 2019 , 15, 752-769	5.6	16
98	A pH-regulated drug delivery dermal patch for targeting infected regions in chronic wounds. 2019 , 19, 2265-2274		22
97	Fabrication of Tough and Stretchable Hybrid Double-Network Elastomers Using Ionic Dissociation of Polyelectrolyte in Nonaqueous Media. 2019 , 31, 3766-3776		60
96	Porous three-dimensional polymer composites for tailored delivery of bioactives and drugs. 2019 , 331-36	9	2
95	Small and Robust All-Polymer Fiber Bragg Grating Based pH Sensor. 2019 , 37, 4480-4486		23
94	Superabsorbent Poly(isoprenecarboxylate) Hydrogels from Glucose. 2019 , 7, 7491-7495		5
93	3D printed self-adhesive PEGDAPAA hydrogels as modular components for soft actuators and microfluidics. 2019 , 10, 2015-2028		29
92	Superabsorbent hydrogel from oil palm empty fruit bunch cellulose and sodium carboxymethylcellulose. 2019 , 131, 50-59		22
91	Piezoresistive Hydrogel-Based Sensors for the Detection of Ammonia. 2019 , 19,		9
90	Crossly charged microfluidic device for spontaneous filtration without an external power supply. 2019 , 577, 21-25		
89	Effect of Network Parameters of Preformed Particle Gel on Structural Strength for Water Management. 2019 ,		1
88	Effect of graphene-derivatives on the responsivity of PNIPAM-based thermosensitive nanocomposites [A review. 2019 , 116, 106-116		9
87	Nonmagnetic Hypertonic Saline-Based Implant for Breast Cancer Postsurgical Recurrence Prevention by Magnetic Field/pH-Driven Thermochemotherapy. <i>ACS Applied Materials & amp;</i> Interfaces, 2019 , 11, 10597-10607) .5	11
86	Cell Model Approaches for Predicting the Swelling and Mechanical Properties of Polyelectrolyte Gels. <i>Macromolecules</i> , 2019 , 52, 9341-9353	5.5	4

Fully amino acid-based hydrogel as potential scaffold for cell culturing and drug delivery. 2019, 10, 2579-2593 6 85 Experimental Evidence for Universal Behavior of Ion-Induced Volume Phase Transition in Sodium 84 7 Polyacrylate Gels. 2019, 10, 7831-7835 Quick visualization of neurons in brain tissues using an optical clearing technique. 2019, 94, 199-208 83 5 Synthesis of methotrexate-loaded tantalum pentoxide-poly(acrylic acid) nanoparticles for 82 24 controlled drug release applications. 2019, 538, 286-296 Interconnected macropores cryogel with nano-thin crosslinked network regenerated cellulose. 81 10 2020, 148, 11-19 Sugar-responsive Pickering emulsions mediated by switching hydrophobicity in microgels. 2020, 80 14 561, 481-493 A unified analysis of the coagulation behaviour of silica hydrosols when the colloid and polymer 79 1 science meet. 2020, 298, 123-138 Ionic equilibria and swelling of soft permeable particles in electrolyte solutions. Soft Matter, 2020, 78 3.6 16, 929-938 Donnan Contribution and Specific Ion Effects in Swelling of Cationic Hydrogels are Additive: 77 4.2 4 Combined High-Resolution Experiments and Finite Element Modeling. Gels, 2020, 6, Thermomechanical analysis and pH-triggered elastic response of charge-balanced sulfonated 76 3.9 poly(tertiary amine-methacrylate)-based terpolymer cryogels. Polymer, 2020, 208, 122941 Swelling Behaviors of Hydrogels with Alternating Neutral/Highly Charged Sequences. 75 5.5 12 Macromolecules, 2020, 53, 8244-8254 Desalination of Seawater Using Cationic Poly(acrylamide) Hydrogels and Mechanical Forces for 3.9 7 74 Separation. Macromolecular Materials and Engineering, 2020, 305, 2000383 Reversibly Transforming a Highly Swollen Polyelectrolyte Hydrogel to an Extremely Tough One and 73 24 52 its Application as a Tubular Grasper. Advanced Materials, 2020, 32, e2005171 Imaging Switchable Protein Interactions With an Active Porous Polymer Support. Journal of Physical 2.8 72 Chemistry A, 2020, Environmentally safe bioadditive allows degradation of refractory poly(lactic acid) in seawater: Effect of poly(aspartic acid-co-l-lactide) on the hydrolytic degradation of PLLA at different salinity 71 4.7 7 and pH conditions. Polymer Degradation and Stability, 2020, 178, 109216 Imaging Switchable Protein Interactions with an Active Porous Polymer Support. Journal of Physical 8 70 3.4 Chemistry B, 2020, 124, 4412-4420 Effect of Network Parameters of Preformed Particle Gel on Structural Strength for Water 69 0.6 3

Management. SPE Production and Operations, 2020, 35, 362-372

axons using fluorescence microscopy. Scientific Reports, 2020, 10, 2917

68

Quantitative expansion microscopy for the characterization of the spectrin periodic skeleton of

4.9

7

67	Behavior of Poly electrolyte Gels in Concentrated Solutions of Highly Soluble Salts. <i>MRS Advances</i> , 2020 , 5, 907-915	0.7	2
66	Grand-Reaction Method for Simulations of Ionization Equilibria Coupled to Ion Partitioning. <i>Macromolecules</i> , 2020 , 53, 3007-3020	5.5	17
65	Enhancing the water holding capacity of model meat analogues through marinade composition. Journal of Food Engineering, 2021 , 290, 110283	6	21
64	Investigation of the Porosity of Poly(sodium methacrylate) Hydrogels by 1H-NMR T2-Relaxation and Inverse Size-Exclusion Chromatography. <i>Macromolecular Chemistry and Physics</i> , 2021 , 222, 2000300	2.6	2
63	Equilibrium swelling of multi-stimuli-responsive superabsorbent hydrogels. <i>Mechanics of Soft Materials</i> , 2021 , 3, 1	2.1	
62	Scattering methods for determining structure and dynamics of polymer gels. <i>Journal of Applied Physics</i> , 2021 , 129, 071101	2.5	2
61	Effect of Nonlinear Elasticity on the Swelling Behaviors of Highly Swollen Polyelectrolyte Gels. <i>Gels</i> , 2021 , 7,	4.2	4
60	Dynamic Manipulation of DNA-Programmed Crystals Embedded in a Polyelectrolyte Hydrogel. <i>ACS Applied Materials & Applied & Applied Materials & Applied & App</i>	9.5	5
59	Experimental Verification of the Balance between Elastic Pressure and Ionic Osmotic Pressure of Highly Swollen Charged Gels. <i>Gels</i> , 2021 , 7,	4.2	3
58	Salt partitioning in ionized, thermo-responsive hydrogels: perspective to water desalination. Journal of Chemical Physics, 2021 , 154, 144902	3.9	2
57	The effects of pH and ionic strength on the volume phase transition temperature of thermo-responsive anionic copolymer gels. <i>Polymer</i> , 2021 , 221, 123637	3.9	2
56	Enhanced Mechanical Properties by Ionomeric Complexation in Interpenetrating Network Hydrogels of Hydrolyzed Poly (N-vinyl Formamide) and Polyacrylamide. <i>Gels</i> , 2021 , 7,	4.2	4
55	Mitotic Chromosome Condensation Driven by a Volume Phase Transition.		1
54	Polyelectrolyte Gels: A Unique Class of Soft Materials. <i>Gels</i> , 2021 , 7,	4.2	4
53	Gel-induced dew condensation. <i>Journal of Hydrology</i> , 2021 , 599, 126263	6	O
52	Modulation of the volume phase transition temperature for multi-stimuli-responsive copolymer hydrogels. <i>International Journal of Mechanical Sciences</i> , 2021 , 211, 106753	5.5	2
51	Gels.		1
50	Theory of phase transition in polymer gels. Advances in Polymer Science, 1993 , 63-121	1.3	96

49	pH-responsive hydrogels: swelling model. Advances in Experimental Medicine and Biology, 2004 , 553, 29	9-436	16
48	Contraction Behavior of Poly(acrylonitrile) Gel Fibers. 1991 , 257-270		19
47	Hydrophobic Weak Polybasic Gels: Factors Controlling Swelling Equilibria. 1991, 309-317		3
46	Porosity in Biomaterials: A Key Factor in the Development of Applied Materials in Biomedicine. 2019 , 3503-3522		1
45	Multi-Effect-Coupling pH-Stimulus (MECpH) Model for pH-Sensitive Hydrogel. 2009 , 57-114		3
44	Biomaterials in Drug Delivery. 2004 , 1-31		1
43	Structure-Property Relationships in Hydrogels. 2009 , 9-20		12
42	Chemomechanics: Oscillatory Dynamics in Chemoresponsive Gels. <i>NATO Science for Peace and Security Series A: Chemistry and Biology</i> , 2009 , 95-116	0.1	2
41	New Aspects to Physicochemical Properties of Polymer Gels in Particularly the Coordination Biopolymeric Metal Alginate Ionotropic Hydrogels. <i>Gels Horizons: From Science To Smart Materials</i> , 2018 , 275-354		2
40	Preparation and Characterization of Crosslinked Hydrophilic Networks. <i>Studies in Polymer Science</i> , 1990 , 45-66		45
39	Molecular Thermodynamics of Aqueous Polymers and Gels. <i>Studies in Polymer Science</i> , 1990 , 203-221		
	Motecular Thermodynamics of Aqueous Potymers and dets. Scudies in Potymer Science, 1990, 203-221		2
38	Semi-Interpenetrating Polymer Networks Based on N-isopropylacrylamide and 2-acrylamido-2-methylpropane Sulfonic Acid for Intramolecular Force-Compensated Sensors. Journal of the Electrochemical Society, 2020, 167, 167521	3.9	3
	Semi-Interpenetrating Polymer Networks Based on N-isopropylacrylamide and 2-acrylamido-2-methylpropane Sulfonic Acid for Intramolecular Force-Compensated Sensors.	3.9	
38	Semi-Interpenetrating Polymer Networks Based on N-isopropylacrylamide and 2-acrylamido-2-methylpropane Sulfonic Acid for Intramolecular Force-Compensated Sensors. Journal of the Electrochemical Society, 2020, 167, 167521	3.9	3
38	Semi-Interpenetrating Polymer Networks Based on N-isopropylacrylamide and 2-acrylamido-2-methylpropane Sulfonic Acid for Intramolecular Force-Compensated Sensors. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 167521 Kinetics of Smart Hydrogels. 2004 , Drug Delivery Using Smart Polymers. 2007 , 331-358 Hydrogel based Fabry-Pflot cavity for a pH sensor. <i>Optics Express</i> , 2020 , 28, 39640-39648	3.9	2
38 37 36	Semi-Interpenetrating Polymer Networks Based on N-isopropylacrylamide and 2-acrylamido-2-methylpropane Sulfonic Acid for Intramolecular Force-Compensated Sensors. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 167521 Kinetics of Smart Hydrogels. 2004 , Drug Delivery Using Smart Polymers. 2007 , 331-358		3 2 4
38 37 36 35	Semi-Interpenetrating Polymer Networks Based on N-isopropylacrylamide and 2-acrylamido-2-methylpropane Sulfonic Acid for Intramolecular Force-Compensated Sensors. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 167521 Kinetics of Smart Hydrogels. 2004 , Drug Delivery Using Smart Polymers. 2007 , 331-358 Hydrogel based Fabry-Pflot cavity for a pH sensor. <i>Optics Express</i> , 2020 , 28, 39640-39648 A Novel Design Strategy for Temperature-Responsive IPN Hydrogels Based on a Copolymer of Acrylamide and N-(1,1-Dimethyl-3-Oxobutyl)-Acrylamide. <i>Advances in Chemical Engineering and</i>	3.3	3 2 4 9

31	Dissociation Equilibrium in Chelating Sepharose Fast Flow Gel. <i>Journal of Chemical Engineering of Japan</i> , 2007 , 40, 693-697	0.8	1
30	Internal Stress as a Link Between Macroscale and Mesoscale Mechanics. <i>NATO Science for Peace and Security Series A: Chemistry and Biology</i> , 2009 , 241-250	0.1	
29	Thermo-/pH-Dual-Responsive Hydrogels with Rapid Response Properties. 2013 , 193-232		
28	Practical and Theoretical Hints on Production and Application of Nanofibers, Nanotubes, Nanofillers and Nanocomposites. 2013 , 1-82		
27	Radiation Synthesis and Anti-inflammatory Evaluation of Polysaccharide Hydrogels from Ulmus Davidiana Var. Japonica. <i>Porrime</i> , 2014 , 38, 69-73	1	
26	Measuring Contact Stress with 19F-NMR Spectroscopy. 1991 , 271-285		
25	Responsive Microgel Dispersions. 6436-6450		
24	Preparation of Thermo-Responsive Separation Membrane and Evaluation of Its Separation Properties. <i>Kagaku Kogaku Ronbunshu</i> , 2016 , 42, 107-112	0.4	1
23	Cationic Polymers: Stimuli-Responsive. 1334-1343		
22	All-Polymer Fiber Bragg Grating based pH Sensor. 2018,		
21	Advanced biomedical hydrogels: molecular architecture and its impact on medical applications <i>International Journal of Energy Production and Management</i> , 2021 , 8, rbab060	5.3	5
20	Fundamentals and mechanics of polyelectrolyte gels: Thermodynamics, swelling, scattering, and elasticity. <i>Chemical Physics Reviews</i> , 2021 , 2, 041309	4.4	1
19	Hydrogels. 2022 , 221-242		
18	Increased Donnan exclusion in charged polymer networks at high salt concentrations <i>Soft Matter</i> , 2021 ,	3.6	3
17	Evidence of Many-Body Interactions in the Virial Coefficients of Polyelectrolyte Gels Gels, 2022, 8,	4.2	
16	The pH-Dependent Swelling of Weak Polyelectrolyte Hydrogels Modeled at Different Levels of Resolution. <i>Macromolecules</i> ,	5.5	O
15	Distance-based detection in analytical flow devices: From gas detection tubes to microfluidic chips and microfluidic paper-based analytical devices. <i>TrAC - Trends in Analytical Chemistry</i> , 2022 , 150, 116581	14.6	O
14	Hyaluronic acid/lactose-modified chitosan electrospun wound dressings - Crosslinking and stability criticalities <i>Carbohydrate Polymers</i> , 2022 , 288, 119375	10.3	1

CITATION REPORT

13	Non-swellability of polyelectrolyte gel in divalent salt solution due to aggregation formation. <i>Polymer</i> , 2022 , 250, 124894	3.9	
12	Preparation of poly(acrylamide-co-Acrylonitrile) thermosensitivity microgel and control release of aspirin. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 1-9	3	
11	Synthesis and characterisation of high resilience collagen- polyacrylamide semi-interpenetrating network hydrogel. <i>Materials Today Communications</i> , 2022 , 103955	2.5	1
10	Superabsorbent graphene oxide/carbon nanotube hybrid Poly(acrylic acid-co-acrylamide) hydrogels for efficient salinity gradient energy harvest. <i>Energy</i> , 2022 , 124843	7.9	O
9	Multiphysics-informed deep learning for swelling of pH/temperature sensitive cationic hydrogels and its inverse problem. 2022 , 175, 104498		O
8	Formulation and Characterization of Poly (Acrylic Acid)- Co-Chitosan Nanoparticles as pH-Thermo-Responsive System to Control Delivery. 18, 72-86		O
7	Simulations Explain the Swelling Behavior of Hydrogels with Alternating Neutral and Weakly Acidic Blocks.		О
6	Advances in hydrogel-based controlled drug-delivery systems. 2023 , 329-350		O
5	A Novel Approach for the Manufacturing of Gelatin-Methacryloyl. 2022, 14, 5424		О
4	Revealing the complexity of ultra-soft hydrogel re-swelling inside the brain. 2023 , 294, 122024		O
3	Periodic band formation of Fe(OH)3 precipitate through reaction diffusion reaction processes. 11,		О
2	Gels: Energetics, Singularities, and Cavitation.		0
1	Ion-mediated condensation controls the mechanics of mitotic chromosomes.		О