Polymorphism and absence of Leu-enkephalin sequenc laevis

Nature 310, 251-254 DOI: 10.1038/310251a0

Citation Report

#	Article	IF	CITATIONS
1	Opioid Peptides in Human Adrenal: Partial Characterization and Presence of Adrenal Peptide E*. Journal of Clinical Endocrinology and Metabolism, 1985, 61, 658-665.	3.6	11
2	Native opioid-like peptides in Squilla mantis ganglia. Peptides, 1985, 6, 403-406.	2.4	3
3	Cloning and expression in Escherichia coli of the synthetic proenkephalin analogue gene. Gene, 1985, 39, 269-274.	2.2	10
4	The Vi element. Journal of Molecular Biology, 1985, 186, 491-503.	4.2	23
5	Reptilian enkephalins: Implications for the evolution of proenkephalin. Archives of Biochemistry and Biophysics, 1986, 245, 1-7.	3.0	54
6	Gonadotropin-releasing hormone (GnRF), Molluscan cardioexcitatory peptide (FMRFamide), enkephalin and related neuropeptides affect goldfish retinal ganglion cell activity. Brain Research, 1986, 384, 262-273.	2.2	82
7	Distribution of immunoreactive peptide B in the rat brain. Biochemical and Biophysical Research Communications, 1986, 139, 1024-1032.	2.1	12
8	Immunohistochemical and biochemical evidence for the presence of the pentapeptide met-enkephalin and the heptapeptide met-enkephalin-Arg6-Phe7 but not the octapeptide met-enkephalin-Arg6-Gly7-Leu8 in amphibian chromaffin cells. Neurochemistry International, 1986, 8, 303-309.	3.8	9
9	On the evolution of proenkephalin. Trends in Pharmacological Sciences, 1986, 7, 216-218.	8.7	14
10	RIA/chromatographic evidence for novel opioid peptide(s) in ganglia. Neuropeptides, 1986, 7, 281-289.	2.2	3
11	Restriction fragment length polymorphisms and genetic improvement of agricultural species. Euphytica, 1986, 35, 111-124.	1.2	162
12	Opioid Peptide Processing and Receptor Selectivity. Annual Review of Pharmacology and Toxicology, 1986, 26, 59-77.	9.4	183
13	Hybridization Approaches to the Study of Neuropeptides. Annual Review of Neuroscience, 1986, 9, 277-304.	10.7	43
14	Evolution of Proenkephalin and Prodynorphin. American Zoologist, 1986, 26, 1027-1032.	0.7	14
15	Restriction Fragment Length Polymorphisms in Poultry Breeding. Poultry Science, 1986, 65, 1474-1488.	3.4	22
16	Molecular Cloning of Hormone Genes. , 1987, , .		1
17	Precursor-product relationship between vitellogenin and the yolk proteins as derived from the complete sequence of aXenopusvitellogenin gene. Nucleic Acids Research, 1987, 15, 4737-4760.	14.5	123
18	Chapter 4 Evolutionary aspects of neuropeptides. Progress in Brain Research, 1987, 72, 35-45.	1.4	7

ARTICLE IF CITATIONS # Immunocytochemical analysis of proenkephalin-derived peptides in the amphibian hypothalamus and 19 2.2 18 optic tectum. Brain Research, 1987, 416, 219-227. Target tissue distribution of the proenkephalin peptides F, E, and B. Biochemical and Biophysical Research Communications, 1987, 146, 1184-1190. 2.1 Characterization of repetitive DNA transcripts isolated from a Xenopus laevis gastrula-stage cDNA 21 1.2 6 clone bank. Roux's Archives of Developmental Biology, 1987, 196, 22-29. The distribution of proenkephalinâ€derived peptides in the central nervous system of turtles. Journal of 124 Comparative Neurology, 1987, 259, 65-91. Distribution Pattern of Metorphamide Compared with Other Opioid Peptides from Proenkephalin and 23 3.9 17 Prodynorphin in the Bovine Brain. Journal of Neurochemistry, 1987, 49, 671-680. Peptide E and Its Products, BAM 18 and Leu-Enkephalin, in Bovine Adrenal Medulla and Cultured Chromaffin Cells: Release in Response to Stimulation. Journal of Neurochemistry, 1987, 49, 1824-1832. Phylogenetical aspects of the structure â€" Function relationships of vertebrate enkephalin 25 1.3 0 precursors. Biochemical Systematics and Ecology, 1988, 16, 581-587. Evidence for a new type of opioid binding site in the brain of the frog Rana ridibunda. European 3.5 26 38 Journal of Pharmacology, 1988, 150, 75-84. IR-MET and IR-LEU enkephalin content in the axolotl brain (Ambystoma mexicanum). Neuropeptides, 1988, 27 2.2 3 12, 41-42. Nonopiate active proenkephalinâ€derived peptides are secreted by T helper cells. FASEB Journal, 1989, 3, 2401-2407. Neurons expressing thyrotropin-releasing hormone-like messenger ribonucleic acid are widely 30 1.8 20 distributed in Xenopus laevis brain. General and Comparative Endocrinology, 1989, 76, 139-146. Distribution of mu, delta, and kappa opiate receptor types in the forebrain and midbrain of pigeons. Journal of Comparative Neurology, 1989, 280, 359-382. 1.6 118 Distribution of proenkephalinâ€derived peptides in the brain of <i>Rana esculenta</i>. Journal of 32 1.6 79 Comparative Neurology, 1989, 281, 23-39. Detection of Met-enkephalin and Leu-enkephalin in the posterior pituitary of the holostean fish, Amia 2.4 calva. Peptides, 1989, 10, 951-956. Steady-state levels of pro-dynorphin-related end-products from the brain of the amphibian, Xenopus 34 2.2 23 laevis. Brain Research, 1989, 479, 162-166. Novel neurotransmitters in the autonomic nervous systems of nonmammalian vertebrates., 1989, 41, 257-287. Detection of Synenkephalin, the Amino-Terminal Portion of Proenkephalin, by Antisera Directed 36 3.9 11 Against Its Carboxyl Terminus. Journal of Neurochemistry, 1990, 54, 434-443. Detection of and leu-enkephalin in the brain of the hagfish, Eptatretus stouti, and the lamprey, 1.8 Petromyzon marinus. General and Comparative Endocrinology, 1990, 77, 489-499.

CITATION REPORT

#	Article	IF	CITATIONS
38	Short interspersed repeats fromXenopusthat contain multiple octamer motifs are related to known transposable elements. Nucleic Acids Research, 1990, 18, 5781-5786.	14.5	23
39	The proenkephalin-A-derivative Met-enkephalin-Arg-Gly-Leu is not present in the feline species. Neuropeptides, 1990, 17, 171-176.	2.2	7
40	Distribution and co-existence of Met-enkephalin-like and mesotocin-like immunoreactivity in the neural lobe of the pituitary of the frog. Neuroscience Letters, 1990, 119, 86-89.	2.1	5
41	Some enkephalinergic pathways in the brain ofRana esculenta: an experimental analysis. Brain Research, 1990, 521, 238-246.	2.2	26
42	Characterization of Xenopus laevis proenkephalin gene. Molecular Brain Research, 1991, 11, 197-205.	2.3	17
43	Synthesis and post-translational processing of proenkephalin in light- and dark- adapted chicken retinas. Neurochemistry International, 1991, 19, 483-494.	3.8	9
44	Detection of Met-enkephalin in the CNS of the teleosts, Anguilla rostrata and Oncorhynchus kisutch. Peptides, 1991, 12, 541-547.	2.4	14
45	The phylogeny of Met-enkephalin and Leu-enkephalin: Studies on the holostean fish Lepisosteus platyrhincus and the Australian lungfish, Neoceratodus forsteri. General and Comparative Endocrinology, 1991, 84, 228-236.	1.8	13
46	IR-Met and IR-Leu-enkephalin content in the perioesophageal ganglia of Helix aspersa seasonal variations. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1991, 100, 609-613.	0.2	8
47	Isolation and Characterization of Opioid Peptides from Rabbit Cerebellum. Journal of Neurochemistry, 1991, 56, 1914-1920.	3.9	2
48	Distribution, Isolation and Sequence Analysis of the C-Terminal Heptapeptide of Pro-Enkephalin A (YGGFMRF) from the Ovine Median Eminence. Journal of Neuroendocrinology, 1991, 3, 215-220.	2.6	1
49	Evidence for enkephalin- and endorphin-immunoreactive cells in the anterior pituitary of the axolotlAmbystoma mexicanum. Journal of Comparative Neurology, 1991, 305, 412-420.	1.6	4
50	Neuropeptides in the Amphibian Brain. International Review of Cytology, 1992, 138, 89-210.	6.2	86
51	A cDNA from brain ofXenopus laeviscoding for a new precursor of thyrotropin-releasing hormone. FEBS Letters, 1992, 296, 292-296.	2.8	27
52	Structure and expression of <i>Xenopus</i> prohormone convertase PC2. FEBS Letters, 1992, 305, 45-50.	2.8	55
53	Comparative structural analysis of the transcriptionally active proopiomelanocortin genes A and B of Xenopus laevis Molecular Biology and Evolution, 1992, 9, 483-94.	8.9	23
54	Occurrence of immunoreactive Met- and Leu-Enkephalin-like peptides in the ovary of the green frog, Rana esculenta. General and Comparative Endocrinology, 1992, 85, 118-123.	1.8	7
55	Multiple neurotransmitters in the tuberomammillary nucleus: Comparison of rat, mouse, and guinea pig. Journal of Comparative Neurology, 1992, 323, 103-116.	1.6	118

CITATION REPORT

#	Article	IF	CITATIONS
56	Expression of the Xenopus D2 dopamine receptor. Tissue-specific regulation and two transcriptionally active genes but no evidence for alternative splicing. FEBS Journal, 1993, 213, 1349-1354.	0.2	18
57	A novel family of retrotransposon-like elements inXenopus laeviswith a transcript inducible by two growth factors. Nucleic Acids Research, 1993, 21, 2375-2381.	14.5	20
58	The Phylogeny of Enkephalins: Speculations on the Origins of Opioid Precursors. Cellular Physiology and Biochemistry, 1993, 3, 231-244.	1.6	29
59	Reversed Phase HPLC Analysis of Proenkephalin-Related and Prodynorphin-Related End-Products in the Brain of a Urodele Amphibian, <i>Ambystoma tigrinum</i> . Brain, Behavior and Evolution, 1993, 42, 69-76.	1.7	5
60	Immunocytochemical evidence for the presence of metâ€enkephalin and leuâ€enkephalin distinct neurons in the brain of the elasmobranch fish <i>Scyliorhinus canicula</i> . Journal of Comparative Neurology, 1994, 347, 585-597.	1.6	26
61	The opiate system in invertebrates. Peptides, 1994, 15, 1309-1329.	2.4	48
62	D1A, D1B, and D1C dopamine receptors from Xenopus laevis Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10536-10540.	7.1	63
63	Structure and expression of the guinea pig preproenkephalin gene: site-specific cleavage in the 3' untranslated region yields truncated mRNA transcripts in specific brain regions. Molecular and Cellular Biology, 1995, 15, 2080-2089.	2.3	20
64	The transcriptional regulation of the preproenkephalin gene. Biochemical Journal, 1995, 307, 617-629.	3.7	41
65	Translocon-associated protein TRAP <i>δ</i> and a novel TRAP-like protein are coordinately expressed with pro-opiomelanocortin in <i>Xenopus</i> intermediate pituitary. Biochemical Journal, 1995, 312, 205-213.	3.7	35
66	Frog prohormone convertase PC2 mRNA has a mammalian-like expression pattern in the central nervous system and is colocalized with a subset of thyrotropin-releasing hormone-expressing neurons. Journal of Comparative Neurology, 1995, 354, 71-86.	1.6	10
67	Analgesia produced by immobilization stress and an enkephalinase inhibitor in amphibians. Pharmacology Biochemistry and Behavior, 1995, 51, 675-680.	2.9	23
68	Proenkephalin gene regulation in the neuroendocrine hypothalamus: a model of gene regulation in the CNS. American Journal of Physiology - Endocrinology and Metabolism, 1995, 269, E393-E408.	3.5	15
69	Proenkephalin is a nuclear protein responsive to growth arrest and differentiation signals Journal of Cell Biology, 1995, 130, 1251-1262.	5.2	39
70	Isolation and structural characterization of enkephalins in the brain of the Rhynchobdellid leechTheromyzon tessulatum. FEBS Letters, 1995, 357, 187-191.	2.8	26
71	The distribution of Met-enkephalin like immunoreactivity in the brain of Apteronotus leptorhynchus, with emphasis on the electrosensory system. Journal of Chemical Neuroanatomy, 1996, 11, 173-190.	2.1	22
72	Cat proenkephalin-A does not contain the opioid octapeptide. Neurochemistry International, 1996, 28, 155-160.	3.8	3
73	A proenkephalin A-derived peptide analogous to bovine adrenal peptide E from frog brain: Purification, synthesis, and behavioral effects. Peptides, 1996, 17, 1291-1296.	2.4	14

CITATION REPORT

#	Article	IF	CITATIONS
74	Immunocytochemical localization of enkephalins in the brain of the African lungfish,Protopterus annectens, provides evidence for differential distribution of Met-enkephalin and Leu-enkephalin. , 1998, 396, 275-287.		20
75	Structural and functional evolution of the basal ganglia in vertebrates. Brain Research Reviews, 1998, 28, 235-285.	9.0	351
76	Characterization of Antibacterial COOH-terminal Proenkephalin-A-derived Peptides (PEAP) in Infectious Fluids. Journal of Biological Chemistry, 1998, 273, 29847-29856.	3.4	61
77	Solution Conformation of the Synthetic Bovine Proenkephalin-A209–237 by 1H NMR Spectroscopy. Journal of Biological Chemistry, 1998, 273, 33517-33523.	3.4	13
78	Cloning of Proopiomelanocortin from the Brain of the African Lungfish, <i>Protopterus annectens</i> , and the Brain of the Western Spadefoot Toad, <i>Spea multiplicatus</i> . Neuroendocrinology, 1999, 70, 43-54.	2.5	39
79	Molecular Evolution of the Opioid/Orphanin Gene Family. General and Comparative Endocrinology, 1999, 113, 169-186.	1.8	83
80	The proenkephalin A-processing product peptide E, which encompasses two enkephalin sequences, has a much lower opioid activity than β-endorphin. Peptides, 1999, 20, 865-871.	2.4	8
81	In the African Lungfish Met-Enkephalin and Leu-Enkephalin Are Derived from Separate Genes: Cloning of a Proenkephalin cDNA. Neuroendocrinology, 2000, 72, 224-230.	2.5	19
82	Deciphering the origin of Met-enkephalin and Leu-enkephalin in Lobe-finned fish: cloning of Australian lungfish proenkephalin. Brain Research, 2000, 874, 131-136.	2.2	21
84	Organization of proenkephalin in amphibians: cloning of a proenkephalin cDNA from the brain of the anuran amphibian, Spea multiplicatusâ~†. Peptides, 2000, 21, 339-344.	2.4	18
85	Anomalous rates of evolution of pancreatic polypeptide and peptide tyrosine-tyrosine (PYY) in a tetraploid frog, Xenopus laevis (Anura:Pipidae). Peptides, 2001, 22, 317-323.	2.4	10
86	Analyzing the radiation of the proenkephalin gene in tetrapods: cloning of a Bombina orientalis proenkephalin cDNA. Peptides, 2001, 22, 2021-2025.	2.4	15
87	Expression of the gene encoding the β-amyloid precursor protein APP in Xenopus laevis. Molecular Brain Research, 2001, 97, 13-20.	2.3	13
88	Identification of a Fourth Opioid Core Sequence in a Prodynorphin cDNA Cloned from the Brain of the Amphibian, <i>Bufo marinus</i> : Deciphering the Evolution of Prodynorphin and Proenkephalin. Neuroendocrinology, 2002, 76, 55-62.	2.5	18
89	Analyzing the evolution of the opioid/orphanin gene family. Mass Spectrometry Reviews, 2002, 21, 220-243.	5.4	86
90	Characterization of zebrafish proenkephalin reveals novel opioid sequences. Molecular Brain Research, 2003, 114, 31-39.	2.3	47
91	Cloning and Characterization of Xen-dorphin Prohormone from Xenopus laevis. Journal of Biological Chemistry, 2003, 278, 53098-53104.	3.4	20
92	Cloning of Prodynorphin cDNAs from the Brain of Australian and African Lungfish: Implications for the Evolution of the Prodynorphin Gene. Neuroendocrinology, 2004, 79, 185-196.	2.5	20

#	Article	IF	CITATIONS
93	Identification and expression of the first nonmammalian amyloid-beta precursor-like protein APLP2 in the amphibian Xenopus laevis. FEBS Journal, 2004, 271, 1906-1912.	0.2	9
94	Primary structure of guinea pig preprodynorphin and preproenkephalin mRNAs: multiple transcription initiation sites for preprodynorphin. Brain Research Bulletin, 2004, 63, 119-126.	3.0	4
95	Trends in the Evolution of the Proenkephalin and Prodynorphin Genes in Gnathostomes. Annals of the New York Academy of Sciences, 2005, 1040, 22-37.	3.8	26
96	Cloning proenkephalin from the brain of a urodele amphibian (Taricha granulosa) using a DOR-specific primer in a 3′RACE reaction. General and Comparative Endocrinology, 2005, 142, 364-370.	1.8	7
97	Are lungfish living fossils? Observation on the evolution of the opioid/orphanin gene family. General and Comparative Endocrinology, 2006, 148, 306-314.	1.8	25
98	Tracking the evolution of the proenkephalin gene in tetrapods. General and Comparative Endocrinology, 2007, 153, 189-197.	1.8	12
99	Synthesis and biological evaluation of human preproenkephalin (100â€111) and its analogs [*] . International Journal of Peptide and Protein Research, 1989, 33, 77-81.	0.1	10
100	Bioinformatic and biochemical studies on the phylogenetic variability of proenkephalin-derived octapeptides. Neuroscience, 2010, 165, 542-552.	2.3	8
101	Phylogenetic diversity and functional efficacy of the C-terminally expressed heptapeptide unit in the opioid precursor polypeptide proenkephalin A. Neuroscience, 2011, 178, 56-67.	2.3	9
102	Observations on the radiation of lobe-finned fishes, ray-finned fishes, and cartilaginous fishes: Phylogeny of the opioid/orphanin gene family and the 2R hypothesis. General and Comparative Endocrinology, 2011, 170, 253-264.	1.8	10
103	Regulated Proenkephalin Expression in Human Skin and Cultured Skin Cells. Journal of Investigative Dermatology, 2011, 131, 613-622.	0.7	76
104	Leucine-enkephalin-like immunoreactivity is localized in luteinizing hormone-producing cells in the axolotl (Ambystoma mexicanum) pituitary. Tissue and Cell, 2014, 46, 15-20.	2.2	2
105	Leucine-enkephalin promotes wound repair through the regulation of hemidesmosome dynamics and matrix metalloprotease. Peptides, 2016, 76, 57-64.	2.4	13
106	Human Antimicrobial Peptides in Bodily Fluids: Current Knowledge and Therapeutic Perspectives in the Postantibiotic Era. Medicinal Research Reviews, 2018, 38, 101-146.	10.5	42
107	Enkephalin Genes. , 1987, , 229-276.		3
108	Opioid Peptide Genes: Structure and Regulation. , 1991, , 11-51.		8
109	Biosynthesis of Enkephalins and Proenkephalin-Derived Peptides. Handbook of Experimental Pharmacology, 1993, , 423-447.	1.8	6
110	Opioid Peptide Genes: Structure and Regulation. Current Topics in Neuroendocrinology, 1993, , 63-95.	0.9	2

CITATION REPORT

#	Article	IF	CITATIONS
111	Co-existence and co-function. , 1989, , 308-343.		15
112	Generation of Diversity of Opioid Peptides. , 1985, , 1-36.		9
113	Nucleotide sequence of cloned cDNA for pro-opiomelanocortin in the amphibian Xenopus laevis Journal of Biological Chemistry, 1985, 260, 13685-13689.	3.4	83
114	Evidence for the phosphorylation of a proenkephalin-derived peptide, peptide B Journal of Biological Chemistry, 1988, 263, 2548-2552.	3.4	21
115	Isolation and characterization of the rat proenkephalin gene Journal of Biological Chemistry, 1984, 259, 14309-14313.	3.4	185
116	The Isolation and Chemical Characterization of Phosphorylated Enkephalin-containing Peptides from Bovine Adrenal Medulla. Journal of Biological Chemistry, 1989, 264, 3061-3065.	3.4	27
117	Expression of the Synthetic Proenkephalin Gene in E.coli. , 1985, , 22-32.		0
118	Other Vertebrate Sequences. , 1987, , 1-167.		0
119	Development of Scar Improving Materials using Enkephalin Derivatives. Journal of the Korea Academia-Industrial Cooperation Society, 2015, 16, 5336-5342.	0.1	1