Distribution of birch (Betula SPP.), willow (Salix SPP.), a secondary metabolites and their potential role as chemi

Journal of Chemical Ecology 10, 499-520 DOI: 10.1007/bf00988096

Citation Report

#	ARTICLE	IF	CITATIONS
1	Defense of winter-dormant Alaska paper birch against snowshoe hares. Oecologia, 1984, 65, 58-69.	0.9	181
2	Estimation of Dry Matter Intake of Free-Ranging Moose. Journal of Wildlife Management, 1985, 49, 785.	0.7	75
3	Antibiosis/antixenosis in tulip tree and quaking aspen leaves against the polyphagous southern armyworm, Spodoptera eridania. Oecologia, 1985, 67, 1-7.	0.9	35
4	Phenolic glycosides govern the food selection pattern of willow feeding leaf beetles. Oecologia, 1985, 67, 52-56.	0.9	161
5	Seasonal variation of phenols, crude protein and cell wall content of birch (Betula pendula Roth.) in relation to ruminant in vitro digestibility. Oecologia, 1985, 65, 314-318.	0.9	72
6	Phenolic compounds of willow bark as deterrents against feeding by mountain hare. Oecologia, 1985, 65, 319-323.	0.9	177
7	Chemical defense in birch: Inhibition of digestibility in ruminants by phenolic extracts. Oecologia, 1985, 68, 10-14.	0.9	56
8	Adaptation to Resource Availability as a Determinant of Chemical Defense Strategies in Woody Plants. , 1985, , 219-237.		30
9	Effects of Secondary Metabolites from Balsam Poplar and Paper Birch on Cellulose Digestion. Journal of Range Management, 1985, 38, 370.	0.3	18
10	Effects of Light and Nutrient Stress on Leaf Phenolic Chemistry in Salix dasyclados and Susceptibility to Galerucella lineola (Coleoptera). Oikos, 1986, 47, 205.	1.2	223
11	Differential responses of tiger swallowtail subspecies to secondary metabolites from tulip tree and quaking aspen. Oecologia, 1986, 70, 13-19.	0.9	52
12	Effects of hydrolyzable and condensed tannin on growth and development of two species of polyphagous lepidoptera: Spodoptera eridania and Callosamia promethea. Oecologia, 1986, 69, 225-230.	0.9	40
13	Similar Winter Energy Strategies of Grouse, Hares and Rabbits in Northern Biomes. Oikos, 1987, 50, 206.	1.2	26
14	Phenolics/Nitrogen Ratios in the Blueberry Vaccinium myrtillus in Relation to Temperature and Microtine Density in Finnish Lapland. Oikos, 1987, 50, 389.	1.2	81
15	Diet learning by domestic ruminants: Theory, evidence and practical implications. Applied Animal Behaviour Science, 1987, 18, 211-232.	0.8	208
16	Relationships between leaf age and the food quality of cottonwood foliage for the gypsy moth, Lymantria dispar. Oecologia, 1987, 72, 527-532.	0.9	91
17	Volatile constituents of balsam poplar: The phenol glycoside connection. Phytochemistry, 1987, 26, 1361-1366.	1.4	43
18	Characterization of phenolic glycosides from quaking aspen. Biochemical Systematics and Ecology, 1987, 15, 677-680.	0.6	66

ATION REDO

#	Article	IF	CITATIONS
19	Seasonal patterns in the phytochemistry of three Populus species. Biochemical Systematics and Ecology, 1987, 15, 681-686.	0.6	100
20	Nutritional, morphological, and behavioural considerations for rearing birds for release. Journal Fur Ornithologie, 1987, 128, 423-430.	1.2	13
21	Consequences of host plant chemical and physical variability to an associated herbivore. Ecological Research, 1988, 3, 205-216.	0.7	53
22	Camphor from juvenile white spruce as an antifeedant for snowshoe hares. Journal of Chemical Ecology, 1988, 14, 1505-1514.	0.9	62
23	Chemical defense in birch. Platyphylloside: A phenol fromBetula pendula inhibiting digestibility. Journal of Chemical Ecology, 1988, 14, 549-560.	0.9	58
24	Isoprenoids of various species of the genus Betula. Chemistry of Natural Compounds, 1988, 24, 273-285.	0.2	12
25	Effects of plant phenols of performance of southern armyworm larvae. Oecologia, 1988, 75, 185-189.	0.9	127
26	Hydrolysis of phenolic glycosides by midgut β-glucosidases in Papilio glaucus subspecies. Insect Biochemistry, 1988, 18, 789-792.	1.8	50
27	Optimal central-place foraging by beavers: Tree-size selection in relation to defensive chemicals of quaking aspen. Oecologia, 1988, 76, 278-282.	0.9	89
28	Effects of the Quaking Aspen Compounds Catechol, Salicin and Isoniazid on Two Subspecies of Tiger Swallowtails. American Midland Naturalist, 1988, 119, 1.	0.2	12
29	Chemical Ecology of the Tiger Swallowtail: Mediation of Host Use by Phenolic Glycosides. Ecology, 1988, 69, 814-822.	1.5	150
30	Seasonal quality of forages used by moose in the aspen-dominated boreal forest, central Alberta. Ecography, 1988, 11, 111-118.	2.1	10
31	Analysis of the Functional Response in Foraging in the Sitka Black-Tailed Deer. Ecology, 1988, 69, 1166-1175.	1.5	111
32	PERFORMANCE OF A WILLOW-FEEDING BEETLE, CHRYSOMELA KNABI BROWN, AS AFFECTED BY HOST SPECIES AND DIETARY MOISTURE. Canadian Entomologist, 1989, 121, 777-780.	0.4	10
33	Host plant alteration of detoxication activity in <i>Papilio glaucus glaucus</i> . Entomologia Experimentalis Et Applicata, 1989, 50, 29-35.	0.7	44
34	Carbon-nutrient balance hypothesis in within-species phytochemical variation ofSalix lasiolepis. Journal of Chemical Ecology, 1989, 15, 1117-1131.	0.9	97
35	Phenolic constituents of Salix: A chemotaxonomic survey of further finnish species. Phytochemistry, 1989, 28, 2115-2125.	1.4	107
36	Differential toxicity of a phenolic glycoside from quaking aspen to Papilio glaucus butterfly subspecies, hybrids and backcrosses. Oecologia, 1989, 81, 186-191.	0.9	56

#	ARTICLE Host Selection and Larval Performance of Two Willow-Feeding Sawflies, Ecology, 1989, 70, 129-136	IF	CITATIONS
57	Those Selection and Earvan enformance of two wintow rectang Sawnes. Leology, 1909, 70, 129 190.	1.0	90
38	Size and Shape of Sawfly Assemblages on Arroyo Willow. Ecology, 1989, 70, 1463-1471.	1.5	19
39	Sex and Drugs and Herbivores: Sex-Biased Herbivory in Arroyo Willow (Salix Lasiolepis). Ecology, 1990, 71, 581-588.	1.5	111
40	Food Selection by Beavers in Relation to Inducible Defenses of Populus tremuloides. Oikos, 1990, 59, 57.	1.2	51
41	Dioecy and Herbivory: The Effect of Growth Rate on Plant Defense in Acer Negundo. Oikos, 1990, 58, 369.	1.2	130
42	Branch-cutting behavior by the vole (Microtus pennsylvanicus). Journal of Chemical Ecology, 1990, 16, 735-741.	0.9	33
43	Role of phenolics of coniferous trees as deterrents against debarking behavior of meadow voles (Microtus pennsylvanicus). Journal of Chemical Ecology, 1990, 16, 801-808.	0.9	28
44	Role of Enemy-Free Space and Plant Quality in Host-Plant Selection by Willow Beetles. Ecology, 1990, 71, 124-137.	1.5	243
45	Synchronisation of preâ€imaginal development and reproductive success in the winter moth, <i>Operophtera brumata</i> L. Journal of Applied Entomology, 1991, 111, 137-146.	0.8	20
46	Acceptance of willowâ€species for the development of the winter moth, <i>Operophtera hrumata</i> (Lep., Geometridae). Journal of Applied Entomology, 1991, 111, 457-468.	0.8	13
47	Influence of phenolglucosides and trichome density on the distribution of insects herbivores on willows. Entomologia Experimentalis Et Applicata, 1991, 59, 175-187.	0.7	39
48	The influence of phenolic compounds on the suitability of three <i>Salix</i> species as hosts for the willow beetle <i>Phratora vulgatissima</i> . Entomologia Experimentalis Et Applicata, 1991, 61, 25-32.	0.7	51
49	Chemical determinants of resistance in winter-dormant seedlings of European white birch (Betula) Tj ETQq0 0 0	rgBT /Ove 0.6	rlock 10 Tf 50
50	Effects of birch phenolics on a grazing and a browsing mammal: A comparison of hares. Journal of Chemical Ecology, 1991, 17, 1733-1743.	0.9	52
51	Lack of physiological improvement in performance of Callosamia promethea larvae on local host plant favorites. Oecologia, 1991, 86, 232-235.	0.9	8
52	Spatial variability in the nutrient composition of Populus tremuloides: clone-to-clone differences and implications for cervids. Oecologia, 1991, 88, 116-124.	0.9	13
53	Life History of Disonycha pluriligata (Coleoptera: Chrysomelidae) and Host Plant Relationships with Salix exigua (Salicaceae). Annals of the Entomological Society of America, 1991, 84, 248-254.	1.3	20
54	Flowering in Males and Females of a Utah Willow, Salix rigida and Effects on Growth, Tannins, Phenolic Glycosides and Sugars. Oikos, 1991, 61, 65.	1.2	54

D

#	Article	IF	CITATIONS
55	Digestibility, Distribution of Phenols, and Fiber at Different Twig Diameters of Birch in Winter. Implication for Browsers. Oikos, 1992, 65, 450.	1.2	61
56	A Review of Damage by Mammals in North Temperate Forests: 3. Impact on Trees and Forests. Forestry, 1992, 65, 363-388.	1.2	362
57	The Dilemma of Plants: To Grow or Defend. Quarterly Review of Biology, 1992, 67, 283-335.	0.0	3,371
58	The chemical ecology of herbivory on willows. Proceedings of the Royal Society of Edinburgh Section B Biological Sciences, 1992, 98, 63-73.	0.2	10
59	Selection of Deciduous Trees by Free Ranging Voles and Hares in Relation to Plant Chemistry. Oikos, 1992, 63, 477.	1.2	54
60	Oviposition Deterrents for the Limabean Pod Borer, Etiella zinckenella(TREITSCHKE)(Lepidoptera:Pyralidae)from Populus nigra L.c.v.Italica Leaves. Applied Entomology and Zoology, 1992, 27, 195-204.	0.6	9
61	Guns and butter: a no cost defense against predation for Chrysomela confluens. Oecologia, 1992, 92, 556-562.	0.9	59
62	(1S,2R,4S,5S)-angelicoidenol-2-o-?-d-glucopyranoside?A moose deterrent compound in Scots pine (Pinus) Tj ETQ	110.78	4314 rgBT /O
63	Multivariate study of moose browsing in relation to phenol pattern in pine needles. Journal of Chemical Ecology, 1992, 18, 659-672.	0.9	23
64	Insect fungal symbionts: A promising source of detoxifying enzymes. Journal of Industrial Microbiology, 1992, 9, 149-161.	0.9	82
65	Sex-biased herbivory in Ephedra trifurca: the importance of sex-by-environment interactions. Oecologia, 1993, 96, 49-55.	0.9	56
66	Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh, and hybrid Populus L New Phytologist, 1993, 124, 647-651.	3.5	32
67	Poplar clones effect on development, mortality, and fecundity of <i>Chrysomela (= Melasoma) populi</i> L. and <i>Chrysomela tremulae</i> F. (Col., Chrysomelidae). Journal of Applied Entomology, 1993, 116, 39-49.	0.8	8
68	The genetic basis for variation in the concentration of phenolic glycosides in Salix sericea: Clonal variation and sex-based differences. Biochemical Systematics and Ecology, 1993, 21, 535-542.	0.6	61
69	Specificity of tannin-binding salivary proteins relative to diet selection by mammals. Canadian Journal of Zoology, 1993, 71, 628-633.	0.4	134
70	Responses of Diciduous Trees to Elevated Atmospheric CO2: Productivity, Phytochemistry, and Insect Performance. Ecology, 1993, 74, 763-777.	1.5	377
71	Biological pest control. Biomass and Bioenergy, 1994, 6, 93-101.	2.9	18
72	Importance of phenolic glucosides in host selection of shoot galling sawfly,Euura amerinae, onSalix pentandra. Journal of Chemical Ecology, 1994, 20, 2455-2466.	0.9	79

#	Article	IF	CITATIONS
73	Composition of larval secretion ofChrysomela lapponica (Coleoptera, Chrysomelidae) and its dependence on host plant. Journal of Chemical Ecology, 1994, 20, 1075-1093.	0.9	67
74	Host-plant effects on larval survival of a salicin-using leaf beetle Chrysomela aeneicollis Schaeffer (Coleoptera: Chrysomelidae). Oecologia, 1994, 97, 342-353.	0.9	40
75	Intraspecific variation in aspen phytochemistry: effects on performance of gypsy moths and forest tent caterpillars. Oecologia, 1995, 103, 79-88.	0.9	174
76	Comparative unpalatability of mimetic viceroy butterflies (Limenitis archippus) from four south-eastern United States populations. Oecologia, 1995, 103, 327-336.	0.9	27
77	The palatability of Arctic willow for greater snow geese: the role of nutrients and deterring factors. Oecologia, 1995, 103, 390-392.	0.9	11
78	Feeding value of tree leaves (hybrid poplar and black locust) evaluated with sheep, goats and rabbits. Animal Feed Science and Technology, 1996, 57, 51-62.	1.1	20
79	Mate Quality Affects Reproductive Effort in a Paternally Investing Species. American Naturalist, 1996, 148, 1075-1088.	1.0	104
80	Food Selection by Two Vole Species in Relation to Plant Growth Strategies and Plant Chemistry. Oikos, 1996, 76, 181.	1.2	31
81	Salivary tannin-binding proteins in root vole (Microtus oeconomus Pallas). Biochemical Systematics and Ecology, 1996, 24, 25-35.	0.6	22
82	Clonal variation in foliar chemistry of quaking aspen (Populus tremuloides Michx.). Biochemical Systematics and Ecology, 1996, 24, 357-364.	0.6	96
83	Preservation of salicaceae leaves for phytochemical analyses: Further assessment. Journal of Chemical Ecology, 1996, 22, 765-771.	0.9	38
84	Susceptibility of willow clones (<i>Salix</i> spp.) to herbivory by <i>Phyllodecta vulgatissima</i> (L.) and <i>Galerucella lineola</i> (Fab.) (Coleoptera, Chrysomelidae). Annals of Applied Biology, 1996, 129, 379-390.	1.3	54
85	Toxicity of aspen wood leachate to aquatic life: Laboratory studies. Environmental Toxicology and Chemistry, 1996, 15, 150-159.	2.2	50
86	Additive effects of genotype, nutrient availability and type of tissue damage on the compensatory response of Salix planifolia ssp. planifolia to simulated herbivory. Oecologia, 1996, 107, 373-378.	0.9	78
87	Structure elucidation of phenylpropanoid wood extractives. Studies in Natural Products Chemistry, 1997, 20, 613-657.	0.8	1
88	Feeding by vertebrate herbivores in a chemically heterogeneous environment. Ecoscience, 1997, 4, 304-310.	0.6	12
89	DIVERSITY OF STRUCTURE AND ANTIHERBIVORE ACTIVITY IN CONDENSED TANNINS. Ecology, 1997, 78, 1696-1712.	1.5	244
90	PAL Activity and Differential Ozone Sensitivity in Tobacco, Bean and Poplar. Journal of Phytopathology, 1997, 145, 533-539.	0.5	16

#	Article	IF	CITATIONS
91	Systemic Application of L-Phenylalanine Increases Plant Resistance to Vertebrate Herbivory. Journal of Chemical Ecology, 1997, 23, 1463-1470.	0.9	11
92	Nutritional investigations and management of captive moose. Zoo Biology, 1997, 16, 479-494.	0.5	16
93	Synthesis of aromatic n-alkyl-glucoside esters in a coupled β-glucosidase and lipase reaction. Biotechnology Letters, 1998, 20, 437-440.	1.1	33
94	Chemical Ecology of Cottonwood Leaf Beetle Adult Feeding Preferences on Populus. Journal of Chemical Ecology, 1998, 24, 1791-1802.	0.9	17
95	Effects of Temperature on the Growth of a Japanese Willow (Salix gilgianaSeemen). Journal of Forest Research, 1998, 3, 55-60.	0.7	4
96	Productivity, drought tolerance and pest status of hybrid Populus: tree improvement and silvicultural implications. Biomass and Bioenergy, 1998, 14, 1-20.	2.9	41
97	Effect of nitrogen availability on the growth and phytochemistry of hybrid poplar and the efficacy of the Bacillus thuringiensis cry1A(a) d-endotoxin on gypsy moth. Canadian Journal of Forest Research, 1998, 28, 1055-1067.	0.8	11
98	INDIRECT INTERACTIONS MEDIATED BY CHANGING PLANT CHEMISTRY: BEAVER BROWSING BENEFITS BEETLES. Ecology, 1998, 79, 192-200.	1.5	144
99	Consequences of clonal variation in aspen phytochemistry for late season folivores. Ecoscience, 1998, 5, 508-516.	0.6	38
100	Salicortin: a repeat-attack new-mechanism-based Agrobacterium faecalis β-glucosidase inhibitor. Biochemical Journal, 1998, 332, 367-371.	1.7	19
101	CO2 and light effects on deciduous trees: growth, foliar chemistry, and insect performance. Oecologia, 1999, 119, 389-399.	0.9	35
102	Within-plant allocation of a chemical defense in Secale cereale. Is concentration the appropriate currency of allocation?. Chemoecology, 1999, 9, 113-117.	0.6	8
103	Effects of CO2 and light on tree phytochemistry and insect performance. Oikos, 2000, 88, 259-272.	1.2	119
104	Title is missing!. Journal of Chemical Ecology, 2000, 26, 293-301.	0.9	18
105	Compound effects of induced plant responses on insect herbivores and parasitoids: implications for tritrophic interactions. Ecological Entomology, 2000, 25, 171-179.	1.1	102
106	Salicylates of Intact Salix myrsinifolia Plantlets Do Not Undergo Rapid Metabolic Turnover. Plant Physiology, 2000, 122, 895-906.	2.3	53
107	Reproductive costs in <i>Salix planifolia</i> ssp. <i>planifolia</i> in subarctic Québec, Canada. Ecoscience, 2001, 8, 506-512.	0.6	11
108	Preference and performance linkage of a leaf-mining moth on different Salicaceae species. Population Ecology, 2001, 43, 141-147.	0.7	18

#	Article	IF	CITATIONS
109	Genotypic variation in response of quaking aspen (Populus tremuloides) to atmospheric CO2 enrichment. Oecologia, 2001, 126, 371-379.	0.9	68
110	Food competition between a large ruminant and a small hindgut fermentor: the case of the roe deer and mountain hare. Oecologia, 2001, 128, 499-508.	0.9	40
111	The impact of the timing of brush management on the nutritional value of woody browse for moose Alces alces. Journal of Applied Ecology, 2001, 38, 710-719.	1.9	15
112	Bark consumption by small rodents in the northern and southern hemispheres. Mammal Review, 2001, 31, 47-59.	2.2	41
113	Polyphenol oxidase and herbivore defense in trembling aspen (Populus tremuloides): cDNA cloning, expression, and potential substrates. Physiologia Plantarum, 2001, 112, 552-558.	2.6	73
114	Secondary Plant Compounds in Seedling and Mature Aspen (Populus tremuloides) in Yellowstone National Park, Wyoming. American Midland Naturalist, 2001, 145, 299-308.	0.2	30
115	Deployment of Tree Resistance to Insects in Short-rotation Populus Plantations. , 2002, , 189-215.		6
117	Effects of Simulated Browsing and Length of Growing Season on Leaf Characteristics and Flowering in a Deciduous Arctic Shrub, <i>Salix polaris</i> . Arctic, Antarctic, and Alpine Research, 2002, 34, 282-286.	0.4	11
118	Flowering, growth and defence in the two sexes: consequences of herbivore exclusion for Salix polaris. Functional Ecology, 2002, 16, 649-656.	1.7	26
119	Title is missing!. Plant Ecology, 2003, 169, 61-69.	0.7	26
119 120	Title is missing!. Plant Ecology, 2003, 169, 61-69. TOXICITY AND CHEMISTRY OF ASPEN WOOD LEACHATE TO AQUATIC LIFE: FIELD STUDY. Environmental Toxicology and Chemistry, 2003, 22, 2048.	0.7	26 28
119 120 121	Title is missing!. Plant Ecology, 2003, 169, 61-69. TOXICITY AND CHEMISTRY OF ASPEN WOOD LEACHATE TO AQUATIC LIFE: FIELD STUDY. Environmental Toxicology and Chemistry, 2003, 22, 2048. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO 2 , O 3 , and plant genotype. Oecologia, 2003, 137, 233-244.	0.7 2.2 0.9	26 28 137
119 120 121 122	Title is missing!. Plant Ecology, 2003, 169, 61-69. TOXICITY AND CHEMISTRY OF ASPEN WOOD LEACHATE TO AQUATIC LIFE: FIELD STUDY. Environmental Toxicology and Chemistry, 2003, 22, 2048. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO 2 , O 3 , and plant genotype. Oecologia, 2003, 137, 233-244. Responses of trembling aspen (Populus tremuloides) phytochemistry and aspen blotch leafminer (Phyllonorycter tremuloidiella) performance to elevated levels of atmospheric CO2 and O3. Agricultural and Forest Entomology, 2003, 5, 17-26.	0.7 2.2 0.9 0.7	26 28 137 52
119 120 121 122 122	Title is missing!. Plant Ecology, 2003, 169, 61-69. TOXICITY AND CHEMISTRY OF ASPEN WOOD LEACHATE TO AQUATIC LIFE: FIELD STUDY. Environmental Toxicology and Chemistry, 2003, 22, 2048. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO 2, O 3, and plant genotype. Oecologia, 2003, 137, 233-244. Responses of trembling aspen (Populus tremuloides) phytochemistry and aspen blotch leafminer (Phyllonorycter tremuloidiella) performance to elevated levels of atmospheric CO2 and O3. Agricultural and Forest Entomology, 2003, 5, 17-26. Feeding intensity of mountain hares (Lepus timidus) during winter in Finland. Mammalian Biology, 2003, 68, 48-52.	0.7 2.2 0.9 0.7 0.8	26 28 137 52 9
 119 120 121 122 123 124 	Title is missing!. Plant Ecology, 2003, 169, 61-69. TOXICITY AND CHEMISTRY OF ASPEN WOOD LEACHATE TO AQUATIC LIFE: FIELD STUDY. Environmental Toxicology and Chemistry, 2003, 22, 2048. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO 2, O 3, and plant genotype. Oecologia, 2003, 137, 233-244. Responses of trembling aspen (Populus tremuloides) phytochemistry and aspen blotch leafminer (Phyllonorycter tremuloidiella) performance to elevated levels of atmospheric CO2 and O3. Agricultural and Forest Entomology, 2003, 5, 17-26. Feeding intensity of mountain hares (Lepus timidus) during winter in Finland. Mammalian Biology, 2003, 68, 48-52. Relationship of Periploca laevigata (Asclepidaceae) tannins to livestock herbivory. Journal of Arid Environments, 2003, 53, 125-135.	0.7 2.2 0.9 0.7 0.8 1.2	26 28 137 52 9 12
 119 120 121 122 123 124 125 	Title is missing!. Plant Ecology, 2003, 169, 61-69. TOXICITY AND CHEMISTRY OF ASPEN WOOD LEACHATE TO AQUATIC LIFE: FIELD STUDY. Environmental Toxicology and Chemistry, 2003, 22, 2048. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO 2, O 3, and plant genotype. Oecologia, 2003, 137, 233-244. Responses of trembling aspen (Populus tremuloides) phytochemistry and aspen blotch leafminer (Phyllonorycter tremuloidiella) performance to elevated levels of atmospheric CO2 and O3. Agricultural and Forest Entomology, 2003, 5, 17-26. Feeding intensity of mountain hares (Lepus timidus) during winter in Finland. Mammalian Biology, 2003, 68, 48-52. Relationship of Periploca laevigata (Asclepidaceae) tannins to livestock herbivory. Journal of Arid Environments, 2003, 53, 125-135. Ultraviolet-B radiation alters phenolic salicylate and flavonoid composition of Populus trichocarpa leaves. Tree Physiology, 2003, 23, 527-535.	0.7 2.2 0.9 0.7 0.8 1.2 1.4	26 28 137 52 9 12 88
 119 120 121 122 123 124 125 126 	Title is missing!. Plant Ecology, 2003, 169, 61-69. TOXICITY AND CHEMISTRY OF ASPEN WOOD LEACHATE TO AQUATIC LIFE: FIELD STUDY. Environmental Toxicology and Chemistry, 2003, 22, 2048. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO 2 , O 3 , and plant genotype. Oecologia, 2003, 137, 233-244. Responses of trembling aspen (Populus tremuloides) phytochemistry and aspen blotch leafminer (Phyllonorycter tremuloidiella) performance to elevated levels of atmospheric CO2 and O3. Agricultural and Forest Entomology, 2003, 5, 17-26. Feeding intensity of mountain hares (Lepus timidus) during winter in Finland. Mammalian Biology, 2003, 68, 48-52. Relationship of Periploca laevigata (Asclepidaceae) tannins to livestock herbivory. Journal of Arid Environments, 2003, 53, 125-135. Ultraviolet-B radiation alters phenolic salicylate and flavonoid composition of Populus trichocarpa leaves. Tree Physiology, 2003, 23, 527-535. Increased Mortality of Gypsy Moth & kt;l>Lymantria dispar (L) (Lepidoptera: Lymantriidae) Exposed to Cypsy Moth Nuclear Polyhedrosis Virus in Combination with the Phenolic Gycoside Salicin. Journal of Economic Entomology, 2003, 96, 1662-1667.	0.7 2.2 0.9 0.7 0.8 1.2 1.4 0.8	26 28 137 52 9 12 88

#	Article	IF	Citations
128	Cottonwood growth rate and fine root condensed tannin concentration. Tree Physiology, 2004, 24, 1063-1068.	1.4	11
129	Genetically based trait in a dominant tree affects ecosystem processes. Ecology Letters, 2004, 7, 127-134.	3.0	327
130	Gene expression profiling of systemically wound-induced defenses in hybrid poplar. Planta, 2004, 219, 936-947.	1.6	83
131	BEAVERS AS MOLECULAR GENETICISTS: A GENETIC BASIS TO THE FORAGING OF AN ECOSYSTEM ENGINEER. Ecology, 2004, 85, 603-608.	1.5	113
132	Resource partitioning within a browsing guild in a key habitat, the Chobe Riverfront, Botswana. Journal of Tropical Ecology, 2005, 21, 641-649.	0.5	44
133	Importance of species interactions to community heritability: a genetic basis to trophic-level interactions. Ecology Letters, 2005, 9, 051122062725008.	3.0	132
134	A genetic similarity rule determines arthropod community structure. Molecular Ecology, 2005, 15, 1379-1391.	2.0	112
135	CO2 and O3 effects on host plant preferences of the forest tent caterpillar (Malacosoma disstria). Global Change Biology, 2005, 11, 588-599.	4.2	62
136	Sex-biased herbivory: a meta-analysis of the effects of gender on plant-herbivore interactions. Oikos, 2005, 111, 488-500.	1.2	191
137	Foliar phenolic glycosides from Populus fremontii, Populus angustifolia, and their hybrids. Biochemical Systematics and Ecology, 2005, 33, 125-131.	0.6	41
138	Genetically-controlled leaf traits in two chemotypes of Salix sachalinensis Fr. Schm (Salicaceae). Biochemical Systematics and Ecology, 2005, 33, 27-38.	0.6	20
139	Host plant genetics affect hidden ecological players: links among Populus, condensed tannins, and fungal endophyte infection. Canadian Journal of Botany, 2005, 83, 356-361.	1.2	119
140	Molecular Biology and Biochemistry of Induced Insect Defense in Populus. Recent Advances in Phytochemistry, 2005, 39, 119-143.	0.5	9
141	Analytical approaches to the determination of simple biophenols in forest trees such as Acer(maple), Betula(birch), Coniferus, Eucalyptus, Juniperus(cedar), Picea(spruce) and Quercus(oak). Analyst, The, 2005, 130, 809.	1.7	22
142	Simulated winter browsing may lead to induced susceptibility of willows to beavers in spring. Canadian Journal of Zoology, 2006, 84, 1733-1742.	0.4	12
143	Sex-related growth andÂsecondary compounds inÂJuniperus oxycedrus macrocarpa. Acta Oecologica, 2006, 29, 135-140.	0.5	36
145	Quantitative trait loci for resistance to herbivores in willow: field experiments with varying soils and climates. Entomologia Experimentalis Et Applicata, 2006, 118, 163-174.	0.7	22
146	The plant vigour hypothesis revisited – how is browsing by ungulates and elephant related to woody species growth rate?. Plant Ecology, 2006, 184, 163-172.	0.7	15

#	Article	IF	CITATIONS
147	Developmental Trajectories in Cottonwood Phytochemistry. Journal of Chemical Ecology, 2006, 32, 2269-2285.	0.9	69
148	Variation in Eastern Cottonwood (<i>Populus deltoides</i> Bartr.) Phloem Sap Content Caused by Leaf Development May Affect Feeding Site Selection Behavior of the Aphid, <i>Chaitophorous populicola</i> Thomas (Homoptera: Aphididae). Environmental Entomology, 2007, 36, 1212-1225.	0.7	36
149	Why does longleaf pine have low susceptibility to southern pine beetle?. Canadian Journal of Forest Research, 2007, 37, 1966-1977.	0.8	15
150	Poplar defense against insect herbivoresThis review is one of a selection of papers published in the Special Issue on Poplar Research in Canada Canadian Journal of Botany, 2007, 85, 1111-1126.	1.2	65
151	Initial Effects of Brush Cutting and Shoot Removal on Willow Browse Quality. Rangeland Ecology and Management, 2007, 60, 566-573.	1.1	2
152	Ecosystem Consequences of Enhanced Solar Ultraviolet Radiation: Secondary Plant Metabolites as Mediators of Multiple Trophic Interactions in Terrestrial Plant Communities [¶] . Photochemistry and Photobiology, 2004, 79, 382-398.	1.3	15
153	Plant genetics predicts intraâ€annual variation in phytochemistry and arthropod community structure. Molecular Ecology, 2007, 16, 5057-5069.	2.0	77
154	Isolation, Identification, and Quantification of Potential Defensive Compounds in the Viceroy Butterfly and its Larval Host–Plant, Carolina Willow. Journal of Chemical Ecology, 2007, 33, 1149-1159.	0.9	21
155	Rapid shifts in the chemical composition of aspen forests: an introduced herbivore as an agent of natural selection. Biological Invasions, 2007, 9, 715-722.	1.2	56
156	Photosynthetic gene expression in black willow under various soil moisture regimes. Biologia Plantarum, 2007, 51, 593-596.	1.9	4
157	Invasive riparian plant litter alters aquatic insect growth. Biological Invasions, 2008, 10, 1041-1051.	1.2	47
158	Genotypical and multiple phenotypical traits discriminate SalixÂ×Ârubens Schrank clearly from its parent species. Plant Systematics and Evolution, 2008, 275, 169-179.	0.3	14
159	Cold-Adapted Fungi as a Source for Valuable Metabolites. , 2008, , 381-387.		8
160	In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants. Animal Feed Science and Technology, 2008, 145, 245-258.	1.1	129
161	The Wound-, Pathogen-, and Ultraviolet B-Responsive <i>MYB134</i> Gene Encodes an R2R3 MYB Transcription Factor That Regulates Proanthocyanidin Synthesis in Poplar Â. Plant Physiology, 2009, 150, 924-941.	2.3	249
162	Does climate change influence the availability and quality of reindeer forage plants?. Polar Biology, 2009, 32, 813-832.	0.5	56
163	Large scale geographic clines of parasite damage to <i>Populus tremula</i> L. Ecography, 2010, 33, 483-493.	2.1	8
164	Spatio-temporal variations of functional groups in a Populus nigra L. entomocenosis in the Mitidja plain (Algeria). Comptes Rendus - Biologies, 2009, 332, 848-860.	0.1	5

	CITATION R	EPORT	
#	Article	IF	CITATIONS
165	Genomics of Secondary Metabolism in <i>Populus</i> : Interactions with Biotic and Abiotic Environments. Critical Reviews in Plant Sciences, 2009, 28, 375-392.	2.7	98
166	Biosynthesis of Phenolic Glycosides from Phenylpropanoid and Benzenoid Precursors in Populus. Journal of Chemical Ecology, 2010, 36, 286-297.	0.9	61
167	The role of plant resistance and tolerance to herbivory in mediating the effects of introduced herbivores. Biological Invasions, 2010, 12, 337-351.	1.2	9
168	Phenological and chemical differences among hybrid poplar clones (Salicaceae) varying in resistance to Cryptorhynchus lapathi (L.) (Coleoptera: Curculionidae). Biochemical Systematics and Ecology, 2010, 38, 29-48.	0.6	5
169	Genetics and Genomics of Populus. , 2010, , .		28
170	Sex-Differential Herbivory in Androdioecious Mercurialis annua. PLoS ONE, 2011, 6, e22083.	1.1	11
171	Pesticidal Plants Used in Masaka District of Uganda. Journal of Science and Sustainable Development, 2011, 2, .	0.5	1
172	An accidental biological control agent? Host specificity of the willow sawfly Nematus oligospilus (Hymenoptera: Tenthredinidae) in Australia. Australian Journal of Entomology, 2011, 50, no-no.	1.1	1
173	Genetic variation and community change – selection, evolution, and feedbacks. Functional Ecology, 2011, 25, 408-419.	1.7	47
174	Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry, 2011, 72, 1497-1509.	1.4	250
175	UHPLC-ESI/TOFMS Determination of Salicylate-like Phenolic Gycosides in Populus tremula Leaves. Journal of Chemical Ecology, 2011, 37, 857-870.	0.9	66
176	Development and validation of HPLC method for determination of salicin in poplar buds: Application for screening of counterfeit propolis. Food Chemistry, 2011, 127, 345-350.	4.2	27
177	Arthropod community similarity in clonal stands of aspen: A test of the genetic similarity rule. Ecoscience, 2012, 19, 48-58.	0.6	4
178	Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species. Oecologia, 2012, 170, 695-707.	0.9	77
179	Atmospheric change alters performance of an invasive forest insect. Global Change Biology, 2012, 18, 3543-3557.	4.2	35
180	From genes to ecosystems. , 2012, , 269-286.		10
181	Salicaceae detoxification abilities in Florida tiger swallowtail butterflies (<i>Papilio glaucus) Tj ETQq0 0 0 rgBT /O</i>	verlock 10) Tf 50 102 T

182Anti-browsing effects of birch bark extract on fallow deer. European Journal of Forest Research, 2013, 132, 717-725.1.1	12
---	----

c

ARTICLE IF CITATIONS Biobutanol production from 2-year-old willow biomass by acid hydrolysis and 183 4.5 49 acetone–butanol–ethanol fermentation. Energy, 2013, 61, 13-17. Gypsy Moth Caterpillar Feeding has Only a Marginal Impact on Phenolic Compounds in Old-Growth Black Poplar. Journal of Chemical Ecology, 2013, 39, 1301-1312. 184 Transgenerational effects of herbivory in a group of longâ€lived tree species: maternal damage reduces 185 1.9 24 offspring allocation to resistance traits, but not growth. Journal of Ecology, 2013, 101, 1062-1073. Adaptations of quaking aspen (Populus tremuloides Michx.) for defense against herbivores. Forest 186 1.4 131 Ecology and Management, 2013, 299, 14-21. Characterization of Antibiosis and Antixenosis to the Woolly Poplar Aphid (Hemiptera: Aphididae) in 187 0.8 16 the Bark of Different Poplar Genotypes. Journal of Economic Entomology, 2013, 106, 473-481. 188 Arctic Small Rodents Have Diverse Diets and Flexible Food Selection. PLoS ONE, 2013, 8, e68128. 1.1 Allocation of Secondary Metabolites, Photosynthetic Capacity, and Antioxidant Activity of Kacip Fatimah (<i>Labisia pumila</i>Benth) in Response to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" 189 0.8 20 id="M1"><mml:mtext>C</mml:mtext><mml:msub><mml:mrow><mml:mtext>O</mml:mtext></mml:mrow><mml:mtext> Light Intensity. Scientific World Journal, The, 2014, 2014, 1-13. ECOLOGICAL RESTORATION UNDER PRESSURE FROM INVASIVE ANIMAL SPECIES: USE OF SALICACEAE CUTTINGS IN A RIVER BANK OVERRUN BY COYPU. River Research and Applications, 2014, 30, 1002-1012. Biosynthesis and metabolism of Î²-d-salicin: A novel molecule that exerts biological function in humans 191 2.1 16 and plants. Biotechnology Reports (Amsterdam, Netherlands), 2014, 4, 73-79. Determination of Salicinoids by Micro-high-performance Liquid Chromatography and Photodiode 1.2 Array Detection. Phytochemical Analysis, 2014, 25, 185-191. Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and 193 0.9 92 host trees. Oecologia, 2014, 175, 1041-1049. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. 194 1.5 Ecology, 2014, 95, 1861-1875. Nutrient and plant secondary compound composition and ironâ€binding capacity in leaves and green stems of commonly used plant browse (Carolina willow; <i>Salix caroliniana </i>) fed to zooâ€managed 195 0.5 5 browsing herbivorés. Zoo Biology, 2015, 34, 565-575. Insect herbivores drive the loss of unique chemical defense in willows. Entomologia Experimentalis Et Applicata, 2015, 156, 88-98. Multiple plant traits shape the genetic basis of herbivore community assembly. Functional Ecology, 197 1.7 74 2015, 29, 995-1006. Forest biorefinery: Potential of poplar phytochemicals as value-added co-products. Biotechnology Advances, 2015, 33, 681-716. The vegetative buds of Salix myrsinifolia are responsive to elevated UV-B and temperature. Plant 199 2.8 13 Physiology and Biochemistry, 2015, 93, 66-73. Factors influencing the use of willow and birch by moose in winter. European Journal of Wildlife Research, 2015, 61, 231-239.

#	Article	IF	CITATIONS
201	Lichen physiological traits and growth forms affect communities of associated invertebrates. Ecology, 2015, 96, 2394-2407.	1.5	25
202	Domain analysis of 3 Keto Acyl-CoA synthase for structural variations in Vitis vinifera and Oryza brachyantha using comparative modelling. Interdisciplinary Sciences, Computational Life Sciences, 2015, 7, 7-20.	2.2	16
203	Plant genotype influences aquaticâ€ŧerrestrial ecosystem linkages through timing and composition of insect emergence. Ecosphere, 2016, 7, e01331.	1.0	15
204	Freedom to move: Arctic caterpillar (Lepidoptera) growth rate increases with access to new willows (Salicaceae). Canadian Entomologist, 2016, 148, 673-682.	0.4	5
205	Leaf trichomes and foliar chemistry mediate defence against glasshouse thrips; Heliothrips haemorrhoidalis (Bouché) in Rhododendron simsii. Functional Plant Biology, 2016, 43, 1170.	1.1	16
206	Phytochemical traits underlie genotypic variation in susceptibility of quaking aspen (<i>Populus) Tj ETQq1 1 0.78</i>	4314 rgB⊺ 1.9	$\Gamma/Overlock$
207	Variability in microbial population and fermentation traits at various sites within the forestomach and along the digestive tract as assessed in goats fed either grass or browse. Small Ruminant Research, 2016, 136, 7-17.	0.6	10
208	Selective bark stripping of various tree species by Polish horses in relation to bark detachability. Forest Ecology and Management, 2017, 384, 65-71.	1.4	11
209	Metabolomics reveals constitutive metabolites that contribute resistance to fall webworm () Tj ETQq0 0 0 rgBT /0	Overlock 1 2.0	0 Tf 50 422
210	Borrowed plant defences: Deterring browsers using a forestry by-product. Forest Ecology and Management, 2017, 390, 1-7.	1.4	7
211	Phylogenetic composition of host plant communities drives plantâ€herbivore food web structure. Journal of Animal Ecology, 2017, 86, 556-565.	1.3	33
212	Variations in the chemical composition and content of salicylic glycosides in the bark of Salix purpurea from natural locations and their significance for breeding. Fìtoterapìâ, 2017, 118, 118-125.	1.1	32
213	Flavan-3-ols Are an Effective Chemical Defense against Rust Infection. Plant Physiology, 2017, 175, 1560-1578.	2.3	156
214	The potential of the decay fungus Chondrostereum purpureum in the biocontrol of broadleaved tree species. Fungal Ecology, 2017, 30, 67-75.	0.7	12
215	Effects of thermo-vacuum treatment on secondary metabolite content and antioxidant activity of poplar (Populus nigra L.) wood extracts. Industrial Crops and Products, 2017, 109, 384-390.	2.5	52
216	Exploring genes involved in benzoic acid biosynthesis in the Populus davidiana transcriptome and their transcriptional activity upon methyl jasmonate treatment. Journal of Chemical Ecology, 2017, 43, 1097-1108.	0.9	12
217	Acylated Quinic Acids Are the Main Salicortin Metabolites in the Lepidopteran Specialist Herbivore Cerura vinula. Journal of Chemical Ecology, 2018, 44, 497-509.	0.9	9
218	Defense sequestration associated with narrowing of diet and ontogenetic change to aposematic colours in the spotted lanternfly. Scientific Reports, 2018, 8, 16831.	1.6	45

#	Article	IF	CITATIONS
219	The Involvement of Different Secondary Metabolites in Salinity Tolerance of Crops. , 2018, , 21-48.		33
220	Vegetable Tannins Used in the Manufacture of Historic Leathers. Molecules, 2018, 23, 1081.	1.7	95
221	Variability in the composition of phenolic compounds in winter-dormant Salix pyrolifolia in relation to plant part and age. Phytochemistry, 2018, 153, 102-110.	1.4	20
222	Phytochemicals in bioenergy crops. Phytochemistry Reviews, 2019, 18, 893-927.	3.1	26
223	Purple Willow (Salix purpurea L.) and Its Potential Uses for the Treatment of Arthritis and Rheumatism. , 2019, , 535-551.		2
224	Accumulation of Catechin and Proanthocyanidins in Black Poplar Stems After Infection by Plectosphaerella populi: Hormonal Regulation, Biosynthesis and Antifungal Activity. Frontiers in Plant Science, 2019, 10, 1441.	1.7	32
225	Ecophysiological aspects of in vitro biotechnological studies using somatic embryogenesis of callus tissue toward protecting forest ecosystems. Journal of Forestry Research, 2019, 30, 1159-1166.	1.7	5
226	Critical Phenological Events Affect Chemical Defense of Plant Tissues: Iridoid Glycosides in a Woody Shrub. Journal of Chemical Ecology, 2020, 46, 206-216.	0.9	7
227	Biomass Recalcitrance in Willow Under Two Biological Conversion Paradigms: Enzymatic Hydrolysis and Anaerobic Digestion. Bioenergy Research, 2020, 13, 260-270.	2.2	10
228	The beaver's menu: species and spatial selection of a European beaver population and implications for riverbank bioengineering. Wetlands Ecology and Management, 2020, 28, 901-908.	0.7	5
229	Proanthocyanidin Biosynthesisâ \in "a Matter of Protection. Plant Physiology, 2020, 184, 579-591.	2.3	59
230	Quantity–quality tradeâ€offs revealed using a multiscale test of herbivore resource selection on elemental landscapes. Ecology and Evolution, 2020, 10, 13847-13859.	0.8	9
231	Variability of BVOC Emissions from Commercially Used Willow (Salix spp.) Varieties. Atmosphere, 2020, 11, 356.	1.0	8
232	Genotypic diversity in willow (Salix spp.) is associated with chemical and morphological polymorphism, suggesting human-assisted dissemination in the Eastern Mediterranean. Biochemical Systematics and Ecology, 2020, 91, 104081.	0.6	6
233	Natural browsing repellent to protect Scots pine Pinus sylvestris from European moose Alces alces. Forest Ecology and Management, 2020, 474, 118347.	1.4	2
234	The Occurrence of Sulfated Salicinoids in Poplar and Their Formation by Sulfotransferase1. Plant Physiology, 2020, 183, 137-151.	2.3	12
235	Role and function of Chondrostereum purpureum in biocontrol of trees. Applied Microbiology and Biotechnology, 2021, 105, 431-440.	1.7	9
236	Environmental gradients of selection for an alpine-obligate bird, the white-tailed ptarmigan (Lagopus) Tj ETQq1	1 0.784314 1.2	4 rgBT /Over

#	Article	IF	CITATIONS
238	Impact of the female and hermaphrodite forms of Opuntia robusta on the plant defence hypothesis. Scientific Reports, 2021, 11, 12063.	1.6	3
239	Studies on the Polyphenolic Composition and the Antioxidant Properties of the Leaves of Poplar (<i>Populus</i> spp.) Various Species and Hybrids. Chemistry and Biodiversity, 2021, 18, e2100227.	1.0	4
240	Beavers, Bugs and Chemistry: A Mammalian Herbivore Changes Chemistry Composition and Arthropod Communities in Foundation Tree Species. Forests, 2021, 12, 877.	0.9	6
242	Ensiling willow (Salix acmophylla) fodder modifies the contents of plant specialized metabolites, but not nutritional attributes. Animal Feed Science and Technology, 2021, 278, 115019.	1.1	5
243	Highly Diverse Shrub Willows (Salix L.) Share Highly Similar Plastomes. Frontiers in Plant Science, 2021, 12, 662715.	1.7	12
244	Deploying Pest Resistance in Genetically-limited Forest Plantations: Developing Ecologically-based Strategies for Managing Risk. , 2002, , 169-188.		3
245	The Impact of Genomics on Advances in Herbivore Defense and Secondary Metabolism in Populus. , 2010, , 279-305.		22
246	Allelochemicals and Alimentary Ecology: Heterosis in a Hybrid Zone?. , 1986, , 43-71.		18
247	Condensed Tannins in Plant Defense: A Perspective on Classical Theories. , 1992, , 639-651.		28
248	Diversity, Redundancy, and Multiplicity in Chemical Defense Systems of Aspen. , 1996, , 25-56.		46
249	Salicaceae. , 1990, , 466-484.		2
250	Monoaryl Natural Products. Springer Series in Wood Science, 1989, , 369-399.	0.8	7
251	Effects of ozone on interactions between plants, consumers and decomposers. , 1994, , 339-364.		8
252	10.1007/BF00190125.,2011,,.		4
253	10.1007/BF00351963.,2011,,.		10
254	10.1007/BF00367165.,2011,,.		9
255	To compete or defend: linking functional trait variation with life-history tradeoffs in a foundation tree species. Oecologia, 2020, 192, 893-907.	0.9	10
256	Innate and Introduced Resistance Traits in Genetically Modified Aspen Trees and Their Effect on Leaf Beetle Feeding. PLoS ONE, 2013, 8, e73819.	1.1	8

#	Article	IF	CITATIONS
257	No Evidence of Geographical Structure of Salicinoid Chemotypes within Populus Tremula. PLoS ONE, 2014, 9, e107189.	1.1	39
258	The eye of the parthenogenetic and minute moth Ectoedemia argyropeza (Lepidoptera: Nepticulidae). European Journal of Entomology, 2009, 106, 619-629.	1.2	15
259	INVITED REVIEW - Ecosystem Consequences of Enhanced Solar Ultraviolet Radiation: Secondary Plant Metabolites as Mediators of Multiple Trophic Interactions in Terrestrial Plant Communities¶. Photochemistry and Photobiology, 2004, 79, 382.	1.3	114
260	Examining Safety of Biocolourants from Fungal and Plant Sources-Examples from Cortinarius and Tapinella, Salix and Tanacetum spp. and Dyed Woollen Fabrics. Antibiotics, 2020, 9, 266.	1.5	17
261	Timing Moose Pellet Collections to Increase Genotyping Success of Fecal DNA. Journal of Fish and Wildlife Management, 2016, 7, 461-466.	0.4	7
262	Evaluation of pesticidal properties of Euphorbia tirucalli L. (Euphorbiaceae) against selected pests. Afrika Focus, 2011, 24, 119-121.	0.1	3
263	ALIPHATIC AND TRITERPENOIC PRODUCTS OF ETHER EXTRACTS SAPONIFICATION OF POPULUS NIGRA L Khimiya Rastitel'nogo Syr'ya, 2019, , 109-118.	0.0	1
264	Seasonal Variation in Host Plant Chemistry Drives Sequestration in a Specialist Caterpillar. Journal of Chemical Ecology, 2022, 48, 79-88.	0.9	1
265	Willows: Cost-Effective Tools for Bioremediation of Contaminated Soils. , 2022, , 183-202.		1
266	Polyploidy and growth—defense tradeoffs in natural populations of western quaking Aspen. Journal of Chemical Ecology, 2022, 48, 431-440.	0.9	5
270	Foraging decisions with conservation consequences: Interaction between beavers and invasive tree species. Ecology and Evolution, 2022, 12, .	0.8	5
271	Genetic divergence along a climate gradient shapes chemical plasticity of a foundation tree species to both changing climate and herbivore damage. Global Change Biology, 2022, 28, 4684-4700.	4.2	6
272	Ancient DNA extraction methods for herbarium specimens: When is it worth the effort?. Applications in Plant Sciences, 2022, 10, .	0.8	9
273	Effects of short-interval reburns in the boreal forest on soil bacterial communities compared to long-interval reburns. FEMS Microbiology Ecology, 2022, 98, .	1.3	3
274	Genetic mapping of sexually dimorphic volatile and non-volatile floral secondary chemistry of a dioecious willow. Journal of Experimental Botany, 2022, 73, 6352-6366.	2.4	8
275	Secondary Metabolites Produced by Trees and Fungi: Achievements So Far and Challenges Remaining. Forests, 2022, 13, 1338.	0.9	6
276	White bark in birch species as a warning signal for bark-stripping mammals. Plant Ecology and Diversity, 2022, 15, 93-109.	1.0	3
277	<i>Plagiodera versicolora</i> feeding induces systemic and sexually differential defense responses in poplars. Physiologia Plantarum, 2022, 174, .	2.6	4