Sinterability of Agglomerated Powders

Journal of the American Ceramic Society 67, 83-89 DOI: 10.1111/j.1151-2916.1984.tb09620.x

Citation Report

#	Article	IF	CITATIONS
1	Sintering of CdO Under Low Applied Stress. Journal of the American Ceramic Society, 1984, 67, C-205-C-207.	1.9	45
2	Pore Shrinkage and Sintering Stress. Journal of the American Ceramic Society, 1984, 67, C-214-C-215.	1.9	13
3	Structural ceramics: A question of fabrication reliability. Journal of Materials for Energy Systems, 1984, 6, 107-113.	0.3	23
4	Loading dilatometer. Review of Scientific Instruments, 1984, 55, 2007-2010.	0.6	35
5	Avoiding Ceramic Problems by the Use of Chemical Techniques. Materials Research Society Symposia Proceedings, 1984, 32, 213.	0.1	3
6	Phase distribution studies using energy dispersive X-ray spectral analysis. Journal of Materials Science Letters, 1985, 4, 1437-1441.	0.5	12
7	The Stability of Pore Channels: Experimental Observations. Journal of the American Ceramic Society, 1985, 68, C-14-C-15.	1.9	15
8	Ultramicrotoming of Ceramic Powders for Electron Microscopy. Journal of the American Ceramic Society, 1985, 68, C-222-C-223.	1.9	11
9	Solid solutions and composites in the SiCî—,AlN and SiCî—,BN systems. Materials Science and Engineering, 1985, 71, 159-164.	0.1	36
10	Processing technology for high performance ceramics. Materials Science and Engineering, 1985, 71, 305-312.	0.1	13
11	Compositional Control of Ceramic Microstructures: An Overview. Materials Research Society Symposia Proceedings, 1985, 60, 125.	0.1	5
12	Solid Solution Additives and The Sintering of Ceramics. Powder Metallurgy, 1985, 28, 105-107.	0.9	22
13	Ultrasonic Elasticity Study of Sintered Ceramics and Their Green States. , 1985, , .		0
14	The distribution of partial melt in a granitic system: The application of liquid phase sintering theory. Geochimica Et Cosmochimica Acta, 1985, 49, 1109-1121.	1.6	178
15	Review: Fabrication of engineering ceramics by injection moulding. II. Techniques. International Journal of High Technology Ceramics, 1986, 2, 249-278.	0.2	108
16	Densification of SiO2-xerogels to glass by ostwald ripening. Journal of Non-Crystalline Solids, 1986, 82, 92-96.	1.5	20
17	Particle size distribution effects on sintering rates. Journal of Applied Physics, 1986, 60, 383-391.	1.1	58
18	Colloidal Characterization of Ultrafine Silicon Carbide and Silicon Nitride Powders. Advanced Ceramic Materials. 1986. 1. 366-370.	2.3	32

ATION REDO

#	Article	IF	CITATIONS
19	Some aspects of the mechanical strength of ceramic/metal bonded systems. Acta Metallurgica, 1986, 34, 1643-1655.	2.1	81
20	Effects of attrition milling and post-sintering heat treatment on fabrication, microstructure and properties of transformation toughened ZrO2. Journal of Materials Science, 1986, 21, 768-774.	1.7	27
21	Processing-Related Fracture Origins: IV, Elimination of Voids Produced by Organic Inclusions. Journal of the American Ceramic Society, 1986, 69, 66-69.	1.9	89
22	Effect of MgO Solute on Microstructure Development in Al2O3. Journal of the American Ceramic Society, 1986, 69, 143-149.	1.9	208
23	Modeling Density Contributions in Preceramic Polymer/Ceramic Powder Systems. Journal of the American Ceramic Society, 1986, 69, C-106-C-108.	1.9	20
24	Behavior of Large Pores During Sintering and Hot Isostatic Pressing. Journal of the American Ceramic Society, 1986, 69, 444-448.	1.9	54
25	Shear Deformation and Densification of Powder Compacts. Journal of the American Ceramic Society, 1986, 69, 499-506.	1.9	161
27	Size Control of ZrO ₂ Aggregated Particles by Chloride-Coexisted Hydrolysis and Sintering Them. Journal of the Ceramic Association Japan, 1987, 95, 984-990.	0.2	5
29	Influence of Dewatering of the Yttrium-Zirconium Hydroxide Precipitates on the Sintering Behaviour of their Calcined Products. , 1987, , 281-285.		1
30	Sintered ceria: a new dense and fine grained ceramic material. Journal of the Less Common Metals, 1987, 127, 125-130.	0.9	14
31	Microstructure and thermal shock behaviour of BN composites. Journal of Materials Science Letters, 1987, 6, 627-629.	0.5	59
32	Drying and sintering of Al2O3 compacts made by sol—gel processing. Journal of Materials Science Letters, 1987, 6, 706-708.	0.5	17
33	Preparation of polycrystalline nickel diffusion studies. Journal of Materials Science, 1987, 22, 1993-1998.	1.7	5
34	Effects of agglomerates on the sintering of alpha-Al2O3. Ceramics International, 1987, 13, 27-34.	2.3	25
35	Some Roles of MgO and TiO2 in Densification of a Sinterable Alumina. Journal of the American Ceramic Society, 1987, 70, 885-890.	1.9	45
36	Creep-Sintering and Microstructure Development of Heterogeneous MgO Compacts. Journal of the American Ceramic Society, 1987, 70, 360-366.	1.9	21
37	Savitzky-Golay filtering in particle characterization. Journal of Chemometrics, 1988, 2, 203-209.	0.7	0
38	Dry pressing of surface-modified powders. Journal of Materials Science Letters, 1988, 7, 1130-1132.	0.5	5

#	Article	IF	CITATIONS
39	Reactive sintering of zinc ferrite. Journal of Materials Science, 1988, 23, 856-861.	1.7	19
40	Sintering behaviour of highly agglomerated ultrafine zirconia powders. Journal of Materials Science, 1988, 23, 3290-3299.	1.7	31
41	Agglomeration of magnesium oxide particles formed by the decomposition of magnesium hydroxide. Journal of Materials Science, 1988, 23, 3405-3412.	1.7	31
42	Porosity in Spinel Compacts Using Small-Angle Neutron Scattering. Journal of the American Ceramic Society, 1988, 71, 1-6.	1.9	13
43	Comparison of the Surface Charge Behavior of Commercial Silicon Nitride and Silicon Carbide Powders. Journal of the American Ceramic Society, 1988, 71, 1086-1093.	1.9	54
44	Effect of Particle Size Distribution on the Sintering of Alumina. Journal of the American Ceramic Society, 1988, 71, C-484-C-487.	1.9	69
45	Effect of Pore Distribution on Microstructure Development: I, Matrix Pores. Journal of the American Ceramic Society, 1988, 71, 113-120.	1.9	100
46	Effect of ZrO2 Inclusions on the Sinterability of Al2O3. Journal of the American Ceramic Society, 1988, 71, 446-448.	1.9	48
47	Effect of Pore Distribution on Microstructure Development: II, First- and Second-Generation Pores. Journal of the American Ceramic Society, 1988, 71, 530-539.	1.9	111
48	Compressive Stress for Large-Pore Removal in Sintering. Journal of the American Ceramic Society, 1988, 71, C432-C433.	1.9	15
49	Synthesis, sintering and dielectric properties of a new bismuth-lead-antimony oxide bi3pb4sb5o21. Materials Chemistry and Physics, 1988, 19, 167-178.	2.0	5
50	Correlations between sintering conditions and microstructure in ceramics of composition Li0.80Mg0.20 (Ta0.80Ti0.20)O3. Journal of Materials Research, 1988, 3, 387-391.	1.2	3
51	Ceramic synthesis through tailoring of powder parameters. Materials Chemistry and Physics, 1989, 23, 389-407.	2.0	1
52	Stuijts memorial lecture 1989: The mastery of microstructure. Journal of the European Ceramic Society, 1989, 5, 75-80.	2.8	2
53	Synthesis of ceramic powders using an aqueous organic polymer precursor. Ceramics International, 1989, 15, 131-139.	2.3	18
54	Influence of precursor processing and physical characteristics on the microstructure of sintered α-Fe2O3 ceramics. Ceramics International, 1989, 15, 99-105.	2.3	2
55	Useful Extensions of the statistical theory of sintering. Ceramics International, 1989, 15, 329-335.	2.3	28
56	Reactive sintering of manganese ferrite. Journal of Materials Science, 1989, 24, 402-408.	1.7	12

#	Article	IF	CITATIONS
57	Formation, compressibility and sintering of aggregated MgO powder. Journal of Materials Science, 1989, 24, 485-492.	1.7	18
58	Dispersion of alkoxide-hydrolysed zirconia powders in aqueous suspensions. Journal of Materials Science Letters, 1989, 8, 49-51.	0.5	7
59	Agglomeration of magnesium oxide particles formed by the decomposition of magnesium hydroxide. Journal of Materials Science, 1989, 24, 2603-2609.	1.7	9
60	Fabrication and sinterability in Y2O3-CeO2-ZrO2. Journal of Materials Science, 1989, 24, 4467-4474.	1.7	44
61	Powder Processing Science and Technology for Increased Reliability. Journal of the American Ceramic Society, 1989, 72, 3-15.	1.9	1,133
62	Promotion of Densification by Grain Growth. Journal of the American Ceramic Society, 1989, 72, 341-344.	1.9	34
63	Thermodynamics of Densification: I, Sintering of Simple Particle Arrays, Equilibrium Configurations, Pore Stability, and Shrinkage. Journal of the American Ceramic Society, 1989, 72, 725-734.	1.9	214
64	Thermodynamics of Densification: II, Grain Growth in Porous Compacts and Relation to Densification. Journal of the American Ceramic Society, 1989, 72, 735-741.	1.9	172
65	Effects of Particle Packing Characteristics on Solid-State Sintering. Journal of the American Ceramic Society, 1989, 72, 810-817.	1.9	146
66	Microstructural Coarsening During Sintering of Boron Carbide. Journal of the American Ceramic Society, 1989, 72, 958-966.	1.9	172
67	Thermodynamic Benefit of Abnormal Grain Growth in Pore Elimination During Sintering. Journal of the American Ceramic Society, 1989, 72, 1536-1537.	1.9	4
68	Interplay of Sintering Microstructures, Driving Forces, and Mass Transport Mechanisms. Journal of the American Ceramic Society, 1989, 72, 1550-1555.	1.9	79
69	Influence of powder structure on processing and properties of advanced ceramics. Powder Technology, 1989, 58, 151-161.	2.1	55
70	Sintering of Ceramics. , 1989, , 3-37.		9
71	Rate Controlled Sintering for Ceramics and Selected Powder Metals. , 1989, , 337-356.		9
72	Sintering Mechanism of Ceramics and Its Manipulation. Journal of the Japan Society of Colour Material, 1990, 63, 402-410.	0.0	0
73	Validity of Using Mercury Porosimetry to Characterize the Pore Structures of Ceramic Green Compacts. Journal of the American Ceramic Society, 1990, 73, 2261-2265.	1.9	10
74	Processing and Sintering of Ultrafine MgO-ZrO2 and (MgO, Y2O3)-ZrO2 Powders. Journal of the American Ceramic Society, 1990, 73, 1499-1503.	1.9	136

#	Article	IF	CITATIONS
75	Tailoring the microstructure of ceramics and ceramic matrix composites through processing. Composites Science and Technology, 1990, 37, 299-312.	3.8	6
76	Pore size distribution during compaction and early stage sintering of silicon nitride. Journal of Materials Science, 1990, 25, 1686-1689.	1.7	5
77	The kinetics of hot-pressing for undoped and donor-doped BaTiO3 ceramics. Journal of Materials Science, 1990, 25, 1423-1428.	1.7	34
78	Sintering of boehmite-derived transition alumina seeded with corundum. Journal of Materials Science Letters, 1990, 9, 779-781.	0.5	24
79	Pore size evolution during sintering of ceramic oxides. Ceramics International, 1990, 16, 177-189.	2.3	121
80	Evolution of pore morphology in sintering powder compacts. Ceramics International, 1990, 16, 1-10.	2.3	11
81	Nondestructive characterization of morphological development in sintered powder compacts. Ceramics International, 1990, 16, 63-71.	2.3	7
82	The effect of niobium, calcium and lanthanum dopants on the crystallite growth of TiO2 powders. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1990, 5, 377-383.	1.7	16
83	Reductive decomposition of calcium sulfate with carbon monoxide: reaction mechanism. Industrial & Engineering Chemistry Research, 1990, 29, 544-550.	1.8	68
84	Sintering. , 1990, , 674-742.		1
85	Influence of Oxide Additives, Firing Temperature, and Dispersing Media on Sintered Al ₂ O ₃ . Journal of the Ceramic Society of Japan, 1991, 99, 538-544.	1.3	9
86	Characteristics of the pore structures in the compacts of ultrafine zirconia powder. Journal of Solid State Chemistry, 1991, 95, 412-416.	1.4	10
87	Sintering Behavior of Fully Agglomerated Zirconia Compacts. Journal of the American Ceramic Society, 1991, 74, 994-997.	1.9	44
88	Low-Temperature Sintering of Alumina with Liquid-Forming Additives. Journal of the American Ceramic Society, 1991, 74, 2011-2013.	1.9	81
89	Effect of Forming Pressure on the Internal Structure of Alumina Green Bodies Examined with Immersion Liquid Technique. Journal of the American Ceramic Society, 1991, 74, 2170-2174.	1.9	61
90	Submicron-powder starting materials for advanced ferrites. Advanced Materials, 1991, 3, 394-396.	11.1	7
91	Hot isostatic pressing of presintered silicon carbide ceramics. Journal of the European Ceramic Society, 1991, 7, 243-247.	2.8	12
92	Molecular and colloidal engineering of ceramics. Ceramics International, 1991, 17, 267-274.	2.3	30

#	Article	IF	Citations
93	Analysis of two-dimensional packing. Refractories, 1991, 32, 629-637.	0.0	3
94	Investigating sintering of magnesia obtained by chemical beneficiation. Refractories, 1991, 32, 253-263.	0.0	1
95	Packing of bimodal mixtures of colloidal silica. Journal of Materials Science, 1991, 26, 6035-6043.	1.7	7
96	Effects of cold isostatic pressures on the sintering behaviour of iron and copper ultrafine powders. Journal of Materials Science Letters, 1991, 10, 426-428.	0.5	5
97	Microstructure and porosity of zirconium dioxide powder compacts produced at pressures up to six GPa. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya) Tj ETQq0 0 0 rgBT /Ov	erl o ck 10	Tf 월 0 577 Td
98	Sintering behaviour of gel-derived powders. Journal of Materials Science, 1991, 26, 4511-4516.	1.7	4
99	Direct observation of internal structure in spray-dried yttria-doped zirconia granule. Journal of Materials Science, 1991, 26, 2215-2218.	1.7	19
100	Surface chemistry and suspension stability of oxide-nitride powder mixtures. Journal of Materials Science, 1991, 26, 216-224.	1.7	35
101	YTTRIUM ALUMINATE CERAMIC FIBERS VIA PRE-CERAMIC POLYMER AND SOL-GEL ROUTES. Particulate Science and Technology, 1992, 10, 121-132.	1.1	8
102	Effects of cold isostatic pressure on the sintering behaviour of nickel ultrafine powders. Journal of Alloys and Compounds, 1992, 190, 31-33.	2.8	4
103	Preparation via gelling of porous Li2ZrO3 for fusion reactor blanket material. Journal of Materials Science, 1992, 27, 3763-3769.	1.7	12
104	Experimental assessment of modified statistical theory of sintering. Journal of Materials Science, 1992, 27, 4639-4646.	1.7	7
105	Direct Study of the Behavior of Flaw-Forming Defect in Sintering. Journal of the American Ceramic Society, 1992, 75, 1016-1018.	1.9	56
106	The Effect of Inclusions on Densification; III, The Desintering Phenomenon. Journal of the American Ceramic Society, 1992, 75, 3241-3251.	1.9	73
107	Controlled-fracture forming for alumina wires and plates I. Cold-working and resintering characteristic. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 151, 45-52.	2.6	4
108	Development of microstructure during pressureless sintering of alumina. Journal of the European Ceramic Society, 1992, 10, 51-57.	2.8	8
109	Microstructure development during hot-pressing of alumina-based ceramics reinforced with SiC whiskers. Ceramics International, 1992, 18, 57-63.	2.3	8

110	Analysis of two-dimensional packings. Ceramics International, 1992, 18, 213-221.	2.3	9

#	Article	IF	CITATIONS
111	Grain growth and densification study of \hat{l}^2 -Ta2O5. Ceramics International, 1992, 18, 263-269.	2.3	6
112	Characterization of internal structure in Y-TZP powder compacts. Journal of Materials Science, 1992, 27, 587-591.	1.7	1
113	Thermomechanical properties and microstructure of aluinina-zirconia. Bulletin of Materials Science, 1992, 15, 131-141.	0.8	7
114	Prediction of sintered density for bimodal powder mixtures. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1992, 23, 1455-1465.	1.4	134
115	Characterization of internal structure in Y-TZP powder compacts. Journal of Materials Science, 1992, 27, 587-591.	1.7	11
116	The function of polymers in the tape casting of alumina. Advanced Materials, 1992, 4, 73-81.	11.1	60
117	Colloidal processing of sol-sprayed ceramic particulate composites. Journal of the European Ceramic Society, 1993, 12, 449-453.	2.8	5
118	Sintering and evolution of prosity in compacts obtained from ZrO2(Y2O3) powders under pressure of 6 GPa. Powder Metallurgy and Metal Ceramics, 1993, 32, 126-130.	0.4	1
119	Sinterability of sol-gel-derived magnesia powders. Journal of Materials Science Letters, 1993, 12, 783-785.	0.5	0
120	Autostresses induced by point defects in sintering phenomena: effect on mass transport and sintering stress. Journal of Materials Science, 1993, 28, 4693-4703.	1.7	10
121	Effects of powder processing on the characterization of magnesia derived from alkoxide precursors. Journal of Materials Science, 1993, 28, 4530-4535.	1.7	7
122	Effect of Y2O3 Additions on the Densification of an Al2O3-TiC Composite. Journal of the American Ceramic Society, 1993, 76, 1857-1860.	1.9	44
123	Characterization of Pore Size Distribution by Infrared Scattering in Highly Dense ZnS. Journal of the American Ceramic Society, 1993, 76, 2086-2092.	1.9	23
124	Sintering kinetics and microstructure development of nanoscale Y-TZP ceramics. Journal of the European Ceramic Society, 1993, 11, 315-324.	2.8	122
125	Experimental studies of particle packing and sintering behaviour of monosize and bimodal spherical silica powders. Journal of the European Ceramic Society, 1993, 11, 1-7.	2.8	38
126	Effects of \hat{I}_{\pm} -silicon nitride powder processing on surface oxidation kinetics. Journal of Materials Research, 1993, 8, 3168-3175.	1.2	15
127	Preparation and densification of BaNd2Ti5O14 dielectric ceramics. Materials Letters, 1993, 16, 75-78.	1.3	13
128	Microstructural changes during the firing of stoneware floor tiles. Applied Clay Science, 1993, 8, 193-205.	2.6	57

TION R

#	Article	IF	CITATIONS
129	Surface Chemistry and Sintering Characteristics of Nickel Ultrafine Powders. Powder Metallurgy, 1993, 36, 179-185.	0.9	18
130	Characterization of agglomerate strength of coprecipitated superfine zirconia powders. Journal of the European Ceramic Society, 1994, 13, 265-273.	2.8	18
131	Development of porous zirconia spheres by polymerization-induced colloid aggregation — effect of polymerization rate. Journal of Materials Science, 1994, 29, 6123-6130.	1.7	20
132	Sintering characteristics of microfine zirconia powder. Journal of Materials Science, 1994, 29, 121-124.	1.7	12
133	Obtaining and sintering yttria stabilized zirconia (YSZ) powders from alkoxides. Journal of Sol-Gel Science and Technology, 1994, 2, 347-352.	1.1	4
134	Thermodilatometric behaviour of pure and doped ZrTiO4-SnO2. Journal of Materials Science, 1994, 29, 4256-4259.	1.7	6
135	Slip casting and sintering of monodispersed TiO2 particles. Journal of Materials Science, 1994, 29, 366-372.	1.7	3
136	Centrifugal slip casting of zirconia (TZP). Journal of the European Ceramic Society, 1994, 13, 33-39.	2.8	50
137	A comparative study on thermal and hydrothermal stability of alumina, titania and zirconia membranes. Journal of Membrane Science, 1994, 91, 27-45.	4.1	173
138	Reaction Bonding and Mechanical Properties of Mullite/Silicon Carbide Composites. Journal of the American Ceramic Society, 1994, 77, 2898-2904.	1.9	45
139	A Die Pressing Test for the Estimation of Agglomerate Strength. Journal of the American Ceramic Society, 1994, 77, 806-814.	1.9	51
140	Processing of Tape-Cast Laminates Prepared from Fine Alumina/Zirconia Powders. Journal of the American Ceramic Society, 1994, 77, 2145-2153.	1.9	57
141	Correlation of Densification Kinetics of Polycrystalline Ceramics with Colloid/Interface Variables. Journal of the Ceramic Society of Japan, 1994, 102, 633-641.	1.3	1
142	Systematic Understanding of ceramic processing and related interfacial phenomena. Materials Science Monographs, 1995, 81, 399-429.	0.0	0
143	Densification and micro structure development of alumina/Y-TZP composite powder (Y-TZP-rich) compacts. Journal of the European Ceramic Society, 1995, 15, 363-369.	2.8	12
144	An improvement in processing of hydroxyapatite ceramics. Journal of Materials Science, 1995, 30, 3061-3074.	1.7	117
145	Influence of calcination temperature on the properties of spray dried alumina-zirconia composite powders. Journal of Materials Science, 1995, 30, 3515-3520.	1.7	2
146	Microstructure and mechanical properties of spherical zirconia-yttria granules. Journal of Materials Science, 1995, 30, 2121-2129.	1.7	5

#	Article	IF	CITATIONS
147	Direct observation of non-uniform distribution of PVA binder in alumina green body. Journal of Materials Science, 1995, 30, 1357-1360.	1.7	32
148	Dependence of Compaction Efficiency in Dry Pressing on the Particle Size Distribution. Journal of the American Ceramic Society, 1995, 78, 2527-2533.	1.9	14
149	Compaction and sintering behaviour of sol-gel powders. Journal of the European Ceramic Society, 1995, 15, 469-477.	2.8	14
150	Alumina of high reliability by centrifugal casting. Journal of the European Ceramic Society, 1995, 15, 811-821.	2.8	67
151	On the sintering of mixed and alloyed silver-palladium powders from chemical coprecipitation. Materials Chemistry and Physics, 1995, 40, 110-118.	2.0	9
152	Morphological evolution of ZrO2-SiO2 composite gel and stability of tetragonal ZrO2. Materials Letters, 1995, 25, 151-155.	1.3	13
153	SINTERING PROCESSES. , 1996, , 2627-2662.		21
154	Sintering. , 1996, , 781-874.		1
155	The Influence of shaping method on the grain size dependence of strength in dense submicrometre alumina. Journal of the European Ceramic Society, 1996, 16, 1189-1200.	2.8	121
156	Wet-milling effect on the properties of ultrafine yttria-stabilized zirconia powders. Ceramics International, 1996, 22, 123-130.	2.3	6
157	Crystallization in nanosized sol-derived zirconia precursors. Journal of Materials Science Letters, 1996, 15, 1680-1683.	0.5	9
158	Sintering, microstructure and mechanical properties of commercial Y-TZPs. Journal of Materials Science, 1996, 31, 6055-6062.	1.7	74
159	Effects of heteroflocculation of powders on mechanical properties of zirconia alumina composites. Journal of Materials Science, 1996, 31, 1633-1641.	1.7	15
160	Microwave sintering behaviour of ZrO2-Y2O3 with agglomerate. Journal of Materials Science Letters, 1996, 15, 1158-1160.	0.5	10
161	On the variability of strength to toughness ratio in zirconia-alumina composites. Journal of Materials Science Letters, 1996, 15, 1093-1096.	0.5	1
162	Theoretical Description of a Two-dimensional Compaction Process of Cylinders. Journal of the American Ceramic Society, 1996, 79, 153-160.	1.9	1
163	Formation and Control of Agglomerates in Alumina Powder. Journal of the American Ceramic Society, 1996, 79, 2003-2011.	1.9	33
164	Generation of Cracklike Voids during Sintering of Al2O3-10ZrO2 Ceramics and Their Prevention by Presintering with Low Pressure (2 MPa). Journal of the American Ceramic Society, 1996, 79, 1723-1725.	1.9	12

#	Article	IF	CITATIONS
165	Mechanical properties of nanocrystalline copper produced by solution-phase synthesis. Journal of Materials Research, 1996, 11, 439-448.	1.2	62
166	GRAIN GROWTH INHIBITION IN NANOCRYSTALLINE ALUMINA DOPED WITH CHROMIA. Scripta Materialia, 1997, 8, 359-366.	0.5	8
167	Enhanced sinterability of alumina particles by pretreating in liquid ammonia. Materials Letters, 1997, 32, 55-58.	1.3	2
168	Coprecipitation and Hydrothermal Synthesis of Ultrafine 5.5 mol% CeO ₂ â€2 mol% YO _{1.5} ZrO ₂ Powders. Journal of the American Ceramic Society, 1997, 80, 92-98.	1.9	72
169	Initial Coarsening and Microstructural Evolution of Fast-Fired and MgO-Doped Al2O3. Journal of the American Ceramic Society, 1997, 80, 2891-2896.	1.9	47
170	Microstructural pathways for the sintering of alumina ceramics. Scripta Materialia, 1997, 37, 419-424.	2.6	6
171	Compaction behaviour of agglomerated alumina powders. Powder Technology, 1997, 90, 195-203.	2.1	27
172	Title is missing!. Journal of Materials Science Letters, 1997, 16, 685-688.	0.5	4
173	A novel sol-gel route to prepare 50% PSZ-50% Al2O3 composite with duplex microstructure. Journal of Materials Science Letters, 1997, 16, 190-191.	0.5	4
174	Alumina–mullite–zirconia composites: Part II Microstructural development and toughening. Journal of Materials Science, 1997, 32, 503-511.	1.7	9
175	Title is missing!. Journal of Materials Science, 1997, 32, 4507-4512.	1.7	23
176	Title is missing!. Journal of Materials Science, 1997, 32, 6475-6481.	1.7	15
177	Title is missing!. Journal of Materials Science, 1997, 32, 6633-6638.	1.7	15
178	Agglomeration parameter, aggregation number, and aggregate porosity. Journal of Materials Science, 1997, 32, 4803-4806.	1.7	9
179	Alumina-coated hollow glass spheres/alumina composites. Journal of Materials Science, 1997, 32, 6075-6084.	1.7	19
180	Theoretically dense and nanostructured ceramics by pressureless sintering of nanosized Y-TZP powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 232, 168-176.	2.6	28
181	Colloidal processing of sub-micron alumina powder compacts. Journal of Materials Processing Technology, 1997, 67, 137-142.	3.1	20
182	Flotation properties of silicon carbide. Ceramics International, 1997, 23, 337-342.	2.3	15

#	Article	IF	CITATIONS
183	Breakdown of agglomerates in ideal pastes during extrusion. Journal of Materials Science, 1998, 33, 5119-5124.	1.7	9
184	Microstructure evolution and grain growth in the sintering of 3Y–TZP ceramics. Journal of Materials Science, 1998, 33, 5301-5309.	1.7	48
185	Theory of sintering: from discrete to continuum. Materials Science and Engineering Reports, 1998, 23, 41-100.	14.8	519
186	Microstructural characterization of Al2O3-SiC nanocomposites. Journal of the European Ceramic Society, 1998, 18, 39-49.	2.8	29
187	Processing and mechanical properties of boron carbide sintered with TiC. Journal of the European Ceramic Society, 1998, 18, 1521-1529.	2.8	141
188	Fabrication of dense nanocrystalline ZrO2â^'3 wt. % Y2O3 by hot-isostatic pressing. Journal of Materials Research, 1998, 13, 1875-1880.	1.2	19
189	Role of zirconia addition in pore development and grain growth in alumina compacts. Journal of Materials Research, 1999, 14, 4602-4614.	1.2	6
190	Relations Between Coarsening and Densification and Mass Transport Path in Solid-state Sintering of Ceramics: Model Analysis. Journal of Materials Research, 1999, 14, 1378-1388.	1.2	40
191	Thermodynamics and Densification Kinetics in Solid-state Sintering of Ceramics. Journal of Materials Research, 1999, 14, 1398-1408.	1.2	44
192	Atomistic Structure of Sodium and Calcium Silicate Intergranular Films in Alumina. Journal of Materials Research, 1999, 14, 1418-1429.	1.2	35
193	Consolidation of nanoparticles—development of a micromechanistic model. Acta Materialia, 1999, 47, 3079-3098.	3.8	19
194	Ultrasonic velocity and reduction of surface area during solid-state sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 265, 42-49.	2.6	9
195	Interdependence between green compact property and powder agglomeration and their relation to the sintering behaviour of zirconia powder. Ceramics International, 1999, 25, 551-559.	2.3	31
196	Synthesis and characterization of submicron zirconia–12 mol% ceria ceramics. Ceramics International, 1999, 25, 345-351.	2.3	29
197	Early-stage sintering in a powder compact of polyhedral particles II. Experimental analysis with a highly sinterable Al2O3. Ceramics International, 1999, 25, 731-738.	2.3	1
198	Mechanochemical Synthesis of Lead Zirconate Titanate from Mixed Oxides. Journal of the American Ceramic Society, 1999, 82, 1687-1692.	1.9	154
199	Title is missing!. Journal of Materials Science, 1999, 34, 1959-1972.	1.7	15
200	Title is missing!. Journal of Materials Science, 1999, 34, 3801-3812.	1.7	34

#	Article	IF	CITATIONS
201	Title is missing!. Magyar Apróvad Közlemények, 1999, 56, 603-610.	1.4	0
202	Preparation and sintering of nanosized \hat{l} ±-Al2O3 powder. Scripta Materialia, 1999, 11, 559-572.	O.5	79
203	Mechanochemical synthesis of nanosized lead titanate powders from mixed oxides. Materials Letters, 1999, 39, 364-369.	1.3	44
204	Grain Growth Behavior of Alumina Compact Processed by Controlled Fracture Forming Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1999, 46, 1129-1135.	0.1	1
205	A Comparison of Fine-Grained Alumina-Zirconia Prepared by Slip Casting and Electrophoretic Deposition Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1999, 46, 1284-1291.	0.1	1
206	Synthesis and Sintering of BaTiO3 Powders by the Glycine-Nitrate Process Using Metal Carbonate and Alkoxide Journal of the Ceramic Society of Japan, 1999, 107, 691-696.	1.3	3
207	Ceramics Based on Alumina: Increasing the Hardness for Tool Applications. , 0, , 648-682.		1
208	Electrosteric Stabilization of Al2O3, ZrO2, and 3Y–ZrO2 Suspensions: Effect of Dissociation and Type of Polyelectrolyte. Journal of Colloid and Interface Science, 2000, 228, 73-81.	5.0	107
209	Probing the crystalline environment of α-alumina via luminescence of metal ion impurities: an optical method of ceramic flaw detection. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 281, 45-55.	2.6	21
210	Microstructural evolution during sintering of near-monosized agglomerate-free submicron alumina powder compacts. Acta Materialia, 2000, 48, 2263-2275.	3.8	44
211	Effect of initial grain size on sintering trajectories. Acta Materialia, 2000, 48, 1239-1246.	3.8	51
212	Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant. Journal of the European Ceramic Society, 2000, 20, 2395-2405.	2.8	308
213	Effect of powder treatment on injection moulded zirconia ceramics. Journal of the European Ceramic Society, 2000, 20, 859-866.	2.8	33
214	Dense ceramics of NaNbO3 produced from powders prepared by a new chemical route. Journal of the European Ceramic Society, 2000, 20, 983-990.	2.8	75
215	Processing nanostructured materials: An overview. Jom, 2000, 52, 41-45.	0.9	39
216	Semi-coherent zirconia inclusions in a ceramic matrix. Journal of Materials Research, 2000, 15, 2482-2487.	1.2	5
217	Multi-level particle packing model of ceramic agglomerates. Modelling and Simulation in Materials Science and Engineering, 2000, 8, 159-168.	0.8	21
218	Reactive Ce0.8RE0.201.9 (RE = La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) Powders via Carbonate Coprecipitation. 2. Sintering. Chemistry of Materials, 2001, 13, 2921-2927.	3.2	26

#	Article	IF	CITATIONS
219	Glycol–nitrate combustion synthesis of fine sinter-active yttria. Solid State Sciences, 2001, 3, 143-149.	0.8	43
220	Sintering behaviour of pressed red mud wastes from zinc hydrometallurgy. Ceramics International, 2001, 27, 29-37.	2.3	34
221	Population balance model for solid state sintering I. Pore shrinkage and densification. Ceramics International, 2001, 27, 57-62.	2.3	12
222	A wet-chemical process yielding reactive magnesium aluminate spinel (MgAl2O4) powder. Ceramics International, 2001, 27, 481-489.	2.3	93
223	Ceramic nanocomposites obtained by sol–gel coating of submicron powders. Acta Materialia, 2001, 49, 811-816.	3.8	16
224	Processing and characterization of alumina wire by controlled fracture forming process:. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 316, 238-247.	2.6	5
225	Processing and characterization of alumina wire by controlled fracture forming process: (II) Resintering behavior and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 316, 248-257.	2.6	0
226	Synthesis of Mg–Al spinel powder via precipitation using ammonium bicarbonate as the precipitant. Journal of the European Ceramic Society, 2001, 21, 139-148.	2.8	97
227	Title is missing!. Journal of Materials Science, 2001, 36, 3437-3446.	1.7	22
228	Title is missing!. Journal of Materials Science, 2001, 36, 2529-2534.	1.7	12
229	Ways Toward Improving the Technology of Refractories Based on Powdered Periclase. Refractories and Industrial Ceramics, 2001, 42, 288-293.	0.2	3
230	Characterization and sintering of nanocrystalline CeO2 powders synthesized by a mimic alkoxide method. Acta Materialia, 2001, 49, 419-426.	3.8	101
231	High‣urfaceâ€Area Alumina Ceramics Fabricated by the Decomposition of Al(OH) ₃ . Journal of the American Ceramic Society, 2001, 84, 485-491.	1.9	115
232	Sintering and Microstructure Modification of Mullite/Zirconia Composites Derived from Silica-Coated Alumina Powders. Journal of the American Ceramic Society, 2001, 84, 850-858.	1.9	13
233	Microstructure and Mechanical Properties of Porous Alumina Ceramics Fabricated by the Decomposition of Aluminum Hydroxide. Journal of the American Ceramic Society, 2001, 84, 2638-2644.	1.9	160
234	The influence of washing and calcination condition on urea-derived ceria-yttria-doped tetragonal zirconia powders. Materials Chemistry and Physics, 2001, 68, 42-55.	2.0	10
235	Computer-aided control of the evolution of microstructure during sintering. Materials Chemistry and Physics, 2001, 67, 17-24.	2.0	7
236	Fractal characterization of the compaction and sintering of ferrites. Materials Characterization, 2001, 47, 27-37.	1.9	13

#	Article	IF	CITATIONS
237	Production of Ceramic Bodies. Engineering Materials, 2001, , 85-207.	0.3	8
238	⁵⁹ Fe Grain Boundary Diffusion in Nanostructured γ-Fe-Ni. International Journal of Materials Research, 2002, 93, 265-272.	0.8	44
239	Effect of rearrangement on simulated particle packing. Powder Technology, 2002, 126, 211-216.	2.1	6
240	The microhardness and microstructural characteristics of bulk molybdenum samples obtained by consolidating nanopowders by plasma pressure compaction. International Journal of Refractory Metals and Hard Materials, 2002, 20, 181-186.	1.7	38
241	Agglomeration of magnesia powders precipitated from sea water and its effects on uniaxial compaction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 333, 176-186.	2.6	14
242	The ac electrical failure behaviors and mechanisms of current limiting BaTiO3-based positive-temperature-coefficient (PTC) ceramic thermistors coated with electroless nickel–phosphorous electrode. Sensors and Actuators A: Physical, 2002, 101, 123-131.	2.0	6
243	Effect of particle size distribution on sintering of agglomerate-free submicron alumina powder compacts. Journal of the European Ceramic Society, 2002, 22, 2197-2208.	2.8	116
244	Effect of heat treatment of alumina granules on the compaction behavior and properties of green and sintered bodies. Journal of the European Ceramic Society, 2002, 22, 2841-2848.	2.8	19
245	Sintering behaviour of Y2O3 powders prepared by the polymer complex solution method. Ceramics International, 2002, 28, 791-803.	2.3	21
246	Effect of Agglomeration on Mechanical Properties of Porous Zirconia Fabricated by Partial Sintering. Journal of the American Ceramic Society, 2002, 85, 1961-1965.	1.9	103
247	Structural changes in carbon aerogels with high temperature treatment. Carbon, 2002, 40, 575-581.	5.4	123
248	Title is missing!. Journal of Materials Science, 2003, 11, 67-80.	1.2	77
249	From discrete to continuum: A Young measure approach. Zeitschrift Fur Angewandte Mathematik Und Physik, 2003, 54, 328-348.	0.7	7
250	Densification of ashes from a thermal power plant. Ceramics International, 2003, 29, 61-68.	2.3	36
251	Role of wollastonite additive on density, microstructure and mechanical properties of alumina. Ceramics International, 2003, 29, 869-873.	2.3	9
252	Microstructural pathways for the densification of slip cast alumina. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 352, 287-293.	2.6	8
253	Formation of mullite from precursor powders: sintering, microstructure and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 355, 56-61.	2.6	38
254	Role of Zr(OH)4 hard agglomerates in fabricating porous ZrO2 ceramics and the reinforcing mechanisms. Acta Materialia, 2003, 51, 731-739.	3.8	27

\mathbf{c}		REPC	DT
			דעו
<u> </u>		ILL C	

#	Article	IF	CITATIONS
255	Characterization of coarse particles in alumina powders by a wet sieving method. Journal of the European Ceramic Society, 2003, 23, 1661-1666.	2.8	13
256	Processing of Highâ€Density Submicrometer Al ₂ O ₃ for New Applications. Journal of the American Ceramic Society, 2003, 86, 546-53.	1.9	192
257	Aggregate and necking force in Mn–Zn ferrite. Materials Letters, 2003, 57, 1467-1470.	1.3	7
258	4.1 Sintering of Ceramics. , 2003, , 187-264.		54
259	Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology, 2003, 14, 619-623.	1.3	174
260	Solid freeform fabrication of ceramics. International Materials Reviews, 2003, 48, 341-370.	9.4	151
261	Sintering polydispersed spherical glass particles. Journal of Materials Research, 2003, 18, 1347-1354.	1.2	23
262	Fabrication of transparent Sc ₂ O ₃ ceramics with powders thermally pyrolyzed from sulfate. Journal of Materials Research, 2003, 18, 1816-1822.	1.2	31
263	Comparison of Ni-Zn Ferrite Powder Preparation by Combustion Reaction Using Different Synthesization Routes. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 582-587.	0.1	6
264	Sintering with Heterogeneities - Characterization and Modelling of the Microstructural Evolution. Key Engineering Materials, 2004, 264-268, 197-200.	0.4	1
265	Influence of Powder Agglomerates on the Structure and Rheological Behavior of Injectionâ€Molded Zirconia–Wax Suspensions. Journal of the American Ceramic Society, 1999, 82, 2647-2652.	1.9	27
266	Pore Growth during Initial‣tage Sintering. Journal of the American Ceramic Society, 1999, 82, 2948-2952.	1.9	35
267	Xâ€ray Computed Tomography and Mercury Porosimetry for Evaluation of Density Evolution and Porosity Distribution. Journal of the American Ceramic Society, 2000, 83, 518-522.	1.9	29
268	Compaction and Sintering Behavior of Bimodal Alumina Powder Suspensions by Pressure Filtration. Journal of the American Ceramic Society, 2000, 83, 737-742.	1.9	14
269	ZrO ₂ Nanopowders Prepared by Lowâ€Temperature Vaporâ€Phase Hydrolysis. Journal of the American Ceramic Society, 2000, 83, 1077-1080.	1.9	37
270	Morphological Changes in Processâ€Related Large Pores of Granular Compacted and Sintered Alumina. Journal of the American Ceramic Society, 2000, 83, 1633-1640.	1.9	40
271	Effect of Density Gradients on Dimensional Tolerance During Binder Removal. Journal of the American Ceramic Society, 2000, 83, 2536-2542.	1.9	18
272	New Hydrolytic Process for Producing Zirconium Dioxide, Tin Dioxide, and Titanium Dioxide Nanoparticles. Journal of the American Ceramic Society, 2002, 85, 2837-2839.	1.9	29

#	Article	IF	CITATIONS
273	Sintering Behaviour of BaxSr1-xTiO3. Integrated Ferroelectrics, 2004, 62, 249-252.	0.3	7
274	Effect of porous interlayers on crack deflection in ceramic laminates. Journal of the European Ceramic Society, 2004, 24, 825-831.	2.8	39
275	Influence of pH value and solvent utilized in the sol–gel synthesis on properties of derived ZrO2 powders. Journal of Materials Processing Technology, 2004, 152, 299-303.	3.1	21
276	Sintering behavior of partially crystallized barium titanate monolithic xerogels with different nano-crystalline structure. Journal of the European Ceramic Society, 2004, 24, 2959-2968.	2.8	22
277	Density gradients and the expansion–shrinkage transition during sintering. Acta Materialia, 2004, 52, 2057-2066.	3.8	7
278	Low temperature processing of dense samarium-doped CeO2 ceramics: sintering and grain growth behaviors. Acta Materialia, 2004, 52, 2221-2228.	3.8	163
279	Methods to calculate sintering stress of porous materials in equilibrium. Acta Materialia, 2004, 52, 5621-5631.	3.8	71
280	Effects of Chloride Ion on Densification Transparency Magnesia Ceramics. Journal of the Ceramic Society of Japan, 2005, 113, 149-153.	1.3	6
281	First direct 3D visualisation of microstructural evolutions during sintering through X-ray computed microtomography. Acta Materialia, 2005, 53, 121-128.	3.8	115
282	Effect of Green Density on the Subsequent Densification and Grain Growth of Ultrafine SnO2 Powder during Isochronal Sintering. Journal of the American Ceramic Society, 1997, 80, 2165-2167.	1.9	25
283	Microstructure Refinement of Sintered Alumina by a Two tep Sintering Technique. Journal of the American Ceramic Society, 1997, 80, 2269-2277.	1.9	112
284	Sintering of Nanosized MnZn Ferrite Powders. Journal of the American Ceramic Society, 1998, 81, 1757-1764.	1.9	57
285	Modeling and Fabrication of Fineâ€Grain Aluminaâ€Zirconia Composites Produced from Nanocrystalline Precursors. Journal of the American Ceramic Society, 1998, 81, 1773-1780.	1.9	21
286	Fracture Origin and Strength in Advanced Pressurelessâ€Sintered Alumina. Journal of the American Ceramic Society, 1998, 81, 1900-1906.	1.9	25
287	Enhanced Densification of In2O3 Ceramics by Presintering with Low Pressure (5 MPa). Journal of the American Ceramic Society, 1998, 81, 2489-2492.	1.9	21
288	Ultrasonic and Mechanical Behavior of Green and Partially Sintered Alumina: Effects of Slurry Consolidation Chemistry. Journal of the American Ceramic Society, 1998, 81, 2629-2639.	1.9	23
289	Reaction-Formed Porous Yb4Si2N2O7 Materials with Uniform Open-Cell Network Structure. Journal of the American Ceramic Society, 2005, 88, 1353-1355.	1.9	2
290	Effects of Aluminum and Zirconia Contents on the Sintering of Reactionâ€Bonded Aluminum Oxide Ceramics. Journal of the American Ceramic Society, 2005, 88, 2046-2052.	1.9	2

#	Article	IF	CITATIONS
291	Customization of Load-Bearing Hydroxyapatite Lattice Scaffolds. International Journal of Applied Ceramic Technology, 2005, 2, 212-220.	1.1	69
292	Porous Al2O3/Al catalyst supports fabricated by an Al(OH)3/Al mixture and the effect of agglomerates. Journal of Materials Research, 2005, 20, 672-679.	1.2	4
293	Modelling of the influence of dihedral angle, volume fractions, particle size and coordination on the driving forces for sintering of dual phase systems. Philosophical Magazine, 2005, 85, 3719-3733.	0.7	17
298	Effect of Slip Dispersion on Microstructure Evolution During Isothermal Sintering of Cast Alumina. Journal of the American Ceramic Society, 2006, 89, 1273-1279.	1.9	4
299	Effects of the Homogeneity of Particle Coordination on Solid-State Sintering of Transparent Alumina. Journal of the American Ceramic Society, 2006, 89, 1985-1992.	1.9	145
300	Modeling and Simulation of Elementary Processes in Ideal Sintering. Journal of the American Ceramic Society, 2006, 89, 1471-1484.	1.9	82
301	Effect of Drying and Dewatering on Yttria Precursors with Transient Morphology. Journal of the American Ceramic Society, 2006, 89, 3094-3100.	1.9	23
302	Hindrance of Grain Growth in Al ₂ O ₃ by ZrO ₂ Inclusions Journal of the American Ceramic Society, 1984, 67, 164-168.	1.9	241
303	Shrinkage and disappearance of a closed pore in the sintering of particle cluster. Acta Materialia, 2006, 54, 793-805.	3.8	31
304	Investigation of the intra-particle sintering kinetics of a mainly agglomerated alumina powder by using surface area reduction. Powder Technology, 2006, 168, 37-41.	2.1	12
305	Nanocrystalline scandia-doped zirconia (ScSZ) powders prepared by a glycine–nitrate solution combustion route. Journal of the European Ceramic Society, 2006, 26, 397-401.	2.8	28
306	Effect of the addition of CaO–MgO–SiO2 glass on the sintering and mechanical properties of Al2O3/3Y-TZP composites. Journal of Materials Science, 2006, 41, 5029-5032.	1.7	2
307	Synthesis and characterization of nanocrystalline MgAl2O4 spinel by polymerized complex method. Journal of Nanoparticle Research, 2006, 8, 911-917.	0.8	53
308	Combustion Synthesis of α-Al ₂ O ₃ Powders. Materials Science Forum, 2006, 530-531, 631-636.	0.3	12
310	Comparison of powder synthesis routes for fabricating (Ba0.65Sr0.35)TiO3 ceramics. Journal of Materials Research, 2006, 21, 1390-1398.	1.2	9
311	Processing and Properties of Nanocrystalline Tetragonal Zirconia. Key Engineering Materials, 2007, 336-338, 2300-2303.	0.4	2
312	Applications of the zero-order reaction rate model and transition state theory on the intra-particle sintering of an alumina powder by using surface area measurements. Journal of Alloys and Compounds, 2007, 432, 194-199.	2.8	10
313	Physical Properties and Composition Effects on the Reactivity of Calcium-Based Sulfur Sorbents. Industrial & Engineering Chemistry Research, 2007, 46, 5913-5921.	1.8	3

#	Article	IF	CITATIONS
π 314	Nanocrystalline Powder Consolidation Methods. , 2007, , 173-233.		25
914	Nanoci ystainne rowder consolidation Methods., 2007,, 175 255.		20
315	Cerâmicas porosas para aplicação em altas temperaturas. Ceramica, 2007, 53, 361-367.	0.3	4
316	Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2007, 82A, 383-394.	2.1	84
317	Influence of milling time on mechanically assisted synthesis of Pb0.91Ca0.1TiO3 powders. Ceramics International, 2007, 33, 937-941.	2.3	11
318	Microstructure and thermal conductivity of porous ZrO2 ceramics. Acta Materialia, 2007, 55, 3663-3669.	3.8	64
319	Thermal cure effects on electrical performance of nanoparticle silver inks. Acta Materialia, 2007, 55, 6345-6349.	3.8	256
320	Study of agglomeration of alumina nanoparticles by atomic force microscopy (AFM) and photon correlation spectroscopy (PCS). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 269-275.	2.3	30
321	Comparison of two different precipitation routes leading to Yb doped Y2O3 nano-particles. Journal of the European Ceramic Society, 2007, 27, 1991-1998.	2.8	18
322	Compaction and Pressureless Sintering of Zirconia Nanoparticles. Journal of the American Ceramic Society, 2007, 90, 2735-2740.	1.9	78
323	Characterization of Heterogeneous Microstructure Evolution in ZrO2?3 mol%Y2O3during Isothermal Sintering. Journal of the American Ceramic Society, 2007, 90, 070926113027002-???.	1.9	7
324	Refractory and ceramic materials. Powder Metallurgy and Metal Ceramics, 2007, 46, 345-356.	0.4	3
325	Effect of forming pressure on densification behavior of nanocrystalline ITO powder. Journal of the European Ceramic Society, 2007, 27, 807-812.	2.8	15
326	Microstructural evolution during sintering in MgO powders precipitated from sea water under induced agglomeration conditions. Powder Technology, 2008, 186, 267-272.	2.1	5
327	Experimental study on effect of compaction pressure on performance of SOFC anodes. Journal of Power Sources, 2008, 180, 301-308.	4.0	12
328	Ni–Zn–Sm nanopowder ferrites: Morphological aspects and magnetic properties. Journal of Magnetism and Magnetic Materials, 2008, 320, 742-749.	1.0	69
329	On the control of the liquid-phase distribution in multi-material assemblies processed by liquid-phase sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 495, 236-243.	2.6	18
330	Densification and grain growth during sintering of nanosized particles. International Materials Reviews, 2008, 53, 326-352.	9.4	233
331	Synthesis and characterisation of nanocrystalline sinteractive 3Y-TZP powder. Advances in Applied Ceramics, 2008, 107, 170-175.	0.6	6

#	Article	IF	CITATIONS
332	Size effect studies on nanocrystalline Pb(Zr0.53Ti0.47)O3 synthesized by mechanical activation route. Materials Chemistry and Physics, 2009, 117, 338-342.	2.0	9
333	The effect of different powder particle size on mechanical properties of sintered alumina, resin―and glassâ€infused alumina. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 88B, 502-508.	1.6	14
334	Dense and near-net-shape fabrication of Si3N4 ceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 500, 130-149.	2.6	106
335	Role of the dispersion route on the phase transformation of a nano-crystalline transition alumina. Journal of Thermal Analysis and Calorimetry, 2009, 97, 223-229.	2.0	11
336	Agglomerates in nanopowders and ceramic technology. Refractories and Industrial Ceramics, 2009, 50, 348-353.	0.2	11
337	Lost Mold Rapid Infiltration Forming of Mesoscale Ceramics: Part 1, Fabrication. Journal of the American Ceramic Society, 2009, 92, S63-S69.	1.9	20
338	Performance evolution of NiO/yttria-stabilized zirconia anodes fabricated at different compaction pressures. Electrochimica Acta, 2009, 54, 1355-1361.	2.6	11
339	Transmission physics and consequences for materials selection, manufacturing, and applications. Journal of the European Ceramic Society, 2009, 29, 207-221.	2.8	271
340	Compressibility and sinterability of CeO2–8YSZ powders synthesized by a wet chemical method. Journal of the European Ceramic Society, 2009, 29, 1947-1954.	2.8	8
341	Sintering of glass matrix composites with small rigid inclusions. Journal of the European Ceramic Society, 2009, 29, 2469-2479.	2.8	50
342	Influence of green state processes on the sintering behaviour and the subsequent optical properties of spark plasma sintered alumina. Journal of the European Ceramic Society, 2009, 29, 3363-3370.	2.8	48
343	The effect of processing on the thermal diffusivity of MgO–Nd2Zr2O7 composites for inert matrix materials. Journal of Nuclear Materials, 2009, 393, 203-211.	1.3	19
344	Thermodynamics of densification of powder compact. Ceramics International, 2009, 35, 2667-2674.	2.3	15
345	Effect of Pd doping on the microstructure and gas-sensing performance of nanoporous SnOx thin films. Acta Materialia, 2009, 57, 1095-1104.	3.8	15
346	Fabrication of transparent yttrium aluminum garnet ceramic. Journal of Physics: Conference Series, 2009, 152, 012079.	0.3	8
347	An investigation on preparation of CIGS targets by sintering process. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 166, 34-40.	1.7	26
348	Densification of porous 8Âmol% yttria-stabilized zirconia component: modelling and experimental studies. Journal of Materials Science, 2010, 45, 575-581.	1.7	10
349	Densification modeling studies on porous Al2O3 component. Powder Metallurgy and Metal Ceramics, 2010, 49, 167-173.	0.4	0

	СІТАТ	ION REPORT	
#	Article	IF	CITATIONS
350	The Route for Synthesis of Agglomerationâ€Free Barium Strontium Titanate Nanoparticles Using Ultrasonic Spray Nozzle System. Journal of the American Ceramic Society, 2010, 93, 998-1002.	1.9	4
351	Fineâ€Grained Transparent Spinel Windows by the Processing of Different Nanopowders. Journal of the American Ceramic Society, 2010, 93, 2656-2666.	1.9	121
352	A Promising Lu _{2â^'<i>x</i>} Ho <i>_x</i> O ₃ Laser Nanoceramic:Synthesis and Characterization. Journal of the American Ceramic Society, 2010, 93, 3764-3772.	1.9	14
353	Influence of the External Heating Type in the Morphological and Structural Characteristics of Alumina Powder Prepared by Combustion Reaction. Materials Science Forum, 0, 660-661, 58-62.	0.3	8
354	Sintering of hierarchically structured ZnO. Journal of Materials Research, 2010, 25, 2125-2134.	1.2	9
355	Sintering of ultrafine and nanosized particles. , 2010, , 434-473.		15
356	Experimental mechanical and chemical compaction of carbonate sand. Journal of Geophysical Research, 2010, 115, .	3.3	51
357	Laser ceramic 1 Production methods. Journal of Optical Technology (A Translation of Opticheskii) Tj ETQq	1 1 0.784314 rgB 0.2	۲ /Qverloc <mark>k</mark>
358	Comparative studies on properties of scandia-stabilized zirconia synthesized by the polymeric precursor and the polyacrylamide techniques. Journal of Alloys and Compounds, 2010, 503, 474-479.	2.8	17
359	A Critical Assessment of Nanometerâ€Scale Zirconia Green Body Formation by Pressure Filtration and Uniaxial Compaction. Journal of the American Ceramic Society, 2011, 94, 4200-4206.	1.9	6
360	Microwave sintering of nanostructured ceramic materials. Nanotechnologies in Russia, 2011, 6, 647-661.	0.7	10
361	Correlation of compaction pressure, green density, pore size distribution and sintering temperature of a nano-crystalline 2Y-TZP-Al2O3 composite. Ceramics International, 2011, 37, 731-739.	2.3	9
362	Porous alumina-spinel ceramics for high temperature applications. Ceramics International, 2011, 37, 1393-1399.	2.3	83
363	The sintering kinetics of ultrafine tungsten carbide powders. Ceramics International, 2011, 37, 2643-2654.	2.3	54
364	Electrophoretic deposition of YSZ thin-film electrolyte for SOFCs utilizing electrostatic-steric stabilized suspensions obtained via high energy ball milling. International Journal of Hydrogen Energy, 2011, 36, 9195-9204.	3.8	25
365	Spark plasma sintering of nanocrystalline BaTiO3-powders: Consolidation behavior and dielectric characteristics. Journal of the European Ceramic Society, 2011, 31, 1723-1731.	2.8	38
366	Mechanical Properties of Nb ₂ O ₅ -Al ₂ O _{3Ceramics Prepared by Microwave Sintering. Advanced Materials Research, 0, 338, 120-123.}	kgt; 0.3	1
367	Porous Anisotropic Alumina Ceramic Membrane: Preparation and Characterization. Materials Science Forum, 0, 727-728, 1485-1489.	0.3	1

#	Article	IF	CITATIONS
368	Mechanical Properties of La ₂ O ₃ -Al ₂ O ₃ Ceramics Prepared by Microwave Sintering. Key Engineering Materials, 2012, 519, 265-268.	0.4	1
369	The effect of agglomerate on micro-structural evolution in solid-state sintering. Acta Mechanica Sinica/Lixue Xuebao, 2012, 28, 1323-1330.	1.5	2
371	Fine Grained Alumina-Based Ceramics Produced Using Magnetic Pulsed Compaction. , 0, , .		2
372	Spark Plasma Sintering of Ultrafine WC Powders: A Combined Kinetic and Microstructural Study. , 2012, , .		3
373	The Effects of Sintering Temperature Variations on Microstructure Changes of LTCC Substrate. , 2012, , .		9
374	The influence of agglomerates on the densification and microstructural evolution in sintering of a multi-particle system. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1051-1058.	2.0	9
375	Bulk-nanocrystalline oxide nuclear fuels – An innovative material option for increasing fission gas retention, plasticity and radiation-tolerance. Journal of Nuclear Materials, 2012, 422, 27-44.	1.3	64
376	Improvements in the production of Yb:YAG transparent ceramic materials: Spray drying optimisation. Optical Materials, 2012, 34, 995-1001.	1.7	32
377	Transparent polycrystalline alumina obtained by SPS: Green bodies processing effect. Journal of the European Ceramic Society, 2012, 32, 2909-2915.	2.8	49
378	Correlation between MgAl2O4-spinel structure, processing factors and functional properties of transparent parts (progress review). Journal of the European Ceramic Society, 2012, 32, 2869-2886.	2.8	136
379	Synthesis and Sintering Behavior of Ultrafine (<10Ânm) Magnesium Aluminate Spinel Nanoparticles. Journal of the American Ceramic Society, 2013, 96, 2077-2085.	1.9	53
380	Effect of Phase Structure on Sintering Behavior of Zirconia Nanopowders. Journal of the American Ceramic Society, 2013, 96, 3720-3727.	1.9	16
381	Influence of corrosion and mechanical loads on advanced ceramic components. Ceramics International, 2013, 39, 2723-2741.	2.3	27
382	High electrical resistivity of pressureless sintered in situ SiC–BN composites. Scripta Materialia, 2013, 69, 740-743.	2.6	25
383	Microwave Sintering: Fundamentals and Modeling. Journal of the American Ceramic Society, 2013, 96, 1003-1020.	1.9	251
384	Effect of zinc concentration on the microstructure and relaxation frequency of Mn–Zn ferrites synthesized by solid state reaction. Ceramics International, 2013, 39, 7853-7860.	2.3	54
385	Sintering of ultrafine and nanosized ceramic and metallic particles. , 2013, , 431-473.		3
386	Advanced indium tin oxide ceramic sputtering targets (rotary and planar) for transparent conductive nanosized films. Advances in Applied Ceramics, 2013, 112, 243-256.	0.6	16

#	ARTICLE	IF	Citations
387	Effect of Nb ₂ 0 ₅ /La ₂ 0 ₃ Additions on Mechanical Properties of Al ₂ 0 ₃ Prepared by Microwave Sintering. Key Engineering Materials, 0, 544, 281-285.	0.4	1
388	Structural and Dielectric Properties of Glass – Ceramic Substrate with Varied Sintering Temperatures. , 0, , .		9
389	Processing of Alumina and Corresponding Composites. , 2014, , 31-72.		7
390	Transparent Tetragonal Zirconia Ceramics by Colloidal Processing of Nanoparticle Suspension. Advances in Science and Technology, 0, , .	0.2	Ο
391	Initial stage sintering mechanism of NaNbO3 and implications regarding the densification of alkaline niobates. Journal of the European Ceramic Society, 2014, 34, 1971-1979.	2.8	33
393	Influence of the synthesis process on the features of Y2O3-stabilized ZrO2 powders obtained by the sol–gel method. Ceramics International, 2014, 40, 6421-6426.	2.3	22
394	Synthesis and spark plasma sintering of sub-micron HfB2: Effect of various carbon sources. Journal of the European Ceramic Society, 2014, 34, 1471-1479.	2.8	29
395	Defect strategies for an improved optical quality of transparent ceramics. Optical Materials, 2014, 38, 61-74.	1.7	53
396	Dry ball mixing and deagglomeration of alumina and zirconia composite fine powders using a bimodal ball size distribution. Ceramics International, 2014, 40, 15293-15302.	2.3	20
397	Densification and microstructural development during sintering of powder injection molded Fe micro–nanopowder. Powder Technology, 2014, 253, 596-601.	2.1	43
398	High-precision green densities of thick films and their correlation with powder, ink, and film properties. Journal of the European Ceramic Society, 2014, 34, 3897-3916.	2.8	4
399	Grain Growth in Polycrystalline Nickel Powder Compacts during Early Stage of Sintering. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2014, 61, 473-480.	0.1	4
400	Homogenization of Biporous Agglomerated Powder Structures During Highâ€Temperature Consolidation. Journal of the American Ceramic Society, 2015, 98, 3445-3452.	1.9	4
401	Wear performance of alumina-based ceramics - a review of the influence of microstructure on erosive wear. Ceramica, 2015, 61, 88-103.	0.3	41
402	Evaluation of internal thermal barrier coatings for exhaust manifolds. Surface and Coatings Technology, 2015, 272, 198-212.	2.2	25
403	Controlled Synthesis of Layered Rareâ€Earth Hydroxide Nanosheets Leading to Highly Transparent (Y _{0.95} Eu _{0.05}) ₂ O ₃ Ceramics. Journal of the American Ceramic Society, 2015, 98, 1413-1422.	1.9	32
404	Spark plasma sintering of TiN–TiB2–hBN composites and their properties. Ceramics International, 2015, 41, 4498-4503.	2.3	22
405	Fabrication of transparent MgAl2O4 spinel through homogenous green compaction by microfluidization and slip casting. Ceramics International, 2015, 41, 13354-13360.	2.3	48

#	Article	IF	CITATIONS
406	Osteoblast response to zirconia surfaces with different topographies. Materials Science and Engineering C, 2015, 57, 363-370.	3.8	15
407	Novel architecture for anomalous strengthening of a particulate filled polymer matrix composite. RSC Advances, 2015, 5, 62477-62485.	1.7	4
408	Effect of Thickness on Surface Morphology of Silver Nanoparticle Layer During Furnace Sintering. Journal of Electronic Materials, 2015, 44, 1192-1199.	1.0	41
409	Limited Crystallite Growth upon Isothermal Annealing of Nanocrystalline Anatase. Crystal Growth and Design, 2015, 15, 2282-2290.	1.4	17
410	Structure, nanohardness and photoluminescence of ZnO ceramics based on nanopowders. Physica Scripta, 2015, 90, 094018.	1.2	2
411	Thermodynamic analysis of the self-propagating high-temperature synthesis of scandium and lutetium oxides nanopowders. Inorganic Materials, 2015, 51, 958-963.	0.2	4
412	A thermodynamic approach to obtaining transparent spinel (MgAl2O4) by hot pressing. Journal of the European Ceramic Society, 2015, 35, 651-661.	2.8	74
413	Colloidal processing of low-concentrated zirconia nanosuspension using osmotic consolidation. Ceramics International, 2016, 42, 11838-11843.	2.3	6
414	Synthesis and densification of single-phase mayenite (C12A7). Journal of the European Ceramic Society, 2016, 36, 4237-4241.	2.8	18
415	Pulverization of Y ₂ O ₃ nanoparticles by using nanocomposite particles prepared by mechanical treatment. Journal of Asian Ceramic Societies, 2016, 4, 351-356.	1.0	0
416	Transparent Ceramics at 50: Progress Made and Further Prospects. Journal of the American Ceramic Society, 2016, 99, 3173-3197.	1.9	142
417	Self-propagating high-temperature synthesis of Sc2O3 nanopowders using different precursors. Advanced Powder Technology, 2016, 27, 2457-2461.	2.0	12
418	Influence of powder physicochemical characteristics on microstructural and optical aspects of YAG and Er:YAG ceramics obtained by SPS. Ceramics International, 2017, 43, 10673-10682.	2.3	9
419	Porous co-continuous mullite structures obtained from sintered aluminum hydroxide and synthetic amorphous silica. Journal of the European Ceramic Society, 2017, 37, 2849-2856.	2.8	21
420	Electrospinning and thermal treatment of yttria doped zirconia fibres. Ceramics International, 2017, 43, 7581-7587.	2.3	25
421	Pressureless sintering and fabrication of highly transparent MgAlON ceramic from the carbothermal powder. Journal of Alloys and Compounds, 2018, 745, 617-623.	2.8	23
422	Pressure-less rapid rate sintering of pre-sintered alumina and zirconia ceramics. Ceramics International, 2018, 44, 10840-10846.	2.3	17
423	Effect of green body annealing on laser performance of YAG:Nd3+ ceramics. Ceramics International, 2018, 44, 4487-4490.	2.3	4

#	Article	IF	CITATIONS
424	Microwave Sintering. , 2018, , 237-274.		1
425	Feasibility of inÂsitu deâ€agglomeration during powder consolidation. Journal of the American Ceramic Society, 2019, 102, 628-643.	1.9	7
426	Impact of high energy ball milling on densification behaviour of magnesium aluminate spinel evaluated by master sintering curve and constant rate of heating approach. Ceramics International, 2019, 45, 23467-23474.	2.3	20
427	Oxide-Free Copper Pastes for the Attachment of Large-Area Power Devices. Journal of Electronic Materials, 2019, 48, 6823-6834.	1.0	19
428	Rapid pressure-less sintering of fine grained zirconia ceramics: Explanation and elimination of a core-shell structure. Journal of the European Ceramic Society, 2019, 39, 5309-5319.	2.8	13
429	Electromigration Behavior of Screen-Printing Silver Nanoparticles Interconnects. Jom, 2019, 71, 3084-3093.	0.9	20
430	Contamination Study of Zirconia on the Densification Process and Properties of Transparent MgAl2O4 Ceramics. Materials, 2019, 12, 749.	1.3	3
431	Aqueous slip casting of translucent magnesium aluminate spinel: Effects of dispersant concentration and solid loading. Ceramics International, 2019, 45, 10646-10653.	2.3	6
432	A study of salt-assisted solution combustion synthesis of magnesium aluminate and sintering behaviour. Ceramics International, 2019, 45, 6665-6672.	2.3	19
433	Effect of powder characteristics on parts fabricated via binder jetting process. Rapid Prototyping Journal, 2019, 25, 332-342.	1.6	36
434	The complex evaluation of functional properties of nearly dense BCZT ceramics and their dependence on the grain size. Ceramics International, 2019, 45, 317-326.	2.3	30
435	Tuning the Microstructure and Thickness of Ceramic Layers with Advanced Coating Technologies Using Zirconia as an Example. Advanced Engineering Materials, 2020, 22, 2000529.	1.6	10
436	Densification kinetics of nano-hematite using microwave assisted dilatometry. Ceramics International, 2020, 46, 28546-28560.	2.3	4
438	Designing Colloidal Silica-Bonded Porous Structures of In-situ Mullite for Thermal Insulation. InterCeram: International Ceramic Review, 2020, 69, 54-63.	0.2	3
440	Alumina, Structure and Properties. , 2021, , 25-46.		2
441	Direct ink writing of hierarchical porous ultraâ€high temperature ceramics (ZrB ₂). Journal of the American Ceramic Society, 2021, 104, 4977-4990.	1.9	15
442	Transparent MgAl2O4 spinel ceramics prepared via sinter-forging. Journal of the European Ceramic Society, 2021, 41, 4313-4318.	2.8	13
443	Characterization of nano / micro bimodal 316L SS powder obtained by electrical explosion of wire for feedstock application in powder injection molding. Powder Technology, 2021, 394, 225-233.	2.1	7

#	Article	IF	CITATIONS
444	Nucleation and particle growth in solution-processed thin films. , 2021, , 1-27.		1
447	Effect of Pores on Microstructure Development. , 1987, , 455-464.		2
448	Characterization of Microstructural Evolution by Mercury Porosimetry. , 1985, , 339-347.		12
449	Ultrasonic Evaluation of Spray-Dried Ceramic Powders During Compaction. , 1987, , 139-147.		2
450	Enhanced Mass and Charge Transfer in Solids Exposed to Microwave Fields. , 2006, , 472-481.		9
451	Grain Boundary Phenomena in the Early Stages of Sintering of MO Oxides. , 1989, , 553-563.		4
452	The Production of High-Grade Technical Ceramics. , 1989, , 81-97.		1
453	Effect of Physicochemical Characteristics of ZrO2-Y2O3 Powders on the Compaction Behavior and Microstructure Development. , 1989, , 29-42.		1
454	Techniques for Agglomeration Control During Wet-Chemical Powder Synthesis. Advanced Ceramic Materials, 1988, 3, 131-137.	2.3	57
455	Mekanisme Penyerakan Zarah dalam Pemprosesan Berkoloid Oksida Seramik (Al ₂ 0 ₃ –ZrO ₂ –MgO) Menggunakan DAXAD 19 TM . Jurnal Teknologi (Sciences and Engineering), 0, , .	0.3	1
456	Grain Growth and Microstructure Control. , 2007, , 121-192.		2
457	Low-temperature synthesis of ZrO2-8 mol.% Y2O3 nanopowder with high sinterability. Science of Sintering, 2011, 43, 239-245.	0.5	5
458	Microstructure development during liquid-phase sintering. International Journal of Materials Research, 2005, 96, 141-147.	0.8	12
459	LOCAL STUDY OF DEFECTS DURING SINTERING OF UO2: IMAGE PROCESSING AND QUANTITATIVE ANALYSIS TOOLS. Image Analysis and Stereology, 2008, 27, 79.	0.4	2
461	Wear Mapping and Wear Characterization Methodology. , 2004, , .		0
462	Quasi-equilibrium sintering of particle clusters containing Bernal holes. International Journal of Materials Research, 2006, 97, 670-675.	0.1	0
465	Sinterização de filmes espessos de Ba(Ti0,85Zr0,15)O3 por varredura laser. Ceramica, 2009, 55, 94-99.	0.3	1
467	Observation of Macro-defects in Ceramics before and after Sintering. Journal of the Society of Powder Technology, Japan, 2014, 51, 185-191.	0.0	0

	Сітатіо	n Report	
#	Article	IF	CITATIONS
468	Ceramic Microstructures: The Art of the Possible. , 1987, , 15-24.		0
469	Pressure Filtration of Monosized Colloidal Silica. , 1987, , 87-105.		0
470	Effect of Green Compact Pore Size Distribution on the Sintering of $\hat{I}\pm$ -Fe2O3. , 1989, , 519-527.		0
471	Materials Production. , 1989, , 209-324.		0
472	The Role of Surfaces In Ceramic Processes. , 1989, , 507-519.		0
473	Whisker—Reinforced Composites. , 1991, , 132-156.		0
474	Microstructure, Strength and Fracture Toughness of Si3N4+BETA â^' Si3N4 Ceramics. , 1991, , 386-395.		0
475	Ceramic Microstructure - the Key to the High Performance Ceramics. , 1994, , 801-810.		0
477	8 Interfacial Aspects of Ceramic Injection Molding. , 2018, , 309-351.		0
478	THE EFFECT OF THE MgO AGGREGATE SIZE ON THE DENSIFICATION OF SINTERED MgO. Ceramics - Silikaty, 2019, , 84-91.	0.2	0
480	Enhanced Mass and Charge Transfer in Solids Exposed to Microwave Fields. , 0, , 472-481.		0
483	Solid Phase Sintering and Densification Behaviors of MnS Inclusions in 416 Stainless Steel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2022, 53, 2427-2437.	1.0	2
484	Estimation of sintering pressure during the pore fragmentation via coordination number and reversal of curvature. Journal of the Korean Ceramic Society, 2022, 59, 936-943.	1.1	2
485	Powder Metallurgy Route to Ultrafineâ€Grained Refractory Metals. Advanced Materials, 2023, 35, .	11.1	7
486	Heterogeneities and defects in powder compacts and sintered alumina bodies visualized by using the synchrotron X-ray CT. Journal of the European Ceramic Society, 2023, 43, 486-492.	2.8	4
488	Densification kinetics and in situ electrical resistivity measurements of hematite nanopowders during high frequency microwave sintering. , 0, , .		0